
Sistemas Operativos: Threads

Pedro F. Souto (pfs@fe.up.pt)

March 23, 2015

Roadmap

What is a Thread?

Use of Threads

Libpthreads

Multithreaded Programming Challenges

Further Reading

Interprocess Communication in Unix

I In Unix-like OSs, e.g. Linux, a process runs in a virtual
processor:

I each process has the impression that it has all computer
resources at its disposal

I Communication between processes in Unix is not easy:
I the parent process can pass whatever information it wishes to

its child process upon its creation, but afterwards ...
I a child process can pass a very limited amount of information

only to its parent upon its termination
I sinchronization among processes is possible only between a

parent process and its children
I More recently, Unix-like OS also support shared memory

among processes:
+ makes it easy for processes to cooperate;
− its use is not very convenient ;
− it is relatively inefficient as processes must synchronize via the

OS

Threads

Threads abstract the execution of a sequence of instructions,
i.e. a thread of execution

Simplifying, whereas a process abstracts the execu-
tion of a program, a thread abstracts the execution of
a function

I In more recent OSs, a process may provide an execution
environment for more than one thread.

Data

Text

Data

Text

Multithreaded Text Processor
The idea is to use one thread per task

Kernel
Keyboard Disk

	Four score and seven
years ago, our fathers
brought forth upon this
continent a new nation:
conceived in liberty,
and dedicated to the
proposition that all
men are created equal.
 Now we are engaged
in a great civil war
testing whether that

nation, or any nation
so conceived and so
dedicated, can long
endure. We are met on
a great battlefield of
that war.
 We have come to
dedicate a portion of
that field as a final
resting place for those
who here gave their

lives that this nation
might live. It is
altogether fitting and
proper that we should
do this.
 But, in a larger sense,
we cannot dedicate, we
cannot consecrate we
cannot hallow this
ground. The brave
men, living and dead,

who struggled here
have consecrated it, far
above our poor power
to add or detract. The
world will little note,
nor long remember,
what we say here, but
it can never forget
what they did here.
 It is for us the living,
rather, to be dedicated

here to the unfinished
work which they who
fought here have thus
far so nobly advanced.
It is rather for us to be
here dedicated to the
great task remaining
before us, that from
these honored dead we
take increased devotion
to that cause for which

they gave the last full
measure of devotion,
that we here highly
resolve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new birth of freedom
and that government of
the people by the
people, for the people

1. One thread interfaces with the user (via the keyboard, the
mouse and the screen);

2. One thread formats the text in backgroung
3. One thread periodically saves the file on non-volatile storage,

e.g. hard disk.

Resource Sharing with Threads

I Threads of a given process may share most resources, except
the stack and the processor state:

 Kernel

Thread 3's stack

Process

Thread 3Thread 1

Thread 2

Thread 1's
stack

Thread State

I Like a process, a thread may be in one of 3 states:

running

waitingready

1

2

3

4

I Thread-specific information is relatively small:
I its state (e.g. a process may be blocked waiting for an event
I the processo state (incluing the SP and PC);
I a stack.

I Operations like:
I creation/termination
I switching

on threads of the same process are much more efficient than
the same operations on processes

Roadmap

What is a Thread?

Use of Threads

Libpthreads

Multithreaded Programming Challenges

Further Reading

Use of Threads

I Same process threads may share many resources, including
the address space

they are particularly appropriate for applications that
comprise several concurrent activities

I E.g. Web server:
I Receives and processes requests for Web pages.
I Web pages are files stored on disk.
I Keeps in main memory a cache of the pages most recently

accessed
I If the requested page is not in the cache, the server must go to

disk

Singe Threaded Web Server

while(TRUE) {
get_next_request(&buf);
lookup_page_in_cache(buf, &page);
if(page == NULL)

read_page_from_disk(buf, &page);
send_page(page);

}

I If the page is not in the cache, the server must go to disk,
blocking

I While the page is not brought to main memory, the server
cannot process other requests

I The number that such server can process per time unit is
rather low

Multi-Threaded Web Server

I A thread, the dispatcher, receives Web requests and passes
them to worker threads

I Each worker thread processes one request at a time: no
problem if it blocks on an I/O operation

Dispatcher thread

Worker thread

Web page cache

Kernel

Network
connection

Web server process

User
space

Kernel
space

Multi-Threaded Web Server (Code)

I Dispatcher thread:
while(TRUE) {

get_next_request(&buf);
handoff_work(buf);

}

I Worker threads:
while(TRUE) {

wait_for_work(&buf);
lookup_page_in_cache(buf, &page);
if(page == NULL)

read_page_from_disk(buf, &page);
send_page(page);

}

Web Server Comparison

Architecture Parallelism Ease of Programming
Single threaded No Easy.
Multithreaded Yes May be hard.

Roadmap

What is a Thread?

Use of Threads

Libpthreads

Multithreaded Programming Challenges

Further Reading

libpthread (pthreads)

I POSIX thread library
Specified to promote code portability

Life-cycle related pthread functions
int pthread_create(pthread_t *id, ...) creates a

thread that executes the function specified in one
of its arguments:

fun()

fun() fun()

pthread_create()

Function invocation vs thread creation

void pthread_exit(void *value_ptr) terminates the
thread;

int pthread_join(pthread_t thread, void **value_ptr)
waits for the termination of the thread specified in
its first argument

Multithreaded Program Execution

I In a multithreaded program, a thread is created upon:
I A program’s creation: main() is executed by the main

thread.
I Execution of pthread_create(): all other threads

I A thread terminates if, e.g.:
I it returns from the first function that it executed (main() pr
pthread_create() argument;

I it executes pthread_exit().
I A multithreaded program terminates if, e.g.:

I The main thread (see above) terminates;
I Any thread invokes the _exit() system call

pthread_create()

int pthread_create(pthread_t *id,
const pthread_att_t attr,
void *(*start_fn)(void *), void *arg)

where:

*id is initialized inside by pthread_create() with
the identity of the created thread ;

*attr is a data structure that determines the attributes of
the thread to be created (if NULL the thread will
have default attributes)

*start_fn is the function the thread will execute.
Its prototype is:

void *thr_fun(void *)

*arg is the argument passed to thr_fun()

pthread_create(): example
#include <pthread.h>
void *fun(void *arg) { /* Actually the ar- */

... /* gument is not used */
}

...
pthread_attr_t attr;
pthread_t tid;
...
pthread_attr_init(&attr); /* Initialize attr with

* default values */
pthread_create(&tid, &attr, fun, NULL);
...

I pthread_attr_init() initializes its argument to default
values

I In general, the last argument of pthread_create() is
the address of a data structure with the data to pass the
function fun().

void *fun(void *arg)

Allows to define any function
#include <pthread.h>

void *fun(void *arg) {
args_t *my_args = args;
ret_t *ret = malloc(sizeof(ret_t));
...
return ret;

}

Múltiple Threads
Normally multithreaded applications use more than 2
threads

I You need to allocate different variables for each thread
#include <pthread.h>
#define T 3 /* number of threads */
typedef void *(thr_fun_t)(void *arg);

...
pthread_attr_t attr[T];
pthread_t tid[T];
int thr_arg[T];
...
for(i = 0; i < T; i++) {

pthread_attr_init(&attr); /* Initialize attr */
pthread_create(&(tid[i]), &(attr[i]),

(thr_fun_t *) fun,
(void *)&(thr_arg[i]));

}
...

Roadmap

What is a Thread?

Use of Threads

Libpthreads

Multithreaded Programming Challenges

Further Reading

Multithreaded Programming
I Legacy code written for single-threaded processes rarely

works without changes in a multithreaded application:
I global variables:

Thread 1 Thread 2

Access (errno set)

Errno inspected

Open (errno overwritten)

Ti
m

e

I non-reentrant functions;
I concurrency (race conditions).

I This is also true for libary code, including the C standard
library:

With gcc, you must use the -pthread option

Roadmap

What is a Thread?

Use of Threads

Libpthreads

Multithreaded Programming Challenges

Further Reading

Further Reading
OSTEP

I Ch. 36 (until Sec. 36.2): Concurrency an
Introduction

I Ch. 27 (until Sec. 27.3): Thread-API
Sistemas Operativos

I Secção 3.4: Modelo Multitarefa
I Secção 3.6.4: Tarefas - Interface POSIX

Modern Operating Systems, 2nd. Ed.
I Section 2.2: Threads
I Section 2.2.8: Making Single-Threaded Code

Multithreaded
Operating Systems Concepts

I Section 4.1: Overview (of threads)
I Section 4.3: Thread Libraries (only 4.3.1)
I Section 4.4: Threading Issues (for your education)

http://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf

	What is a Thread?
	Use of Threads
	Libpthreads
	Multithreaded Programming Challenges
	Further Reading

