
Sistemas Operativos: Tópicos de C
Operating Systems: C Topics

2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

February 12, 2014



Sumário

Introduction

Variables and Types

Functions

Pointers



The main() function

I Every program must have one function named main()

I The smallest C program is:
int main() {
}

I Before a C program can be executed it must be compiled.
E.g. using gcc:
gcc -Wall main.c -o main

I To run the resulting program (binary/executable) you need
only to type its name in a terminal:
./main

I What does it do?



The most famous C program

#include <stdio.h>
int main() {

printf("Hello World!\n");
}

What does it do?



The printf() function

I This is one of the most useful functions of the C library
I You’ll use it often for debugging

I It has a variable number of arguments. It’s prototype is
(check man 3 printf):
int printf(const char *format, ...);

format is a string that specifies the format of the output.
It may be include:

I Either text that is output verbatim, e.g. Hello World!
I Or conversion specifiers, e.g. %d, which specify how

each of the following arguments should be interpreted.
(Check the Wikipedia for a nice description of the
conversion specifiers.)

... this specifies a variable number of arguments
I One per conversion specifier
I The type of each argument should match that of the

corresponding conversion specifier

http://en.wikipedia.org/wiki/Printf_format_string


Sumário

Introduction

Variables and Types

Functions

Pointers



What are variables?

I Variables are a programming language concept used to
store values

I The values stored in a variable can change, hence its name

int main() {
int i;

for( i = 0; i < 10; i++) {
printf("%d\n", i);

}
}

I We can think of variables as user defined registers
I In C, however, it is more useful to think of them as memory

locations
I The C operator & returns the address of a variable



Primitive types of C variables

Integer Types types of integer values
I There are several of them char, short, int, long,
long long

I Can be either signed or unsigned
Floating Point Types types of floating point values

I Can be either single precision (float) or double
precision (double)

I C supports also composite types, such as arrays and
structs



How relevant is a data type?

Determines the possible values E.g. a variable of type char
can store a value between -128 and 127

I Whereas an unsigned char variable can store a value
between 0 and 255

Determines the operations that can operate on the values of the type
E.g. the operator % requires that both operators be integer
types



Type conversions

I Sometimes C automatically converts a type in another,
specially to perform arithmetic operations

I Programmers can also use casts to force the program to
convert a value of one type to the value of another type
int n, m;
double x;

x = (double)n/m;
I Type conversions in C can be tricky and may generate

unexpected results
I This is not usual in the kind of programs you’ll develop in

SO, but . . .
I Check this CERT page for a discussion of some issues

https://www.securecoding.cert.org/confluence/display/seccode/INT02-C.+Understand+integer+conversion+rules


Scope of a variable (declaration)

I The scope of a variable declaration is the region of the
program text in which that declaration holds

I In C, the scope of a variable can be:
Global i.e. the declaration holds in the entire program text

I Using the static keyword, one can limit the scope of a
variable declaration to a module, i.e. a C source file

Local i.e. the declaration holds only in the compound
statement (i.e. the statement delimited by matching ’{’
’}’), after the point where it occurs

I In earlier versions of the C standard, declarations had to
occur always at the beginning of a compound statement
before any statement



Sumário

Introduction

Variables and Types

Functions

Pointers



C functions
I A C function is very similar to a mathematical function
I In C, there are 3 constructs related to functions:

Definition which specifies the set of instructions to be
executed when a function is invoked
int sum(int n, int m) {

return n + m;
}

Invocation which determines the execution of the
instructions in the function definition, with some
particular values for its arguments

p = sum(a,1);

Declaration which specifies the prototype of a function, i.e.
its name, the type of the returned value and the type of
each of its arguments
int sum(int n, int m);

I The declaration of a function should appear in a program
before its invocation.



Parameter Passing in C (1/2)
Formal vs. Actual Parameters

Formal parameters parameters that appear in a function
definition:
int sum(int n, int m) {

return n+m;
}

Actual parameters parameters that appear in a function
invocation:

p = sum(1,a);

Pass-by-Value

I The formal parameters are variables local to the function
I The value of each actual parameter is copied to the

corresponding formal parameter
I Often, this implemented by pushing the values of the actual

parameters to the stack, which is used to hold the values of
the formal parameters



Parameter Passing in C (2/2)
I Copying of parameter values may be inefficient, specially

for large variables, such as arrays and structs. In C:
I Structs are rarely used as function arguments
I Arrays implementation is such that passing them as

parameters is not less efficient than passing the value of a
variable, but ...

I The value of the actual parameters after the function call is
equal to their value before the function call.

I The following function does not do what you may expect:
void swap(int n, int m) {

int t;

t = n;
n = m;
m = t;

}

when it is called as follows:
swap(p,q);



Sumário

Introduction

Variables and Types

Functions

Pointers



Pointers
Def. A pointer is a variable whose value is the address of a

memory location that contains a value of a given type
char *p1; // the value pointed by p1 is a char
int *p2; // the value pointed by p2 is an int

Comments
I If the type requires more than one byte, the address is

that of the first memory location with the value
I The size of a pointer depends on the architecture of the

underlying processor (actually, nowadays of the
platform)

I Many Intel processors support both 32-bit and 64-bit
address operation

I Sometimes code (not only of the OS, but also of the
applications) depends on the “width of the architecture”

I In the case of Intel it does not affect only the size of the
addresses

I Pointers p1 and p2 must not be used before they are
initialized



C Pointer Operators

* This is the dereference operator. E.g. in
c = *p1;

*p1 denotes the value of the memory location pointed by p1
I It is also used to declare a pointer (char *p1;)

& This is the reference operator, i.e. the operator that extracts
the address of a variable. E.g.:

char c, *p;

p = &c;

I To initialize a pointer usually we use
either the & operator
or functions that return addresses of the appropriate
type



Using Addresses as Function Arguments
I Let’s use pointers as formal parameters:
void swap(int *p, int *q) {

int t;

t = *p;

*p = *q;

*q = t;
}

and addresses as actual parameters:
int m, n;
...
swap(&m,&n);

I This is one of the main uses of pointers/addresses in C
I Parameters are still passed by-value
I However, as they are addresses, using the dereference

operator, we achieve the same effect as if they were
passed by-reference (almost always)



scanf() (man 3 scanf)

#include <stdio.h>

int main() {
int n;
printf("Enter an integer ...");
scanf("%d", &n);
printf("\nRead %d \n", n);

}

I scanf() is the reciprocal of printf()
I Whereas printf() allows a program to output data,
scanf() allows a program to input data

I Like in printf():
I the first argument of scanf() is a format string that should

contain conversion specifiers
I for each conversion specifier there should be one additional

argument with the address of a memory location of
appropriate type



Strings and Pointers (1/2)

I A string is a sequence of characters
I In a programming language they are usually implemented

by storing each of the characters in a string in consecutive
memory locations

I Thus either of the following suffice to process a string:
I The address of the location with the first character and the

length of the string;
I The address of the location with the first character and the

address of the location with the last character



Strings and Pointers (2/2)

I C uses a slight variant of the second alternative
I It uses a sentinel, i.e. a character with a special value, 0,

also known as end-of-string character
I This way, when processing a string all we need to know is

the address of the memory location of the first character in
the string. E.g. in:

printf("Hello, World!\n");
The compiler:

I Initializes a region of memory with the characters in the
string Hello, World!
n, followed by the end-of-string character

I Puts the address of the first location of that region of
memory as actual argument of this invocation of printf()



Arrays and Pointers (1/3)

I In C, an array is a sequence of values of the same type
int main() {

int a[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
int i;
for( i = 0; i < 10; i++ )

printf("a[%d] = %d\n", i, a[i]);
}

I The indices of an array range from 0 to N-1, where N is the
number of elements (length) of the array

I As we would expect, the elements of an array are stored in
order in a contiguous memory region



Arrays and Pointers (2/3)

I C keeps only the address of the first memory location of
that region, i.e. of the first element in the array

I The value of the name of an array, in the example a, is the
address of the first element in the array, &a[0]

I C does not store the length of the array anywhere
I If included in the definition, it is used only for space

allocation when the array is defined, but it is forgotten
afterwards

int a[10]; // a is an array of 10 integers
I It is up to the programmer to ensure that it uses only valid

indices, i.e. there is no array bound checks
I C supports pointer arithmetic

I I.e. arithmetic operators when applied to
pointers/addresses may yield different results from those
when applied to integers of the same size

to operate on arrays



Arrays and Pointers (3/3)

#include <stdio.h>

int main() {
int a[] = {0, 1, 2};
int i, *p;
printf("Array a[] @ 0x%p\n", a);
for( i = 0, p = a; i < 3; i++, pp++ ) {

printf("a[%d] (@ %p) = %d\n", i, &a[i], a[i]);
printf("a[%d] (@ %p) = %d\n", i, p, *p);

}
return 0; // So that the compile does not complain

}

I Likewise, difference between pointers/addresses of the
same type yields what we would expect


	Introduction
	Variables and Types
	Functions
	Pointers

