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Facets of Kernel Synchronization

Implementation of the synchronization mechanisms
I Many synchronization mechanisms have to be

implemented by the kernel
Synchronization in the kernel itself

I Several processes/threads can make system calls
concurrently

I The kernel code implementing the system calls may
modify kernel data structures

I Interrupt handlers need to access kernel data structures
that may be accessed by other parts of the kernel code

I The concurrent execution of kernel code by different
processes/threads and of interrupt handlers requires
synchronization to prevent race conditions



Nonpreemptive Kernels

I Solution used mostly with uniprocessors
I A process/thread running in kernel mode is never

preempted. A process/thread in kernel mode runs until it:
I Exits the kernel (the system call returns)
I Blocks
I Voluntarily yields the CPU

I By careful programming, it is possible to avoid race
conditions between processes/threads running in kernel
mode

I Race conditions with interrupt handlers can be avoided by:
I Disabling interrupts when accessing shared data structures
I Often, the HW allows to selectively inhibiting interrupts

I This allows the system to be more responsive



Synchronization on Multiprocessors (1/2)
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I When a process makes a system call it is handled by its
own CPU

I The issue here is I/O and memory, which are shared
OS on Master CPU also called Master-Slave

Master
runs
OS

CPU 1

Slave
runs user
processes

CPU 2

Slave
runs user
processes

CPU 3

User
processes

OS

CPU 4 Memory I/O

Bus

Slave
runs user
processes

I System calls are redirected to the master CPU

I OS synchronization can be done mostly as on
uniprocessors

I Races can be avoided using nonpremptive kernel



Synchronization on Multiprocessors (2/2)
Single OS which can be run by any CPU
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Problem Race conditions
Solution Several:

Single lock whole kernel in the same critical section
I At any time only one process can be inside the kernel
I Requires minimal changes from uniprocessor code

Multiple locks OS components are independent
I However, there are some data structures, such as the

process table, that are accessed by otherwise
independent parts of the kernel

I Access to multiple data structures may lead to
deadlock
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Interrupt Handlers

I Some devices generate HW interrupts to notify the OS of the
occurrence of events

I E.g. the press of a key, the tick of a clock or the arrival of a
network packet

I Occurrence of an HW interrupt usually leads to the
suspension of the currently running thread, and the execution
of an interrupt handler (IH)

I IHs can also run upon occurrence of a SW interrupt, i.e. the
execution of a special ISA instructions

I The way the kernel switches from the interrupted thread to the
IH is HW dependent

I The kernel may have to perform more or less tasks depending
on the level of support from the HW



Interrupt Context

I IH execute asynchronously wrt standard OS threads
I The kernel saves the context of the interrupted thread

I Possibly with the help of the HW
I Often the IH uses the kernel stack of the interrupted thread

I The kernel stack must be sized accordingly
I An alternative is to use a dedicated kernel stack for interrupts

I The IH cannot block or sleep
I The IH has no struct task, and therefore is not schedulable
I It cannot call functions that may block, e.g. kmalloc()

I Cannot copy data from/to user-level
I The interrupted process may not be the sender/destination of

the data



Kernel Interrupt Handling
Top-half (Linux) which performs the actions required by the device

I E.g. read a frame from the network card
I It must be as short as possible

I Sometimes the interrupts are disabled in the top-half
I Usually, no new interrupts are generated by the device
I Lower priority interrupts are delayed

Bottom-half (Linux) which performs less urgent actions
I Response to the interrupt can be faster
I Handling can be performed in a more convenient context

Tasklets are not schedulable
I Cannot block

Workqueues are schedulable
I But do not execute in the context of any user process

Serial port DD No need for bottom-half
I The top-half handles the device and wakes up the

user-thread, if any
I The user-level thread copies the data to user-level



Linux IH-related API (<linux/interrupt.h>
irqreturn_t handler(int irq, void *arg)
where:

irq is the interrupt request line (IRQ) that caused execution of
the IH

arg is a data structure that must have been registered together
with the handler

int request_irq(unsigned int irq,
irq_handler_t handler, unsigned long flags,
const char *dev_name, void *arg)

where:

irq is the interrupt request line (IRQ)
handler name of the IH (function)
flags e.g. whether interrupts should be disabled,
dev_name for /proc/interrupts
arg address of data structure to pass as 2nd argument to IH

(similar to pthread_create())
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Concurrency in the Linux Kernel

I Linux supports multiprogramming and kernel-level threads
I Linux uses preemptive scheduling

I Although, on occasion the kernel disables preemptions
I Linux supports also several kinds of ephemerous-threads, i.e.

threads that
I Do not execute in the context of a process
I Perform short duration computations in response to events

such as:
I Interrupt handlers
I Timers, tasklets and workqueues

I Thread-like entities for deferred execution

all of which run asynchronously wrt other threads



Linux Kernel Concurrency Control Mechanisms

I Semaphores (can be used as mutexes, or locks)
I Read-write locks (called read-write semaphores)
I Spinlocks

I Reader-writer spinlocks
I Lock-free data-structures
I Atomic variables
I Other mechanisms

I seqlocks, based on optimistic locking techniques
I RCU (read-copy-update), akin to multi-version CC

both for cases where reads are common and writes rare



CC Implementations

I Some of these mechanisms have different implementations,
e.g.

I For use with data-structures accessed only by user-threads
I For use with data-structures also accessed by IH, and other

"asynchronous threads"
I The reasons for this are two-fold

Correctness some "threads", e.g. IHs, cannot block nor be
preempted (they do not have an execution context)

Efficiency



Linux Kernel Semaphore API (according to LDD3)

Use: #include <asm/semaphore.h>

void sema_init(struct semaphore *sem, int val)

I Use the appropriate value for val, if you want a lock
I But there is also an interface for mutexes, for convenience

void down(struct semaphore *sem)

int down_interruptible(struct semaphore *sem)
Should use this one instead of down(), as otherwise your
thread may get stuck inside the kernel

int down_trylock(struct semaphore *sem)

void up(struct semaphore *sem);



Linux Kernel Reader/Writer Semaphore API
Use: #include <linux/rwsem.h>

void init_rwsem(struct rw_semaphore *sem)
Should be called a lock instead of semaphore

void down_read(struct rw_semaphore *sem)
No interruptible version :(

int down_read_trylock(struct rw_semaphore *sem)

void up_read(struct rw_semaphore *sem);

void down_write(struct rw_semaphore *sem)

int down_write_trylock(struct rw_semaphore *sem)

void up_write(struct rw_semaphore *sem);

void downgrade_write(struct rw_semaphore *sem)
Should use two-phase locking to prevent deadlock

IMPORTANT Writers have priority. From LDD3:
I "as soon as a writer tries to enter the critical section, no

readers will be allowed in until all writers have completed
their work."



Serial Port DD and Semaphores

Suggestion Implement the DD as a monitor
I Execute each operation of the struct fileops in mutual

exclusion
I Add a semaphore to the device struct of the serial port DD

Issue This prevents concurrent execution by several user threads,
but often the performance is acceptable

I Anyway, this is much better than one lock for the entire
kernel

Problem What about the IH?
I Cannot use the semaphore, because in Linux IHs cannot

block, they are not schedulable entities, i.e. standard
threads

I Need to use another mechanism
I For accessing the data structure used in the communication

between the IH and the user thread
I The IH does not need to access the device struct



Linux Kernel Spinlock API (1/2)

Use: #include <linux/spinlock.h>

void spin_lock_init(spinlock_t *lock)

void spin_lock(spinlock_t *lock)

I The thread does not block, but rather keeps spinning trying
to acquire the lock

I spin_lock() disables preemption, so the scheduler will
not take the processor away from a thread while it is inside
a CS protected by spin locks

I Why?
I CS protected by spin locks must be as short as possible

I They cannot make calls to functions that may block/sleep

void spin_unlock(spinlock_t *lock)

Issue What if a thread holding a spin lock is interrupted and the IH
tries to acquire that spin lock?



Linux Kernel Spinlock API (2/2)
void spin_lock_irqsave(spinlock_t *lock,

unsigned long flags)

I Disables HW interrupts on the local processor only before
locking. The previous interrupt state is stored in flags (it is
not a pointer: spin_lock_irqsave() is a macro)

void spin_lock_bh(spinlock_t *lock)

I Disables SW interrupts on the local processor only before
locking, but leaves HW interrupts enabled

void spin_lock_irqrestore(spinlock_t *lock,

unsigned long flags)

I flags should be the value returned from
spin_lock_irqsave()

void spin_unlock_bh(spinlock_t *lock)

Note These functions should be used when a spinlock can be
taken in the context of handling an interrupt (either HW or SW)



kfifo (<linux/kfifo.h>) (1/3)
A circular buffer like the one we used to study concurrency

struct kfifo {
unsigned char *buffer; /* the buffer for data */
unsigned int size; /* the size of the buffer */
unsigned int in; /* data is added at (in % size) */
unsigned int out; /* data is fetched from (out % size) */
spinlock_t *lock; /* protects concurrent changes */

};
/* kfifo_init - allocates FIFO using a preallocated buffer

* lock must have beee previously initialized */
struct kfifo *kfifo_init(unsigned char *buffer,

unsigned int size, gfp_t gfp_mask, spinlock_t *lock)

/* kfifo_alloc - allocates FIFO and its internal buffer

* lock must have beee previously initialized

* The size will be rounded-up to a power of 2. */
struct kfifo *kfifo_alloc(unsigned int size,

gfp_t gfp_mask, spinlock_t *lock)

/* kfifo_free - frees the FIFO, including the buffer */
void kfifo_free(struct kfifo *fifo)



kfifo (<linux/kfifo.h>) (2/3)

/**
* kfifo_put - puts some data into the FIFO

* @buffer: the data to be added.

* @len: the length of the data to be added. */
static inline unsigned int kfifo_put(struct kfifo *fifo,

unsigned char *buffer, unsigned int len) {
unsigned long flags;
unsigned int ret;
spin_lock_irqsave(fifo->lock, flags);
ret = __kfifo_put(fifo, buffer, len);
spin_unlock_irqrestore(fifo->lock, flags);
return ret;

}

/**
* kfifo_get - gets some data from the FIFO

* @buffer: where the data must be copied.

* @len: the size of the destination buffer. */
static inline unsigned int kfifo_get(struct kfifo *fifo,

unsigned char *buffer, unsigned int len)



kfifo (<linux/kfifo.h>) (3/3)
From kernel/kfifo.c

unsigned int __kfifo_put(struct kfifo *fifo,
unsigned char *buffer, unsigned int len)

{
unsigned int l;
len = min(len, fifo->size - fifo->in + fifo->out);
/* Ensure that we sample the fifo->out index -before- we

* start putting bytes into the kfifo. */
smp_mb();
/* first put the data starting from fifo->in to buffer end */
l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)),

buffer, l);
/* then put the rest (if any) at the beginning of the buffer */
memcpy(fifo->buffer, buffer + l, len - l);
/* Ensure that we add the bytes to the kfifo -before-

* we update the fifo->in index. */
smp_wmb();
fifo->in += len;
return len;

}



Atomic Variables/Bits

Arithmetic operations on integer type atomic_t. E.g.:
void atomic_set(atomic_t *v, int i)
int atomic_read(atomic_t *v)
void atomic_add(int i, atomic_t *v)
void atomic_inc(int i, atomic_t *v)

Bit operations on a memory position. E.g.:
void set_bit(int nr, void *addr)
void clear_bit(int nr, void *addr)
void change_bit(int nr, void *addr) toggles bit
void test_and_set_bit(int nr, void *addr) as well

as for the other operations (clear and change)

I Some instruction set architectures (ISA) provide instrutions
that perform these operations

I The Linux API allows to develop portable code
I That will work even if the ISA of the processor being used does

not provide the operation being invoked



Waitqueues

Issue kfifo’s use spinlocks:
+ IH cannot block
- User threads must busy wait

How can user threads avoid busy waiting?
NON-Solution Use semaphores

I Operations on semaphores may block and IH cannot
Solution Use waitqueues

Def. A wait queue is a queue of threads waiting for some event
Each queue is defined by a queue header of type
wait_queue_head_t:
wait_queue_head_t wqueue;
init_waitqueue_head(&wqueue);



Waitqueue Hi-level API (<linux/wait.h> macros)

Waiting for an event

wait_event(queue, condition)
wait_event_interruptible(queue, condition)
wait_event_timeout(queue, condition, timeout)
wait_event_interruptible_timeout(queue, condition,

timeout)

where:
queue is the header of the waitqueue
condition is an arbitrary C boolean expression
timeout is the duration of a timeout in jiffies, which is given by
1/HZ (the vbox image is using a value of 100 for HZ)

Waking up

void wake_up(wait_queue_head_t *queue);
void wake_up_interruptible(wait_queue_head_t *q);



wait_queue()

#define wait_event(wq, condition) \
do { \

if (condition) \
break; \

__wait_event(wq, condition); \
} while (0)

#define __wait_event(wq, condition) \
do { \

DEFINE_WAIT(__wait); \
for (;;) { \

prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE); \
if (condition) \

break; \
schedule(); \

} \
finish_wait(&wq, &__wait); \

} while (0)
#define DEFINE_WAIT(name) \

wait_queue_t name = { \
.private = current, \
.func = autoremove_wake_function, \
.task_list = LIST_HEAD_INIT((name).task_list), \

}



Waitqueue Low-level API

I prepare_to_wait() and finish_wait() belong to a
low-level API

I The use of this API is tricky
I In the serial port DD use the hi-level API instead:
typedef struct {

struct cdev cdev;
struct semaphore mutex;
struct kfifo *rxfifo; // receiver fifo
wait_queue_head_t rxwq; // for IH synchron.
[...]

} seri_dev_t;

I If you wish to use the low-level API beware of the
"lost-wakeup" bug
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O Problema do lost wakeup() (1/2)

I O thread dispatcher do servidor de Web poderia incluir o
seguinte código:
lock();
while(bbuf_p->cnt == BUF_SIZE) { /* Busy wait */

unlock();
lock();

}
enter(bbuf_p, (void *)req_p); /* Enter request */
unlock(); /* in buffer */

I Para evitar espera activa, o SO pode oferecer o par de
chamadas ao sistema: sleep() e wakeup().



O Problema do lost wakeup() (2/2)

I Para evitar desperdiçar o tempo do CPU, poderia usar-se:
lock();
while(bbuf_p->cnt == BUF_SIZE) {

unlock();
sleep(bbuf_p); /* Block thread */
lock();

}
enter(bbuf_p, (void *)req_p);
unlock();

I Para desbloquear o dispatcher, os worker threads
executariam:

req_p = (req_t *)remove(bbuf_p);
if(bbuf_p->cnt == BUF_SIZE - 1) /* Buffer was full */

wakeup(bbuf_p); /* Wakeup dispatcher thread */

I Este código tem uma race condition (lost wakeup) entre a
aplicação e o SO, que pode bloquear o dispatcher para
sempre. Qual é?
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Additional Reading

Sistemas Operativos

I Section 5.6

Modern Operating Systems, 2nd. Ed.

I Section 8.1

J. Corbet, A. Rubini, and G. Kroah-Hartman, "Linux
Device Drivers", 3rd Ed., O’Reilly

Ch. 5: Concurrency and Race Conditions
Ch.10: Interrupt Handling
Ch. 7: Time, Delays and Deferred Work
Ch. 6: Advance Char Driver Operations

http://lwn.net/images/pdf/LDD3/ch05.pdf
http://lwn.net/images/pdf/LDD3/ch10.pdf
http://lwn.net/images/pdf/LDD3/ch07.pdf
http://lwn.net/images/pdf/LDD3/ch06.pdf
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