
Computer Labs: Version Control with
Subversion

2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

September 23, 2014

The Problem
$edit video_gr.c, make, run, edit, make, run, ...

OK! Now that it enters in graphics mode, let’s make a backup

$copy video_gr.c video_gr.v1.c
$edit video_gr.c, make, run, edit, make, run, ...

OK! Now that it maps graphic memory, let’s make another
backup

$copy video_gr.c video_gr.v2.c
$edit video_gr.c, make, run, edit, make, run, ...

OK! Now that it draws a pixel, let’s make another backup

$copy video_gr.c video_gr.v3.c
$edit video_gr.c, make, run, edit, make, run, ...

Oops! Does not leave graphics mode, let’s retrieve the backup

$copy video_gr.v7.c video_grc.

Hmm! This is not the version I want. Should it be v3? ... Oops,
deleted the last version !@£#%/#*&$@

The Solution? Subversion! (SVN)

I Subversion is a version control system that is able to:
I Keep several versions of an entire (development) directory

tree
I Restore any of the versions it keeps in a consistent way

I Furthermore, it:
I supports concurrent access to the different files or

directories in the tree by several users;
I keeps a log of the changes performed to each file/directory

that can be used to document/keep track of the main
changes between versions

I allows to create new branches, i.e. to keep track of the
evolution of multiple directory trees that have a common
ancestor (i.e. a tree of directory trees)

SVN Key Concepts
Repository This is the central store (and the server program)

that keeps the different versions of the data
I It usually keeps data for different “projects”
I We’ll refer to the data of a “project” kept in the repository

as ... the repository
Working Copy This is a copy of one version of the data of a

“project”. The working copy is kept in a client computer, may
be the computer that keeps the repository

I The working copy is a standard directory tree
I Other programs, like editors and compilers, do not need

to be “version-control-aware”
There may be several working copies of a given repository
(project), thus supporting the collaboration of multiple
programmers in a project

Revision A new revision (version) is created by committing to
the repository the changes done in a working copy

SVN: The Repository and Working Copies

Source: Ben-Collins-Sussman et al. Version Control with Subversion

SVN: Revisions

Revision A new revision (version) is created by committing to
the repository the changes done in a working copy

Source: Ben-Collins-Sussman et al. Version Control with Subversion

SVN: Multiple Projects

Source: Ben-Collins-Sussman et al. Version Control with Subversion

SVN: Basic Usage

I Generate a working copy using checkout

Working copy

checkout

Repository

SVN: Basic Usage

I Change the working copy with your favorite editor

Working copy

Repository

SVN: Basic Usage

I Publish your changes on the repository with commit

Working copy

commit

Repository

SVN: Multiple Users

I Often several users work concurrently on their own
working copies, normally on different files

Working copy 2

Repository

BA

Working copy 1

A BA B

SVN: Multiple Users

I When a user commits its changes, the working copies of
the remaining users become outdated

Working copy 2

Repository

A

Working copy 1

A BA B

B

commit

SVN: Multiple Users

I To bring its working copy in sync with the latest version of
the repository a user must update it

Working copy 2

Repository

A

Working copy 1

A BA

B

B

update

SVN: Conflicts with Multiple Users

Source: Ben-Collins-Sussman et al. Version Control with Subversion

To address this problem SVN uses a versioning approach
known as Copy-Modify-Merge

SVN: Automatic Conflict Detection

Source: Ben-Collins-Sussman et al. Version Control with Subversion

SVN: Manual Conflict Resolution

Source: Ben-Collins-Sussman et al. Version Control with Subversion

SVN: (Some) Useful Commands
checkout create a working copy
mkdir create a directory

I Even if you do not have a working copy
add add a file/directory to the working copy
delete remove a file/directory to the working copy

I Be careful, it may also remove the files in the working
copy

move rename a file in the repository
status list changes made to the working copy
diff show differences between the working copy and the

repository, or between revisions in the repository
update update the working copy
commit update the repository
log list messages with date and author information attached to

revisions and which paths changed in each revision

SVN and LCOM Labs

I You must use SVN to submit your work:
I By the end of your lab class

I There is a 15 minutes tolerance, after that you get a 0
I To take most advantage of the classes you should work before the

class rather than after.
I You’ll use the SVN repository available via the Redmine project

manager provided by CICA.

Redmine’s SVN Repository Structure

I There is one SVN repository per
Redmine project

I To facilitate your life, and ours, you must
keep it structured as shown in the
picture on the right

I You can create the structure
incrementally

I You may create subdirectories under the
“top level” directories

I This is unlikely to help in the labs
I But may be useful in the project

Creation of This Structure (One Way)
Assumption Redmine’s SVN repository has already been

configured in Lab 0
Steps

1. Create the directory for Lab 1:
svn mkdir lab1 https://svn.fe.up.pt/repos/lcom1415-t0g00 -m "..."

2. Create a working copy with an empty directory:
svn checkout https://svn.fe.up.pt/repos/lcom1415-t0g00/lab1

3. Copy files provided for Lab 1 to directory lab1/
4. Add the files to the repository from inside lab1/:

svn add lab1.[ch] etc.
5. Commit your changes:

svn commit -m "Added files provided for Lab 1"

I Later you can get a working copy for Lab 1, with added files:
svn checkout https://svn.fe.up.pt/repos/lcom1415-t0g00/lab1

I If you are using your own computer and already have a
working copy, use update instead.

SVN: Advantages

I It provides automatic backup
I It makes it easy to restore a previous version
I It is supported by most IDEs including Eclipse

I But you can also use a command line client, even in Minix
I Users can work on any computer
I Members of a team can work simultaneously and

independently on the same project
I It logs who did/committed what and when

I By using appropriate messages or comments, it is also
possible to know why

I It is possible to try a new approach, and continue
development on the older one

Thanks to:

I.e. shamelessly translated material by:

I João Cardoso (jcard@fe.up.pt)

Further Reading

I Serch the web for the right tutorial for you on
I SVN
I SVN plugins for Eclipse

I Ben Collins-Sussman et. al Version Control
with Subversion [DRAFT] For Subversion 1.?

http://svnbook.red-bean.com/nightly/en/index.html
http://svnbook.red-bean.com/nightly/en/index.html

