
DRIVER - A platform for collaborative framework
understanding

Nuno Flores, Ademar Aguiar
INESC-TEC & Dept. of Informatics Engineering

Faculty of Engineering of the University of Porto

Porto, Portugal

nuno.flores@fe.up.pt, ademar.aguiar@fe.up.pt

Abstract—Application frameworks are a powerful technique
for large-scale reuse but often very hard to learn from scratch.
Although good documentation helps on reducing the learning
curve, it is often found lacking, and costly, as it needs to attend
different audiences with disparate learning needs. When code
and documentation prove insufficient, developers turn to their
network of experts. The lack of awareness about the experts,
interrupting the wrong people, and experts unavailability are well
known hindrances to effective collaboration. This paper presents
the DRIVER platform, a collaborative learning environment
for framework users to share their knowledge. It provides the
documentation on a wiki, where the learning paths of the
community of learners can be captured, shared, rated, and
recommended, thus tapping into the collective knowledge of the
community of framework users. The tool can be obtained at
http://bit.ly/driverTool.

I. INTRODUCTION

Frameworks are a powerful technique for large-scale reuse
that helps developers to improve quality and to reduce costs
and time-to-market. To be able to reuse a framework ef-
fectively, developers have to invest considerable effort on
understanding it. Especially for first time users, frameworks
can become difficult to learn, mainly because its design is often
very complex and hard to communicate, due to its abstractness,
incompleteness, superfluous flexibility, and obscurity.

Good quality documentation is crucial for the effective
reuse of object-oriented frameworks [1]. Producing such doc-
umentation can be costly as it needs to be easy to use, to cover
different audiences, and to present different types of documents
using different notations. But even if the documentation is
produced with quality standards, learners need to acquire
knowledge from it and their cognitive needs must be attended.
Learning about a framework is guided according to [2]:

• Goal. What does the learner expects to do with the
framework (select, instantiate, evolve)?

• Cognitive profile. How does the learner instinctively
tackles with the information (top-down vs. bottom-up,
verbal vs. visual, sequential vs. global [3])?

• Abstraction level. Depending on the goal, it might be
required to navigate up and down different abstraction
levels of the framework. Which?

• Knowledge availability. Will the documentation suf-
fice to learn how to use the framework?

To better support this learning process and to help on a
more effective and efficient building of the mental model of
the learner, we may suggest best practices (or patterns) [4].
But even with a process behind learning a framework, the
documentation and the framework itself may not be sufficient
to provide solutions (on how to use the framework) in a time-
effective way.

Fig. 1: Framework learning activities and actors

Software development is a highly social activity. As with
software in general, a framework learner looks at the code,
reads the documentation, visualises information and asks her
colleagues for help, while going through the process of un-
derstanding how to use the framework (Figure 1). However,
asking the team for help may present obstacles [5] [6]:

• Availability. Knowledgeable team mates are, most
often, busy and not available to help due to task and
time constraints.

• Intrusion. Interrupted developers lose track of parts
of their mental model, resulting in laborious recon-
struction or bugs and discouraging more frequent
interruptions.

• Tacit knowledge. Developers spend vast amounts of
time gathering precious, demonstrably useful infor-
mation, but rarely recording it for future developers,
rendering it useless.

• Selfish ownership. ”Knowledge is power” is a com-
monly observed philosophy, specially in expert devel-
opers, afraid of loosing their status-quo.

2015 30th IEEE/ACM International Conference on Automated Software Engineering

Unrecognized Copyright Information

DOI 10.1109/ASE.2015.105

783

2015 30th IEEE/ACM International Conference on Automated Software Engineering

978-1-5090-0025-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ASE.2015.105

783

� �

Learning
Knowledge-

Base

� �

�
�

�

�

Capture

Filter/Store

Share/Rate

Recommend

Fig. 2: DRIVER’s 4-step learning knowledge cycle

With these issues in mind, and to support the activities
taken during the learning process, the authors propose to help
the learner in two ways: (1) providing a ”guide” or ”map”, in
the form of patterns, of the best way to ”drive” the learning
process and (2) allowing the learner to tap into the knowledge
of the learning community through the use of appropriate tools.
Both strategies are integrated into a collaborative, shared data-
driven environment named DRIVER.

DRIVER enables the capture, storage, sharing, rating,
and recommendation of learning knowledge, namely learning
paths, i.e., the steps the learner took (while going through
the documentation) that enabled her to build a solution to
her problem. This environment is built upon a wiki that
provides documentation artifacts about the framework, which
is configurable enough to allow knowledge acquisition in
several ways.

II. OVERVIEW

DRIVER is a platform that enables users to effectively
learn how to use a framework in a collaborative, user-friendly,
knowledge-intensive environment. It promotes social learning
within a community of framework users, with different levels
of experience, motivated to find answers to their problems
and at the same time to share them for the benefit of all. Its
architecture relies on the notion of a Collective Knowledge
System [7], supporting knowledge quality evolution through
social interaction. Its features include:

• Collective knowledge management. The learning
knowledge is captured and maintained by the commu-
nity in a non-intrusive way. Learners can search and
rate available knowledge and get recommendations on
the best course of action.

• Best practices support. Previous work by the authors
resulted in a set of patterns [4] for assisting in
framework understanding. These are available to the
platform user.

• Collaborative documentation. The framework docu-
mentation artifacts are available for editing and up-
dating by the community of learners.

• Social Classification. Tagging and folksonomies are at
the basis of the learning knowledge classification.

• Extensibility. The platform is open for extension to
accommodate new features that might appear in the
future.

These features cover a set of requirements, collected by
the authors, deriving from previous research and bibliographic
studies on collective intelligence and collaborative learning [8].
At its core, the DRIVER toolset supports a process of social
learning described next.

A. Learning cycle

The authors believe that providing a learner with the steps
others (learners) took to solve their problems (a.k.a. learning
path), can improve the learning experience and produce better
and quicker outcomes. The motto is: Show me how you learnt
it yourself.

The goal is to non-intrusively capture the learning steps
a framework user takes, store them in a sharable knowledge-
base, which other users can access. This knowledge relies on
the community’s potential to maintain its relevance and quality,
by rating it and allowing the system to recommend possible
next steps that aid on the learning task. This can be described
as a 4-step cycle as follows (see Figure 2):

• Capture. The learner begins her learning quest to find
knowledge that might solve her problem. The trail of
steps is captured as she browses through the artifacts,
trying to find the relevant knowledge that might help
her.

• Filter/Store. The learner improves the captured learn-
ing path by trimming off those steps that, despite
taken, didn’t lead to the required knowledge. This
prevents other learners from running in circles or
hitting dead-ends. Afterwards, the pruned and grafted
learning path is stored in a shared knowledge-base.

• Share/Rate. The learners access the knowledge-base,
searching for learning paths that might help them.
They evaluate its usefulness (taking the steps, a.k.a.
walking through or just inspecting the visited artifacts)
and rate them according to its effectiveness.

• Recommend. This step enables the recommendation of
possible next steps (on a learning path that is being
currently captured), based on previous learning paths
other learners have took. Actually, this step occurs, in
parallel, during the Capture step. The more learning
paths, the better the recommendation becomes, moti-
vating the community to participate.

B. Components

The DRIVER platform is composed of the following com-
ponents:

• Wiki. Being lightweight, semi-structured, extensible
and quite popular, a wiki served as a foundation

784784

for harbouring the collaborative environment and its
components.

• Framework documentation artifacts repository
(FDAR). The wiki contents consist mainly of a set
of documentation artifacts1 about the framework in
question. These contents will have to be produced up
to an extend2 and incorporated into the wiki.

• Patterns. The best practices for framework understand-
ing in pattern form.

• Learning cycle support sub-components. A set of sub-
components that support the implementation of the 4-
step learning cycle.

C. Usage scenarios

Thus, the intended audience for the DRIVER platform
are framework learners, that is, framework users trying to
effectively use the framework. In terms of using the platform,
it can be briefly summed up into two main scenarios: Warm
up and a typical usage.

1) Warm Up: This scenario happens when setting up
the platform and making it available to the users (potential
framework learners). By itself, the platform does not have
the documentation about the framework, thus it needs to
be produced and added to the wiki. Similarly, there is no
previous learning paths data on the knowledge-base, therefore,
it requires some usage time3 so that subsequent learners may
benefit from previous knowledge on how to learn about the
framework.

2) Typical usage: During a typical usage, the user will
just need to login into the platform and signal the beginning
of its learning quest. Immediately, the 4-step learning cycle
sub-components become available and its steps subsequently
captured. A depiction of a typical screen of the platform can be
seen in Figure 3. Navigation is free throughout the framework
documentation (i.e, the wiki) until the user has satisfied her
learning needs. At any given moment, the user can share a
set of steps it has taken (deciding it is a learning path by
itself and storing it in the knowledge-base), search for existing
learning paths or continuing to browse the documentation,
taking ”hints” from the recommendation component. Even
without entering a ”capturing” state, a user can, at any time,
make a tag-based search over the learning paths knowledge
base, being able to walk-through the resulting learning paths,
and rating them according to its usefulness. An illustration of a
typical usage scenario can be found at http://bit.ly/driverTool.

III. COMMUNITY IMPACT

The presented approach tackles with the intrusiveness
the learning process can have when directly asking for
help, usually resulting in disregarding the request, exhibiting
non-availability and, progressively forgetting useful learning
knowledge (the issue of loosing tacit knowledge). Intrusiveness

1These were based on a set of patterns for effectively documenting a
framework [9].

2The minimal documentation that allows a user to effectively use the
framework.

3The pioneering learners of the framework will, for a while, record their
learning paths for future learners.

is thus mitigated by resorting to a shared and maturing
knowledge-base of learning knowledge. Not only the asking
learner isn’t interrupting her colleagues, but the knowledgeable
learner can, without disrupting his normal functions, capture
and store the grafted learning path, as part of the common
procedure of learning. This also contributes in diminishing the
loss of tacit knowledge.

A. Towards a collective knowledge system

An expected (by the authors) major impact in the software
engineering community is the use of the collective knowledge
of the community itself. Tapping into the collective intelligence
was a step yet to be taken when it comes to framework
learning. Thus DRIVER has its toolset based on the notion of
a Collective Knowledge System [7]. This concept has a set of
key properties and supporting components which are described
next, along with DRIVER’s covering of such features.

1) Key properties: A Collective Knowledge System pro-
vides the following key properties:

• User generated content - The bulk of the infor-
mation is provided by humans participating in a so-
cial process. A traditional database or expert system,
in contrast, gets the bulk of its information from
a systematic data gathering or knowledge modeling
process. In DRIVER, most of the content is cre-
ated/edited/evolved by the community. Whether the
documentation artifacts in the wiki or the learning path
knowledge-base, the information always originates
from the users and can be evolved by them.

• Human-machine synergy - The combination of hu-
man and machine provides a capacity to provide useful
information that could not be obtained otherwise.
These systems provide more domain coverage, diver-
sity of perspective, and sheer volume of information
than what it could be achieved by searching official
literature or talking to experts. In DRIVER, automa-
tion of tasks such as collecting tags from the artifacts
during browsing, presenting similar learning paths to
the one just captured or providing recommendations,
spares the user from collecting this information on her
own.

• Increasing returns with scale - As more people
contribute, the system becomes more useful. The
system of rewards that attracts contributors and the
computation over their contributions is stable as the
volume increases. In contrast, a text corpus and simple
keyword search engine does not get more useful when
the volume of content overwhelms the value of key-
words to discriminate among documents. Similarly, if
the reward system encourages fraud or fails to bubble
up the best quality content, the system will get less
useful as it grows. In DRIVER, as more learners rate
existing learning paths, the search tool brings up the
most used and better rated results, contributing with
higher valued information to the user.

• Emergent knowledge - The system enables computa-
tion and inference over the collected information, lead-
ing to answers, discoveries, or other results that are not

785785

Fig. 3: Screenshot of the DRIVER platform, showing the main access points to the toolset components.

found in the human contributions. This fourth property
is what differentiates a collective from a collected
knowledge system. In DRIVER, the system offers
recommendations for guidance through the artifacts,
based on existing learning paths in the knowledge-
base, inferring new knowledge from the existing data.
Of course, the recommendation heuristic can be ex-
tended to improve the results and to more suitably
provide effective recommendations. Nevertheless, the
basis is there.

2) Components: Conveying the presented key properties,
a Collective Knowledge System can be composed of the
following elements:

• Community of motivated people with problems and
solutions. These contributors share their expertise and
knowledge on the specific domain.

• Larger population of intelligent people with sim-
ilar problems. Who actively search for personalised
solutions to their problems.

• Computer mediated social communication.
Whether through tagging, blogging or commenting,
the social process is augmented and nurtured.

• Semi-structured information repository. Acting like
a storage facility for a more long-term memory and
where the solutions are collected and shared.

• Socially clustered data knowledge-base. Where the
solutions are catalogued and clustered according to the
social interaction and multidimensional analysis.

• Faceted search engine. So that the solutions seekers
can look for personalised solutions, through contextual
browsing.

• Recommendation engine. To keep the users in per-
spective and assisting in obtaining more rapid and

effective answers to their specific issues.

All of these components are implemented/provided by the
DRIVER platform, as depicted in Figure 4.

Fig. 4: The DRIVER toolset as a Collective Knowledge
System, with a matching of the implemented components.

In short, the proposed collaborative environment provides
an extensible scaffold for building and extending a collective
knowledge acquisition system, where the community of learn-
ers can share their insight without too much effort and benefit
from its collective wisdom.

IV. RELATED WORK

Regarding framework understanding, most solution propos-
als found in the literature converge to produce and enhance
existing documentation, such as design patterns [10], pattern
languages [11], cookbooks [12], hooks [13], exemplars [14]
and minimalist documentation [1]. Nevertheless, the true im-
pact of these techniques on framework understanding is still
fuzzy. Even so, there are a few studies that deal with issues
around effective framework reuse and understanding.

786786

In [15], Schull et al. presented an evaluation of the role that
examples play in framework reuse. Their study compared two
approaches to framework reading: example-based approach
and hierarchical-based approach. Their results suggested that
examples are an effective learning strategy, especially for those
beginning to learn a framework. Nevertheless, examples had
issues: finding the small pieces of required functionality in
larger examples; inconsistent structure and organisation; lack
of design choice rationale and shallowness in understanding
the framework internals.

In [16], Morisio et al. conducted an empirical study in
an industrial context on the production of software using a
framework, as to investigate quality and productivity issues
and the effect of learning in framework-based object-oriented
development. They observed higher quality and productivity
levels in framework-based applications, due to a learning effect
from repetition the same task over time. Yet, a more proficient
developer has to engage on high level framework knowledge
learning.

In [17], Kirk et al. conducted a research, through ob-
servation of both novice and experienced users, where they
identified four fundamental problems of framework reuse: (1)
Mapping the problem onto the framework, (2) Understanding
functionality, (3) Understanding interactions and (4) Under-
standing the framework architecture. Applying both pattern
languages and micro-architectures. Their results showed that
the pattern language provided some support for mapping
problems, particularly for those with no experience of the
framework, by introducing key framework concepts and pro-
viding examples of framework use. Yet, experienced users
of the framework discarded the pattern language, find it
constraining. Despite believing in micro-architectures, these
seemed relatively ineffective.

Several studies have been led by Hou et al.[18][19][20],
regarding framework usage and understanding. They unveiled
issues regarding design (tight-coupling, delocalised concerns,
excessive special cases), documentation (doc-driven under-
standing fares better the reverse engineering the code) and
learner profile (Novice learners rely on the existing documen-
tation first, make a shallow study using available examples and,
in distress, ask for help). They also shown that novice learners
tend to favour functional aspects over non-functional and that
spending some time (up-front) learning about the design of
the framework is beneficial to a more effective framework
reuse, impacting on the application of examples, that should be
functionality-driven. They propose a set of tool requirements
for reuse that rely on better communication, better semantic
search, improved tracking of intermediate results and better
IDE-integration.

When its comes to tooling for support framework learning
specifically, there is not much beyond that previously stated.
Nevertheless, looking at the type of platform presented by
DRIVER, it is relevant to mention other existing tools that
might, somehow, relate to DRIVER when it comes to software
knowledge management.

One such tool is MyLyn [21], currently integrated in the
Eclipse IDE [22]. MyLyn provides support to the notion of
Degree of Interest (DOI) [23], where its allows a filtered

view over the relevant4 artifacts inside Eclipse, allowing a
more focused and decluttered development environment. These
views (called contexts) can be stored and retrieved according to
the task at hand, providing an easier and faster context switch
between tasks. While MyLyn provides a snapshot of the most
relevant artifacts, DRIVER provides a pathway of the most
relevant artifacts. Both approaches rely on the relevancy (DOI)
of the artifacts, yet, for learning purposes, DRIVER relies on
the progress throughout the artifacts, while MyLyn only show
the latest state of DOI. Yet the underlying motto behind both
tools is the same: focus.

Another issue worth mentioning is the fact that the concept
of learning path can be compared to what is known as
clickstream, a web analytics metric. According to WAA5,
Web Analytics is the measurement, collection, analysis and
reporting of Internet data for the purposes of understanding
and optimizing Web usage. Clickstream tracks by which order
the visitor of a site navigated through its contents6. A learning
path can be seen as a constrained form of clickstream, where
only the relevant clicks (navigating between documents and
liking sections) are captured.

V. CONCLUSIONS AND FUTURE WORK

This paper presented DRIVER, a collaborative environment
that supports the framework learning process. Not only it relies
on an easy, sharing, lightweight, editable platform (wiki), that
provides documentation artifacts about the framework, but it
promotes knowledge acquisition by enabling capture, storage,
sharing, rating and recommendation of learning knowledge.

This learning knowledge takes the form of learning paths.
These show how other learners tackled with similar prob-
lems by presenting which documentation artifacts they went
through and by which order. The presented toolset supports this
kind of learning process through a series of components that
seamlessly integrate the documentation infra-structure. These
learning paths are stored and shared by the community of
learners, who rate the level of usefulness this learning data has,
allowing the information to mature and improve its quality and
applicability throughout the community.

An experiment was conducted [2] within a controlled ex-
perimental environment to validate the usefulness of DRIVER
environment, where the final results support the hypothesis that
the collaborative approach helps novices to more effectively
learn about a framework.

As future work, enhancements to the DRIVER platform are
currently under way, focusing on improving recommendation
heuristics, gamification techniques to improve user adhesion,
increase learner’s profile awareness and convergence to the
semantic web. Also, further studies in industrial settings with
a different time-scale and a broader community of learners
are being designed as to reinforce the current evidence and
to study the impact on framework understanding and software
learning in general.

4Those actually viewed and edited, within the artifacts set, i.e. those with
a high DOI.

5Web Analytics Association
6The click stream is the sequence of mouse clicks the user performed on

the contents of the site, but 37 usually, only the navigation (link clicks) is
recorded.

787787

REFERENCES

[1] A. Aguiar, “Framework documentation – a minimalist approach,” Ph.D.
dissertation, FEUP, September 2003.

[2] N. Flores, “Patterns and tools for improving framework understanding: a
collaborative approach,” Ph.D. dissertation, University of Porto, Faculty
of Engineering, 2012, http://paginas.fe.up.pt/ñflores/dokuwiki/lib/exe/
fetch.php?media=research:nuno flores phd thesis.pdf [Online;
accessed April 2014].

[3] R. Felder and J. Spurlin, “Applications, reliability, and validity of
the index of learning styles,” International Journal of Engineering
Education, vol. 21(1), pp. 103–112, 2005.

[4] N. Flores and A.Aguiar, “Patterns for framework understanding,” in 15th
Pattern Languages of Programming Conference (PLoP’08), Nashville,
USA, October 2008.

[5] K. Nakakoji, Y. Yamamoto, and Y. Ye, “Supporting software devel-
opment as knowledge community evolution,” in Proceedings of the
CSCW Workshop on Suporting the Social Side of Large Scale Software
Development, 2006.

[6] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer working habits,” in Proc. of the International
Conference of Software Engineering (ICSE’06), Shanghai, China, 2003.

[7] T. Gruber, “Collective knowledge systems: Where the social web meets
the semantic web.” Journal of Web Semantics, 2007.

[8] N. Flores and A. Aguiar, “Understanding frameworks collaboratively
: Tool requirements,” International Journal on Advances on Software,
vol. vol. 3, 2010.

[9] A. Aguiar and G. David, “Patterns for effectively documenting
frameworks,” in Transactions on pattern languages of
programming II, J. Noble and R. Johnson, Eds. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 79–124. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1983735.1983740

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns —
Elements of reusable object-oriented software. Addison-Wesley, 1995.

[11] R. Johnson, “Documenting frameworks using patterns,” in Proceedings
of the OOPSLA’92, SIGPLAN notices, vol. 27(10), 1992, pp. 63–76.

[12] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view-

controller user interface paradigm in smalltalk-80,” Journal of Object-
Oriented Programming, vol. 1(3), pp. 26–49, 1988.

[13] G. Froehlich, H. Hoover, L. Lui, and P. Sorenson, “Hooking into
object-oriented application frameworks,” in Proceedings of the 19th
International Conference on Software Engineering, 1997, pp. 491–501.

[14] D. Gangopadhyay and S. Mitra, “Understanding frameworks by explo-
ration of exemplars,” in Proceedings of CASE-95, I. C. Society, Ed.,
1995, pp. 90–99.

[15] F. Schull, F. Lanubile, and V. Basil, “Investigating reading techniques
for object-oriented framework learning,” IEEE Transactions on Software
Engineering, vol. 26(11), 2000.

[16] M. Morisio, D. Romano, and I. Stamelos, “Quality, productivity, and
learning in framework-based development: An exploratory case study,”
IEEE Transactions on Software Engineering, vol. 28(9), pp. 876–888,
2002.

[17] D. Kirk, M. Roper, and M. Wood, “Identifying and addressing problems
in framework reuse,” in Proceedings of the 13th International Workshop
on Program Comprehension (IPWC’05), 2005, pp. 77–86.

[18] D. Hou, K. Wong, and H. J. Hoover, “What can programmer questions
tell us about frameworks?” in Proceedings of the 13th International
Workshop on Program Comprehension (IPWC’05), 2005, pp. 87–96.

[19] D. Hou, “Investigating the effects of framework design knowledge in
example-based framework learning,” in IEEE International Conference
on Software Maintenance, 2008, pp. 37–46.

[20] D. Hou and L. Li, “Obstacles in using frameworks and apis: An
exploratory study of programmers’ newsgroups discussions,” in IEEE
19th International Conference in Program Comprehension (ICPC),
2011.

[21] “Eclipse mylyn open source project,” July 2015,
http://www.eclipse.org/mylyn/ [Online; accessed July 2015]. [Online].
Available: http://www.eclipse.org/mylyn/

[22] “Eclipse project,” July 2015, http://www.eclipse.org [Online; accessed
July 2015]. [Online]. Available: http://www.eclipse.org

[23] M. Kersten and G. Murphy, “Mylar: a degree-of-interest model for
ide’s,” in International Conference on Aspect Oriented Software De-
velopment, 2005, pp. 159–168.

788788

