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Abstract

Properties of control systems described by differential inclusions are well established in the literature. Of
special relevance to optimal control problems are properties concerning measurability, convexity, compactness
of trajectories and Lipschitz continuity of the set-valued mapping (or multifunction) defining the differential
inclusion of interest. In this work we concentrate on dynamic control systems coupled with mixed state-control
constraints. We characterize a class of such systems that can be described by an appropriate differential inclusion
defined by a set-valued mapping exhibiting “good” properties. We illustrate the importance of our findings with
respect to existence of solution of optimal control problems.



1 Introduction
Control systems described in terms of differential inclusions have been extensively studied in the literature
(see, e.g., [2, 3, 7, 9, 16, 18, 21, 22] to name but a few). Differential inclusions appear in control theory when
dynamical systems are expressed as

ẋ(t) ∈ F (t, x(t)), (1)

where t ∈ I ⊂ R, x ∈ Rn and F is a set-valued mapping (or multifunction) with closed values in Rn. Such
systems make it possible to study in a uniform way a large number of control problems (in this respect see for
example [7]). Differential inclusion control problems have proved to be a useful framework for optimal control.
For example, they are convenient to state conditions under which existence of solution is ensured and an useful
tool to derive optimality conditions (see [7] and [22], for example).

It is commonly accepted that differential inclusions are a ÂťÂťnatural framework” to study dynamical
systems with mixed state-control constraints (see [22], pp. 38). Such approach has been used for example in
[9], [13] and, recently, in [10], [11] and [12]. A central issue in this respect is the requirement that differential
inclusions have certain properties. In particular, it is essential to establish under which conditions the set
of trajectories of control systems described in terms of ordinary differential equations coincide with the set
of trajectories satisfying (1). In this respect many questions arise as those of measurability of the set-valued
mapping defining the differential inclusion (so existence of measurable selections is guaranteed), compactness
of trajectories, convexity properties (two subjects relevant for the existence of solution to optimal control
problems), etc. Although such aspects are clearly and concisely treated in the literature for control systems of
the form {

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b],
u(t) ∈ U(t) a.e. t ∈ [a, b],

(see for example Chapter 2 in [22]), the same cannot be said when control systems are coupled with mixed
constraints. The system of interest, herein denoted as (Σ), involves the dynamics

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b],

mixed constraints

(x(t), u(t)) ∈ S(t) a.e. t ∈ [a, b], (2)

and boundary conditions

(x(a), x(b)) ∈ E. (3)

The data comprises a fixed interval [a, b], a function f : [a, b]×Rn×Rk → Rn, a set-valued mapping S : [a, b]→
Rn × Rk and a set E ⊂ Rn × Rn. For such system, a pair (x, u) comprising an absolutely continuous function
x (the state trajectory) and a measurable function u (the control), will be called throughout a process if it
satisfies all the constraints of the above system.

Our aim is to establish conditions on the data of (Σ) that translate on useful properties for the set-valued
mappings defining the corresponding differential inclusion. To highlight the required properties, while keeping
exposition as simple as possible, we work under assumptions that although strong in terms are nevertheless
common in applications. In particular, we restrict our analysis to systems generating bounded set-valued
mappings. Although, for mixed constrained system, unbounded set-valued mappings may be of use in some
cases (and for such cases we refer the reader to [9], [10], [11] and [12]), systems with bounded set-valued mapping
remain of interest for applications.

Clearly, conditions under which the state trajectories for (Σ) coincide with the trajectories of a certain
differential inclusion

ẋ(t) ∈ Fm(t, x(t)) a.e. t ∈ [a, b],

(where Fm is a set-valued mapping to be defined shortly) satisfying the boundaries constraints (3) will be central
in our analysis. We shall pay particular attention to the case where

S(t) := {(x, u) ∈ Rn × U : g(t, x(t), u(t)) 6 0} , (4)

where U ⊂ Rk and g : [a, b]× Rn × Rk → Rm. However, we do not limit our discussion to this case.
We emphasize that the contribution of this paper does not reside only the novelties of the results but rather

on gathering them together as well as on the presentation of its proofs. Our work also highlights the importance
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of a bounded slope condition imposed on the mixed constraints in the vein [9] and its relation with Lipschitz
properties of the set-valued mappings in our setting. Another aspect of relevance in our discussion resides on
convexity assumptions on set-valued mappings, a discussion accompanied by simple but illustrative examples.

This paper is organized in the following way. In the next section we state an auxiliary result that will
be relevant in our analysis. In section 3, we introduce the main ingredients of our work as well as the main
assumptions. More assumptions, this time for the case when S(t) is as in (4), are presented in section 4 followed
by some results relating these assumptions with those in the previous section. Convexity of various set-valued
mapping related to our task are discussed in section 6. In section 7 we establish measurability and Lipschitz
properties of the relevant set-valued mappings. The compactness of trajectories as well as equivalence of the set
of trajectories of (Σ) and that of the corresponding differential inclusion are presented in section 8. We finish
this paper with section 8 where we mention some applications of our work and we discuss future work.

Notations: If g ∈ Rm, the inequality g 6 0 is interpreted component-wise. Define Rm− = {ξ ∈ Rm : ξ 6 0} and
likewise for Rm+ . The closed ball centred at x with radius δ is denoted B̄(x, δ) and likewise for the open ball
regardless of the dimension of the underlying space. On the other hand, B̄ and B denote the closed and open
unit ball centred at the origin. Also | · | is the Euclidean norm or the induced matrix norm on Rp×q. For any
closed set A ⊂ Rp the distance of a point x ∈ Rp to the set A is defined as

dA(x) = inf{|x− a| : a ∈ A}.

If Ω ⊂ Rp and F : Ω→ Rq is a set-valued mapping, then the graph of F is defined as

Gr F := {(x, y) ∈ Ω× Rq : y ∈ F (x)} .

We say that a set S ⊂ R × Rn × Rm is L × B × B -measurable when we refer to measurability relative to
the σ-field generated by the products of Lebesgue measurable subsets in R, Borel measurable subsets in Rn and
Borel measurable subsets in Rm.

Consider now a function h : [a, b] → Rp. We say that h ∈ W 1,1([a, b];Rp) if and only if it is absolutely
continuous; h ∈ L1([a, b];Rp) iff h is integrable; and h ∈ L∞([a, b];Rp) iff h is essentially bounded. The norm of
L1([a, b];Rp) is denoted by ‖ · ‖1 and the norm of L∞([a, b];Rp) is ‖ · ‖∞.

Take A ⊂ Rn to be a closed set with and consider x∗ ∈ A. Also let f : Rk → R ∪ {+∞} be a a lower
semicontinuous function. With respect to f , x∗ ∈ Rk will be such that f(x∗) < +∞. Concerning nonsmooth
analysis we use the following notation: NP

A (x∗) is the proximal normal cone to A at x∗, NL
A(x∗) is the limiting

normal cone to A at x∗, NC
A (x∗) is the Clarke normal cone to A at x∗, ∂Lf(x∗) is limiting subdifferential of f

at x∗ and ∂Cf(x∗) is (Clarke) subdifferential of f at x∗. If f is Lipschitz continuous near x∗, the convex hull
of the limiting subdifferential, co ∂Lf(x∗) = ∂Cf(x).

2 Auxiliary Result
Before proceeding we state an adaptation of Theorem 3.5.2 in [9] that will be important in the forthcoming
analysis.

Consider a set-valued mapping Γ : [a, b] × Rn → Rk. For each t ∈ [a, b], consider the set-valued mapping
x → Γ(t, x) and suppose that the graph G(t) of this set-valued mapping is closed. Suppose that u∗ ∈ Γ(t, x∗)
and that the following condition holds:

(BS’) There exist ε > 0, R > 0 and K > 0 such that, for almost every t,

x ∈ B(x∗, ε), u ∈ B(u∗, R), (α, β) ∈ NP
G(t)(x, u) =⇒ |α| 6 K|β|.

We emphasize that we are assuming the parameters R and K to be independent of t. As the reader may
suspect a more general definition involves such parameters as (measurable) functions of t. Here and throughout
this paper, we shall remove the dependency of t of many parameters in our assumptions as long as this allows
us to skip some technical details while retaining their significance. For a complete discussion on bounded slope
condition [BS’] and pseudo- Lipschitz properties of set-valued mappings we refer the reader to [9] and [12].

The following theorem asserts that such a set-valued mapping x → Γ(t, x), satisfying (BS’), is pseudo-
Lipschitz.
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Theorem 2.1 ( adaptation of Theorem 3.5.2 in [9]) Let x → Γ(t, x) satisfy (BS’) near (x∗, u∗) ∈ G(t). Then
for any ξ ∈]0, 1[ and any x1, x2 ∈ B(x∗, ε̄) the following holds

Γ(t, x1) ∩ B̄(u∗, (1− ξ)R) ⊂ Γ(t, x2) +K|x1 − x2|B̄,

where ε̄ = min{ε, ξR/3K}.

3 Main Assumptions
Mixed constraints, also known as state dependent control constraints, can be written in the general form as (2).
We associate with S the set-valued mapping Sm : [a, b]× Rn → Rk defined as

Sm(t, x) =
{
u ∈ Rk : (x, u) ∈ S(t)

}
.

For each t ∈ [a, b] the set S(t) is the graph of x→ Sm(t, x), that is,

(x, u) ∈ S(t) ⇐⇒ u ∈ Sm(t, x).

Additionally, introduce the set-valued mapping

Fm(t, x) : = {f(t, x, u) : u ∈ Sm(t, x)} (5)

The set-valued mapping (8) will be of importance when we concentrate on S(t) as in (4). Take any absolutely
continuous function x∗ : [a, b]→ Rn and define

X(t) := x∗(t) + εB̄ and S∗ε (t) := S(t) ∩
(
(x∗(t) + εB)× Rk

)
. (6)

It is important to notice that S∗ε (t) is defined as the intersection of S(t) with the open ball x∗(t) + εB, not with
X(t).

When appropriate, we shall impose that the function x∗ satisfy the differential inclusion

ẋ∗(t) ∈ Fm(t, x∗(t)). (7)

We now state several assumptions that will be use in the forthcoming analysis. Let φ : [a, b]×Rn×Rk → Rp
be a general function (φ may then replaced by f or g).

(B1) The function t→ φ(t, x, u) is L-measurable for all (x, u) ∈ Rn × Rk.

(B2) The set-valued mapping S is L-measurable and, for each t ∈ [a, b], S(t) is closed.

(B3) The set E is closed.

(B4) For each t ∈ [a, b] and x ∈ X(t), there exists u ∈ Rk such that (x, u) ∈ S(t). Furthermore, each t ∈ [a, b]
there exists a constant σ such that

(x, u) ∈ S(t) =⇒ |u| < σ.

(BS) There exists a constant K > 0 such that, for almost every t ∈ [a, b] and all (x, u) ∈ S∗ε (t),

(α, β) ∈ NP
S(t)(x, u) =⇒ |α| 6 K|β|.

(CA) For all t ∈ [a, b] and x ∈ X(t), Fm(t, x) is convex.

(LC) There exist constants kφx and kφu such that, for almost every t ∈ [a, b] and all (xi, ui) ∈ S∗ε (t) (i = 1, 2), we
have

|φ(t, x1, u1)− φ(t, x2, u2)| 6 kφx |x1 − x2|+ kφu |u1 − u2|.

Some of the above assumptions could (in some situations) be stated in weaker forms. The strengthening of
the assumptions is done in the second part of (B4) (where an uniform bound on the u is added) and in the
second part with respect to the nature of the constant in (BS) and (LC). Indeed, the parameters K in (BS) and
kφx and kφu in (B1) are constants while in [10] such parameters are considered to be merely measurable functions.
As mentioned before, the strengthening of the hypotheses is introduced to allow us to omit technical details in
the forthcoming analysis.
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4 On S(t) defined by (4)
We now concentrate on the case where the set S(t) is given by (4). Throughout we impose that the function g
defining the set S(t) satisfies (B1) and (LC). This will be stated when needed.

We start our analyses introducing the set U ⊂ Rk and the set-valued mapping F : [0, 1]×Rn → Rn×R×Rm
and Fm : [a, b]× Rn → Rn × Rm defined as

F (t, x) : = {(f(t, x, u), g(t, x, u)) : u ∈ U} , (8)

and additional assumptions on U and F :

(ICU) The set U is compact and, for each x ∈ Rn, there exists a u ∈ U such that g(t, x, u) 6 0.

(ICC) For all t ∈ [a, b] and x ∈ X(t), F (t, x) is convex.

We shall also use the assumption

(IMC) There exists a constant M such that, for almost every t, all (x, u) ∈ S∗ε (t), η ∈ NL
U (u), γ ∈ Rm+ with

〈γ, g(t, x, u)〉 = 0, we have

(α, β − η) ∈ ∂Lx,u〈γ, g(t, x, u)〉 =⇒ |γ| 6M |β|.

We refer the reader to [10] for restatements and discussion of (IMC) when (x, u)→ g(t, x, u) is continuously
differentiable. There, (IMC) is related to well known linear independence condition of the gradients of g.

Next we shall relate these assumptions with previous ones imposed on S(t) and Fm.

Lemma 4.1 Consider S(t) as defined by (4). Assume that g satisfies (B1) and (LC) and that (ICU) holds.
Then t→ S(t) is a Lebesgue measurable set-valued mapping and, for each t, the set S(t) is nonempty and closed.

Remark: For S as defined by (4) Lemma 4.1 states conditions on g and U implying that (B2) and (B4) hold.
Proof. For each t ∈ [a, b], S(t) is nonempty by (ICU). By (LC) we know that g is a Carathéodory function.

Then Proposition 14.33 in [20] asserts that S(t) is a closed set for each t and t→ S(t) is Lebesgue measurable.
�.

Our task now is to investigate the relation between (IMC) and (BS). The following characterization of
NL
S(t)(x, u) will be a cornerstone in this respect.

Lemma 4.2 Consider S(t) as defined by (4). Assume (ICU) and (IMC) hold and that g satisfies (B1) and
(LC). Then for almost every t ∈ (a, b), for all (x, u) ∈ S∗ε (t) and all (α, β) ∈ NL

S∗
ε (t)

(x, u), there exists an γ > 0

with 〈γ, g(t, x, u)〉 = 0 such that

(α, β) ∈ ∂L(x,u)〈γ, g(t, x, u)〉+ {0} ×NL
U (u). (9)

We postpone the proof of this Lemma (and it will appear in the end of this section) and we go straight to
an important consequence of it relating (IMC) with (BS).

Corollary 4.3 Under the assumptions of Lemma 4.2, (BS) holds.

Proof. Take t ∈ [a, b] where the properties of (IMC) and (LS) hold. Take also any (α, β) ∈ NP
S(t)(x, u). Since

S∗ε (t) ⊂ S(t) we have NP
S(t)(x, u) ⊂ NP

S∗
ε (t)

(x, u). On the other hand, we also have NP
S∗
ε (t)

(x, u) ⊂ NL
S∗
ε (t)

(x, u)

(by Proposition 4.2.6 in [22]). Thus (α, β) ∈ NL
S∗
ε (t)

(x, u) and it follows from Lemma 4.2 and (IMC) that for
γ > 0 with 〈γ, g(t, x, u)〉 = 0,

η ∈ NL
U (u), (α, β − η) ∈ ∂L(x,u)〈γ, g(t, x, u)〉 =⇒ |γ| 6M |β|.

By (LC) (x, u)→ 〈γ, g(t, x, u)〉 is Lipschitz continuous with constant |γ|max{kgx, kgu}. Appealing to the proper-
ties of subdifferentials, we deduce that

|α| 6 |(α, β − η)| 6 max{kgx, kgu}|γ| 6 max{kgx, kgu}M |β|,
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proving that (BS) holds with K = max{kgx, kgu}M . �

Proof of Lemma 4.2: Let t ∈ [a, b] be such that the property in (IMC) holds. Let ϕ(x, u) = g(t, x, u) and set

C1(t) = ϕ−1(Rm− ) and C2(t) = X(t)× U.

Now take any
(x, u) ∈ S(t), x ∈ x∗(t) + εB and (α, β) ∈ NL

S∗
ε (t)

(x, u).

Observe that x ∈ X(t) but it is not on the boundary of X (we are invoking (IMC)). This will be of importance
in what follow.

Our next task is to characterize NL
C1(t)

(ϕ(x, u)) in terms of ∂L(x,u)〈γ, ϕ(x, u)〉. Corollary 10.50 in [20] is
essential here. To apply such result, we first claim that if γ ∈ NL

Rm
−

(ϕ(x, u)) such that (0, 0) ∈ ∂L(x,u)〈γ, ϕ(x, u)〉,
then γ = 0. To see this take any γ such that (0, 0) ∈ ∂L(x,u)〈γ, ϕ(x, u)〉. Since γ ∈ NL

Rm
−

(ϕ(x, u)), we have

〈γ, ϕ(x, u)〉 = 0, γ > 0.

By (IMC) we deduce from (0, 0) ∈ ∂L(x,u)〈γ, ϕ(x, u)〉 and the fact that 0 ∈ NL
U (u), that |γ| 6 0. It follows that

γ = 0 and the conditions under which Corollary 10.50 in [20] holds are then satisfied. Applying it we then
conclude that

NL
C1(t)

(x, u) ⊂
⋃{

∂L(x,u)〈γ, ϕ(x, u)〉 : γ ∈ NL
D(ϕ(x, u))

}
, (10)

meaning that if (v1, v2) ∈ NL
C1(t)

(x, u), then there exists a γ > 0 such that 〈γ, ϕ(x, u)〉 = 0 and (v1, v2) ∈
∂L〈γ, ϕ(x, u)〉.

Our next task is to prove that NL
C1(t)

(x, u) and NL
C2(t)

(x, u) are transversal in (x, u), i.e.,

(ξ, ζ) ∈ −NL
C1(t)

(x, u) ∩NL
C2(t)

(x, u) =⇒ (ξ, ζ) = (0, 0). (11)

Since NL
C2(t)

(x, u) = NL
X(t)(x, u) × NL

U (x, u) and x ∈ intX(t), we have ζ ∈ NL
U (x, u) and ξ = 0. Furthermore,

by (10) we have, for some γ with the required properties,

(0,−ζ) ∈ ∂L〈γ, ϕ(x, u)〉.

Invoking (IMC) with α = 0, β = 0 and η = ζ, we deduce that γ = 0. But then (0, ζ) = (0, 0), proving (11). We
are now in position to invoke Theorem 6.42 in [20] to conclude that

NS∗
ε (t)

(x, u) ⊂ NL
C1(t)

(x, u) +NL
C2(t)

(x, u).

It follows from the above that (9) holds, proving the Lemma. �

5 Convexity Assumption on Fm(t, x)

Here we investigate how the convexity of Fm(t, x) (see (CA)) relates with convexity of associated set-valued
mappings.

The next two examples show that convexity of Fm(t, x) does not imply convexity of Sm(t, x) nor does the
converse hold.

Example 5.1 Let Sm(t, x) = {u ∈ (−2, 2) : − (u2 − 1) 6 0} = [−2,−1] ∪ [1, 2] and define Fm as Fm(t, x) :={
u2 : u ∈ Sm(t, x)

}
. Then Fm(t, x) = [1, 4] is convex although Sm(t, x) is not.

Example 5.2 Now take Sm(t, x) = [−1, 0]. This set is convex but Fm(t, x) = {(u, u2) : u ∈ Sm(t, x)} is not;
Fm(t, x) coincides with the graph of m(u) = u2.

It is worth mentioning that convexity of Fm is a property of the geometry of the set and it does not imply the
convexity of the function u→ f(t, x, u). In example 5.2, f(t, x, u) = (u, u2) and the two functions f1(t, x, u) = u
and f2(t, x, u) = u2 are convex. Yet Fm(t, x) fails to be a convex set.
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However, with S(t) as defined by (4), convexity of the set U and that of the function u→ g(t, x, u) implies
convexity of Sm(t, x) (a simple matter to prove). But again, this alone is not enough to guarantee that (CA)
holds and so we need to impose it when needed.

Although for a general S(t), (CA) may be difficult to check, there are special cases where (CA) is implies by
conditions easier to verify. This happens when S(t) is as defined by (4). In that case, (IMC) may be easier to
verify and (IMC) implies (CA). However the converse does not hold as we show in Lemma 5.3 below. Given this
structure of S(t) one may be tempted to think that other easier verifiable convexity conditions would involve
the set-valued mappings

F f (t, y) = {f(t, y, u) : u ∈ U} , Gg(t, y) = {g(t, y, u) : u ∈ U} . (12)

Next we investigate how convexity properties of F , Fm, F f and Gg, in the particular case where S(t) is defined
by (4), relate to each other next.

Lemma 5.3 Consider any t ∈ [a, b] and x ∈ X(t) such that Sm(t, x) 6= ∅ where S(t) is defined as

S(t) := {(x, u) ∈ Rn × U : g(t, x(t), u(t)) 6 0} .

Let F f and Gg be as in (12). The following relations hold:

1. F (t, x) convex =⇒ Fm(t, x) convex, but the opposite implication does not hold.

2. F (t, x) convex =⇒ F f (t, x) and Gg(t, x) are convex, but the opposite implication does not hold.

3. The convexity of Fm(t, x) does not imply the convexity of F f (t, x) and Gg(t, x) and the opposite implication
does not hold.

Proof.

1. F (t, x) convex =⇒ Fm(t, x) convex.
Take any v1, v2 ∈ Fm(t, x). Then there exist u1, u2 ∈ U such that v1 = f(t, x, u1), v2 = f(t, x, u2),
g(t, x, u1) 6 0 and g(t, x, u2) 6 0. Set zi = g(t, x, ui), i = 1, 2. We have (vi, zi) ∈ F (t, x), i = 1, 2. Since
F (t, x) is convex, for any β ∈ (0, 1), there exists u ∈ U such that (v, z) = β(v1, z1) + (1 − β)(v2, z2) =
(f(t, x, u), g(t, x, u)). But z = βz1 + (1 − β)z2 = g(t, x, u) 6 0. Thus v ∈ Fm(t, x) proving convexity of
Fm(t, x).

Fm(t, x) convex 6=⇒ F (t, x) convex.
Take U = [−1, 1], f(t, x, u) = u and g(t, x, u) = −(u + 1)2. Then for any x, we have Sm(t, x) = [−1, 1]
and Fm(t, x) = [−1, 1], both convex sets. However,

F (t, x) =
{

(u,−(u+ 1)2) : u ∈ U
}

is not a convex set.

2. F (t, y) convex =⇒ F f (t, y) and Gg(t, y) are convex.
Fix y and take any v1, v2 ∈ F (t, x). Then there exist u1, u2 ∈ U such that v1 = f(t, x, u1) and
v2 = f(t, x, u2). Set z1 = g((t, x, u1) and z2 = g(t, x, u2). Then, for any β ∈ [0, 1] (v, z) = β(v1, z1) + (1−
β)(v2, z2) is such that (v, z) ∈ F (t, x), i.e, there exists u ∈ U such that (v, z) = (f(t, x, u), g(t, x, u)). It
follows that v ∈ F f (t, x) and z ∈ Gg(t, x) proving convexity of F f (t, x) and Gg(t, x).

F f (t, x) and Gg(t, x) convex 6=⇒ F (t, x) convex.
To see this it is enough to define U = [−1, 1], f(t, x, u) = u2, and g(t, x, u) = u. Then F f (t, x) = [0, 1],
Gg(t, x) = [−1, 1] and F (t, x) = {(u2, u) : u ∈ [−1, 1]}, not convex.

3. Fm(t, x) convex 6=⇒ F f (t, x) and Gg(t, x) convex.
Take U = [−1, 1], f(t, x, u) = u and g(t, x, u) = (−u, u3 − u). Then both Sm(t, x) = [0, 1] and Fm(t, x) =
[0, 1] are convex. On the other hand, although F f (t, x) = [0, 1] is convex, we do not have convexity of
Gg(t, x) = {(−u, u3 − u) : u ∈ [−1, 1]}.

F f (t, x) and Gg(t, x) are convex 6=⇒ Fm(t, x) convex.
Take U = (−1, 1), f(t, x, u) = u and g(t, x, u) = −u2 + 1/4. Then F f (t, x) = [−1, 1] and Gg(t, x) =
[−3/4, 1/4] are both convex. However, Fm(t, x) = [−1,−1/2] ∪ [1/2, 1] is not convex.
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We summarize our findings:

F (t, x) convex =⇒
6⇐= F f (t, x), Gg(t, x) convexw� ~w− ~w− w�−

Fm(t, x) convex ⇐⇒ Fm(t, x) convex 6=⇒
6⇐= Sm(t, x) convex

6 Properties of the set-valued Mappings
We establish important properties of the set-valued mappings S and Fm. We focus on a general S. Taking into
account the results of the previous section, our results also applied when S(t) is defined by (4).

Lemma 6.1 Assume that (B2) and (B4) hold and that f satisfies (B1) and (LC). Then

1. For almost every t ∈ [a, b] and each x ∈ X(t), the sets Sm(t, x) and Fm(t, x) are nonempty and compact.

2. The set-valued mapping Fm is L × B-measurable.

3. The graph of (t, x)→ Sm(t, x) is a L × B × B-measurable set.

4. Assume that x∗ satisfies (7). Then, for almost every t ∈ [a, b] and all x(t) ∈ X(t), there exists an integrable
function c such that for all γ(t) ∈ Fm(t, x(t)) we have |γ(t)| 6 c(t).

Proof. Non emptiness and compactness of Sm(t, x) follows from (B2) and (B4). Also, (B4) guarantees that
Fm(t, x) is non empty. Taking into account that u→ f(t, x, u) is continuous by (LC), we get the compactness
of the set Fm(t, x).

We now turn to 2 of the Lemma. Take any compact set A ⊂ Rn. We want to prove that

{(t, x) ∈ [a, b]× Rn : Fm(t, x) ∩A 6= ∅} (13)

is L × B-measurable. Assume that f−1(A) 6= ∅. By (B1) and (LC), t→ f(t, x, u) is measurable for each (x, u)
and (x, u) → f(t, x, u) is continuous for almost every t. Thus Proposition 2.3.6 in [22] asserts that f is an
L × B × B-measurable function. It follows that

f−1(A) =
{

(t, x, u) ∈ [a, b]× Rn × Rk : f(t, x, u) ∈ A
}

is a L×B×B measurable set. On the other hand, the set-valued mapping t→ S(t) is L-measurable and closed
valued by (B2). By Theorem 2.3.7 in [22], the graph of t→ S(t),

Υ := {(t, x, u) ∈ [a, b]× Rn × Rk : (x, u) ∈ S(t)}, (14)

is a L × B × B measurable set and, consequently, f−1(A) ∩ Υ is a L × B × B-measurable set. Now, take any
t, x) ∈ [a, b] × Rn such that Fm(t, x) ∩ A 6= ∅. Then (B4) guarantees the existence of a u ∈ Rk such that
(x, u) ∈ S(t). It follows that (t, x, u) ∈ f−1(A) ∩Υ. Since (t, x) belongs to (13) if and only if there is a u ∈ Rk
such that (t, x, u) ∈ f−1(A) ∩Υ we deduce from Proposition 2.34 in [14] the L × B measurability of Fm.

Statement 3 of the Lemma follows from the L × B × B measurability of the set (14) and the fact that
(x, u) ∈ S(t) is equivalent to u ∈ Sm(t, x).

Now it remains to prove 4. Take t ∈ [a, b] such that ẋ∗(t) ∈ Fm(t, x∗(t)) (see (7)). Let u∗ be such that
u∗ ∈ Sm(t, x∗(t)) and ẋ∗(t) = f(t, x∗(t), u∗). Take x such that x ∈ X(t). Since by (B4) we have Fm(t, x) 6= ∅,
take any γ ∈ Fm(t, x). By definition of Fm there there exists a u ∈ Sm(t, x) such that γ = f(t, x, u). Appealing
to (LC) we now have

|γ| 6 |f(t, x∗(t), u∗)|+ 2kfxε+ 2kfuσ = |ẋ∗(t)|2kfxε+ 2kfuσ.

Set c(t) = |ẋ∗(t)| + 2kfxε + 2kfuσ. Observe that upper bound does not depend on the choice of x or u and it
holds for almost every t. Since ẋ∗ is an integrable function we conclude that c ∈ L1 proving our claim. �
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Remark: In 4 of Lemma 6.1 the requirement that x∗ satisfies (7) is added to guarantee the integrability of c.
Alternatively, we can stipulate that f is uniformly bounded by an integrable function b. �

We now investigate Lipschitz properties of x→ Sm(t, x) and x→ Fm(t, x) for each t. In this respect, (BS)
is essential as we shall see. Indeed, conditions (B1), (B2), (B4) and (LC) by themselves, are not enough to
guarantee lower semi-continuity of x→ Sm(t, x) or x→ Fm(t, x), let alone Lipschitz continuity, as the following
example shows.

Example 6.2 Let us fix t ∈ [a, b] (the interval [a, b] here has no relevance) and set S(t) = {(x, u) ∈ Rn × R : u ∈ [−1, 1], u|x| 6 0}.
Since, for each t,

Sm(t, x) =

{
[−1, 1] if x = 0,

[−1, 0] if x 6= 0,

we have Fm(t, x) = {x+ u : u ∈ Sm(t, x)}. It is a simple matter to see that (B1), (B2), (B4) hold and that
f(x, u) = x+u satisfies (LC). However, both Fm and Sm fail to be lower semi-continuous. To see that, consider
any sequence {xi} such that xi 6= 0 and xi → 0. Then 1/2 ∈ Sm(t, 0) and 1/2 ∈ Fm(t, 0). But there is no
convergent sequence {ui} with limit equal to 1/2, since ui 6 0. Consequently, there is no sequence γi ∈ Fm(t, xi)
converging 1/2.

Assumption (BS) excludes this example from our context. Indeed, for any t, we have (1, 0) ∈ NP
S(t)(0, 1/2)

and so 1 > 0 meaning that (BS) is not satisfied. �.

Remark: It is worth mentioning, for future reference, that the set S(t) in the above example can be defined
as in (4) where U = [−1, 1] and g(x, u) = u|x|.

An appeal to Theorem 2.1 asserts that, in our setting, (BS) guarantees that x → Sm(t, x) is not merely
pseudo-Lipschitz: it is in fact Lipschitz continuous as we show next. For completeness we also state a known
result: that under our conditions, Lipschitz continuity of x→ Sm(t, x) implies (BS).

Lemma 6.3 Assume that (B2), (B4) and (BS) hold. Then there exists constant ε such that, for almost every
t,

x, x′ ∈ x∗(t) + εB =⇒ Sm(t, x) ⊂ Sm(t, x′) +K|x− x′|B̄, (15)

where K is as defined in (BS).
If (B2) and (B4) hold and there exist constant ε and K such that, for almost every t, (15) is satisfied, then

(BS) hold with constant.

Remark: Before engaging in the proof of this result, it is important to emphasize that the above Lemma is
no more than an adaptation of more general results presented and discussed in [9]. We also refer the reader to
[12] in this regard.

Proof. Recall that S(t) is the graph of x→ Sm(t, x) and, by (B2), it is a closed set. Now take t such that
the property in (BS) holds. Take u∗ to be such that u∗ ∈ Sm(t, x∗(t)). Such u∗ exists by (B4). By (B4) we
know that for any x ∈ X(t) and any u ∈ Sm(t, x) we have |u| 6 σ. So for any x and u such that x ∈ B(x∗(t), ε)
(the same ε defining the closed set X(t)) and (x, u) ∈ S(t) we have u ∈ B(u∗(t), R) with R = 2σ. It follows
from (BS) that (BS’) holds with constant K. We can then apply Theorem 2.1, where Γ(t, x) = Sm(t, x) and
G(t) = S(t), with ξ = 1/2. Take ε = min{ε, σ

3K} and any x ∈ B(x∗(t), ε). Then we have

Sm(t, x) ∩ B̄(u∗(t), (1− ξ)R) = Sm(t, x) ∩ B̄(u∗(t), σ) = Sm(t, x)

and our first result follows from Theorem 2.1.
We omit the proof of the second part of the Lemma since this can be found in [12]. �

As an immediate conclusion of the above Lemma we get the following Corollary.

Corollary 6.4 Assume that (B2), (B4) and (BS) hold and that f satisfies (B1) and (LC). Then there exist ε
and kFm

such that, for almost every t,

x, x′ ∈ x∗(t) +B(0, ε) =⇒ Fm(t, x) ⊂ Fm(t, x′) + kFm
|x− x′|B̄.
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Proof. Let t ∈ [a, b] such that the properties in (BS) and (LC) hold. Let ε as defined in Lemma 6.3 and take
any x, x′ ∈ x∗(t) + εB and any γ ∈ Fm(t, x) and γ′ ∈ Fm(t, x′). Let u and u′ be such that (x, u) ∈ Sm(t, x),
(x′, u′) ∈ Sm(t, x′), γ = f(t, x, u) and γ′ = f(t, x′, u′). By Lemma 6.3 we get

|u− u′| 6 K|x− x′|.

Then, it follows from Lemma 6.3 that

|f(t, x, u)− f(t, x′, u′)| 6 kfx |x− x′|+ kfu|u− u′|

6 kfx |x− x′|+ kfuK|x− x′|

= (kfx + kfuK)|x− x′|

and our result follows with kFm
= kfx + kfuK. �

We now concentrate on measurable selections. We dwell on Sm, although our results can apply to Fm. The
following result asserting the existence of measurable and Lipschitz selection of Sm is a direct consequence of
Proposition 2.3.10 of [22] and Theorem 9.5.3 in [3].

Lemma 6.5 Assume that (B2), (B4) and (BS) hold. Take any measurable function x : [a, b] → Rn such that
x(t) ∈ X(t) for each t. Then there exists a measurable function µ : [a, b]→ Rk such that

µ(t) ∈ Sm(t, x(t)) a.e. t ∈ [a, b]. (16)

Furthermore, if for each t ∈ [a, b] and each x ∈ X(t), Sm(t, x) is convex, then there exists a constant c and a
function u : [a, b]×Rn → Rk such that t→ u(t, x) is measurable, x→ u(t, x) is Lipschitz with constant cK and

µ(t) = u(t, x(t)) a.e. t ∈ [a, b].

Before presenting the proof it is worth noticing that the convexity of Sm(t, x) is essential here.
Proof. Let Υ denote the graph of (t, x) → Sm(t, x) and recall that 3 of Lemma 6.1 guarantees that it is a

L×B×B set. It follows from Proposition 2.34 in [14] that the graph of t→ Sm(t, x) is L×B-measurable set. On
the other hand, for any x ∈ Rn, the set Sm(t, x) is nonempty and compact by 1 of Lemma 6.1. Theorem 2.3.7
in [22] then asserts that t→ Sm(t, x) is a measurable set-valued mapping. On the other hand, for each t ∈ [a, b],
Lemma 6.3 guarantees that x→ Sm(t, x) is Lipschitz. We can then apply Proposition 2.3.10 in [22] to deduce
the measurability of the set-valued mapping G(t) = Sm(t, x(t)). Since G(t) is closed for each t, Theorem 2.3.11
in [22] guarantees the existence of a measurable selection µ of G(t), i.e., µ is a measurable function satisfies
(16).

Additionally, suppose that now that Sm(t, x) is convex. Then the last conclusion of follows from Theorem
9.5.3 in [3]. �

7 Differential Inclusions with Mixed Constraints
We are now in position to invoke Chapter 2 in [22] to obtain several relevant properties for our set-valued
mapping Fm.

Consider the set X(t) to be defined by x∗ satisfying (7)1. Recall that the set-valued mapping X : [a, b]→ Rn
is closed and bounded. Under the conditions of Lemma 6.1 it is a simple matter to deduce the compactness of
trajectories of Fm as a direct consequence of Theorem 2.5.3 in [22]. For the sake of completeness we state our
findings next.

Theorem 7.1 Assume that (CA) and the conditions under which 4 of Lemma 6.1 hold. Take any sequence
{xi}, xi ∈W 1,1([a, b];Rn) such that

Gr xi ⊂ Gr X, ẋi(t) ∈ Fm(t, xi(t)) a.a. t ∈ [a, b], xi(0) ∈ X(0).

Then there exists a subsequence (we do not relabel) such that

xi → x uniformly and ẋi → ẋ weakly in L1

for some x ∈W 1,1([a, b];Rn) such that ẋ(t) ∈ Fm(t, x(t)) a.a. t ∈ [a, b].

1Here we need 4 of Lemma 6.1. As remarked before, instead of choosing x∗ as a trajectory of Fm, we may consider any absolutely
continuous function x∗ in the definition of X and add the assumption that there exists an integrable function c such that, for all
(x, u) we have |f(t, x, u)| 6 c(t) for almost every t.
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Our next step if to ensure equivalence between the set of feasible trajectories of system (Σ) and the set of
feasible trajectories of Fm. We say that an absolutely continuous function x is a feasible trajectory of Fm if
x(t) ∈ X(t) for all t ∈ [a, b] and ẋ(t) ∈ Fm(t, x(t)) for almost every t ∈ [a, b]. We denote the set of all Fm-feasible
trajectories associated with E to be

R∗[a,b](E) := {x ∈ C([a, b];Rn) : x is an Fm trajectory and (x(a), x(b)) ∈ E} .

Define S∗[a,b](E) to be the set of all absolutely continuous functions x associated with a control u : [a, b] → U

such that x(t) ∈ X(t) for all t ∈ [a, b] and (x, u) solves (Σ), i.e, ẋ(t) = f(t, x(t), u(t)) a.e.,
(x(t), u(t)) ∈ S(t) a.e.,
(x(a), x(b)) ∈ E.

Theorem 7.2 Assume that f satisfies (B1) and (LC) and that (B2)–(B4) and (BS) hold.
Then x ∈ S∗[a,b](E) if and only if x ∈ R∗[a,b](E).

Proof. The implication x ∈ S∗[a,b](E) =⇒ x ∈ R∗[a,b](E) is trivial.
To see that the opposite implication holds, take x ∈ R∗[a,b](E) and set w(t) = ẋ(t) and m(t, u) = f(t, x(t), u).
Assumption (LC) together with Proposition 2.3.4 in [22] guarantees that (t, u)→ m(t, u) is L×B measurable.

Set set G(t) = Sm(t, x(t)). We have w(t) ∈ {m(t, u) : u ∈ G(t)} for almost every t ∈ [a, b]. Since G is
a measurable and closed set-valued mapping, Theorem 2.3.13 in [22] asserts the existence of a measurable
function u : [a, b]→ Rk such that

u(t) ∈ G(t) a.e. and w(t) = m(t, u(t)) a.e.

It follows that x ∈ S∗[a,b](E), completing our proof. �

It is worth mentioning that the previous result does not require convexity of Fm(t, x) (or Sm(t, x)). If
however (CA) holds, then it can easily be seen that Theorem 2.6.1 in [22] can be applied (by Lemma 6.1 and
Corollary 6.4) leading to the following.

Theorem 7.3 Assume that x∗ defining X satisfies (7), f satisfies (B1) and (LC) and (B2) – (B4), (BS) and
(CA) hold. Then R∗[a,b](E) is compact with respect to the supremum norm topology.2

8 Applications and Future Work
An straightforward consequence of our previous results is the existence of solution to some optimal control
problems with mixed constraints. Let us consider the problem

(Q)


Minimize l(x(b))
subject to

ẋ(t) = f(t, x(t), u(t)) a.a. t ∈ [a, b]
(x(t), u(t)) ∈ S(t) a.a. t ∈ [a, b]
(x(a), x(b)) ∈ {xa} × Eb

where l : Rn → R is a locally Lipschitz function and Eb a closed set. Assume that f satisfies (B1) and (LC)
and that (B2)-(B4) as well as (BS) and (CA) hold. Let us suppose that there exists a feasible process (x∗, u∗)
for (Q) and consider some ε > 0. Define as before X(t) = x∗(t) + εB̄. Then Theorem 7.2 allows us to appeal
to Proposition 2.6.2 in [22], to deduce existence of a minimizer for (Q).

When S(t) is as defined by (4), existence of solution for (Q) is proved in, for example, [5], assuming that the
function u → f(t, x, u) as well as u → g(t, x, u) are convex. Our approach covers a different class of problems,
those for which (CA) holds. Recall that convexity of u→ g(t, x, u) implies convexity of Sm(t, x) but convexity of
Sm(t, x) does not necessarily implies convexity of Fm(t, x) even when the components of f are convex functions
with respect to u

If (CA) does not hold, relaxation results along the lines of Proposition 2.7.3 in [22] are valid. In this respect,
and as expected, the set-valued mapping coFm(t, x) plays an important rule. But some care needs to be

2Once again, we may replace the requirement that x∗ defining X satisfies (7) by an integrable bound on the values of f(t, x, u)
when x ∈ X(t).
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considered when the convex hull of Fm(t, x) is taken. For example, when S(t) is given by (4), we can translate
the convexity of Fm(t, x) to (Σ), appealing to Carathéodory’s Theorem, leading to

ẋ(t) =

n+1∑
i=1

λi(t)f(t, x(t), ui(t)), a.e.,

g(t, x(t), ui(t)) 6 0, i = 1, . . . , n+ 1, a.e.,

(λ1(t), . . . , λn+1(t)) ∈ Λ, a.e.

ui(t) ∈ U, a.e. for i = 1, . . . , n+ 1

(17)

where

Λ := {λ′ ∈ Rn+1 : λ′ > 0 and
n+1∑
i=1

λ′i = 1}.

A word of caution when a running cost is added to the cost in (Q), i. e., when we consider the problem

(Q′)



Minimize l(x(b)) +

∫ b

a

L(t, x(t), u(t))dt

subject to
ẋ(t) = f(t, x(t), u(t)) a.a. t ∈ [a, b]

(x(t), u(t)) ∈ S(t) a.a. t ∈ [a, b]
(x(a), x(b)) ∈ {xa} × Eb

As it is commonly done, assume that L satisfies the same conditions f satisfies, in this case, (B1) and (LC).
Define

F̃m(t, x) = {(f(t, x, u), L(t, x, u)) : u ∈ Sm(t, x)}

and
VL(t, x) = {(v, y) : v = f(t, x, u), y > L(t, x, u)) : u ∈ Sm(t, x)} .

Clearly we have
co F̃m(t, x) ⊆ coVL(t, x)

but, in general, convexity of VL(t, x) does not imply that of Fm(t, x) as it shown in Chapter IV of [17].
The reformulation of the systems similar to (Σ) into differential inclusions can be useful to derive necessary

conditions of optimality when combined with extended Euler-Lagrange conditions in the vein of [22] and [9]
(see also reference within). Following closely [9] this is an important tools in [10] and [11], two papers where
necessary conditions for mixed constrained optimal control problems are extensively studied.

The consequences of the the second part of Lemma 6.5 asserting that under some conditions, any con-
trol of our system maybe a feed back control depending Lipschitz continuously on the state deserves further
investigation. In particular, the derivation of necessary conditions along the lines of [1] may be of use.
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