
Secure Multicast in IPTV Services

António Pinto

INESC Porto, Portugal

Escola Superior de Tecnologia e Gestão de Felgueiras,

Politécnico do Porto, Portugal

apinto@inescporto.pt

Manuel Ricardo

INESC Porto, Faculdade de Engenharia, Universidade do Porto, Portugal

mricardo@inescporto.pt

December 31, 2009

Abstract

Technological evolution is leading telecommunications to all-IP networks where

multiple services are transported as IP packets. Among these are the group

communications services with confidentiality requirements. Secure IP multicast

may be used to secure the broadcast of video channels. However, in scenarios

such as cable TV where the concept of video channel and bundle are present,

groups are very large, and users switch very rapidly between channels (zapping),

a sort of problems still need to be addressed.

The solution proposed in this paper addresses these problems. For that

purpose, a centralized form of secure group communications is proposed also

used to transmit, not data, but group cryptographic material. Threes types of

cryptographic keys are used. End systems use this material to decrypt the data

1

sent by the content providers.

Keywords

Secure Multicast, Centralized, IPTV.

1 Introduction

IPTV services are composed by multiple video channels grouped in bundles,

such as the sports, movies or generic bundles. An user may subscribe multiple

bundles, including the generic bundle which is the bundle containing more video

channels. Secure IP multicast [22] may be used to support IPTV services, since

this technology enables the secure transmission IP packets to groups of receivers.

However, secure IP multicast still has problems to be addressed when used in

IPTV scenarios (a) consisting of large number of receivers having differentiated

access rights, (b) where bundles need to be supported, and (c) users need to

switch rapidly between channels (channel surfing or zapping). Several proposals

exist in the literature for providing scalable secure group communications using

secure IP multicast [12, 11, 30, 29, 20, 19, 16, 8, 25, 23]. These solutions aim

at securing the data sent to a group of users with equal access rights but do

not address bundles of video channels. For instance, user A may subscribe

the generic and sports bundles, while user B may only subscribe the generic

bundle; in this case encryption keys are required both for individual channels

and bundles, and no existing solution seems to address this problem. Moreover,

existing solutions do not optimize the the signalling generated by the IPTV

system when users switch between groups, what happens in channel zapping

situations, where the zapping user needs to retrieve new cryptographic material.

The solution proposed in this paper aims at reducing the signaling generated

by IPTV services working based on secure IP multicast technologies. We address

channels, bundles, large groups of receivers, and fast zapping between channels.

2

The paper is structured in four sections. Section 2 surveys the related work.

Section 3 presents our solution. Section 4 characterizes the performance of our

solution, obtained both through simulations and by using a testbed. Section 5

presents the conclusions of the work.

2 Related work

2.1 Key distribution types

Secure multicast is a group transmission technique that enforces confidentiality.

It uses cryptographic techniques to encrypt data and perform access control.

A secure multicast architecture needs to consider the size of the groups, group

memberships, and security contexts such as encryption keys. Architectures such

as those defined in [27] are efficient for small groups, where the architecture

defined by the Multicast Security (MSEC) group [1] is being developed for large

groups [18, 6].

In its simplest scheme, the source of the group sends data to an IP multicast

address; a receiver interested in the data signals its interest to its local multicast

router using an IGMP [9] or a MLD [14] join message. Access control is imposed

by encrypting the data prior to its transmission, and by sending the decryption

key to the authorized receivers. Group confidentiality is obtained by changing

the decryption key, and by transmitting it securely to the authorized receivers.

Decryption keys can be transmitted regularly, upon a group change, or using a

combination of both methods. Group changes occur either by the departure of

a member (group leave) or by the arrival of a new member (group join). The

operations of key renewal are referred in the literature as re-key operations, and

are managed by an entity named Group Controller (GC).

Several types of cryptographic keys are used in secure group communica-

tion architectures. The common types are Key Encryption Keys (KEK), and

Data Encryption Keys (DEK). KEK is a key assigned to a member and it is

known only by that member and the GC; the KEK is used to secure com-

3

munications between each member and its GC. DEK is a key used to en-

crypt the group communications data and must be known by all the mem-

bers of the group. In a re-key operation, for instance, the DEK may be se-

curely transmitted by the GC to valid members in a message consisting of

[{DEK}KEK1 , {DEK}KEK2 , ..., {DEK}KEKn]. In this example, the notation

{DEK}KEK1 means that the DEK is encrypted with the KEK of the first

member, and n represents the number of receivers in the group.

Confidentiality requirements can be classified in four classes [12]: 1) non-

group confidentiality; 2) forward secrecy; 3) backward secrecy; 4) collusion re-

sistance. The first class imposes that users that had never participated in the

group should not access any cryptographic material. The second class imposes

that a member departing from a group should stop receiving cryptographic

material, therefore ensuring that this member is unable to decrypt group com-

munications after leaving the group. The third class imposes that a receiver

arriving to the group should not access previous cryptographic material, ensur-

ing that this member is unable to decrypt past group communications. The

last class imposes that current cryptographic material should not be inferable

by non-members.

In [24] three approaches for key distribution were identified: centralized,

distributed, and decentralized. More recently, Cao et al. [11] extended this

classification and identified four schemes: simplest scheme, centralized scheme,

decentralized scheme, and hierarchical scheme. The first scheme is a subset of

the centralized approach; the centralized and the decentralized schemes are the

centralized and the decentralized approaches respectively.

In this paper we adopt a classification that combines both classifications and

comprises 4 types of key distribution: centralized, decentralized, distributed and

hierarchical. The distributed type assumes that every member can participate

in the key distribution, perform access control, and contribute to the generation

of the group key. The group controller role is not usually present because the

group keys are generated with contributions from all the members. Group

4

Diffie-Hellman Key Exchange [26] is an example of the distributed type.

The hierarchical type assumes that users have not the same priorities and

impose cryptographic access control to classes of users with different access

levels. This type was firstly addressed in [2] where a hierarchical key assignment

to users was adopted. An user belonging to a certain class can derive the

cryptographic keys of lower class users. The hierarchical type presents the

drawback of requiring extra computational power from the members, similarly

to the distributed type.

In the decentralized type the group is split into subgroups, each having its

manager. The subgroup manager generates the local encryption key and pro-

cesses the local membership changes (subgroup member join/leave operations).

Iolus [19], DEP [16], MARKS [8], IGKMP [17], and Kronos [25] are examples

of decentralized key distributions.

The distributed and hierarchical types seem inappropriate to the IPTV ser-

vices. The distributed type is used by group members (users) to generate a

key to encrypt group data. In IPTV services the keys are preferably generated

by the service provider and members (users) take no part in the key genera-

tion process. The hierarchical type assumes that users are classified in terms of

access rights, meaning that users belonging to the high clearance class will be

granted access to all information, and users belonging to the low clearance class

will access only public information. In IPTV services, the video channel access

is based upon service subscription and not on the data classification.

On the other hand, both the centralized and decentralized types are suitable

for IPTV services. The decentralized type splits a group in sub-groups, giving

each one a manager. In some sense, each sub-group becomes a centralized like

solution.

2.2 Centralized type

This section surveys the centralized type of key distribution. For each solution,

its functionality is described, the satisfaction of the confidentiality requirements

5

Figure 1: KEKs affected by member Ud join/leave.

is discussed, and the keying material used is presented.

The centralized type is characterized by the existence of a unique entity

which manages the entire group. The Group Controller (GC) encrypts the

DEK using each member’s key (KEKi) and then it transmits the n keys to the

group members. Despite its simplicity, this scheme suffers from the single point

of failure problem; in case of failure of the GC, the cryptographic material is

not renewed and the new members become unable to receive the cryptographic

material required to decrypt the data.

2.2.1 Logical Key Hierarchy (LKH)

In order to address problems such as key storage space and the support of

highly dynamic groups, Wong et al. [30] proposed the use of a Logical Key

Hierarchy (LKH). In LKH, the GC stores the keys in the form of a balanced

tree of keys whose leafs are the individual member KEKs and the intermediate

nodes represent other KEKs required by the members. An example of such a

tree is shown in Figure 1. The root of the tree holds the group DEK K. When

a new member joins the tree, it is added as a leaf to the tree and all the keys

in the path from its parent node to the root are changed. These keys will then

be used by the new member to obtain the group key, i.e. the root of the tree.

The groups with high rates of member departure and arrival can be supported

by using these trees, since only the affected keys are refreshed.

6

Upon a group change, the DEK K must be refreshed in order to maintain

future and backward secrecy. For instance, the join operation of the member

Ud, shown in the Figure 1, requires several encryptions. The key K ′ becomes

the new root DEK and it must be sent to all members. For that purpose, two

messaged are generated and sent: the {K ′}Kab
is sent to users Ua and Ub, and

the message {K ′}K′
cd

is sent to users Uc and Ud. The key K ′
cd must also be sent

by the GC to the members Uc and Ud, by sending the messages {K ′
cd}Kc and

{K ′
cd}Kd

, respectively.

This method generates a large number of re-keying messages. For a group

of n users with a tree of height h, the total number of keys that needs to be

maintained by all elements is 2n− 1; the number of keys stored by each user is

equal to its distance to the root of the tree (h+ 1 keys). Upon a join operation

(2h− 1) + (h+1) keys must be refreshed; upon a leave operation 2h keys must

be refreshed.

2.2.2 One-way Function Tree (OFT)

The solution proposed by Waldvogel et al [29] is similar to LKH, differing only

in the join operations. Instead of generating and sending new keys, the solution

makes use of one-way functions over the keys that must be changed. If a re-

ceiver knows of the current keys, it will be able to generate the new keys. This

algorithm is also referred in literature as LKH+.

Upon a group change, and in order to maintain future and backward secrecy,

each member must calculate the new key for each node in the path from its par-

ent’s node to the root. This strategy reduces the number of re-keying messages

to half, but it substitutes the message cost by a computational cost.

For a group of n users with a tree of height h, the total number of keys that

needs to be maintained by all elements is 2n− 1; the number of keys stored by

each user is h+1. Upon a join operation 2(h+1) keys must be refreshed; upon

a leave operation h+ 1 keys must be refreshed.

7

Figure 2: Computation required by OFCT upon member Ud leave.

2.2.3 One-way Function Chain Tree (OFCT)

Canneti et al. [10] proposed another variation of OFT that consists in using

pseudo-random number generators instead of one-way functions; these gener-

ators are used to derive new KEKs from the current ones, and they are used

only in group leave operations. Let us assume two functions, H(x) and L(x),

which are related. H(x) generates a random number which is then used by

L() to generate a new KEK, that is L(H(x)). For instance, when considering

the leave operation of member Ud, shown in Figure 1, the GC sends a new

value x to the member Uc; Uc then calculates Kc = L(x). Moreover Uc will

also derive the others keys up to the root by calculating Kcd = L(H(x)) and

K = L(H(H(x))). These computations are shown in Figure 2. OFCT requires

less network resources at the expense of an higher computational cost.

For a group of n users with a tree of height h, the total number of keys that

needs to be maintained by all elements is 2n− 1; the number of keys stored by

each user is h+ 1. Upon a join operation h+ 1 keys must be refreshed; upon a

leave operation h+ 1 keys must be refreshed.

2.2.4 Efficient Large-group Key (ELK)

ELK [20] proposed another variant of OFT that uses Pseudo Random Functions.

ELK addresses large groups and it enables the group members to update all the

keys either upon group membership changes or periodically.

Each group member generates the key of each tree node based on contribu-

8

Figure 3: ELK key tree, rearranged upon member Ud leave.

tions from the left and right child keys. Upon a member leave operation, the

tree requires rearranging. Assuming the leave operation shown in Figure 1, the

resulting tree would be similar to the tree shown in Figure 3, where Kcd is elim-

inated and a new key K ′ is generated from Kab and Kc; in order to do it, the

GC calculates the left and right child node contributions of K ′ and sends the

left contribution to Uc, and the right contribution to users Ua and Ub. A second

property of ELK consists in allowing members to generate new keys using hints

that are appended to data packets. For a group of n users with a tree of height

h, the total number of keys that needs to be maintained by all elements is 2n−1;

the number of keys stored by each user is h + 1. Upon a join operation h + 1

keys must be refreshed; upon a leave operation h keys must be refreshed.

2.2.5 LKH++

LKH++ was proposed in [21] and it exploits one-way hash functions in combi-

nation with information already shared by the users, namely the keys belonging

to the common tree nodes in the path from the users to the root. Considering

the scenario of Figure 1, Ua and Ub share the keys Kab and K, for instance.

These shared keys are passed through one-way hash functions in order to gen-

9

erate the new keys. In particular, upon a user leave operation, the users that

share some part of the tree with the leaving user may autonomously generate

the new keys in the path toward the root, thus reducing the number of re-keying

messages generated by the GC.

For a group of n users with a tree of height h, the total number of keys that

needs to be maintained by all elements is 2n− 1; the number of keys stored by

each user is h+ 1. Upon a join operation h+ 1 keys must be refreshed; upon a

leave operation h+ 1 keys must be refreshed.

2.3 Summary on related work

Table 1 compares the centralized types identified in this paper. In this table, n

represents the number of members in the group and h represents the height of

the tree used to maintain the keys in the GC. The 1st column (GC) shows the

number of keys maintained by the Group Controller. The 2nd column (Member)

shows the number of keys required by each member. The 3rd and 4th (Join

and Leave) columns show the message size, in numbers of keys, that must be

transmitted upon group memberships changes in order to preserve secrecy. For

the simplest approach, the group controller maintains one key per each member

in the group; each member requires only one key, and both the group join and

leave operations require the transmission of a re-key message with size n times

the key length (one key per member). The remaining solutions in the table,

when compared with the simplest approach, show reductions in the bandwidth

required for re-key operations upon membership changes.

The distributed type assumes that all members can contribute to the gen-

eration of the DEK. The hierarchical type assumes that users are not equal in

terms of access, and are hierarchically organized into classes with different ac-

cess rights. The decentralized type decomposes the group into subgroups, each

having a manager.

10

Number of Keys Re-key message size
GC Member Join Leave

Simplest n 1 n n
LKH 2n− 1 h+ 1 (2h− 1) + (h+ 1) 2h
LKH++ 2n− 1 h+ 1 h+ 1 h+ 1
ELK 2n− 1 h+ 1 h+ 1 h
OFT 2n− 1 h+ 1 2(h+ 1) h+ 1
OFCT 2n− 1 h+ 1 h+ 1 h+ 1

Table 1: Centralized approaches comparison

3 Proposed solution

The reference scenario adopted for this work is shown in Figure 4 and it describes

an IPTV service, where multiple video channels are distributed as IP packets in

multicast (one multicast group per video channel). In common IPTV services,

multiple video channels are grouped together in bundles and may be distributed

to a group of receivers with equal access to the video channels of the bundle.

A bundle is then composed of several video channels, each video channel being

transmitted to a different multicast address. In what concerns security, common

IPTV services use one key for each bundle. In our solution, we will explore a

concept that, besides the bundle key, each channel will also have one data key.

The video channels are generated by one or more Video Servers (VS) to groups

of Set-Top Boxes (STB). The requirements identified for this system include:

1. Individual user access control;

2. Support for legacy end-systems;

3. Transparent operation over existing networks and network equipments;

4. Low consumption of network resources;

5. Support for rapid switching between video channels;

6. Scalability.

The first requirement imposes that a user must not derive or obtain the

cryptographic materials from other users. The second requirement imposes

11

Figure 4: Reference scenario

12

Figure 5: Proposed solution elements

that a solution must demand low computational power to both STBs and VS,

in what concerns group security. The third requirement imposes that a solution

must not require changes to existing networks or network equipments. The

fourth requirement implies that minimal bandwidth shall be used for security

signaling. The fifth requirement imposes that users must be able to switch

rapidly between video channels, similarly to what happens in analogue cable

TV. The last requirement imposes that a solution must support a large number

of users without significant impact on the system’s performance.

The proposed solution, named Secure Multicast IPTV with efficient support

for video channel zapping (SMIz), has the architecture shown in Figure 5; it

comprises a Group Controller (GC), a Video Server and a Set-Top Box. The

GC is responsible for cryptographic key generation and distribution, as well as

STB authentication and authorization. The VS and the STB are responsible

for the stream transformation, i.e. for the encryption and decryption of the

video channel streams. The VS transforms the audio and video content into an

encrypted stream of IP multicast packets; it also generates the Video Encryption

Keys (VEKs) and distributes them to valid members (VEK announce). Prior to

video channel request and visualization, the STB must obtain its cryptographic

context.

13

A, B, C Communicating nodes
Kab Symmetric key shared between communicating nodes
Na Nonce generated by A

H(M) Hash function of M
{M}K M encrypted with key K
SEKi Current session encryption key of entity A
X.Y Field X concatenated with field Y

Table 2: Notation adopted for specifying the SMIz protocol

Phases Messages

1 Bootstrap STB → GC : A.H(Na).{A.Ts1.Na}Kab

GC → STB : A.B.H(Nb).{A.B.Ts2.Nb}Kab

STB → GC : A.B.H(Ts3.Na.Nb).{A.B.Ts3.H(Ts3.Na.Nb)}Kab

GC → STB : A.B.H(Ts3.Na.Nb).{A.B.Ts4.SEKi}Kab

2 KEK Request STB → GC : A.H(N ′
a).{A.N ′

a.ChID}SEKi

GC → STB : A.B.H(N ′
a.ChID).{TTL.KEK}SEKi

3 KEK Refresh GC → STB : A.B.H(N ′
a.ChID).{TTL.KEK}SEKi

4 VEK Refresh V S → STB : C.A.MsgID.H(N ′
b).{N ′

b.ChID.ChCTX.V EK}KEK

Table 3: Protocol outline

Three types of cryptographic keys are used in this solution: 1) Session En-

cryption Keys (SEKs); 2) Key Encryption Keys (KEKs); 3) Video Encryption

Keys (VEKs). SEKs are used for securing unicast communications between

STBs and the GC. VEKs are used to (de)encrypt video channels, each chan-

nel having a different VEK. KEKs, one per bundle, are used for securing the

transmission of the VEKs.

3.1 Protocol specification

The notation adopted to describe the proposed solution is shown in Table 2.

A, B and C represent the communicating nodes, being the STB, GC, and VS,

respectively. Kab represents a symmetric key previously shared between the

nodes A and B; Na represents a nonce generated by node A; H(M) represents

the output of an hash function of input data M ; {M}K represents M encrypted

with the key K; and SEKi represents the current SEK of communicating node

A.

Table 3 outlines the proposed protocol, which consists of four distinct phases.

14

The first phase (Bootstrap) reflects a STB bootstrap procedure and enables

mutual authentication by means of a symmetric pre-shared key (Kab) between

the STB and the GC. In this phase, the initiator is the STB and it starts by

sending a message composed of the initiator’s identification (A), the result of an

hash function of a fresh nonce (Na), and a set of 3 fields encrypted with a pre-

shared symmetric key (Kab). The encrypted set is composed of the initiator’s

identification (A), the fresh nonce (Na), and a time seed (Ts1). The GC will

decrypt this set, using the initiator’s identification to select the correct pre-

shared key, and test both the nonce and the time seed against previous values.

The GC will reply with a similar message that, besides the identification of the

GC (B), contains a fresh nonce (Nb) generated at the GC and its time seed (Ts2).

The STB will verify the nonce and time seed. Upon successful verification, the

STB will reply with a new message composed of the identification of both, the

result of an hash function of both nonces, and a new time seed (Ts3), and a

new encrypted set of fields. This set of fields is composed of the identifications

A and B, the time seed Ts3, and an hash result. In turn, and upon successful

verification, the GC will reply with a message that differs only in the encrypted

set of fields, which contains a new time seed generated at the GC and a new

SEK for that specific STB (SEKi). At the end of the bootstrap phase, the STB

will be in possession of its new SEKi and no other entity, besides GC, knows

SEKi.

The nonce and time seeds verification are executed by both GC and STB.

The nonce verification consists in verifying that a nonce was not previously used.

With respect to the time seed verification, time seeds must be higher than the

last time seeds exchanged. For instance, in the GC case, a newly exchanged time

seed must be higher than the Ts3 from a previous STB bootstrap. The protocol

security verification (see Section 3.2) assures that an intruder tracking the time

seeds of both STBs and GC is unable to thwart security. The GC and STBs

clocks do not need to be fully synchronized, it is only required that future time

seeds must have a higher value than previous ones. The time seeds (Ts1 through

15

Ts4) and nonces (Na and Nb) are used to prevent replay attacks. Using only

time seeds, we would be able to perform mutual authentication, but a secure

time synchronization mechanism would be required. On the other hand, using

only nonces would imply possible men-in-the-middle attacks. Combining both

techniques, nonces and time seeds, mutual authentication with replay attack

prevention is achieved.

The second phase comprises the channel request (KEK Request). The chan-

nel request is sent by the STB to the GC and it is secured by the SEKi obtained

in the first phase; this requests aims at obtaining the KEK currently associated

to the bundle to which the requested video channel, identified by the channel

identifier ChID, belongs to. The GC answers with the KEK and its associated

time-to-live (TTL). The third phase (KEK refresh) is analogous to the second,

with the difference that its is initiated by the GC when a KEK refresh is re-

quired. The KEK refresh messages are sent by the GC to individual STB as

unicast messages.

Before receiving the multicast transmission of the requested video channel,

the STB must send an IGMP join message to its designated multicast router.

The destination address of this join request is the group address assigned to the

video channel the user wants to receive. Each video channel is transmitted to

its multicast group address in the form of Secure Real-time Transport Protocol

(SRTP) packets, encrypted with a VEK. The fourth phase of Table 3 represents

the VEK refresh, also referred to as VEK announce. The VEKs are sent pe-

riodically by the VS, in multicast, to the same IP multicast group address of

the video stream, but to a different UDP port. The VEK is encrypted with the

KEK of the bundle. We recall that there is one KEK for each bundle.

The STB decrypts the VEK with the KEK, and then decrypts the video

channel stream with the VEK. To ensure a high level of security, all crypto-

graphic keys must be refreshed periodically. These key refresh operations (re-

keys) must not interfere with the video channel visualization of current receivers.

For that purpose, each VEK is associated to a channel context (ChCTX) that

16

contains a maximum SRTP packet sequence number, after which the VEK is

no longer valid. The ChCTX also contains the video channel SSRC identifier,

a 64 bitmap used by SRTP to prevent replay attacks, and the number of times

this bitmap as reached its maximum value (roll-over counter).

The SEK is renewed upon each STB bootstrap. The KEKs are sent periodi-

cally by the GC to all STB, in unicast, prior to their expiration and are used to

protect a bundle; as a fall back procedure, the STB is also able to request the

current KEK. The support of fast switching between multiple video channels

is achieved by adopting periodical and frequent VEK announces, transmitted

from the VS to the same group address of the video channel. VEK announces

are secured by {V EK}KEK and only one VEK announce per video channel is

needed for all members, since all of them share the same KEK. This procedure

of transmitting the frequently refreshed VEKs in multicast leads to significant

savings in signaling, because a single message containing the new VEK can be

received by multiple users. Users zapping between channels of the same bundle

do not need to obtain a new KEK.

The main difference between our solution and existing secure IP multicast

solutions is that our solution uses two types of cryptographic keys: bundle

keys (KEKs), and video channel encryption keys (VEKs). The usage of two

type of keys leads to low overheads since low bandwidths are required for video

encryption and signaling; more importantly, this bandwidth is kept constant

(e.g. one VEK announce every 100 ms) and independent of the groups size and

of the number of users in in-bundle zapping. Our solution is also proved to not

impact on the channel access delay, which is kept low; this characteristic comes

from the multicast strategy used to announce VEKs. In-bundle zapping has

time-limited channel access delays (e.g. 100 ms); out-of-bundle channel access

delays are also kept low by enabling the STBs to cache the KEKs until the next

KEK refresh interval, independently of the channel being received by the STB.

17

3.2 Security analysis

The Automated Validation of Internet Security Protocols (AVISPA) [3] tool was

used to perform the security validation of the protocol proposed.

3.2.1 AVISPA

The AVISPA tool enables the automated validation of security protocols de-

scribed in High Level Protocol Specification Language (HLPSL) [13]. AVISPA

converts the HLPSL specification language to an intermediate format, usable

by multiple verification tools embedded in AVISPA. HLPSL, in turn, has the

expressiveness required to describe both the protocol behavior and the security

properties it must satisfy, such as secrecy and authentication.

The attacker model adopted by AVISPA is the Dolev-Yao intruder model

[15]. This model is characterized by the intruder being in complete control of the

network, meaning that the intruder is capable of intercepting all the messages

in the network, replaying previous messages, and generating its own messages

based on any part of the intruder knowledge.

The verification techniques supported by AVISPA are fourfold: 1) On-the-

Fly Model Checker (OFMC); 2) Constraint-Logic based ATtack SEarcher (CL-

AtSe); 3) SAT based Model-Checker (SATMC); 4) Tree Automata based Pro-

tocol Analyser (TA4SP) [7]. The OFMC [5] technique models the protocol as

a transition system, where the states are represented by the states of honest

participants plus the intruder knowledge, and state transitions are triggered

by actions of honest participants and of the intruder. The security properties,

formalized as predicates characterizing unsafe states, are evaluated after each

transition. The CL-AtSe [28] technique verifies, after each protocol transition,

that the security properties are not compromised by imposing constraints over

the intruder knowledge. The SATMC [4] technique creates a propositional for-

mula encoding possible attacks on the protocol and validates it using a SAT

solver. The TA4SP [7] technique validates security protocols by over-estimating

or under-estimating the intruder knowledge through the use of regular tree de-

18

scription languages, and then by checking on the reachability of such states.

3.2.2 HLPSL specification

The automated security verification with AVISPA demands the specification of

the environment and the specification of security goals. The environment in

HLPSL is a top-level role consisting of a set of protocol sessions, each session

being described by the involved participants and their shared knowledge, if any.

The security goals supported by HLPSL are secrecy and authentication.

1 r o l e environment ()

2 de f= const s e c s ek , auth sek : p r o t o co l i d ,

3 h : hash func ,

4 a , b : agent ,

5 kab , kib : symmetric key

6 int ruder knowledge = { a , b , k ib }

7 compos i t ion

8 s e s s i o n (a , b , kab , h)

9 /\ s e s s i o n (a , i , kib , h)

10 /\ s e s s i o n (i , b , kib , h)

11 end r o l e

Listing 1: Environment specification

In our specification 1, the environment describes three sessions, as shown in

the lines 8, 9, and 10 of Listing 1. One session is the legitimate session (line

8), involving only honest participants (a and b), while on the other two sessions

the intruder impersonates either of the honest participants (lines 9 and 10). As

initial knowledge, we assume the intruder knows the honest participants, and

that it has a cryptographic key that was pre-shared with the GC. In this way, it

is possible to verify the protocol security even when the intruder is a legitimate

user, but tries to impersonate other users.

1 r o l e stb (

2 . . .

3 /\ r eque s t (A,B, auth sek , Sek ’)

1Our protocol specification is available at: http://www.estgf.ipp.pt/˜apinto/cmi.hlpsl

19

4 end r o l e

5 r o l e group (

6 . . .

7 /\ witnes s (B,A, auth sek , Sek ’)

8 /\ s e c r e t (Sek ’ , s e c s ek ,{A,B})

9 end r o l e

10 . . .

11 goa l

12 s e c r e c y o f s e c s e k

13 authent i c a t i on on auth sek

14 end goa l

15 . . .

Listing 2: Security goals specification

Listing 2 is an excerpt of our protocol specification that shows our definition

of security goals. These goals are the secrecy of SEK (lines 8 and 12), and the

ability of SEK to serve has an authentication token (lines 3, 7, and 13) between

the participating entities. The secrecy (line 12) says that anytime the intruder

obtains the SEK, and it is not an explicit secret between the intruder and the

GC, then we are in presence of an attack. The authentication goal (line 13) is

used to verify that a STB is right in believing that its GC has reached a specific

state, associated with the current session, and that GC agrees on that specific

SEK.

We performed the security verification with all four techniques available in

AVISPA. None of them was able to find an attack to our protocol. For the

specific case of the TA4SP technique, the result was considered inconclusive:

when executed by under approximation, the protocol is reported as unsafe be-

cause the intruder may know some critical information; when executed by over

approximation, the TA4SP reports a safe protocol.

20

Figure 6: Test bed used in the experimental results

4 Results

In order to validate the solution proposed, a prototype was also developed and

implemented in a testbed; the results obtained from the functional and perfor-

mance tests are presented in Section 4.1. Then, in Section 4.2, some simulation

results regarding the cost of the KEK re-key operations, with respect to both

group size and re-key interval, are presented. In Section 4.3, a comparison with

other solutions is performed in what concerns the network bandwidth used for

signaling in scenarios where users zapp through video channels.

In the prototype, 3 type of cryptographic keys where used, each with a

different security level. SEKs (256 bit keys) are the most secure because they

are the STB individual keys. KEKs (192 bit keys) are shared between all STBs

that subscribe the same bundle and demand a security level higher than VEKs.

As the number of times a STB decrypts packets with KEKs is higher than the

number of times STB decrypts packets with SEK, and in order to reduce the

computational power required, the KEKs are made shorter then the SEKs. The

VEKs (128 bit keys) are shared only by the STBs which receive the same video

channel at each moment. Because different key sizes enforce different security

levels, these keys must be refreshed with different time intervals. The VEKs

are refreshed more often than KEKs, and KEKs are refreshed more often than

SEKs.

21

Average Std. Dev.
AES-128 20814 345
AES-192 20121 356
AES-256 19308 754

Table 4: KEK Requests processed per second

Figure 7: Third experiment state machine

4.1 Experimental results

The testbed implemented and used to obtain experimental results is represented

in Figure 6. It consists of 3 computers interconnected through an Ethernet hub.

All the computers have the same hardware and software characteristics, namely

the Fedora Core Linux operating system, an 3000+ AMD Athlon 64 processor

and 1GB of RAM memory.

The first experimental test address the STB bootstrap phase, described in

Table 3. It consists on stressing the server regarding the bootstrap phase. The

GC was setup in M1, and the test consisted in mutual authentication and on

the SEK exchange, between GC and STB. STB was setup in M2. As a result,

the GC was able to correctly process an average 839 requests per second.

The second experimental test focused on stressing the server regarding the

22

VEK Re-key interval VEK Processing time SRTP Packets
(ms) Average Std. Dev. transmitted (average)
500 972.79 ms 3.61 ms 55 packets
100 131.66 ms 3.70 ms 11 packets

Table 5: VEK Processing time (ms)

KEK Request phase. This procedure, also introduced in Table 3, consists on the

reception of the KEK request message by the GC, extraction of STB identifica-

tion, request validation and authentication and, upon successful authentication,

construction and transmission of the KEK reply message. The STB was setup

in M2 and sends cyclic KEK requests. The GC was setup in M1. Each test was

repeated multiple times using different key sizes of the Advanced Encryption

Standard (AES) algorithm. Table 4 shows the results obtained for the hash

table worst case bucket offset. The GC was able to process an average of 20,814

KEK requests per second when using 128 bit AES encryption, 20,121 KEK re-

quests per second when using 192 bit AES encryption, and 19,308 KEK requests

per second when using 256 bit AES encryption. The average time for a STB to

obtain a KEK reply was 7 ms.

The third experiment focused on the time required by a STB to obtain both

KEK and VEK, which are both required to decrypt a video channel. VEK

announce intervals of 500 and 100 ms were assumed. A simplified state machine

of this procedure in STBi is shown in Figure 7, and it assumes that the STB

is already in possession of its SEK. Here, ! and ? represent respectively the

transmission and the reception of messages. The GC was setup in M2, the

STB was setup in M3, and the VS in M1. Each test was executed 8 times

for each VEK re-key interval. The results obtained are presented in Table 5,

where the values represent the time, in ms, since the STB switches for a new

channel (join operation) until it receives the VEK and it can start decrypting

the new TV channel. From Table 5 we can also observe that for re-key intervals

of 500 and 100 ms, a mean number of 55 and 11 SRTP packets are transmitted,

respectively.

23

050100150200250
16 32 64 128 256 512 1024 2048Trroughput (Mb

it/s)
RTP Packet size (bytes)

LibSRTP VS

Figure 8: Video Server throughput

The last experiment aimed at evaluating the VS overhead introduced by the

proposed solution. For that purpose, the throughput of the native libSRTB was

measured and compared with the throughput obtained using our solution. The

results obtained are shown in Figure 8 and they show that, for typical packets

of 1500 bytes, the differences of throughput are of about 10%, in favour of our

solution. Our solution uses smaller keys which, in turn, are renew frequently

(every 100 or 500 ms).

4.2 Bandwidth usage analysis

The KEK refresh (phase 3 of Table 3) is the operation which may affect the

performance of our solution, since it is carried by an unicast UDP packet per

subscriber and per KEK re-key interval; the bandwidth required for KEK re-

key grows linearly with the group size. Figure 9 presents the cost, in terms of

network resources, of the KEK refresh operation, normalized to a video channel

bandwidth (4 Mbit/s). Such cost was estimated by:

M∗N∗Nr

24∗60∗60
4 ∗ 106

(1)

24

0%

5%

10%

15%

20%

25%

30%

35%

1E+04 1E+05 1E+06

B
an

d
w

id
th

 o
ve

rh
ea

d

Group size

5 min 10 min 15 min 30 min 60 min 1440 min

Figure 9: Bandwidth overhead, normalized to one video channel bandwidth, per
KEK refresh interval

Where M represents the KEK refresh message size (288 bits), N represents

the group size, and Nr represents the number of KEK refreshes expected in

a one day period. Results are graphically described for group sizes up to one

million of members and for KEK re-key intervals of 5, 10, 15, 30, 60 and 1440

minutes. A logarithmic scale is used. For a group size of one million members

(106), and for a KEK re-key interval of one day (1440 minutes), the bandwidth

usage is 0.1% of a video channel.

4.3 Comparison

Figure 10 compares our solution with the centralized solutions identified in lit-

erature that require less bandwidth in signaling, the main goal of our solution.

This comparison is made in terms of the bandwidth used in VEK re-key opera-

tions during video channel visualization. The bandwidth used in the member’s

bootstrap and the first group join operations are not considered. The SMIz

and ELK solutions lead to a constant bandwidth usage or, in other words, the

required bandwidth does not grow with group size. ELK does not demand

traffic in this situation because the new keys are obtained by each member by

25

0,0000,0500,1000,1500,2000,2500,3000,3500,4000,4500,500
1E+04 1E+05 1E+06Used Bandwidt

h (Mbit/s)
Group size

LKH LKH++ ELK OFT SMIz

Figure 10: Bandwidth used in VEK re-key operations

computing Pseudo-Random Functions (PRF) over the tree information in their

possession. SMIz does not require multiple PRF computation at each member

per refreshed key and it enables key independence, since future keys do not

depend on previous keys. SMIz network usage was estimated by considering a

transmission of 10 VEK refresh messages per second and a VEK key size of 128

bits. OFT, LKH, and LKH++ bandwidth usage were estimated based on the

join re-key message sizes shown in Table 1 and for the same re-key period and

key size. We assume a tree height equal to log2(n), n being the group size.

Figure 11 shows the bandwidth spent in signaling when 10% of the existing

STBs are zapping through channels. Our solution (the SMIz curve) is charac-

terized by constant and low signalling in scenarios were the users zapp through

channels within the same bundle. In Figure 11 we have also considered two

scenarios where both VEK and KEK re-keys were required. These scenarios

appear when users switch between channels belonging to different bundles. The

results obtained when 20% of the zapping users switch between diferent bundles

is shown in curve SMIz-20; the curve SIMz-80 shows equivalent results for 80%

of zapping users switching between different bundles. The bandwitch required

is represented as a function of group size for an average channel viewing time

of 2 seconds. For instance, for a group of one million members, of which 10%

26

0,050,0100,0150,0200,0250,0300,0350,0400,0
1E+04 1E+05 1E+06Bandwidth in si

gnalling (MBit/
s)

Group size

SMIz SMIz-20 SMIz-80 ELK OFT LKH

Figure 11: Signaling represented as a function of group size

are switching channels, our solution will consume approximately 39.3 kbit/s in

signaling for the SMIz scenario (VEK re-key only), 3.8 Mbit/s for the SMIz-20

scenario, and 15.3 Mbit/s for the SMIz-80 scenario. The bandwidth required

for signaling in all the other solutions grows with group size, except ours when

only VEK re-key is required.

Our solution demands significantly less bandwidth than all the other but

ELK solution. ELK does not require signaling in VEK re-key operations and,

for this reason, has not key independence. ELK derives new VEK keys from

past ones, meaning that upon a key disclosure, all past and forward group

communications may be compromised. In our solution, each video channel is

transmitted to a different multicast group address and it is secured by a different

VEK. Switching from one channel to another implies a group leave operation

(from the current channel), a group join operation (to the new channel), and re-

key operations. All the other solutions require KEK related signaling in group

join and leave operations, except ours for the majority of video channel switches.

27

4.4 Scalability

Simulation and experimental results demonstrate that our solution supports

large group sizes of up to 1 million members without having impact on users

rapidly switching between channels. The reduction of signalling was the key

issues of our solution, thus the scalability of the proposed solution was left for

future work. In order to increase the scalability of the proposed solution, the re-

key intervals for both SEK and KEK may be extended; meaning that the same

amount of signalling would be required by larger groups. The re-key interval

increase also means that keys are refreshed less often, resulting in a less secure

system.

Another possibility to improve the scalability of the proposed solution con-

sists in decentralizing the GC functionality. Assuming the existence of two GC,

then the proposed solution would support two million users, demanding the

same level of network resources while using the same re-key intervals. In this

case, service availability is also extended as the proposed solution depends on

a single entity, the GC. If it is the case of having two GC, upon a GC failure,

only the STBs associated with such GC would be denied service access.

5 Conclusion

In this paper we proposed a centralized secure group communication solution

used to transmit, not data, but group cryptographic material that is used by

members to decrypt the group data. The solution was defined for a real-time

multi-channel IPTV service. The solution’s main advantage over existing solu-

tions is the low use of bandwidth for signaling in zapping scenarios. Moreover,

our solution has proved to not significantly impact on the time required for

group join operations. Using the proposed solution, an user is able to switch

between channels with a delay which is equivalent to the delay in traditional

analogue TV provided over cable. The prototype implemented has shown to

scale up to one million of users.

28

References

[1] Multicast security (msec). IETF Working Group.

[2] S. G. Akl and P. D. Taylor. Cryptographic solution to a problem of access control

in a hierarchy. ACM Trans. Comput. Syst, 1:239–248, 1983.

[3] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H.

Drielsma, P. C. Heam, O. Kouchnarenko, and J. Mantovani. The avispa tool

for the automated validation of internet security protocols and applications. vol-

ume 5, pages 281–285. Springer, 2005.

[4] A. Armando and L. Compagna. Satmc: A sat-based model checker for security

protocols. LECTURE NOTES IN COMPUTER SCIENCE, pages 730–733, 2004.

[5] D. Basin, S. Mödersheim, and L. Viganò. Ofmc: A symbolic model checker

for security protocols. International Journal of Information Security, 4:181–208,

2005.

[6] M. Baugher, R. Canetti, and L. Dondeti. Multicast Security (MSEC) Group Key

Management Architecture. RFC 4046, 2005.

[7] Y. Boichut, P. C. Heam, O. Kouchnarenko, and F. Oehl. Improvements on the

genet and klay technique to automatically verify security protocols. volume 4,

2004.

[8] B. Briscoe. Marks: Zero side effect multicast key management using arbitrarily

revealed key sequences. In Proc. of First International COST264 Workshop on

Networked Communication, pages 301–320, 1999.

[9] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan. Internet Group

Management Protocol, Version 3. RFC 3376, 2002.

[10] Canetti, Malkin, and Nissim. Efficient communication-storage tradeoffs for mul-

ticast encryption, 1999.

[11] J. Cao, L. Liao, and G. Wang. Scalable key management for secure multicast

communication in the mobile environment. Pervasive and Mobile Computing,

2:187–203, Apr. 2006.

[12] Y. Challal, H. Bettahar, and A. Bouabdallah. Sakm: a scalable and adaptive key

management approach for multicast communications. ACM SIGCOMM Com-

puter Communication Review, 34(2):55–70, 2004.

29

[13] Y. Chevalier, L. Compagna, J. Cuellar, P. H. Drielsma, J. Mantovani, S. Moder-

sheim, and L. Vigneron. A high level protocol specification language for industrial

security-sensitive protocols. Proc. SAPS, 4:193–205.

[14] S. Deering, W. Fenner, and B. Haberman. Multicast Listener Discovery (MLD)

for IPv6. RFC 2710, 1999.

[15] D. Dolev and A. Yao. On the security of public key protocols. Information

Theory, IEEE Transactions on, 29:198–208, 1983.

[16] L. Dondeti, S. Mukherjee, and A. Samal. Scalable secure one-to-many group com-

munication using dual encryption. Computer Communications, 23:1681–1701,

2000.

[17] T. Hardjono, B. Cain, and I. Monga. Intra-domain group key management pro-

tocol (igkmp).

[18] T. Hardjono and B. Weis. The Multicast Group Security Architecture. RFC 3740,

2004.

[19] S. Mittra. Iolus: a framework for scalable secure multicast. In Proc. of ACM

SIGCOMM’97, pages 277–288. Cannes, France, 1997.

[20] A. Perrig, D. Song, and D. Tygar. Elk, a new protocol for efficient large-group

key distribution. In Security and Privacy, 2001. S&P 2001. Proceedings. 2001

IEEE Symposium on, pages 247–262, 2001.

[21] R. D. Pietro, L. Mancini, and S. Jajodia. Efficient and secure keys management

for wireless mobile communications. Proceedings of the second ACM international

workshop on Principles of mobile computing, pages 66–73, 2002.

[22] A. Pinto and M. Ricardo. Multicast deflector. Telecommunication Systems,

37:145–156, 2008.

[23] S. Rafaeli and D. Hutchison. Hydra: A decentralized group key management. In

Proc. of 11th IEEE International Workshops on Enabling Technologies: Infras-

tructure for Colaborative Enterprises (WETICE’02), Los Alamitos, California,

2002.

[24] S. Rafaeli and D. Hutchison. A survey of key management for secure group

communication. ACM Computing Surveys (CSUR), 35(3):309–329, 2003.

[25] S. Setia, S. Koussih, S. Jajodia, and E. Harder. Kronos: a scalable group re-

keying approach for secure multicast. In Proc. of 2000 IEEE Symposium on

Security and Privacy, pages 215–228, 2000.

30

[26] M. Steiner, G. Tsudik, and M. Waidner. Diffie-hellman key distribution extended

to group communication. pages 31–37, New Delhi, India, 1996. ACM.

[27] M. Steiner, G. Tsudik, and M. Waidner. Cliques: A new approach to group key

agreement. In Proc. of IEEE ICDCS’98, 1998.

[28] M. Turuani. The CL-Atse Protocol Analyser, pages 277–286. 2006.

[29] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner. The versakey

framework: versatile group key management. Selected Areas in Communications,

IEEE Journal on, 17:1614–1631, 1999.

[30] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key

graphs. IEEE/ACM Trans. Netw, 8:16–30, 2000.

31

