Communication Networks for Critical Infrastructures - topics under research at INESC Porto

Manuel Ricardo
DEEC, Faculdade de Engenharia, Universidade do Porto
mricardo@fe.up.pt
Outline

• What is it?

“Sistemas ciber-físicos para inteligência ambiente: redes de sensores em infra-estruturas críticas”

• Related research topics @ INESC Porto
Critical infrastructure

- Critical infrastructure – term used by governments to describe assets essential for functioning of society/economy

- Infrastructures commonly associated with the term
 - electricity, gas, oil
 - telecommunications
 - water
 - agriculture, food
 - public health
 - transportation
 - financial services
 - security services
Ambient Intelligence

• Embedding intelligence in everyday objects

• Object gains the ability to
 – Gather information from its environment
 possibly react by adapting its function
 – Process information
 – Exchange information with neighbour objects or Internet
The Intelligent Object

- Computers are becoming small

- Common object becoming also a computer
Ambient Intelligence in Critical Infrastructures

- *Objects* of critical infrastructures will become computers
- New objects (criticality related) will be added to infrastructure
- As a result, critical infrastructures expected to become efficient, reliable, secure
The Challenges of Interconnecting Objects

- Thousands of computing-objects to be interconnected through wireless, auto-configurable, high-bitrate, secure networks

- Research-topics@INESCPorto
 - Scalable auto-configurable networks
 - Intermittent connectivity / mobility
 - Enabling high bitrates
 - Network congestion control
 - Information aware networks
 - Moving PAN
 - Secure Networks

© 2008 INESC Porto
Telecommunications and Multimedia Unit
Scalable and Auto-Configurable Networks

- Plug & play network
 - Ethernet like network
 - Big network = big LAN
- Some network services
 - DHCP, ARP, IPv6 link local
 - Routing protocols
 - Generate broadcast traffic

Network becomes congested

- Research@INESCPorto
 - Re-design network services to avoid broadcast traffic
 Using prune + data suppression/compression techniques
 - Design large virtual Ethernet networks over existing technologies
Intermittent Connectivity and Mobility in Large Networks

- Global frequent routing update leads to excessive overhead
- Ad-hoc routing protocols are inadequate for large networks
- Research@INESCPorto
 - New routing techniques for wireless and mobile networks
 - New/lost links reported only to relevant nodes
Enabling High Bitrates - Directional Antenna

• Bitrate of a wireless link depends on
 Bandwidth, Rx power, SINR

• Directional antenna enables
 - More received power /longer links
 - Less interference
 - More links

• Research@INESCPorto
 - What criteria use to form beams?
 - How to combine
 • on demand-links and routing techniques?
 • beams with multichannel?
Enabling High Bitrates – Avoiding Hidden Nodes

- Wireless networks rely on CSMA/CA shared access mechanisms
- CSMA/CA performance depends on
 - Number of nodes
 - Number of hidden nodes

- Research@INESCPorto
 Network topology control
 - reduce number of hidden nodes for less collisions
 - dynamic selection of radio channels
Network Congestion Control

• Current congestion control mechanisms
 – inadequate for variable bitrate media
 – unfair for real-time/short traffic flows

• Research@INESCPorto
 – Use of explicit control techniques
 network nodes control the sources rate
 – Feedback signal considers
 nodes congestion and energy
 – Management of traffic priorities
Information Aware Networks

• Application and physical networks are different
e.g. P2P application over ad-hoc networks

• Research@INESCPorto
 – Define network paths based on
 • link quality, node energy
 • type of information
 – Network topology constrained by application
Moving Personal Area Networks

- Multi-technology PAN
 Intra/extra PAN connectivity

- Research@INESC Porto
 - PoA selected based on user-defined policies
 - Centralized single tree routing
 - Adaptive IP autoconfiguration
Secure Networks

- Networks need to be secure
 - Security between any pair of nodes

- Research@INESCPorto
 - Hierarchical distributed PKI
 - Ephemeral certificates
 - Used to authenticate a node
 - Short public keys → low processing power
 - No revocation lists → support of intermittent connectivity
 - Secure group communications
 - Authentication by certificates
 - Short symmetric keys
 - Key distribution using multicast techniques