Wireless Networks and Protocols

MAP-TELE

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto
WNP – Professors

- Prof. Adriano Moreira
 » Universidade do Minho

- Prof. Manuel Ricardo
 » Universidade do Porto
 » mricardo@fe.up.pt
 » http://www.fe.up.pt/~mricardo

- Prof. Rui Aguiar
 » Universidade de Aveiro
Syllabus

- **Introduction to Wireless Networks and Protocols**
 - What are Wireless networks
 - History of wireless networks
 - Standards and market issues
 - Evolution and trends on wireless networking

- **Fundamentals of wireless communications**
 - Transmission
 - Wireless data links and medium access control
 - Networking
 - Mobility concepts and management
Syllabus

- Telecommunications systems
 - GSM and GPRS
 - UMTS
 - TETRA
 - Broadcast and satellite: DVB, DMB

- IEEE wireless data networks
 - WLAN: 802.11
 - WMAN: 802.16
 - WPAN: 802.15

- Convergence and interoperability of wireless systems
 - 4G wireless networks
 - 3GPP and Mobile IPv6 approaches
 - Integration of ad-hoc networks
Syllabus

- **Quality of service**
 - Characterization and models
 - Case studies: 3GPP-QoS, IEEE-QoS, IP-QoS

- **Support for services and applications**
 - Web services components: XML and SOAP, UDDI and WSDL
 - Services and applications platforms
Bibliography

- Slides
- Recommended papers
- Chapters from multiple books
 - Mobile IP Technology and Applications, Stefan Raab and Madhavi W. Chandra, Cisco Press, 2005
 - GSM cellular radio telephony, Joachim Tisal, John Wiley & Sons, 1997
 - Wireless Communications and Networks, William Stallings, Prentice Hall, 2002
Grades

- Final Exam - 50%
- Review of papers - 20%
- Small project - 30%
WNP – Wireless Networks

- About wireless communications systems
- Addressed from a network and system perspectives

Common wireless communications systems
Wired versus Wireless networks

- **Wireless Networks** characterised by
 - wireless links
 - mobility of nodes
 - dynamic network topologies

![Diagram of Wired and Wireless Networks]

- **Terminal Mobility**

![Dynamic network topology diagram]
Wireless Link

- Low powers received \Rightarrow low SNR
 \Rightarrow large % of bits possibly received in error

- SNR varies with time and positions
 \Rightarrow variable capacity (bit/s) or variable error ratio (BER)

- Broadcast nature
 » Information easily accessible by third parties \Rightarrow security mechanisms
How to obtain low Bit Error Ratio in a Wireless Link?
Mobility

- Mobility: characteristic of portable terminals and moving objects

- Problems introduced by the mobile terminal
 - determine its new location
 - Find radio resources in new location
 - determine the new path for data delivery
The terminal is receiving packets and, after moving to a new location, the terminal is expected to continue receiving packets.

What procedure would you implement to manage the terminal mobility?
Dynamic Network Topology

- Nodes move
- Capacity of a link (bit/s) varies along the time
- Communication of a node interferes with a neighbor node
- Shortest path between two nodes varies along the time
- Capacity of the network becomes hard to characterize
History – Past and Radio

♦ Past
 » Fire signals used to communicate the fall of Troy to Athens
 » 2nd century B.C., sets of torches to transmit characters
 » 1793, 3 part semaphores on top hills and towers
 » 1837, electric telegraph

♦ Radio transmission
 » 1895, first radio transmission
 » 1906, amplitude-modulated (AM) radio
 » 1920, broadcast of radio news program
 » 1928, TV broadcast trials
 » 1933, frequency-modulated (FM) radio
 » 1946, Swedish police had the first radio phones installed in cars
 » 1950, mobile phone with direct dialling
History – Cell, 1st Generation

♦ Cellular topology
 » 1950’s, cellular network concept
 power of transmitted signal falls with square of distance
 2 users can operate on same frequency at separate locations
 » 1971, Finland, ARP, first public commercial cellular, mobile network

♦ 1st Generation ➔ Analogue, Frequency Division Multiplexing
 » 1982, NMT network covering Finland/Sweden/Norway/Denmark
 » 1983, AMPS in America
 » 1985, TACS, Total Access Communications Service, in Europe
History – Packet Radio

- 1971, ALOHANET packet radio
 » computers communicate with central HUB
- 1980's ad-hoc, self-configurable packet networks
- 1985, Wireless LANs authorized to use ISM bands
- 1997, first WLAN standard
History – 2nd and 3rd Generation

- 2nd Generation
 - digital transmission and signalling; ISDN based
 - 1982, specification GSM is started
 - Early 1990’s
 - Europe: GSM
 - USA: D-AMPS, cdmaOne
 - Japan: Personal Digital Cellular (PDC)

- 3G systems
 - aimed at multimedia communication
 - 2001, Japan, first implementation of 3G systems
Type of Networks

- **WPAN - Wireless Personal Area Networks**
 - short distances among a private group of devices

- **WLAN - Wireless Local Area Networks**
 - areas such as a home, office or group of buildings

- **WMAN - Wireless Metropolitan Area Networks**
 - from several blocks of buildings to entire cities

- **PLMN - Public Land Mobile Networks**
 - regions and countries

- **Broadcast**
 - single direction, audio and video
Technologies Comparison

• U=bit/s/Hz/km²
 – PLMN ➔ 10 to 40 U (based on UMTS)
 – WMAN ➔ 25 to 50 U
 – WLAN ➔ 100 to 500 U
Evolution of Technologies

<table>
<thead>
<tr>
<th>Rate (bit/s)</th>
<th>Mobility (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b WLAN</td>
<td>2G Cellular</td>
</tr>
<tr>
<td>802.11n</td>
<td>3G</td>
</tr>
<tr>
<td>4G</td>
<td>Wimax/3G</td>
</tr>
</tbody>
</table>

- **2G Cellular**: 802.11b WLAN, 2G
- **3G**: 802.11n, 3G
- **4G**: Wimax/3G
Standard Organizations - IEEE

- IEEE - Institute of Electrical and Electronics Engineers

 802 Standards for Local / Metropolitan Area Network, wired and wireless

 » Wireless LANs (802.11)
 » Wireless Personal Area Networks (802.15),
 » Broadband Wireless Metropolitan Area Networks (802.16)
 » Mobile Broadband Wireless Access (802.20)
 » Media Independent Handoff Working Group (802.21)

http://standards.ieee.org/getieee802/index.html

- Layers 1 and 2 of the OSI communications model
- Below the IP communications layer
Standards – 3GPP

- Scope of 3GPP
 - Specifications for the 3rd Generation mobile system
 - Maintain GSM, GPRS and EDGE
 - Specifications developed by Technical Specification Groups (TSG)

http://www.3gpp.org
Standards - IETF

- Defines standards for the Internet, including
 - TCP/IP
 - key services
 - routing protocols
 - deployment of IP over technologies
Standards - Other

- ITU - Worldwide
- ETSI - Europe
- 3GPP2 – American 3GPP
Homework

1. Review slides
2. Read from Schiller
 » Chap. 1
3. Read from Goldsmith
 » Chap. 1
- How does an EM wave propagate in a wireless channel?
- What is an antenna and an antenna gain?
- What is shadowing, reflection, refraction, scattering, and diffraction?
- What is path loss? How to model it?
- What is the simple path loss model?
- How to model shadowing?
- What is multipath? How does it affect the power received? How does it affect narrowband and wideband communications?
- What is the maximum theoretical capacity of a wireless channel?
Electromagnetic Wave

\[\lambda = \frac{c}{f} \]

\[c = 3 \times 10^8 \text{ m/s}, \text{ speed of light} \]

\[f_c = 3 \text{ GHz} \Rightarrow \lambda = 10 \text{ cm} \]
\[f_c = 1 \text{ GHz} \Rightarrow \lambda = 30 \text{ cm} \]
\[f_c = 300 \text{ MHz} \Rightarrow \lambda = 1 \text{ m} \]
Frequencies for Radio Transmission

Frequency bands as defined by the ITU-R **Radio Regulations**

\[\text{band}_i \in [0.3 \times 10^3 \text{ Hz}, 3 \times 10^3 \text{ Hz}]. \]

<table>
<thead>
<tr>
<th>Band Number</th>
<th>Symbol</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>VLF</td>
<td>3-30 kHz</td>
</tr>
<tr>
<td>5</td>
<td>LF</td>
<td>30-300 kHz</td>
</tr>
<tr>
<td>6</td>
<td>MF</td>
<td>3000-3000 kHz</td>
</tr>
<tr>
<td>7</td>
<td>HF</td>
<td>3-30 MHz</td>
</tr>
<tr>
<td>8</td>
<td>VHF</td>
<td>30-300 MHz</td>
</tr>
<tr>
<td>9</td>
<td>UHF</td>
<td>300-3000 MHz</td>
</tr>
<tr>
<td>10</td>
<td>SHF</td>
<td>3-30 GHz</td>
</tr>
<tr>
<td>11</td>
<td>EHF</td>
<td>30-300 GHz</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>300-3000 GHz</td>
</tr>
</tbody>
</table>

\[f_c = 3 \text{ GHz} \quad \Rightarrow \lambda = 10 \text{ cm} \]
\[f_c = 1 \text{ GHz} \quad \Rightarrow \lambda = 30 \text{ cm} \]
\[f_c = 300 \text{ MHz} \quad \Rightarrow \lambda = 1 \text{ m} \]
Wireless Systems in Europe

- In Portugal
 ANACOM attributes the frequencies
 http://www.anacom.pt

- FWA
 Fixed Wireless Access

- ISM
 Industrial, Scientific and Medical

<table>
<thead>
<tr>
<th>Wireless Systems in Europe</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast TV</td>
<td>47-68 MHz</td>
</tr>
<tr>
<td></td>
<td>174-216 MHz</td>
</tr>
<tr>
<td></td>
<td>470-582 MHz</td>
</tr>
<tr>
<td></td>
<td>582-862 MHz</td>
</tr>
<tr>
<td>2G PLMN (GSM)</td>
<td>890-914 MHz</td>
</tr>
<tr>
<td></td>
<td>935-959 MHz</td>
</tr>
<tr>
<td></td>
<td>1710-1785 MHz</td>
</tr>
<tr>
<td></td>
<td>1805-1880 MHz</td>
</tr>
<tr>
<td>3G PLMN (UMTS)</td>
<td>1900-1980 MHz</td>
</tr>
<tr>
<td></td>
<td>2010-2025 MHz</td>
</tr>
<tr>
<td></td>
<td>2110-2170 MHz</td>
</tr>
<tr>
<td>FWA</td>
<td>3400-3600 MHz</td>
</tr>
<tr>
<td></td>
<td>3600-4200 MHz</td>
</tr>
<tr>
<td></td>
<td>24.5-26.5 GHz</td>
</tr>
<tr>
<td></td>
<td>27.5-29.5 GHz</td>
</tr>
<tr>
<td>ISM</td>
<td>13553-13567 kHz</td>
</tr>
<tr>
<td></td>
<td>26957-27283 kHz</td>
</tr>
<tr>
<td></td>
<td>40.66-40.70 MHz</td>
</tr>
<tr>
<td></td>
<td>2400-2500 MHz</td>
</tr>
<tr>
<td></td>
<td>5725-5875 MHz</td>
</tr>
<tr>
<td></td>
<td>24-24.25 GHz</td>
</tr>
</tbody>
</table>
How does the power of a received signal depend on the distance and wavelength (λ)?
Antenna – The Isotropic Radiator

- **Antenna**
 couples wires to space, for electromagnetic (EM) wave transmission or reception

- **Radiation pattern**
 pattern of EM radiation around an antenna

- **Isotropic radiator**
 » equal radiation in 3 directions (x, y, z)
 » theoretical reference antenna
Antennas - Simple Dipoles

- Real antennas are not isotropic radiators
- Simple antenna dipoles
 - Length $\lambda/2$ ➔ Hertzian dipole
 - Length $\lambda/4$ on car roofs
- Shape of antenna proportional to λ
- Radiation pattern of a simple Hertzian dipole
Antenna Gain, EIRP

- **Antenna Gain**
 - maximum power in direction of the main lobe ($P_{\text{main_lobe}}$), compared to power of an isotropic radiator (P_t) transmitting the same average power
 - **balloon**

\[
G = \frac{P_{\text{main_lobe}}}{P_t} = \frac{4\pi A_e}{\lambda^2}
\]

A_e – Antenna aperture
depends on physical antenna characteristics

- **Effective Isotropic Radiate Power (EIRP)**
 - $EIRP = P_t G_t$
 - Maximum radiated power in the direction of maximum antenna gain
Received Power at Distance d - $P_r(d)$

- Power flow density $P_d \text{ (W/m}^2\text{)}$

$$P_d = \frac{EIRP}{4\pi d^2} = \frac{P_t G_t}{4\pi d^2} \text{ (W/m}^2\text{)}$$

- Received Power at distance d, $P_r(d)$

$$P_r(d) = P_d A_e = \frac{P_t G_t}{4\pi d^2} \frac{G_r \lambda^2}{4\pi} = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2} \text{ Watt}$$
Transmit and Receive Signal Models

- Transmitted signal modeled as
 \[s(t) = \Re \left\{ u(t)e^{j2\pi f_c t} \right\} \]
 \[= \Re \left\{ u(t) \right\} \cos(2\pi f_c t) - \Im \left\{ u(t) \right\} \sin(2\pi f_c t) \]
 \[= s_I(t) \cos(2\pi f_c t) - s_Q(t) \sin(2\pi f_c t) \]

- The received signal
 \[r(t) = \Re \left\{ v(t)e^{j2\pi f_c t} \right\}, \]

- if \(s(t) \) is transmitted through a time-invariant channel \(c \) then
 \[v(t) = u(t) * c(t), \quad V(f) = H_l(f)U(f). \]

where
- \(c(t)=h_l(t) \) is the equivalent lowpass impulse response of the channel
- \(H_l(f) \) is the equivalent lowpass frequency response of the channel
Doppler Shift

- The received signal may have a Doppler shift of

\[\Delta d = v \Delta t \cos \theta \]

\[\Delta \phi = 2\pi \frac{\Delta d}{\lambda} = 2\pi \frac{v \Delta t \cos \theta}{\lambda} \]

- Doppler frequency, \(f_D \)

\[f_D = \frac{1}{2\pi} \frac{\Delta \phi}{\Delta t} = \frac{v \cos \theta}{\lambda} \]
Suppose you are moving towards the transmitter.

Will the perceived frequency of the carrier increase or decrease?
$W, \text{ dBW, dBm, dB, Gain}$

$P_{r_{W}}, \left(\text{Power} = \frac{\text{Energy}}{\text{Time}} \right), \quad 1W = \frac{1J}{1s}$

$P_{r_{dBW}} = 10. \log \left(\frac{P_{r_{W}}}{1W} \right) = 10. \log P_{r_{W}}$

$P_{r_{dBm}} = 10. \log \left(\frac{P_{r_{W}}}{1mW} \right)$

$Gain_{dB} = 10. \log \left(\frac{P_{r_{W}}}{P_{s_{W}}} \right) = 10. \log P_{r_{W}} - 10. \log P_{s_{W}} = P_{r_{dBW}} - P_{s_{dBW}} = P_{r_{dBm}} - P_{s_{dBm}}$

$\text{Loss}_{dB} = \text{Atenuation}_{dB} = P_{s_{dBW}} - P_{r_{dBW}} = P_{s_{dBm}} - P_{r_{dBm}}$
Signal Propagation – Key Concepts

- Propagation often modeled as rays (light)
- Line-of-Sight (LOS) – direct ray receiver gets from transmitter
- Relevant concepts
 - Shadowing, Reflection ➔ caused by objects much larger than the wavelength
 - Refraction ➔ caused by different media densities
 - Scattering ➔ caused by surfaces in the order of wavelengths
 - Diffraction ➔ similar to scattering; deflection at the edges
Real World Examples
Signal Propagation and Wireless Channels

Received Power can be modelled by 3 factors

- **Path loss**
 - Dissipation of radiated power; depends on the sender-receiver distance

- **Shadowing**
 - caused by the obstacles between the transmitter and the receiver
 - attenuates the signal

- **Multipath**
 - constructive and destructive addition of multiple signal components

\[\frac{P_r}{P_t} = \frac{d}{vt} \]
Path Loss Models

- Free space path loss model
 Too simple

- Ray tracing models
 Demand site-specific information

- Empirical models
 Do not generalize to other environments

- Simplified model
 Good for high-level analysis
Path Loss - Free Space (LOS) Model

- Path loss (PL) for unobstructed LOS path
 - Power falls off
 - Proportional to $1/d^2$
 - Proportional to λ^2 (inversely proportional to f^2)

$$P_{r}/P_s = \left(\frac{\lambda \sqrt{G_l}}{4\pi d}\right)^2$$

$$G_l = \sqrt{G_s G_r}$$

$$PG_{dB} = 10 \log(P_r/P_s)$$

$$PG_{dB} = 20 \log\left(\frac{\lambda \sqrt{G_l}}{4\pi}\right) - 20 \log(d)$$

$d=vt$
Path Loss – Two-Ray Model

- One LOS ray + one ray reflected by ground
- Ground ray cancels LOS path above critical distance $d_c = 4h_t h_r / \lambda$
- Power falls off
 - Proportional to d^2 ($h_t < d < d_c$)
 - Proportional to d^4 ($d > d_c$)

\[P_r \text{ dBm} = P_t \text{ dBm} + 10 \log_{10}(G_t) + 20 \log_{10}(h_t h_r) - 40 \log_{10}(d) \]
Path – Loss Empirical Models

- Okumura model
 - Empirically based (site/freq specific); 150-1500 MHz, Tokyo
 - Empirical plots

- Hata model
 - Analytical approximation to Okumura model

- Cost 231 Model
 - Extension Hata model to higher frequency (1.5 GHz < f_c < 2 GHz)

- Walfish/Bertoni
 - Extends Cost 231 to include diffraction from rooftops
Path Loss – Indoor Factors

- Walls, floors, layout of rooms, location and type of objects
 - Impact on the path loss
 - The losses introduced **must be added** to the free space losses

<table>
<thead>
<tr>
<th>Partition</th>
<th>Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hollow brick</td>
<td>8</td>
</tr>
<tr>
<td>concrete wall</td>
<td>13</td>
</tr>
<tr>
<td>aluminum siding</td>
<td>20</td>
</tr>
<tr>
<td>window</td>
<td>6</td>
</tr>
<tr>
<td>floor</td>
<td>10</td>
</tr>
</tbody>
</table>
Path Loss - Simplified Model

- Used when path loss is dominated by reflections
 \[P_r = P_s K \left(\frac{d_0}{d} \right)^\gamma, \quad 2 \leq \gamma \leq 8 \]
 \[P_{r_{dBm}} = P_{s_{dBm}} + K_{dB} - 10 \gamma \log \left[\frac{d}{d_0} \right] \]
 \[d_0 \approx 10\lambda \]

- K
 » determined by measurement at \(d = d_0 \Rightarrow K_{dB} = P_{r_{dBm}} - P_{s_{dBm}} \)
 » or, \(K_{dB} = 10 \log \left[\frac{\lambda}{4\pi d_0} \right]^2 \)

- Path loss exponent \(\gamma \) is determined empirically

<table>
<thead>
<tr>
<th>Environment</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban macrocells</td>
<td>3.7 - 6.5</td>
</tr>
<tr>
<td>Urban microcells</td>
<td>2.7 - 3.5</td>
</tr>
<tr>
<td>Office building</td>
<td>1.6 - 3.5</td>
</tr>
<tr>
<td>Store</td>
<td>1.8 - 2.2</td>
</tr>
<tr>
<td>Factory</td>
<td>1.6 - 3.3</td>
</tr>
<tr>
<td>Home</td>
<td>3</td>
</tr>
</tbody>
</table>
Shadowing

- Models attenuation introduced by obstructions
- Random due to random number and type of obstructions \(\psi \)

\[
\left(\frac{P_r}{P_s} \right)_{dB} = 10 \log K - 10\gamma \log \frac{d}{d_0} - \psi_{dB}
\]

where \(\psi_{dB} \) is a Gaussian distributed random variable characterized by \(\mu_{\psi_{dB}} = 0 \) and \(\sigma_{\psi_{dB}} \)
Combined Path Loss and Shadowing

\[
\frac{P_r}{P_s} (dB) = 10 \log_{10} K - 10 \gamma \log_{10} \left(\frac{d}{d_0} \right) - \psi_{dB},
\]

\[\psi_{dB} \sim N(0, \sigma_{\psi}^2)\]
Outage Probability and Cell Coverage Area

- Path loss model \rightarrow circular cells

- Path loss + shadowing \rightarrow amoeba cells
 tradeoff between coverage and interference

- Outage probability
 Probability received power below given minimum

- Cell coverage area \rightarrow % of cell locations at desired power
 » Increases as shadowing variance (σ_ψ) decreases
 » Large % indicates interference to other cells
Statistical Multipath Model

- Multipath \rightarrow multiple rays
 - multiple delays from transmitter to receiver $\rightarrow \tau_i$
 - time delay spread $T_m = \max_n |\tau_n - \tau_0|$

- Multipath channel has a time-varying gain
 - caused by the transmitter / receiver movements
 - location of reflectors which originate the multipaths
Multipath – Narrowband Channel

- In a narrowband channel

 low \(B \) \rightarrow low symbol rate (symbol/s) \rightarrow large time/symbol (1/B)

 \Rightarrow multipath components arrive in the time period of their symbol

 \[
 T_m = \max_n |\tau_n - \tau_0| \quad T_m << B^{-1}
 \]

- Assume also \(u(t - \tau_i) \approx u(t) \)

- No spreading in time (no distortion)
Multipath – Narrowband Channel

- Under Uniform Angle of arrival in $[0, 2\pi]$:
 » Autocorrelation is zero for $d=0.4\lambda$
Multipath - Narrowband Channel – Rayleigh Fading

- If there is no Line-of-Sight (LOS) component
 - Power received may be modeled by
 - an exponential probability density function

\[p_{Z^2}(x) = \frac{1}{P_r} e^{-x/P_r} \]

- P_r – average received power (path loss + shadowing)

- If there is LOS ➔ Power received given by a Ricean distribution
Suppose you are the receiver. What information does this exponential distribution provide to you?

\[p_{Z^2}(x) = \frac{1}{P_r} e^{-x/P_r} \]
Multipath – Wideband Channel

- Multipath components
 » may arrive at the receiver within the time period of the next symbol
 » causing Inter-Symbol Interference (ISI).

- Techniques used to mitigate ISI
 » multicarrier modulation
 » spread spectrum

\[T_m = \max_n |\tau_n - \tau_0|, \quad T_m \gg B^{-1} \]
Multipath + Shadowing + Path Loss
Capacity of an Wireless Channel

- Assuming Additive White Gaussian Noise (AWGN)
 - Given by Shannon’s law
 \[C = B \log_2(1 + \gamma) \text{ (bit/s)} \]
 \[\gamma = \frac{P_r}{N_0B} \]
 \(N_0\) – Noise power spectral density

- Capacity in a fading channel (shadowing + multipath)
 - usually smaller than the capacity of an AWGN channel
Homework

1. Review slides
 » use them to guide you through the recommended books

2. Read from Goldsmith
 » Chap. 2, Chap. 3 (sections 3.1, 3.2, 3.3), Chap. 4 (section 4.1)

3. Read from Schiller
 » Chap. 2 (sections 2.1, 2.2, 2.3, 2.4)

4. Rappaport also provides an excellent description of these topics
 » See Chap. 3 and Chap. 4
- How to transmit bits in a carrier? What are the modulations commonly used in wireless networks?
- How does the BER depend on the modulation and SNR?
- What is a code? What are its benefits for wireless communications? Why is interleaving combined with codes?
- What is multicarrier modulation? What is OFDM? Why is it so important? How to implement it with DFTs?
- What is spread spectrum? How does the RAKE receive work?
- What is Software Defined Radio?
- What are the main purposes of Cognitive Radio?
Digital Modulation/Demodulation

- **Modulation**: maps information bits into an analogue signal (carrier)
- **Demodulation**: determines the bit sequence based on received signal

Two categories of digital modulation

- **Amplitude modulation -** $\alpha(t)$, **Phase modulation -** $\theta(t)$
- Frequency modulation - $f(t)$

- Modulated signal $s(t)$
 \[s(t) = \Re\{u(t)e^{j(2\pi f_c t)}\} \]

- Amplitude modulation:
 \[
 s(t) = \alpha(t) \cos[2\pi(f_c + f(t))t + \theta(t) + \phi_0] = \alpha(t) \cos(2\pi f_c t + \phi(t) + \phi_0)
 \]

- Phase modulation:
 \[
 s(t) = \alpha(t) \cos \phi(t) \cos(2\pi f_c t) - \alpha(t) \sin \phi(t) \sin(2\pi f_c t)
 \]

- Signal transmitted over time symbol $i \rightarrow s_i(t)$
Amplitude and Phase Modulation

- $K = \log_2 M$ bits sent over a time symbol interval
- Amplitude/phase modulation can be:
 - Pulse Amplitude Modulation (MPAM)
 - information coded in amplitude
 $$MPAM - s_i(t) = Re\left\{ A_i \ g(t)e^{j2\pi f_ct}\right\}$$
 - Phase Shift Keying (MPSK)
 - information coded in phase
 $$MPSK - s_i(t) = Re\left\{ A \ g(t)e^{j\theta_i}e^{j2\pi f_ct}\right\}$$
 - Quadrature Amplitude Modulation (MQAM)
 - information coded both in amplitude and phase
 $$MQAM - s_i(t) = Re\left\{ A_i \ e^{j\theta_i}g(t)e^{j2\pi f_ct}\right\}$$
Amplitude/Phase Modulator/Demodulator

Communication System Model (no path loss)
Differential Modulation

- Bits associated to a symbol depend on the bits transmitted over a previous symbol

- **Differential BPSK (DPSK)**
 - 0 → no change phase
 - 1 → change phase by π

- **Differential 4PSK (DQPSK)**
 - 00 → change phase by 0
 - 01 → change phase by $\pi/2$
 - 10 → change phase by $-\pi/2$
 - 11 → change phase by π
Estimating BER – Nearest Neighbor Approximation

P_s – probability of a symbol being received in error

$$P_s = \sum_{i=1}^{M} p(r \notin Z_i|m_i \text{ sent}) p(m_i \text{ sent})$$

$P_s \approx M_{d_{\text{min}}} Q\left(\frac{d_{\text{min}}}{\sqrt{2N_0}}\right)$

d_{min} – minimum distance between constellation points

$M_{d_{\text{min}}}$ – number of constellation points at distance d_{min}

$$Q(z) = \frac{1}{2} \text{erfc}\left(\frac{z}{\sqrt{2}}\right) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2},$$

Example

$s_1 = (A, 0), s_2 = (0, A), s_3 = (-A, 0)$ and $s_4 = (0, -A)$

Assume $A/\sqrt{N_0} = 4$.

$d_{\text{min}} = d_{12} = d_{23} = d_{34} = d_{14} = \sqrt{A^2 + A^2} = \sqrt{2}A^2$.

$M_{d_{\text{min}}} = 2$

$P_s \approx 2Q(4) = 3.1671 \times 10^{-5}$.

$P_b = BER \approx \frac{P_s}{\log_2 M}$

A symbol error associated with an adjacent decision region corresponds to only one bit error.
How does P_s depend on the SNR?

\[P_s \approx M_{d_{\text{min}}} Q \left(\frac{d_{\text{min}}}{\sqrt{2N_0}} \right) \]
Digital Modulation – BER and SNR

$$SNR = \frac{P_r}{N_0 B} = \frac{E_s}{N_0 B T_s} = \frac{E_b}{N_0 B T_b}, \quad T_s \approx \frac{1}{B},$$

$$\gamma_s = \frac{E_s}{N_0}, \quad \gamma_b = \frac{E_b}{N_0}$$

<table>
<thead>
<tr>
<th>Modulation</th>
<th>$P_b(\gamma_b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFSK</td>
<td>$P_b = Q(\sqrt{\gamma_b})$</td>
</tr>
<tr>
<td>BPSK</td>
<td>$P_b = Q(\sqrt{2\gamma_b})$</td>
</tr>
<tr>
<td>QPSK, 4QAM</td>
<td>$P_b \approx 2 \frac{Q(\sqrt{\gamma_b})}{\sqrt{M}}$</td>
</tr>
<tr>
<td></td>
<td>$P_b \approx \frac{2}{\log_2 M} \frac{Q(\sqrt{2\gamma_b})}{\log_2 M}$</td>
</tr>
<tr>
<td></td>
<td>$P_b \approx \frac{4}{\log_2 M} \frac{Q(\sqrt{3\gamma_b})}{\log_2 M}$</td>
</tr>
<tr>
<td></td>
<td>$P_b \approx \frac{4}{\log_2 M} \frac{Q(\sqrt{3\gamma_b})}{\log_2 M}$</td>
</tr>
<tr>
<td></td>
<td>$P_b \approx \frac{4}{\log_2 M} \frac{Q(\sqrt{3\gamma_b})}{\log_2 M}$</td>
</tr>
</tbody>
</table>

Average P_b for BPSK in Rayleigh Fading and AWGN

Average P_b for MQAM in Rayleigh Fading and AWGN
Coding

- Coding enables bit errors to be either detected or corrected by receiver

- Coding gain, C_g
 the amount of SNR that can be reduced for a given P_b

- Coding rate, k/n
 » Code generates n coded bits for every k uncoded bits
 » If channel+modulation enable the transmission of R bit/s
 » Information rate = $R * k/n$ bit/s
C**oding in Wireless Channels**

- Codes designed for AWGN channels
 - do not work well on fading channels
 - cannot correct the long error bursts that may occur in fading

- Codes for fading channels are usually
 - based on an AWGN channel code
 - combined with interleaving
 - objective → spread error bursts over multiple codewords
Multicarrier Modulation

- Divides a bitstream into N low rate substreams
- Sends substreams simultaneously over narrowband subchannels
- **Subchannel**
 - has bandwidth $B_N = B/N$
 - provides a data rate $R_N \approx R/N$
 - For N large, $B_N = B/N \ll 1/T_m$
 - flat fading (narrowband like effects) on each sub-channel, no ISI

![Diagram of Multicarrier Modulation](image)

R bit/s

Serial To Parallel Converter

R/N bit/s

QAM Modulator

$X \cos(2\pi f_0 t)$

QAM Modulator

$X \cos(2\pi f_N t)$

\sum

$T_m = \max_n |\tau_n - \tau_0|$
Overlapping Substreams

- Separate subchannels could be used, but
 - required passband bandwidth is $N \times B_N = B$

- OFDM uses overlaps substreams
 - Substream separation is B/N
 - Total required bandwidth is $B/2$, for $T_N = 1/B_N$
Most of the recent wireless communications technologies are adopting OFDM (e.g. WLAN, WIMAX, LTE).

Why?
OFDM uses Discrete Fourier Transforms

- Discrete Fourier transforms given by

\[DFT\{x[n]\} = X[i] \triangleq \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n]e^{-j \frac{2\pi n i}{N}}, \quad 0 \leq i \leq N - 1 \]

\[IDFT\{X[i]\} = x[n] \triangleq \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} X[i]e^{j \frac{2\pi n i}{N}}, \quad 0 \leq n \leq N - 1 \]

- Circular convolution

\[DFT\{y[n]\} = x[n] \otimes h[n] = X[i]H[i], \quad 0 \leq i \leq N - 1. \]

\[x[n] \otimes h[n] = \hat{x}[n] * h[n] = y[n] \]
FFT Implementation of OFDM - TX

- Use IFFT at TX to modulate symbols on each subcarrier
- Cyclic prefix makes circular channel convolution → no interference between FFT blocks in RX processing

\[x[n] = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} X[i] e^{j2\pi ni/N}, \quad 0 \leq n \leq N - 1. \]
 FFT Implementation of OFDM - RX

Reverse structure at RX

\[x(t) = \cos(2\pi f_c t) \]

Diagram:
- Input \(x(t) \) to LPF
- LPF to A/D converter
- Remove cyclic prefix and Serial to Parallel Convert
- Input to FFT
- FFT output \(Y[0] \) and \(Y[N-1] \)
- Parallel To Serial Convert
- Output to QAM demodulator
- QAM demodulator to D/A converter
- D/A to TX

\(R \) bit/s for TX and RX

\[x(t) = \cos(2\pi f_c t) \]
Spread Spectrum

- Spread spectrum techniques
 - hide the information signal below the noise floor
 - mitigate inter-symbol interferences
 - combine multipath components

- The spread spectrum techniques
 - multiply the information signal by a spreading code
Spread Spectrum – Direct Sequence

Information signal \((R_b \text{ bit/s})\)

Spread signal \((R_c = N R_b \text{ chip/s})\)

Pseudo-random sequence \((R_c = N R_b \text{ chip/s})\)

De-modulator

Information signal
Direct Sequence Spread Spectrum – Immunity to Interferences

- Original signal: P_f
- Spread signal: P_f
- Interferences: P_f
- Received signal: P_{received}
- Signal after de-spreading: P_{received}

- Signal
- Wideband interference
- Narrowband interference
Software Defined Radio

- Software Defined Radio aims at implementing the radio functions in software.
- Digital Signal Processors being integrated with microcontroller for better integration of radio and communications functions.
Cognitive Radio

- Cognitive radio
 - fills unused bands
 - avoids interferences
 - increases spectral efficiency

- Paves the way to
 - dynamic spectrum licensing
 - secondary markets in spectrum usage
Homework

1. Review slides

1. Detailed information about these topics can found at the Goldsmith’s book
 » Chap. 5 (sections 5.1, 5.2, 5.3, 5.5)
 » Chap. 6 (sections 6.1, 6.3)
 » Chap. 7 (sections 7.1, 7.2)
 » Chap. 8 (section 8.1)
 » Chap. 9 (section 9.1)
 » Chap. 12 (sections 12.1, 12.2, 12.4)
 » Chap. 13 (sections 13.1, 13.2, 13.3)