International Journal of Control

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcon20

Reconstructibility of time-invariant and periodic behavioural systems

J.C. Aleixo a & P. Rocha b

a Department of Mathematics, University of Beira Interior, Covilhã, Portugal
b Department of Electrical and Computer Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal

Version of record first published: 04 Sep 2012

To cite this article: J.C. Aleixo & P. Rocha (2012): Reconstructibility of time-invariant and periodic behavioural systems, International Journal of Control, DOI:10.1080/00207179.2012.719636

To link to this article: http://dx.doi.org/10.1080/00207179.2012.719636

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Reconstructibility of time-invariant and periodic behavioural systems

J.C. Aleixo* and P. Rocha

*Department of Mathematics, University of Beira Interior, Covilhã, Portugal; bDepartment of Electrical and Computer Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal

(Received 13 April 2012; final version received 5 August 2012)

In this article, the properties of behavioural reconstructibility and forward-observability for systems over the whole time axis \(\mathbb{Z} \) are introduced. These properties are characterised in terms of appropriate rank conditions, for the time-invariant case. A comparison is made with the existing results in the behavioural setting as well as in the classical state space framework. In the particular case of a periodic system, it is shown that there exists an equivalence between the reconstructibility of the periodic system and its associated lifted system, which is time-invariant. Furthermore, we prove that, for a classical state space system, state reconstructibility is equivalent to behavioural reconstructibility, regardless of the time varying or time-invariant nature of the system. This allows deriving rank tests for the cases of time-invariant and of periodic systems, rediscovering the already known results for state reconstructibility from an alternative perspective. The obtained results contribute to establishing links between two different settings, thus providing a better insight into the considered systems properties.

Keywords: behaviours; state space systems; reconstructibility; lifted system

1. Introduction

In the context of the behavioural approach, a dynamical system is characterised by the set of its admissible signals, called the system behaviour. These signals correspond to the time evolution of the system variables, which have an 'external' nature (in spite of not being divided into inputs and outputs). State variables are viewed as auxiliary variables that may, or not, be present in the system description. In this context, one can still define several structural properties that were classically only considered for state space models.

In this article, we focus on the property of reconstructibility for linear discrete-time behavioural systems, considering both the time-invariant and the periodic cases. Preliminary results on these issues have been obtained in (Aleixo and Rocha 2007) and (Aleixo et al. 2008). Behavioural observability has been defined in Willems (1989, 1991) and Polderman and Willems (1998), whereas behavioural reconstructibility has been introduced in Valcher and Willems (1999a, b) for systems over \(\mathbb{Z}_+ \) for systems over \(\mathbb{Z} \) that only considers half-line information. Generally speaking, in a linear behavioural system whose variable \(w \) is partitioned into two sub-variables \(w_1 \) and \(w_2 \), \(w_2 \) is said to be reconstructible from \(w_1 \) if whenever the trajectory \(w_1 \) is null overall in time, the same happens for the trajectory \(w_2 \). For systems defined on the half-line \(\mathbb{Z}_+ \), this can be viewed as the behavioural equivalent of the classical definition of state observability, according to which the knowledge of the (future) evolution of the inputs and outputs gives information about the initial state, and hence also gives information about the whole state trajectory from the initial instant on. However, this does not happen for systems defined over \(\mathbb{Z} \), since the definition of behavioural observability has a global character, as it involves the values of the trajectories over the whole time axis, rather than over a half-line. Here, we propose a generalisation of the notion of reconstructibility introduced in Valcher and Willems (1999a, b) for systems over \(\mathbb{Z}_+ \) to systems over \(\mathbb{Z} \) that only considers half-line information.

Our purpose is to investigate the relationships among the different aforementioned notions. In order to give a better insight, we also relate the state space framework to the behavioural one. This is done not only for time-invariant, but also for periodic behavioural systems.

In Section 2, we introduce some preliminary notions and facts about behaviours. Section 3 is
devoted to the definition of reconstructibility and forward-observability for systems over \(\mathbb{Z} \). For time-invariant systems, these properties are compared with other existing behavioural notions and are characterised in terms of the matrices that are used in the corresponding behaviour description. Using the lifting formulation, a proof is presented that relates the reconstructibility of a periodic system and of its lifted associated system. Moreover, a rank characterisation is derived. In Section 4, the classical notions of state reconstructibility and state observability are recalled and related to our behavioural definition of reconstructibility. Finally reconstructibility tests for time-invariant and periodic state space systems are derived using our behavioural results. Conclusions are presented in Section 5.

2. Background

In the behavioural framework (Willems 1989, 1991), a dynamical system \(\Sigma = (\mathcal{T}, \mathbb{W}, \mathcal{B}) \), where \(\mathcal{T} \subseteq \mathbb{R} \) is the time set, \(\mathbb{W} \) is the signal space and \(\mathcal{B} \subseteq \mathbb{W}^T := \{ w : \mathcal{T} \rightarrow \mathbb{W} \} \) is the behaviour. The behaviour \(\mathcal{B} \) is what characterises the phenomenon described by the system \(\Sigma \), since it consists of all the signal evolutions (system trajectories) that are equivalent with the laws of that phenomenon. Here, we shall be concerned with the discrete-time case, more concretely, \(\mathcal{T} = \mathbb{Z} \), assuming furthermore that the signal space is \(\mathbb{W} = \mathbb{R}^q \), with \(q \in \mathbb{N} \). Thus, \(\mathbb{W}^T = (\mathbb{R}^q)\mathbb{Z} \), i.e. the system trajectories are \(\mathbb{R}^q \)-valued sequences over \(\mathbb{Z} \).

In this section, we recall some fundamentals of the behavioural approach.

Definition 2.1 (Willems 1989, 1991): A dynamical system \(\Sigma = (\mathcal{T}, \mathbb{W}, \mathcal{B}) \) is said to be linear if \(\mathbb{W} \) is a vector space (over a field \(\mathcal{F} \)) and \(\mathcal{B} \) is a linear subspace of \(\mathbb{W}^T \) (which is obviously a vector space when equipped with the usual operations of point-wise addition and multiplication by a scalar).

In order to introduce the notion of time-invariance, it is essential to define first the time shift for signals \(w \), defined over \(\mathbb{Z} \).

We define the backward time shift as \(\sigma : (\mathbb{R}^q)\mathbb{Z} \rightarrow (\mathbb{R}^q)\mathbb{Z} \), such that:

\[
(\sigma w)(k) := w(k + 1);
\]

while the forward time shift \(\sigma^{-1} : (\mathbb{R}^q)\mathbb{Z} \rightarrow (\mathbb{R}^q)\mathbb{Z} \) is such that:

\[
(\sigma^{-1} w)(k) := w(k - 1).
\]

Given a positive integer \(L \), the composition of \(L \) backward/forward shifts is denoted as \(\sigma^L/\sigma^{-L} \).

Definition 2.2 (Willems 1989, 1991): A dynamical system \(\Sigma = (\mathbb{Z}, \mathbb{W}, \mathcal{B}) \) is said to be time-invariant if \(\sigma(\mathcal{B}) = \mathcal{B} \).

Thus, time-invariance is nothing else than the invariance of the set \(\mathcal{B} \) with respect to the time shift \(\sigma \) and its inverse \(\sigma^{-1} \).

Another important notion is the completeness of a behaviour \(\mathcal{B} \), meaning, roughly speaking, that it is possible to check whether a trajectory \(w \in (\mathbb{R}^q)^\mathbb{Z} \) belongs to \(\mathcal{B} \), by checking what happens in the set \(\mathcal{I} \) of finite intervals of \(\mathbb{Z} \). Given \(I \in \mathcal{I} \), denote by \(\mathcal{B}|_I \) the set of all the restrictions of the system trajectories to the time interval \(I \), that is,

\[
\mathcal{B}|_I = \{ w|_I : w \in \mathcal{B} \}.
\]

Definition 2.3 (Willems 1989, 1991): A dynamical system \(\Sigma = (\mathbb{Z}, \mathbb{W}, \mathcal{B}) \) is said to be complete if

\[
(\forall I \in \mathcal{I}, w \in \mathcal{B}|_I) \leftrightarrow w \in \mathcal{B}.
\]

Interesting insights into this property and the connection between systems over \(\mathbb{Z} \) and systems over \(\mathbb{Z}_+ \) are given in Lomadze, Ravi, Rosenthal, and Schumacher (1998).

A crucial issue is the representation of the behaviour of a system by means of mathematical equations. It turns out that all the discrete-time dynamical systems that are linear, time-invariant and complete, allow a special type of mathematical description known as kernel representation, (Willems 1989, 1991).

Theorem 2.4 (Willems 1989, 1991): Let \(\Sigma = (\mathbb{Z}, \mathbb{W}, \mathcal{B}) \) be a dynamical system. The following are equivalent:

(i) \(\Sigma \) is linear, time-invariant and complete;
(ii) \(\exists \mathcal{R}(\xi, \xi^{-1}) \in \mathbb{R}^{q \times q}[\xi, \xi^{-1}] \) such that

\[
\mathcal{B} = \ker \mathcal{R}(\sigma, \sigma^{-1}) := \{ w \in (\mathbb{R}^q)^\mathbb{Z} : \mathcal{R}(\sigma, \sigma^{-1})w = 0 \},
\]

where \(\mathbb{R}^{q \times q}[\xi, \xi^{-1}] \) denotes the set of \(\otimes \times q \) matrices with entries in \(\mathbb{R}[\xi, \xi^{-1}] \), the ring of Laurent-polynomials in the indeterminate \(\xi \).

Condition (ii), in Theorem 2.4, means that there exists a certain Laurent-polynomial matrix

\[
\mathcal{R}(\xi, \xi^{-1}) = R^{-M} \xi^{-M} + \cdots + R^M + \cdots + R^N \xi^N;
\]

with \(N, M \in \mathbb{Z}_+ \), such that the trajectories \(w \in \mathcal{B} \) are the elements of \((\mathbb{R}^q)^\mathbb{Z} \) which constitute a solution of the linear constant coefficient matrix difference equation

\[
R^{-M}w(k - M) + \cdots + R^{-1}w(k - 1) + R^0w(k) + R^1w(k + 1) + \cdots + R^Nw(k + N) = 0, \quad \forall k \in \mathbb{Z}.
\]
This matrix $R(\xi, \xi^{-1})$ is called a kernel representation (KR) matrix of \mathfrak{B}. A behaviour that allows a KR is called kernel behaviour.

While the behaviour \mathfrak{B} of a time-invariant system over \mathbb{Z} is characterised by its invariance under the time shift (and its inverse), P-periodic behaviours are required to be invariant only with respect to the Pth power of the shift, and of its inverse.

Definition 2.5 (Kuijper and Willems 1997): A system Σ is said to be P-periodic, with $P \in \mathbb{N}$, if its behaviour \mathfrak{B} satisfies
\[
\sigma^P \mathfrak{B} = \mathfrak{B},
\]
but not $\sigma^Q \mathfrak{B} = \mathfrak{B}$, for any $Q \in \mathbb{N}$ smaller than P.

Remark 1: Note that, regarding time-invariance as 1-periodicity, Definition 2.5 yields the usual definition of time-invariant systems.

According to Kuijper and Willems (1997), a behaviour \mathfrak{B} is a σ^P-invariant linear closed subspace of $(\mathbb{R}^n)^{\mathbb{Z}}$ (in the topology of point-wise convergence) if and only if it has a representation of the type
\[
(R(\sigma^{-1})w)(t + Pk) = 0, \quad t = 0, \ldots, P - 1, k \in \mathbb{Z},
\]
where, for each time instant $t = 0, \ldots, P - 1$,
\[
R_i(\xi, \xi^{-1}) \in \mathbb{R}^{n \times n}[\xi, \xi^{-1}]
\]
is a Laurent polynomial matrix in the indeterminate ξ. Note that the Laurent-polynomial matrices R_i need not have the same number of rows (in fact we could even have some g_i equal to zero, meaning that the corresponding matrix R_i would be void and no restrictions were imposed at the time instants $Pk + t$). Equation (1) can also be written as
\[
(R(\sigma^{-1})w)(Pk) = 0, \quad k \in \mathbb{Z},
\]
where
\[
R(\xi, \xi^{-1}) := \begin{bmatrix}
R_0(\xi, \xi^{-1}) \\
\xi R_1(\xi, \xi^{-1}) \\
\vdots \\
\xi^{P-1} R_{P-1}(\xi, \xi^{-1})
\end{bmatrix} \in \mathbb{R}^{n \times n}[\xi, \xi^{-1}],
\]
with $g := \sum_{i=0}^{P-1} g_i$. In the P-periodic case, with $P \geq 2$, with some abuse of language, we refer to (2) as a P-periodic kernel representation (P-PKR). Clearly, in the time-invariant case, where $P = 1$, (2) particularises to
\[
(R(\sigma^{-1})w)(k) = 0, \quad k \in \mathbb{Z},
\]
Consider now that the system variable w is partitioned as (w_1, w_2). In this case, the corresponding behaviour description (2) can be written as
\[
(R_2(\sigma^{-1})w_2)(Pk) = (R_1(\sigma^{-1})w_1)(Pk), \quad k \in \mathbb{Z},
\]
where the Laurent-polynomial matrices $R_i(\xi, \xi^{-1}) \in \mathbb{R}^{n \times n}[\xi, \xi^{-1}]$, $g := \sum_{i=0}^{P-1} g_i$, $i = 1, 2$, are obtained by means of a suitable partition (and, if necessary, rearrangement) of the columns of R.

By decomposing matrices R_2 and R_1 as, see (Aleixo, Polderman, and Rocha 2007),
\[
R_i(\xi, \xi^{-1}) = R_i^L(\xi^P, \xi^{-P}) \Omega_{P,i}(\xi), \quad i = 1, 2,
\]
where
\[
\Omega_{P,i}(\xi) := \begin{bmatrix}
I_{g_1} & \xi I_{g_2} & \cdots & \xi^{P-1} I_{g_P}
\end{bmatrix}^T,
\]
we may write down relation (3) as
\[
(R_2^L(\sigma^P, \sigma^{-P}) \Omega_{P,2}(\sigma) w_2)(Pk) = (R_1^L(\sigma^P, \sigma^{-P}) \Omega_{P,1}(\sigma) w_1)(Pk), \quad k \in \mathbb{Z}. \tag{4}
\]
Defining the lifted trajectories
\[
(LW)(k) = \begin{bmatrix}
w_1(Pk) \\
\vdots \\
w_i(Pk + P - 1)
\end{bmatrix}, \quad i = 1, 2,
\]
(Khargonekar, Poolla, and Tannenbaum 1985; Hernández and Urbano 1987; Urbano 1987; Kuijper and Willems 1997; Aleixo et al. 2007), and noting that $L \sigma^P = \sigma L$, (4) may be written as
\[
(R_2^L(\sigma^{-1})(LW_1))(k) = (R_1^L(\sigma^{-1})(LW_1))(k), \quad k \in \mathbb{Z}. \tag{5}
\]
The behaviour $L \mathfrak{B}$, defined by $(LW, \ w \in \mathfrak{B})$, called the lifted behaviour, is equal to the set of trajectories
\[
\left\{(LW_1, LW_2) \in (\mathbb{R}^{P \cdot n})^Z \times (\mathbb{R}^{P \cdot n})^Z \mid (5) \text{ holds} \right\},
\]
that is,
\[
L \mathfrak{B} = \ker \tilde{R}_L(\sigma, \sigma^{-1}),
\]
where $\tilde{R}_L(\xi, \xi^{-1}) := [R_1^L(\xi^P, \xi^{-P}) R_2^L(\xi^P, \xi^{-P})]$. In particular, this implies that $L \mathfrak{B}$ is time-invariant.

A well-known technique in the study of periodic systems consists in relating the structural properties of these systems with the properties of corresponding time-invariant formulations. In this article, we shall make use of the (time-invariant) lifted behaviour in order to obtain a characterisation of reconstructibility for the periodic case.
3. Behavioural reconstructibility

Similar to controllability and reachability, the properties of reconstructibility and observability also play a central role in systems theory. As in the classical case, for behavioural systems these properties are related with the possibility of obtaining information about some components of the system variable, which cannot be directly measured, based on the knowledge of the other components, which are assumed to be available for measurement.

3.1 Definition

Definition 3.1: Behavioural reconstructibility: Let \(\mathcal{B} \subset (\mathbb{R}^q)^2 \simeq (\mathbb{R}^n \times \mathbb{R}^{n'})^2 \) be a behaviour whose system variable \(w \) is partitioned as \(w = (w_1, w_2) \). Given \(\delta \geq 0 \), we say that \(w_2 \) is \(\delta \)-reconstructible from \(w_1 \) if

\[
\left\{ w_1|_{[k_0, +\infty)} \equiv 0 \right\} \Rightarrow \left\{ w_2|_{[k_0, +\infty)} \equiv 0 \right\}, \quad \forall k_0 \in \mathbb{Z}. \quad (6)
\]

Moreover, \(w_2 \) is said to be reconstructible from \(w_1 \) if it is \(\delta \)-reconstructible from \(w_1 \) for some \(\delta \geq 0 \). In this case \(\mathcal{B} \) is also said to be reconstructible with respect to \(w_2 \). In particular, \(w_2 \) is said to be forward-observable from \(w_1 \) if it is 0-reconstructible from \(w_1 \), i.e. if

\[
\left\{ w_1|_{[k_0, +\infty)} \equiv 0 \right\} \Rightarrow \left\{ w_2|_{[k_0, +\infty)} \equiv 0 \right\}, \quad \forall k_0 \in \mathbb{Z}. \quad (7)
\]

In this case, \(\mathcal{B} \) is said to be forward-observable with respect to \(w_2 \).

Remark 2: In this definition and throughout the entire article, the interval notation \([a,b] \) is to be understood as \([a,b] \cap \mathbb{Z} \).

Example 3.2: Consider a time-invariant system \(\Sigma = (\mathbb{Z}, \mathbb{R}_2^q, \mathcal{B}) \) with variables \((w_1, w_2) \), whose behaviour \(\mathcal{B} \) is described by

\[
\sigma w_2 = w_1,
\]

i.e.

\[
w_2(k) = w_1(k-1), \quad \forall k \in \mathbb{Z}.
\]

Clearly \(w_2 \) is 1-reconstructible from \(w_1 \), since

\[
w_2(k) = 0, \quad k \geq k_0
\]

implies

\[
w_2(k) = w_1(k-1) = 0, \quad k \geq k_0 + 1.
\]

It is also simple to see that \(w_2 \) is not forward-observable from \(w_1 \). Indeed, if \(w_1(-1) = 1 \) and \(w_1(k) = 0 \) for \(k \neq -1 \), we have that \(w_2(0) = 1 \) and \(w_2(k) = 0 \) for \(k \neq 0 \). Thus,

\[
w_1|_{[0, +\infty)} = 0, \quad \text{but} \quad w_2|_{[0, +\infty)} \neq 0.
\]

However, \(w_1 \) is forward-observable from \(w_2 \), as can easily be ascertained.

3.2 The time-invariant case

Observe that, in case of time-invariance, the \(\delta \)-reconstructibility condition (6) in Definition 3.1 can be replaced by

\[
\left\{ w_1|_{[0, +\infty)} \equiv 0 \right\} \Rightarrow \left\{ w_2|_{[0, +\infty)} \equiv 0 \right\}, \quad (8)
\]

whereas the forward-observability condition (7) can be replaced by

\[
\left\{ w_1(k) = 0, \quad \forall k \in \mathbb{Z} \right\} \Rightarrow \left\{ w_2(k) = 0, \quad \forall k \in \mathbb{Z} \right\}. \quad (9)
\]

In the sequel, to avoid confusion we refer to this latter property as Willems-observability.

Proposition 3.3: Let \(\mathcal{B} \subset (\mathbb{R}^q)^2 \) be a time-invariant behaviour whose system variable \(w \) is partitioned as \(w = (w_1, w_2) \). Then \(w_2 \) is Willems-observable from \(w_1 \) if it is reconstructible from \(w_1 \).

Proof: Assume that \(w_2 \) is \(\delta \)-reconstructible from \(w_1 \), for some \(\delta \geq 0 \). Consider a trajectory \((w_1', w_2')\) in \(\mathcal{B} \) with \(w_1'|_{\mathbb{Z}_2} = 0 \). In particular,

\[
w_1'|_{[k_0, +\infty)} \equiv 0, \quad \forall k_0 \in \mathbb{Z},
\]

and therefore

\[
w_2'|_{[k_0, +\infty)} \equiv 0, \quad \forall k_0 \in \mathbb{Z}.
\]

This clearly implies that \(w_2'|_{\mathbb{Z}_2} \equiv 0 \), allowing to conclude that reconstructibility implies Willems-observability.

As we shall see in the sequel, the reciprocal of this result is also valid. For that purpose, we first characterise reconstructibility and forward-observability by means of rank conditions.

Theorem 3.4: Consider the time-invariant dynamical system \(\Sigma = (\mathbb{Z}, \mathbb{R}^{n+q}, \mathcal{B}) \) described by

\[
\mathcal{B} := \{(w_1, w_2) \in (\mathbb{R}^{n+q})^2 | (R_2(\sigma, \sigma^{-1})w_2)(k) = (R_1(\sigma, \sigma^{-1})w_1)(k), \ k \in \mathbb{Z}\},
\]
with $R_i(\xi, \xi^{-1}) \in \mathbb{R}^{\times \times q}[\xi, \xi^{-1}]$, $i = 1, 2$. Then,

(i) w_2 is reconstructible from w_1 if and only if

$$\text{rank } R_2(\lambda, \lambda^{-1}) = q_2, \quad \forall \lambda \in \mathbb{C} \setminus \{0\};$$ \hspace{1cm} (10)

(ii) w_2 is forward-observable from w_1 if and only if there exist $R_2(\xi) \in \mathbb{R}^{q \times q}[\xi]$ and $\tilde{R}_2(\xi) \in \mathbb{R}^{q \times q}[\xi]$ such that \mathcal{B} is described by

$$\tilde{R}_2(\sigma)w_2 = \tilde{R}_1(\sigma)w_1, \quad \text{with}$$

$$\text{rank } \tilde{R}_2(\lambda) = q_2, \quad \forall \lambda \in \mathbb{C}. \hspace{1cm} (11)$$

Proof:

(i) Assume that (10) holds. Then, there exists a matrix $U(\xi, \xi^{-1}) \in \mathbb{R}^{q \times q}[\xi, \xi^{-1}]$, which is unimodular over $\mathbb{R}[\xi, \xi^{-1}]$, such that (Polderman and Willems 1998),

$$U(\xi, \xi^{-1})R_{2}(\xi, \xi^{-1}) = \begin{bmatrix} I_{q_2} \\ 0 \end{bmatrix}.$$

Thus (leaving out σ and σ^{-1} in the notation, for simplicity),

$$R_2 w_2 = R_1 w_1 \iff UR_2 w_2 = UR_1 w_1 \iff \begin{bmatrix} I_{q_2} \\ 0 \end{bmatrix} w_2 = \begin{bmatrix} R_1^1 \\ R_1^2 \end{bmatrix} w_1$$

$$\iff R_1^2 w_1 = 0 \quad \text{and} \quad w_2 = R_1^1 w_1,$$

with UR_1 conformably partitioned as

$$U(\xi, \xi^{-1})R_1(\xi, \xi^{-1}) = \begin{bmatrix} R_1^1(\xi, \xi^{-1}) \\ R_1^2(\xi, \xi^{-1}) \end{bmatrix}.$$

Let

$$R_1^1(\xi, \xi^{-1}) = R_1^1 \xi^{-M} + \cdots + R_1^1 \xi^0 + \cdots + R_1^N \xi^N,$$

with $N, M \in \mathbb{Z}_+$. Applying σ^M to both sides of the equality $w_2 = R_1^1 w_1$, we obtain

$$(\sigma^M w_2)(k) = (\tilde{R}_1(\sigma)w_1)(k), \quad k \in \mathbb{Z},$$

allowing us to conclude that

$$\left\{ w_1 \mid_{[k_0, +\infty)} = 0 \Rightarrow \left\{ w_2 \mid_{[k_0, M + \infty)} = 0 \right\},$$

i.e. w_2 is M-reconstructible, and hence reconstructible, from w_1.

Suppose now that (10) does not hold. Then, there exists a trajectory $w^* \in \ker R_2(\sigma, \sigma^{-1})$, which is non-zero (Polderman and Willems 1998). This trajectory is such that

$$w^* = (w_1^* \equiv 0, w_2^*) \in \mathcal{B},$$

If w_2 were reconstructible from w_1, this would imply that

$$w_2^* \mid_{[k_0, +\infty)} = 0, \quad \forall k^* \in \mathbb{Z},$$

and, consequently, w_2^* would be null in the whole time-axis \mathbb{Z}, which is a contradiction. Therefore, if the rank condition (10) does not hold, w_2 is not reconstructible from w_1, or, in other words, the reconstructibility of w_2 from w_1 implies that (10) holds;

(ii) Suppose now that there exist \tilde{R}_2 and \tilde{R}_1 such that \mathcal{B} is described by

$$(\tilde{R}_2(\sigma)w_2)(k) = (\tilde{R}_1(\sigma)w_1)(k), \quad k \in \mathbb{Z},$$

with $\tilde{R}_2(\xi)$ satisfying (11). Then, there exists an unimodular matrix (over $\mathbb{R}[\xi]$) $U(\xi)$ such that (Polderman and Willems 1998),

$$U(\xi)\tilde{R}_2(\xi) = \begin{bmatrix} I_{q_2} \\ 0 \end{bmatrix}.$$

Thus,

$$\tilde{R}_2 w_2 = \tilde{R}_1 w_1 \iff U \tilde{R}_2 w_2 = U \tilde{R}_1 w_1 \iff \begin{bmatrix} I_{q_2} \\ 0 \end{bmatrix} w_2 = \begin{bmatrix} \tilde{R}_1^1 \end{bmatrix} w_1$$

$$\iff \tilde{R}_1^1 w_1 = 0 \quad \text{and} \quad w_2 = \tilde{R}_1^1 w_1,$$

with UR_1 conformably partitioned as

$$U(\xi)\tilde{R}_1(\xi) = \begin{bmatrix} \tilde{R}_1^1(\xi) \\ \tilde{R}_1^2(\xi) \end{bmatrix}.$$

Thus, if $w_1(k) = 0$ for $k \in [k_0, +\infty)$, then

$$\tilde{R}_1^1(\sigma)w_1(k) = 0, \quad k \in [k_0, +\infty)$$

and hence

$$w_2(k) = 0, \quad k \in [k_0, +\infty),$$

which allows us to conclude that w_2 is forward-observable from w_1.

Assume now that w_2 is forward-observable from w_1, and let

$$(\tilde{R}_2(\sigma)w_2)(k) = (\tilde{R}_1(\sigma)w_1)(k), \quad k \in \mathbb{Z},$$

be a representation of \mathcal{B}. Consider a trajectory $(w_1, w_2) \in \mathcal{B}$ such that $w_1 \equiv 0$. Then, by the forward-observability of \mathcal{B}, this implies that

$$\forall k_0 \in \mathbb{Z}, \quad w_2(k) = 0, \quad k \geq k_0,$$

or, in other words, $w_2 \equiv 0$. This means that $\ker \tilde{R}_2(\sigma) = \{0\}$, which is equivalent to say, (Willems 1991), that

$$\text{rank } \tilde{R}_2(\lambda) = \text{const}, \quad \forall \lambda \in \mathbb{C} \setminus \{0\}.$$
Note that this also follows immediately from the previous item and from noticing that forward-observability implies reconstructibility.

Let now \(U(\xi) \) and \(V(\xi) \) be unimodular matrices (over \(\mathbb{R}[\xi] \)) that bring \(\hat{R}_1 \) into its Smith form, i.e.

\[
U \hat{R}_2 V = \begin{bmatrix} \xi^j & \cdots & \xi^j_{n_2} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} := \begin{bmatrix} Z \cr 0 \end{bmatrix}.
\]

Then,

\[
\hat{R}_2 w_2 = \hat{R}_1 w_1 \iff U \hat{R}_2 w_2 = U \hat{R}_1 w_1 \iff \begin{bmatrix} Z \cr 0 \end{bmatrix} V^{-1} w_2 = \begin{bmatrix} Z \cr 0 \end{bmatrix} V^{-1} w_1,
\]

which is equivalent to

\[
\hat{R}_2^1 w_1 = 0 \quad \text{and} \quad w_2 = V \xi^{-1} \hat{R}_1^1 w_1,
\]

with \(U \hat{R}_1 \) conformably partitioned as

\[
U(\xi) \hat{R}(\xi) = \begin{bmatrix} \hat{R}_1^1(\xi) \\ \hat{R}_1^2(\xi) \end{bmatrix}.
\]

Thus, \(\mathcal{B} \) is also described by

\[
(\hat{R}_2(\sigma) w_2)(k) = (\hat{R}_1(\sigma) w_1)(k),
\]

with \(\hat{R}_2, \hat{R}_1 \) defined by

\[
\hat{R}_2(\xi) := \begin{bmatrix} I_{q_2} \\ 0 \end{bmatrix}, \quad \hat{R}_1(\xi) := \begin{bmatrix} \hat{R}_1^1(\xi) \\ \hat{R}_1^2(\xi) \end{bmatrix} := V(\xi) \xi^{-1}(\xi) \hat{R}_1^1(\xi).
\]

Now, using the forward-observability property, it is clear that the matrix \(\hat{R}_1^2 := V \xi^{-1} \hat{R}_1^1 \) cannot have terms in \(\xi^{-1} \). Moreover, \(\hat{R}_2(\xi) \) has constant column rank over \(\mathbb{C} \). This shows that there exists a representation of \(\mathcal{B} \) with the desired properties.

The proof is thus completed. \(\square \)

The Willems-observability condition (9) for behaviours over \(\mathbb{Z} \) described by

\[
R_2(\sigma, \sigma^{-1}) w_2 = R_1(\sigma, \sigma^{-1}) w_1
\]

is equivalent to the rank condition

\[
\text{rank } R_2(\lambda, \lambda^{-1}) = q_2, \quad \forall \lambda \in \mathbb{C} \setminus \{0\},
\]

(Willems 1991). This coincides with the condition (10) in Theorem 3.4–(i), thus leading to the conclusion that Willems-observability is equivalent to our notion of reconstructibility, rather than to forward-observability.

Proposition 3.5: Let \(\mathcal{B} \subset (\mathbb{R}^p)^\mathbb{Z} \) be a time-invariant behaviour whose system variable \(w \) is partitioned as \(w = (w_1, w_2) \). Then \(w_2 \) is Willems-observable from \(w_1 \) if and only if it is reconstructible from \(w_1 \).

Note that the definition of observability, given in Valcher and Willems (1999a), for systems over \(\mathbb{Z}_+ \) can be regarded as an adaptation of Willems's definition (9), since it means that if \(w_1 \) is the null trajectory (i.e. is zero over the time-axis \(\mathbb{Z}_+ \)), then the same happens for \(w_2 \). However, that notion can also be seen as an adaptation of our definition of forward-observability.

The relationship between the reconstructibility of a periodic behaviour and of its lifted counterpart is given by the following result.

Theorem 3.6: Let \(\Sigma = (\mathbb{Z}, \mathbb{R}^{q_1} \times \mathbb{R}^{q_2}, \mathcal{B}) \) be a P-periodic system whose system variable \(w \) is partitioned as \(w = (w_1, w_2) \), described by (3), and \(\Sigma^L \) its associated lifted system. Then the following are equivalent:

(i) \(\mathcal{B} \) is reconstructible with respect to \(w_2^2 \);
(ii) \(LB \) is reconstructible with respect to \(LW_2^2 \);
(iii) \(\text{rank } R_2^1(\lambda, \lambda^{-1}) = P q_2, \forall \lambda \in \mathbb{C} \setminus \{0\} \).

Proof: The equivalence between conditions (ii) and (iii) follows immediately from Theorem 3.4 and from the fact that \(LB \) is a time-invariant behaviour. Now, we prove that conditions (i) and (ii) are equivalent. Assume that \(\mathcal{B} \) is reconstructible with respect to \(w_2^2 \). Then, \(w_2 \) is \(\delta \)-reconstructible from \(w_1 \), for some \(\delta \geq 0 \), i.e. that

\[
\{ w_1_{[k_0, +\infty]} \equiv 0 \} \Rightarrow \{ w_2_{[k_0 + \delta, +\infty]} \equiv 0 \}, \quad \forall k_0 \in \mathbb{Z}.
\]

(12)
Consider \(\tilde{w}_1, \tilde{w}_2 \in L\mathcal{B} \) and \(\tilde{k}_0 \in \mathbb{Z} \). Let \(w_1, w_2 \in \mathcal{B} \) be such that \(Lw_i = \tilde{w}_i, \quad i = 1, 2 \). Define \(k_0 := \bar{P}\tilde{k}_0 \) and take \(\bar{\delta} = \left[\frac{1}{P} \right]^3 \). Then, \(\forall \tilde{k}_0 \in \mathbb{Z} \),

\[
\begin{align*}
\{ \tilde{w}_1 \}_{[\tilde{k}_0, +\infty)} &\equiv 0 \\
\Leftrightarrow \left\{ \begin{array}{l}
\quad w_1(Pk) \\
\quad \vdots \\
\quad w_1(Pk + P - 1)
\end{array} \right. &\equiv 0, \quad \forall k \in \left[\tilde{k}_0, +\infty \right)
\end{align*}
\]

\[
\begin{align*}
\Leftrightarrow \left\{ \begin{array}{l}
\quad w_1(\ell) = 0, \quad \forall \ell \in \left[P\tilde{k}_0, +\infty \right)
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\Leftrightarrow \left\{ \begin{array}{l}
\quad w_1(\ell) = 0, \quad \forall \ell \in \left[k_0, +\infty \right)
\end{array} \right.
\end{align*}
\]

\[
\Rightarrow \left\{ \begin{array}{l}
\quad \tilde{w}_2(\ell) = 0, \quad \forall \ell \in \left[k_0 + \delta, +\infty \right)
\end{array} \right.
\]

\[
\Rightarrow \left\{ \begin{array}{l}
\quad \tilde{w}_2(\ell) = 0, \quad \forall \ell \in \left[k_0 + \delta, +\infty \right)
\end{array} \right.
\]

\[
\Rightarrow \{ \tilde{w}_2 \}_{[k_0 + \delta, +\infty)} \equiv 0,
\]

showing that \(Lw_2 \) is \(\tilde{\delta} \)-reconstructible from \(Lw_1 \).

Assume now that \(L\mathcal{B} \) is reconstructible with respect to \(Lw_2 \). Then, \(Lw_2 \) is \(\tilde{\delta} \)-reconstructible from \(Lw_1 \), for some \(\tilde{\delta} \geq 0 \). Let \(w_1, w_2 \in \mathcal{B} \) and \(k_0 \in \mathbb{Z} \). Let further \(\tilde{w}_1, \tilde{w}_2 \in L\mathcal{B} \) such that \(Lw_i = \tilde{w}_i, \quad i = 1, 2 \). Then,

\[
\left\{ \begin{array}{l}
\quad w_1(k) = 0, \quad \forall k \in \left[k_0, +\infty \right)
\end{array} \right.
\]

\[
\Leftrightarrow \left\{ \begin{array}{l}
\quad w_1(Pk) \\
\quad \vdots \\
\quad w_1(Pk + P - 1)
\end{array} \right. &\equiv 0, \quad \forall k \geq \frac{k_0}{P}
\end{align*}
\]

\[
\Leftrightarrow \left\{ \begin{array}{l}
\quad \tilde{w}_1(\ell) = 0, \quad \forall \ell \geq \left[\frac{k_0}{P} \right]
\end{array} \right.
\]

\[
\Rightarrow \left\{ \begin{array}{l}
\quad \tilde{w}_1(\ell) = 0, \quad \forall \ell \geq \left[\frac{k_0}{P} + \tilde{\delta} \right]
\end{array} \right.
\]

\[
\Rightarrow \left\{ \begin{array}{l}
\quad \tilde{w}_2(\ell) = 0, \quad \forall \ell \geq \left[\frac{k_0}{P} + \tilde{\delta} \right]
\end{array} \right.
\]

\[
\Rightarrow \left\{ \begin{array}{l}
\quad w_2(\ell) = 0, \quad \forall \ell \geq \left[\frac{k_0}{P} + \tilde{\delta} \right]
\end{array} \right.
\]

\[
\Rightarrow \left\{ \begin{array}{l}
\quad w_2(\ell) = 0, \quad \forall \ell \geq k_0 + \bar{P}\tilde{\delta}
\end{array} \right.
\]

This shows that \(w_2 \) is \(\delta \)-reconstructible from \(w_1 \) with \(\delta = \bar{P}\tilde{\delta} \). \(\square \)

4. Behavioural reconstructibility of state space systems

The classical state space approach to linear, time-varying, systems takes as its starting point a description \(\Sigma := (A(\cdot), B(\cdot), C(\cdot), D(\cdot)) \) of the form

\[
\begin{align*}
\left\{ \begin{array}{l}
\alpha x(k) = A(k)x(k) + B(k)u(k) \\
y(k) = C(k)x(k) + D(k)u(k)
\end{array} \right. \quad k \in \mathbb{Z},
\end{align*}
\]

where the matrices \(A(k) \in \mathbb{R}^{n \times n}, B(k) \in \mathbb{R}^{n \times m}, C(k) \in \mathbb{R}^{p \times n} \) and \(D(k) \in \mathbb{R}^{p \times m} \) depend on \(k \), \(x \) is the state variable and \(u \) and \(y \) are the input and output, respectively.

In this section, we first recall the classical notions of state reconstructibility and state observability, and then view a state space system from the behavioural standpoint in order to compare classical and behavioural properties. This allows us to rediscover, from another perspective, already known results on the characterisation of reconstructibility of state space systems.

4.1 Classical notions

The structural properties of state reconstructibility and state observability for time-varying systems are introduced following the spirit of the well-known versions for time-invariant systems, yielding more general definitions that also apply to the time-invariant case.

Definition 4.1: State reconstructibility:

(i) A state \(x_1 \in \mathbb{R}^n \) is called unobservable at time \(k_1 \) if for all \(k_0 \leq k_1 \), there exists \(x_0 = x(k_0) \in \mathbb{R}^n \) such that

\[
y(k) = C(k)\phi_4(k, k_0)x_0 = 0, \quad k \in [k_0, k_1 - 1],
\]

with \(x_1 = x(k_1) \);

(ii) The system (13) is called completely state reconstructible at time \(k_1 \) if the only state \(x_1 \) that is unobservable at time \(k_1 \) is the zero state, i.e. \(x_1 = 0 \in \mathbb{R}^n \). If this happens for all \(k_1 \in \mathbb{Z} \), (13) is simply called completely state reconstructible.

Definition 4.2: State observability:

(i) A state \(x_0 \in \mathbb{R}^n \) is called unobservable (at time \(k_0 \)) if for all \(k_1 \geq k_0 \)

\[
y(k) = C(k)\phi_4(k, k_0)x_0 = 0, \quad k \in [k_0, k_1 - 1]
\]

i.e. if the zero input response of the system is zero for every \(k \geq k_0 \);

(ii) The system (13) is called completely state observable at time \(k_0 \) if the only state \(x_0 \) that is unobservable is the zero state, i.e. \(x_0 = 0 \in \mathbb{R}^n \). If this happens for all \(k_0 \in \mathbb{Z} \), (13) is simply called completely state observable.
4.2 Property comparison

We start by comparing the behavioural definition of reconstructibility with the classical definition given by Definition 4.1. For this purpose, consider a behaviour \mathcal{B} consisting of the set of (x, u, y)-trajectories of an n-dimensional linear state space model, with n states, m inputs and p outputs described by (13). It follows, from Definition 4.1, that the state space system (completely state) reconstructible if there exists $k_0 \leq k_1$ such that, for all $x_0 = x(k_0)$,

$$\{u \equiv 0, y(k)_{|k \in [k_0, k_1-1]} \equiv 0\} \Rightarrow \{x(k_1) = 0\}.$$

Suppose now that

$$(u, y)_{|k_0, +\infty} = (0, 0).$$

Then, in particular,

$$(u, y)_{|k_0, k_1-1} = (0, 0)$$

and hence $x(k_1) = 0$. Moreover, once $u \equiv 0$, the condition $x(k_1) = 0$ clearly implies that

$$x(k)_{|k_1, +\infty} = 0,$$

and thus

$$\{u, y\}_{|k_0, +\infty} = (0, 0) \Rightarrow \{x\}_{|k_1, +\infty} = 0\}.$$

That is, x is behaviourally δ-reconstructible from (u, y), with $\delta = k_1 - k_0$, as defined in the behavioural framework (cf (6)).

In order to see that the opposite implication also holds, assume that the state x is reconstructible from (u, y), in the behavioural sense. Furthermore, suppose that the state space system (13) is (classically) unreconstructible. Then, there exists a trajectory with $x(k_0) = x_0$ such that

$$\forall \delta \geq 0, (u, y)_{|k_0, k_0+\delta-1} \equiv (0, 0) \quad \text{but} \quad x(k_0 + \delta) \neq 0.$$

Observe that $x_0 \neq 0$ because otherwise we have that

$$\{x_0 = 0, (u, y)_{|k_0, k_0+\delta-1} \equiv (0, 0)\} \Rightarrow x(k_0 + \delta) = 0.$$

Furthermore, x_0 is (classically) unobservable which implies that if $u(k) = 0$ for $k \geq k_0$, then $y(k) = 0$ for $k \geq k_0$. Thus,

$$(u, y)_{|k_0, +\infty} \equiv (0, 0)$$

and, therefore, there exists a trajectory (x, u, y) such that

$$(u, y)_{|k_0, +\infty} \equiv (0, 0) \quad \text{and} \quad x_{|k_0+\delta, +\infty} \neq 0$$

as $x(k_0 + \delta) \neq 0$, meaning that the state space system is not behaviourally reconstructible. Hence, it must be (classically) reconstructible.

Thus, this reasoning allows us to state the following result.

Theorem 4.3: The state space system (13) is completely state reconstructible in the classical sense (Definition 4.1) if and only if x is reconstructible from (u, y) in the behavioural sense (Definition 3.1).

4.3 Reconstructibility test

Consider now the time-invariant version of the state space system (13) as a behavioural system \mathcal{B} whose variable is partitioned as (w, v), with

$$w := \begin{bmatrix} u \\ y \end{bmatrix} \quad \text{and} \quad v := x. \quad (14)$$

This leads to the following representation, in terms of w and v,

$$\begin{bmatrix} \sigma I_n - A \\ C \end{bmatrix} x = \begin{bmatrix} B & 0 \\ -D & I_p \end{bmatrix} w,$$

and clearly, by Theorem 3.4, x is reconstructible from w, in the behavioural sense, if and only if

$$\text{rank} \begin{bmatrix} \lambda I_n - A \\ C \end{bmatrix} = n, \quad \forall \lambda \in \mathbb{C}\setminus\{0\},$$

which coincides with the (classical) complete state reconstructibility rank condition, see (Hautus 1969; Kailath 1980; Urbano 1987; Kuc̆era 1991).

Contrary to what happens with reconstructibility, the characterisation of forward-observability for state space systems over \mathbb{Z} does not coincide with the (classical) complete state observability rank condition, (Hautus 1969; Kailath 1980; Urbano 1987; Kuc̆era 1991). This is illustrated in the following example.

Example 4.4: Consider the state space system with no inputs, state $x = [x_1 \ x_2]^T$ and output y, described by

$$\begin{cases} \sigma x(k) = A x(k) \\ y(k) = C x(k) \end{cases} \quad k \in \mathbb{Z},$$

with

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$$

It turns out that the state x is forward-observable from the output y, since the system trajectories satisfy $x_1 = 0$.
and \(x_2 = y \). However,

\[
\begin{bmatrix}
\lambda I_2 - A \\
C
\end{bmatrix}
\]

has a rank drop for \(\lambda = 0 \). Nevertheless, the description

\[
\begin{bmatrix}
1 & 0 \\
0 & \sigma - 1
\end{bmatrix} \sim R(\sigma)
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

is such that

\[
\text{rank } \tilde{R}_2(\lambda) = 2, \quad \forall \lambda \in \mathbb{C},
\]

it satisfies the condition of Theorem 3.4(ii).

If, instead of the time-invariant scenario, we now consider the \(P \)-periodic case, that is, if we take the matrices \(A(k), B(k), C(k) \) and \(D(k) \), in the state space system (13), to be periodic in \(k \) with period \(P \in \mathbb{N} \), then, by choosing the same variable partition as the one chosen in (14), we are led to the following representation, in terms of \(w \) and \(v \),

\[
(R_i(\sigma, \sigma^{-1})w)(t + Pk) = (M_i(\sigma, \sigma^{-1})v)(t + Pk), \quad t = 0, \ldots, P - 1, k \in \mathbb{Z},
\]

with

\[
R_i(\xi, \xi^{-1}) = \begin{bmatrix}
B(0) & 0 \\
\xi B(1) & \xi I_p
\end{bmatrix} \quad \text{and} \quad
M_i(\xi, \xi^{-1}) = \begin{bmatrix}
C(0) \\
\xi C(1)
\end{bmatrix},
\]

or still

\[
(R(\sigma, \sigma^{-1})w)(Pk) = (M(\sigma, \sigma^{-1})v)(Pk), \quad k \in \mathbb{Z},
\]

with

\[
R(\xi, \xi^{-1}) = \begin{bmatrix}
B(0) & 0 \\
-\xi D(1) & \xi I_p
\end{bmatrix} \quad \text{and} \quad
M(\xi, \xi^{-1}) = \begin{bmatrix}
\xi I_n - A(0) \\
\xi(\xi I_n - A(1)) \\
\xi^2(\xi I_n - A(2)) \\
\vdots \\
\xi^{P-1}(\xi I_n - A(P-1)) \\
\xi^P C(P-1)
\end{bmatrix}.
\]

The lifted behaviour \(L\mathcal{B} \) corresponding to \(\mathcal{B} \) is described by

\[
(R^L(\sigma, \sigma^{-1})(Lw))(k) = (M^L(\sigma, \sigma^{-1})(Lv))(k), \quad k \in \mathbb{Z},
\]

where \(M^L(\xi, \xi^{-1}) \in \mathbb{R}^{P^{(a+p)} \times n} \) is equal to

\[
\begin{bmatrix}
-A(0) & I_n & \cdots & 0 \\
C(0) & 0 & \cdots & 0 \\
0 & -A(1) & \cdots & 0 \\
0 & C(1) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & I_n \\
0 & 0 & \cdots & 0 \\
\xi I_n & 0 & \cdots & -A(P-1) \\
0 & 0 & \cdots & C(P-1)
\end{bmatrix}
\]

By conveniently rearranging some block-rows in the matrix \(M^L(\xi, \xi^{-1}) \) we obtain the matrix

\[
\begin{bmatrix}
-A(0) & I_n & 0 & \cdots & 0 & 0 \\
0 & -A(1) & I_n & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & I_n \\
\xi I_n & 0 & \cdots & \cdots & \cdots & 0 & -A(P-1) \\
C(0) & 0 & \cdots & \cdots & \cdots & 0 \\
0 & C(1) & 0 & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \cdots & 0 \\
0 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 0 & \cdots & \cdots & \cdots & 0 \\
\end{bmatrix}
\]

which we denote by \(\tilde{M}^L(\xi, \xi^{-1}) \).

Now, consecutively performing the \(P - 1 \) block-column operations

\[
C_j \leftarrow C_j + C_{j+1}A(j-1), \quad j = P - 1, \ldots, 1,
\]
(where C_j is the jth block-column of matrix $M^L(\xi, \xi^{-1})$, i.e. taking in the first step $j = P - 1$ and in the $(P - 1)$th step $j = 1$, we obtain the following matrix

$$
\hat{M}^L(\xi, \xi^{-1}) = \begin{bmatrix}
0 & I_{(P-1)n} \\
\hat{M}_1^L(\xi, \xi^{-1}) & \hat{M}_2^L(\xi, \xi^{-1})
\end{bmatrix}, \quad (16)
$$

with

$$
\hat{M}_1^L(\xi, \xi^{-1}) = \begin{bmatrix}
\xi I_n - A(P-1) \cdots A(0) \\
C(0) \\
C(1)A(0) \\
C(2)A(1)A(0) \\
\vdots \ \\
C(P-1)A(P-2) \cdots A(0)
\end{bmatrix},
$$

Taking Theorem 3.6 into account we conclude that \mathfrak{B} is reconstructible with respect to x if and only if

$$
\text{rank } M^L(\lambda, \lambda^{-1}) = nP, \quad \forall \lambda \in \mathbb{C}\backslash\{0\}.
$$

Clearly the rank of the original M^L matrix coincides with the rank of matrix (16) and, therefore,

$$
\forall \lambda \in \mathbb{C}, \quad \text{rank } M^L(\lambda, \lambda^{-1}) = n(P-1) + \text{rank } \hat{M}_1^L(\lambda, \lambda^{-1}),
$$

where

$$
\text{rank } \hat{M}_1^L(\lambda, \lambda^{-1}) = \text{rank }
\begin{bmatrix}
\lambda I_n - A(P-1) \cdots A(0) \\
C(0) \\
C(1)A(0) \\
C(2)A(1)A(0) \\
\vdots \ \\
C(P-1)A(P-2) \cdots A(0)
\end{bmatrix}.
$$

Therefore \mathfrak{B} is behaviourally reconstructible with respect to x if and only if

$$
\text{rank }
\begin{bmatrix}
\lambda I_n - A(P-1) \cdots A(0) \\
C(0) \\
C(1)A(0) \\
C(2)A(1)A(0) \\
\vdots \ \\
C(P-1)A(P-2) \cdots A(0)
\end{bmatrix} = n, \quad \forall \lambda \in \mathbb{C}\backslash\{0\}.
$$

Remark 3: As expected, it can be shown that this rank condition is equivalent to the rank conditions obtained in Hernández and Urbano (1987) and Urbano (1987), for reconstructibility of periodic state space systems, based on a different time-invariant formulation.

5. Conclusion

In this article, we have introduced and characterised the properties of reconstructibility and forward-observability for systems over \mathbb{Z}. A comparison was made with the existing results in the behavioural setting, for the time-invariant case. It turned out that our reconstructibility property is equivalent to Willems-observability. Moreover, for the case of state space systems (over \mathbb{Z}), the characterisation of reconstructibility coincides with the well-known reconstructibility condition for systems over \mathbb{Z}_+. However, the characterisation of forward-observability is different from the observability condition for state space systems over \mathbb{Z}_+. A reconstructibility test has been obtained for period behaviours and a property comparison has been achieved within the classical state space framework, allowing us to conclude the equivalence between behavioural reconstructibility and state reconstructibility. Our results not only provide an overview of the relationship between different behavioural properties, but also establish a bridge between the behavioural and the classical state space settings.

Acknowledgements

The research of José C. Aleixo and Paula Rocha was partially supported by FEDER funds through COMPETE-Operational Programme Factors of Competitiveness (‘Programa Operacional Factores de Competitividade’) and by Portuguese funds through the Center for Research and Development in Mathematics and Applications (University of Aveiro) and the Portuguese Foundation for Science and Technology (‘FCT-Fundaçã para a Ciência e a Tecnologia’), within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690.

Notes

1. Given a ring \mathbb{R}, a square matrix $M \in \mathbb{R}^{n \times n}$ is said to be unimodular over \mathbb{R} if it has an inverse in $\mathbb{R}^{n \times n}$.
2. Where $\Sigma = (\mathbb{Z}, [\mathbb{R}^{p_0} \times \mathbb{R}^{p_0}, L_8])$.
3. $[\cdot]$ represents the ceiling function, i.e. the integer round-up defined as $[x] = \min\{m \in \mathbb{Z}: m \geq x\}$.
4. By the δ-reconstructibility of w_2 from w_1.
5. By the δ-reconstructibility of Lw_2 from Lw_1.

References

