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Abstract 

The modulational instability of quasi-plane-wave optical beams in biased photorefractive media is investigated under 

steady-state conditions. The spatial growth rate of the sideband perturbations is obtained by globally treating the 
space-charge field. Our analysis indicates that the growth rates depend on the strength of the externally applied electric field 
and, moreover, on the ratio of the optical beam’s intensity to that of the dark irradiance. Our results are then compared to 
previous local treatments of the space-charge field equation. The two approaches are found to be in good agreement in the 
low spatial-frequency regime provided that the external bias field is sufficiently high. Conversely, in the high spatial-frequency 
region notable differences may exist. Relevant examples are provided. 

1. Introduction 

In a recent experimental study [1], optical spatial 
screening solitons have been observed for the first 
time in strontium barium niobate (SBN). Soliton 
states of this sort are known to occur when the 

process of diffraction is exactly balanced by light-in- 

duced photorefractive (PR) waveguiding [2]. This 
latter process is possible provided that the PR crystal 
is externally biased [3,4]. Unlike their quasi-steady- 
state counterparts [5-71, which are short-lived enti- 
ties, screening solitons exist under steady-state con- 

ditions. As previous theoretical studies have shown 
[3,4], the spatial width and shape of these self-trapped 
states are entirely determined by two parameters, 
namely the magnitude of the externally applied elec- 
tric field and the ratio of their peak intensity to that 
of the dark irradiance. Of course, at this point, it 
would be of interest to know if such PR systems can 
also exhibit modulational instability (MI) [S]. In a 

rather loose context, MI can be considered as a 
precursor of soliton formation, and its existence is 
often tied to that of optical solitons. In the spatial 
domain, MI manifests itself as filamentation of a 
broad optical beam through the spontaneous growth 
of spatial-frequency sidebands. It is interesting to 

note that, in the spatio-temporal regime, induced MI 
has been successfully demonstrated by externally 
controlling the repetition rate of a short pulse train 
[9]. Very recently, Castillo et al. [IO] have provided 
experimental evidence of such induced MI in a PR 
bismuth titanium oxide (Bi,,TiO,, or BTO) crystal, 

which can be considered as the spatial analog of Ref. 
[9]. Moreover, in this latter study [lo]. the MI gain 
was analytically obtained by considering only local 
effects in the space-charge field. Nevertheless, at this 
point, it is not very clear to what extent such a local 

treatment can accurately describe the MI process. 
In this Communication we investigate the modula- 

tional instability of broad (quasi-plane-wave) optical 
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beams in biased PR media under steady-state condi- 
tions. The spatial growth rate of the sideband pertur- 
bations is obtained by globally treating the space- 
charge field equation. Our analysis indicates that the 
MI growth rate depends on the strength and polarity 
of the externally applied electric field and, moreover, 
on the ratio of the optical beam’s intensity to that of 
the dark irradiance. Our results are then compared to 
previous local treatments of the space-charge field 
[lo]. The two approaches are found to be in good 
agreement in the low spatial-frequency regime pro- 
vided that the external bias field is sufficiently high. 
In this region, our results show that the instability 
growth rate increases with the bias field and that it 
attains a maximum when the optical beam intensity 
is approximately equal to the dark h-radiance. Con- 
versely, in the high spatial-frequency regime, notable 
differences may exist between these two approaches. 
Pertinent examples are provided. 

2. Problem formulation 

To study the modulational instability of a quasi- 
plane-wave (broad) optical beam in a biased PR 
crystal, let us first consider an optical wave that 
propagates along the z-axis and is allowed to diffract 
only along the x-direction. In doing so, our diffrac- 
tion theory is one-dimensional and any y-dependent 
perturbations have been implicitly omitted [ 111. For 
demonstration purposes, let the PR crystal be SBN, 
with its optical c-axis oriented along the x-direction. 
Moreover, let us assume that the optical beam is 
linearly polarized along x and that the external bias 
electric field is applied in the same direction. Under 
these conditions, the perturbed extraordinary refrac- 
tive index n’, (along the c-axis) is given by [12] 
(nk)2 = nf - n~r,,E,, where rj3 is the electro-optic 
coefficient involved, n, is the unperturbed extraordi- 
nary index of refraction and E,, = Es, P is the 
space-charge field in this PR sample. In this case, by 
employing standard procedures, we readily obtain 
the following paraxial equation of diffraction [4] 

au 1 a2U k, 
(1) 

where the optical field g has been expressed in 
terms of a dimensionless slowly-varying envelope U, 

that is, &!? = 9.(277,, Z,/n,)‘/2u( x, z) exp(i kz). The 
beam power density has been scaled with respect to 
the dark irradiance Id [ 131, i.e. I( x, z) = I U I ‘Id, 
and the wavevector k is given by k = kOne = 
(27r/A,h,, where A, is the free-space wavelength 
of the lightwave employed. For simplicity, any loss 
effects have been neglected in deriving Eq. (1). 

The space-charge field Es, can then be obtained 
from the transport model of Kukhtarev et al. [ 141. 
Under steady-state conditions and for typical PR 
media, the space-charge field Es, is known to obey 
the following differential equation [4] 

E,c=Eo[l + lu,‘] 
K,T [ a( 1 U 1 ‘)/ax] 

-e[1+IU121 

where U( x, z) is assumed to be a bright-like beam, 
i.e. 1 U 1 2 = 0 at x + +a~, and E,, represents the 
value of the space-charge field in the dark regions of 
the PR crystal. In Eq. (2), K, is Boltzmann’s con- 
stant, T is the absolute temperature, e is the electron 
charge, NA represents the acceptor or trap density, 
and E, is the static relative permittivity. 

For broad or quasi-plane-wave planar beams, the 
optical beam envelope U remains relatively constant 
over a large range of x. As a result, the diffraction 
term in Eq. (1) ((2k)-‘(iY2U/i3x2)) as well as the 
spatial derivatives of Es, and 1 U 1 2 in Eq. (2) can be 
omitted. Therefore, in this region, the space-charge 
field can be evaluated and it is approximately given 
by Es, = E,/(l + 1 U I 2). In turn, Eq. (1) can be 
readily solved and its broad beam solution is given 

by 
U=r’/‘exp{-ip[E,/(l +r)]z}, (3) 
where the parameter p is defined as p = 
[( kon%rj3>/2] and the quantity r stands for the ratio 
of the optical beam intensity to that of the dark 
irradiance. The stability of this solution is then inves- 
tigated by adding a spatial perturbation E(X, z) to 
the stationary result of Eq. (3) in the following way: 

U= [r’12+e(x, z)] exp{-ip[E,/(l+r)]z}, 

(4) 
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where the magnitude of the complex perturbation E 
is assumed to be as usual [15] much smaller than the 
amplitude of the quasi-plane-wave solution, i.e. I E 1 
<< r”2. 

In the next section we will investigate the possible 
growth of this weak perturbation by globally treating 
the space-charge field equation, Eq. (2). 

3. Global treatment of modulational instability 

In this section the MI process is investigated in a 
global fashion by implicitly taking into account all 
higher-order effects in the space-charge field equa- 
tion, Eq. (2). We begin our analysis by substituting 
the perturbed envelope U, given by Eq. (4), in Eqs. 
(1) and (2). By linearizing in E, the following cou- 
pled set of equations is obtained: 

ae i a2E 
i-+---~PE(r’/2+e)=0 

aZ 2k ax2 
and 

(5) 

+y;+g)], (6) 

where we have defined E = Es, - E&l + r), E,, 
= l&/(1 + r>, y = Eol[q,~,/(eNA)] and A = 
(K,T/e)[q, q/(eNA)l. Eq. (6) can then be treated 
by means of a Four@ transform. In doing so, the 
space-charge field, E, in the spatial-frequency do- 
main, k, is given by 

r1/2 
E=-- &, +i[%,k, + k,(KJ/e)(t + A@)] 

(I+ r.) i (1 + A/$)*+ k;y2 j 

x(z+c*), (7) 

where 2 is the Fourier transform of the spatial 
perturbation in the k,-space. If we now assume that 
the spatial perturbation E(X, z> is composed of two 
sideband plane-waves, i.e. 

E= u( z) exp(ipx) +b( z) exp( -ipx), (8) 

we then easily find that (2 + 1*) = 2rr[(a + 
b*)S(k,-p)+(b+a*)S(k,+p)],where S(k,)is 
a delta function. By substituting this latter form of 

(2 + E * ) back into Eq. (7) and by taking an inverse 
Fourier transform, we obtain the space-charge field 
in real space, that is 

EC - &[G(P)(a+h.) exp(ipx) 

+G’( p)(a* +b) exp( -ipx)], (9) 

where the function G( p> has been defined as follows 

G(P)=&--- 
(I+r) 

X ( -h, +i[(% + KJ/e)p + A(K,T/ e)p’] 
(I+ Ap*)*+y’p’ 

(‘0) 

By substituting Eqs. (8) and (9) into Eq. (5) and 
by keeping only synchronous terms leads to the 
following coupled differential equations: 

da 
i-_ ca+G(p)(a+b’)=O, 

dz 2k (114 

db 
i-_ p2b+G*(p)(o’ +b) =O. 

dz 2k (‘lb) 

Eqs. (1 la) and (1 I b) can then be readily decoupled 
into an equivalent set of ordinary differential equa- 
tions: 

d2a 
-= 
dz* 

;G(P)-2 a, 1 
d*b 
-= 
dz2 

;G.(p) - $ b. 
I 

t 124 

t ‘2b) 

From this set, the global instability gain, g,,, can 
be directly obtained and it is given by 

g,, = Re (13) 

where Re{ 1 represents the real part of a complex 
variable. A close inspection of Eq. (13) reveals that 
the MI gain is an even function of p and that it is 
zero at the origin, i.e. at p = 0. 

We will now illustrate these results by means of 
relevant examples. The SBN crystal parameters are 
here taken to be n, = 2.33, r33 = 237 pm/V, E, = 
880 and NA = 3.7 X lo** m-3 [16]. The PR crystal 
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Fig. 1. Global MI gain (solid line), local MI gain (long-dashed 
line) as well as TWM gain (short-dashed line) as a function of 
p/k when E, = 5X IO5 V/m and r = 1. 

is assumed to be at room temperature and, moreover, 
let A, = 0.5 pm. For this set of values, p and k are 
found to be p = 1.88 X lo-’ V-’ and k = 2.93 X 
lo7 m-l. Fig. 1 depicts the MI gain given by Eq. 
(13) (solid line curve) as a function of the dimen- 
sioneless quantity p/k when E, = 5 X lo5 V/m 
and r = 1. Since the MI gain is symmetric with 
respect to p, only the positive p-branch is plotted. 
Moreover, it is important to note that the dimen- 
sioneless ratio p/k represents the angle (in radians) 
at which the plane-wave components of the E(X, z> 
perturbation propagate with respect to the quasi- 
plane-wave optical beam. Fig. 1 shows that, in this 
case, the MI gain curve attains two different peaks, 
one in the low spatial-frequency domain, denoted as 
peak 1, and another one, peak 2, in the high spatial- 
frequency region. The two spatial-frequencies at 
which these two peaks occur, pPl and pPz, as well as 
the corresponding values of the MI gain, i.e. g,, and 
g,,, are found to depend on both the external bias 
field, E,, and the ratio of the optical beam intensity 
to that of the dark irradiance, r. In general, the effect 
of E, and r on the overall MI gain curve can always 
be obtained from Eq. (13). Nevertheless, this depen- 
dence is somewhat involved and, thus, it can only be 
investigated ,by considering each one of them in 
isolation. Let us first begin by considering the effects 
arising from the bias field E,. Figs. 2a and 2b 
illustrate the dependence of the two peak spatial-fre- 
quencies and their respective MI gains on E, when 
r = 1. A careful examination of these figures reveals 

that peak 1 exists only for positive polarities of the 
external bias field. Moreover, Figs. 2a and 2b show 
that both pP, and g,, increase with the magnitude of 
E,. Conversely, pP2 and g,, are found to be sym- 
metric with respect to the polarity of E,, which 
means that they only depend on its absolute strength. 
Furthermore, Fig. 2b shows that gP2 also increases 
with the absolute strength of the bias field. It is also 
apparent from Fig. 2b that, after a particular value of 

Eo, g,, exceeds g,,, which in turn implies that the 
MI gain arising from peak 1 (in the low spatial- 
frequency region) will dominate the process. On the 
other hand, Figs. 3a and 3b depict the variation of 
the two gain peaks as a function of r, when E, = 5 
X 10’ V/m. As one can see, the spatial-frequency 
as well as the gain corresponding to peak 1 attain a 
maximum when r = 1 and, moreover, g,, tends to 
quickly decrease when r +z 0.1 and r z+ 10. 
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Fig. 2. Dependence of (a) the two global peak spatial-frequencies 
and (b) of their respective gains on E, when r = 1. 
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Fig. 3. Dependence of (a) the two global peak spatial-frequencies 

and (b) of their respective gains on r when E, = 5X 10’ V/m. 

As we will see in the next section, in the low 

spatial-frequency domain, the behavior of the MI 

gain curve g,, (g iven by Eq. (13)) is approximately 
identical to that obtained from a local treatment of 
the space-charge field. This local gain is depicted in 
Fig. 1 by the long-dashed line curve. On the other 
hand, in the high spatial-frequency region, the MI 

gain approximately coincides with the gain arising 
from two-wave-mixing (TWM) [12], shown in Fig. 1 
by a short-dashed line. Note that this latter process is 
antisymmetric with respect to the spatial-frequency 
(or p/k) and is known to cause fanning of broad 
optical beams [ 171. Therefore, if for a given set of E, 

and r, gp2 exceeds g,,, one should then anticipate 
that the TWM fanning process will dominate the 
picture and will in turn strongly compete with modu- 
lational instability. Hence, from this point on, the 
gain associated with peak 1 will be the one that we 
will be referring to as the MI peak. Moreover, the 

dependence of pP, on E0 and r, allows one to 

externally control the spatial period of the sponta- 
neously generated filaments. 

Finally, let us provide an example by considering 

the same parameters used to obtain Fig. 1. In this 
case, the MI peak gain and spatial-frequency are 

found to be gp, = 2.3 X 10’ m-’ and pP, = 3.7 X 

lo5 m- ’ , respectively. These results indicate that, in 

a 1 cm long SBN crystal, spatial noise at p/k = 1.26 

X lo-*, or 0.72”, will experience e23.3 = 10” ampli- 

fication. Such noise can always originate from scat- 

tering as well as from striations within the PR crys- 

tal. For this example, the spatial period of the spon- 

taneously generated filaments is expected to be ap- 
proximately 17 pm. 

4. Modulational instability in the absence of 
higher-order effects 

In this section we will also provide for complete- 

ness a local treatment of the MI process by neglect- 
ing higher-order effects in the space-charge field 

equation. A similar approach was followed in previ- 
ous investigations of steady-state PR solitons where 
it was assumed that the drift nonlinearity dominates 
the PR process [3,4]. In particular, by assuming that 
the bias field is strong enough and that the optical 
beam is relatively broad, all the terms associated 
with the process of diffusion (K,T terms) can be 

ignored in Eq. (2). Moreover, under these conditions, 
the dimensionless term {[ E,,E,/(~N~ )](~E,,/c?x)} is 
typically much less than unity. From the above, the 
space-charge field is locally given by 

Es, = 
Eo 

1+IU12’ (14) 

in which case the evolution equation, Eq. (I), takes 
the form 141 

au 1 a21J .!J 
i-+--- 

az 2k ax2 PEO 
1+ IU12 = 

0. ( 15) 

Eq. (15) has the form of a nonlinear Schrbdinger 
equation with a saturable nonlinearity and is known 
to allow solitary wave solutions [4]. Moreover, the 
spatial width and shape of these self-trapped states 
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Fig. 4. Local MI gain as a function of p/k for E, = 4X lo5 
V/m, (short-dashed line) E, = 7X lo5 V/m (solid line), and 
E, = 1 X lo6 V/m (long-dashed-line) when r = 1. 

were also found to depend only on two parameters, 
namely E, and r. 

The MI properties of Eq. (1.5) can then be investi- 
gated by substituting Eq. (4) in Eq. (15) and by 
linearizing in E, i.e. through the evolution equation: 

ag 1 a2E 

%+- 2k &x2 - +pEo(l +r)2 ?- ( E+E*) =o. 

(16) 
Using a procedure similar to that of Ref. [ 181, the 

local MI gain associated with Eq. (16) can be readily 
obtained and is given by 

gl, = Re 

Eq. (17) clearly indicates that the local MI gain, g,, , 
is possible only for positive values of E, and, thus, 
its behavior is approximately the same as that of 
peak 1 of the global MI gain. The local MI gain is 
plotted in Fig. 1 (long-dashed line) for the same 
system parameters used to obtain the global MI gain. 
Note that Eq. (17) could have been directly obtained 
from Eq. (13) by setting A = y = T = 0, in which 
case G(p) = pE,r/(l + rj2. A result similar to Eq. 
(17) was very recently obtained by Castillo et al. 
DOI. 

Fig. 4 shows the MI local gain g,, as a function 
of the dimensioneless ratio P/k for three different 
values of E, when r = 1 and for the same system 

parameters previously considered. Obviously, the 
maximum local MI gain as well as the corresponding 
spatial-frequency increase with E,. Moreover, from 
Eq. (17) the maximum local MI gain and its associ- 
ated spatial-frequency can be obtained and they are 
given by 

ko+-@O r 
g = max 2 (1 +r)2’ 

(18) 

and 

rv2 

P max = kon:(r,,Eo)“2 c1 +r> . (19) 

A close examination of Eqs. (18) and (19) reveals 
that both g,, and pma, attain a maximum when 
r = 1 and, moreover, that they increase with E,. 
Once again, this behavior is similar to that of the 
global MI peak previously obtained. 

To further study the MI process (under local 
conditions), Eq. (15) was solved numerically using a 
beam propagation method [15,19]. A very broad 
bright-like optical beam [20] was used as the input 
beam profile. Numerical errors, inherent to the nu- 
merical procedure, provided the noise source. Fig. 5 
depicts the evolution of the beam intensity profile 
when E, = 4 X lo5 V/m, r = 1 and for the same 
system parameters previously considered. This figure 
also shows that the spatial filaments first develop on 
the top of the input optical beam, where the intensity 
ratio is approximately 1. Fig. 6, on the other hand, 

Fig. 5. Intensity profile evolution of a broad optical beam when 
E,=4X105 V/mand r=l. 
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Fig. 6. Angular power spectrum of a broad optical beam at 

z. = 0.9 cm (solid line) and pma,, /k predicted from theory (dashed 

line) when E, = 4X 10’ V/m and r = I. 

illustrates the angular power spectrum of the same This should have been anticipated, since g,,, attains 

optical beam (solid line curve) at z = 0.9 cm under a maximum at r = 1. However, the results of our 

the same conditions. Moreover, in Fig. 6 we have theory can only be taken approximately in this case, 

also plotted (dashed line) the value of p,,,/k ob- since the optical envelope is no longer constant on 

tained from Eq. (19), which in this case is 0.011. the sides of the optical beam. Moreover, for the same 

Evidently, the two results are in good agreement. reason, one should expect a richer angular spectrum 

Fig. 7 shows the evolution of the optical beam than the one of Fig. 6. Fig. 8 shows the angular 

intensity when r = 4, E, = 4 X 10’ V/m, and for power spectrum at i = 1 cm for the same conditions 

the same system parameters. A close inspection of used in obtaining Fig. 7. Note that, in this case, the 

this figure reveals that the spatial filaments now angular power spectrum is somewhat more involved, 

develop on the sides of the optical beam where the since the MI first appears on the sides of the optical 

normalized intensity is approximately equal to unity. beam. 
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Fig. 7. Intensity profile evolution of a broad optical beam when 

E,=4X10S V/mand r=4. 
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Fig. 8. Angular power spectrum of a broad optical beam at :: = I 
cm when E, =4X lo5 V/m and r = 4. 

5. Conclusions 

In conclusion, we have investigated the modula- 
tional instability of broad (quasi-plane-wave) optical 
beams in biased PR media under steady-state condi- 
tions. The spatial growth rate of the sideband pertur- 

bations was obtained by globally treating the space- 
charge field equation. Our analysis indicates that the 
MI growth rate depends on the strength and polarity 
of the external bias electric field and, moreover, on 

the ratio of the optical beam intensity to that of the 
dark irradiance. This, of course, may allow one to 
externally control the spatial period of the sponta- 
neously generated filaments. Our results were then 
compared to previous procedures where the MI gain 
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was considered by locally treating the space-charge 
field. The two approaches were found to be in good 
agreement in the low spatial-frequency regime pro- 
vided that the external bias field is relatively strong. 
In this region, we have found that the instability 
growth rate increases with the bias field and that it 
attains a maximum when the optical beam intensity 
is approximately equal to the dark irradiance. Con- 
versely, in the high spatial-frequency regime, notable 
differences may exist between these two treatments. 
In particular, our results show that, under low bias 
conditions, beam fanning originating from two- 
wave-mixing may dominate the picture and will thus 
strongly compete with modulational instability. In 
this regime, further experimental studies may be 
required so as to better understand the competition of 
these two processes (MI and TWM) in the evolution 
of the angular power spectrum. 
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