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A theory based on the Kukhtarev—Vinetskii model is developed that provides the evolution equation of
one-dimensional optical spatial solitons in photorefractive media. In the steady-state regime and under
appropriate external bias conditions, our analysis indicates that the underlying wave equation can exhibit

bright and dark as well as gray spatial soliton states.

The characteristics of these self-trapped optical beams

are discussed in detail. © 1995 Optical Society of America

1. INTRODUCTION

Recently two research groups reported the first success-
ful observations of bright spatial soliton behavior in pho-
torefractive (PR) crystals.? In their studies it was found
that these PR self-trapped states can actually display a
host of interesting and potentially useful characteristics.
As previously noted,?* this class of optical solitons can be
observed provided that the PR sample has been appropri-
ately biased (externally) and that the PR crystal has been
properly oriented. In such a case, i.e., under high exter-
nal bias conditions, the drift current dominates, and as a
result the space-charge field® can induce an index wave-
guide by means of the Pockels effect. The latter process
is then capable of counteracting the effects of diffraction,
and thus the end result can be a nondiffracting optical
beam or what is better known as a PR spatial soliton.

Thus far the theory®* of these newly discovered tran-
sient optical solitons has proceeded by directly invoking
the PR two-wave-mixing response function.® In this ap-
proach the self-trapping wave equation has been found
to admit solitary wave solutions of the bright kind.®*
According to this formalism, soliton domains of this sort
are possible only for a well-defined range of external elec-
tric fields. Within this same theoretical framework the
dynamics of Gaussian beams were recently considered®
under similar conditions. Other peripheral issues re-
garding the properties of these solitons have also been
investigated in recent experimental and theoretical
studies.”® On the other hand, under steady-state con-
ditions the external bias field is expected to be nonuni-
formly screened. In this case an alternative approach
is required that is more directly based on the transport
equations of Kukhtarev et al.?

In this paper we develop a theory based on the
Kukhtarev—Vinetskii model that provides the evolution
equation of one-dimensional spatial solitons in PR me-
dia. As will be shown, this equation takes the form of
a nonlinear Schrédinger equation (NLSE) with a higher-
order nonlinearity. In the steady-state regime and under
proper bias conditions, our formalism predicts not only
bright but also dark soliton states as well. This is in
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accord with recent experimental observations of dark soli-
ton behavior in PR crystals.!%1! Moreover, other types
of spatial domains such as gray solitons are also found
to be possible. The properties of these steady-state self-
trapped optical beams are then discussed in detail.

2. THEORETICAL MODEL

Let us consider an optical beam that propagates in a
PR material along the z axis and is permitted to diffract
only along the x direction. In essence, and for simplic-
ity, we will be dealing with a one-dimensional nonlinear
diffraction theory. For illustration purposes, let the PR
crystal be strontium barium niobate'? (SBN) with its op-
tical ¢ axis oriented along the x coordinate. Moreover,
let us assume that the optical beam is linearly polarized
along x and that the external bias electric field is ap-
plied in the same direction. Under these conditions the
perturbed extraordinary refractive index n,’ (along the ¢
axis) is given by® (n.)? = n.? — n.*rssEs, where ras is
the electro-optic coefficient, n, is the unperturbed extra-
ordinary index of refraction, and E, = E. £ is the space-
charge field induced in this PR sample. On the other
hand, the electric-field component E of the optical beam
satisfies the Helmholtz equation

V2E + (kon.)’E =0, (1)

where ko = 27/ Ao and Aq is the free-space wavelength of
the lightwave employed. By expressing E in terms of a
slowly varying envelope ¢, i.e., E = £¢(x, 2)exp(ik2), we
find that Eq. (1) leads to the following paraxial equation
of diffraction:

. 1 k
i, + ﬂ Dax — EQ (ne3r83Esc)¢ =0, @
where k = kon, and ¢, = d¢/dz, etc.

In turn, the induced space-charge field E,. can be ob-
tained from the transport model of Kukhtarev ef al.
Under time-independent or steady-state conditions the

charge-transport equations are given by
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yrnNp ¥ =s;(I + I;)(Np — Np*), (3)
J = e,u(nEsc » Ko gﬁ) ’ (4)
e dx
9 =0 or J = constant, (5)
dax
ESC
P _©_ (Np* — Na-n). (®)
dx 08,

In the above equations s; is the photoexcitation cross sec-
tion, J is the current density, yg is the carrier recombina-
tion rate, & and e are, respectively, the electron mobility
and the charge, n is the free-electron density, Kp is Boltz-
mann’s constant, T' is the absolute temperature, and &,
is the static relative permittivity. Np is the donor con-
centration, N, is the acceptor or trap density, and Np* is
the ionized donor density. Iy is the so-called dark irra-
diance that phenomenologically accounts for (through the
product s;Iy) the rate of thermally generated electrons.
[ = I(x, z) is the power density profile of the optical beam,
which can be also expressed in terms of the envelope ¢
by use of Poynting’s theorem, i.e., I = (n./2n0)|¢ |2, where
m = (ro/€0)"?. Moreover, in Egs. (3)-(6) we have ig-
nored any z spatial dependence by assuming, as usual,®
that the variables involved vary much more rapidly in
ihe x direction.

Even though the space-charge field E,, can be obtained
in principle from Egs. (3)-(6), this task is considerably
involved. However, we can greatly simplify Egs. (3)—(6)
by keeping in mind that the following inequalities hold
true in typical PR media: Np or Ngs =>n and Np* >> n.
In this case, Eqgs. (3)-(6) yield the following results:

. goer OF
NpT =Ny 1+ ——71}>
D A( eN, oz ) (7
-1
si(Np — Ny) £0&, 0E;
= ———>( +1 4 L = .
" YeNa ( d)<1 eNsy ox ®)

Al this point, let us also assume that the power density
I{x, z) of the optical beam attains asymptotically a con-
stant value at x — *x, that is I(x — *x, 2) = .. In
these regions of constant illumination, Egs. (3)-(6) re-
quire that the space-charge field is also independent of x,
ie, Eg(x— +», z) = Ey. Ifthe spatial extent of the opti-
cal wave is much less that the x width W of the PR crystal,
then under a constant voltage bias V, E; is approximately
tV/W. On the other hand, if W is comparable with the
wave’s width, then this approximation breaks down. In
this case the intensity profile of the optical beam has to
be taken into account in order to estimate the appropri-
ate correction factors (see Appendix A). From Eq. (8) the
free-electron density ng in these regions (x — *x) can be
Subsequently determined and is given by

ng = M (Ix + 1y). (9)

YrRN4

Qn the other hand, Eq. (5) implies that the current den-
sity J is constant everywhere and therefore noEy = nE,, +
(KyT/e)an/ax), or
nofy  KpT 1 dn (10)

Esc: -
n e n dx
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Substitution of Eq. (8) into (10) then yields the following

relation:
. + 1) goe, 0E KgT (al/0x)
E,=E,——=|1+ -
T A A eNy dx e (I+1y
_1 2
+ KBT EpE, EQE, aESC a Esc i (11)
e eN, eNsy ox dx2

Under strong bias conditions E, will reach appreciable
values, and as a result the drift component of the current
will be dominant. In this case all the terms associated
with the process of diffusion (K5T'/e terms) can be consid-
ered small and thus can be neglected in Eq. (11). Fur-
thermore, if the power density I(x, z) of the optical beam
varies slowly with respect to x, then in typical PR media
the dimensionless term [(gge,/eNA)(3E./dx)| is expected
to be much less than unity.!* Under these conditions the
space-charge field can be determined from Eq. (11) and is
approximately given by

U< + 1y) .
I+ 1y

The envelope evolution equation can now be established
by insertion of Eq. (12) into Eq. (2). It proves more con-
venient, however, to study this equation in a normalized
fashion. In doing so, let us adopt the following dimen-
sionless coordinates and variables; i.e., let £ = z/(kxg?),
s =x/x9, and ¢ = (2noly/n.)2U. xo is an arbitrary spa-
tial width, and the beam power density has been scaled
with respect to the dark irradiance I;. Using Egs. (2)
and (12), we can then show that the normalized envelope
U obeys the following dynamical evolution equation:

. 1 B+ p)U

lUé + 2 Uss W =
where p = I./I; and B = (kgxo)?(n.*rss/2)E;. To sim-
plify the analysis, we have neglected any loss effects in
Eq. (13). Under a constant voltage bias V, the relation
—[E.dx = V complements Eq. (13) with a conserved
quantity, i.e.,

/% dS(l +p) _ k02x0
_% 1+ |U|? 2

E,. =E, (12)

0, (13)

ne4r33V . (14)

The dimensionless parameter § can be positive or
negative depending on the sign of E; or the polarity
of the externally applied electric field. Strictly speaking,
under strong dynamical evolution conditions Eq. (14) im-
plies that 8 or E, are not constants but instead may vary
with respect to z. As shown in Appendix A, however, if
the x-width W of the crystal is considerably bigger than
the spatial extent of the optical beam, then the quanti-
ties Ey and B become relatively insensitive to the wave's
dynamics and hence can be treated as constants. In the
latter case (i.e., when 8 = constant) Eq. (13) can take the
form of a NLSE with a saturable nonlinearity.'* The sat-
urable nature of this nonlinearity becomes more evident if
one employs the transformation U = u exp[—iB(1 + p)&],
in which case

2

2
ﬂﬂm»”zo' (15)

1
iu§ + = Ugs + B(l + p)(

In what follows we will consider the spatial soliton solu-



1630 dJ. Opt. Soc. Am. B/Vol. 12, No. 9/September 1995

tions of Eq. (13). The various characteristics and prop-
erties of these waves will be discussed in detail.

3. SPATIAL SOLITON STATES

We begin our analysis by considering first the class of
bright soliton states. In this case the optical beam in-
tensity is expected to vanish at infinity (s — *), and
thus I. = p = 0. From Eq. (13) bright-type waves should
therefore satisfy

iU§+iUss AU

It can be directly verified that Eq. (16) can be obtained
from the Lagrangian density

L= (UUS - U*U,) + %USUS* + B In(1 +U[?,

(17N

L
2

and that the bright-wave evolution equation (16) exhibits
the following two conservation laws:

P=f dslU|?, (18a)

Q= [ asl(u2 + p1n+ WP, ash)

where P accounts for the total power conveyed by the
optical beam and @ is associated with the Hamiltonian
density of Eq. (16).

We can obtain the bright solitary wave solutions of
Eq. (16) by expressing the beam envelope U in the usual
fashion: U = r'2y(s)exp(iv¢), where v represents a non-
linear shift of the propagation constant and y(s) is a
normalized real function bounded between 0 < y(s) = 1.
Furthermore, for bright-type solutions we require that
¥(0) =1, y(0) = 0, and that y(s — *®) = 0. The positive
quantity r is defined as r = I,,,/1;, where I ., = I(0); i.e.,
r stands for the ratio of the maximum beam power den-
sity to that of the dark irradiance. Substitution of this
latter form of U into Eq. (16) yields

Yy
=0
1+ ry? ’

¥y —2vy - 28 (19)

where j = d%y/ds?, etc. By integrating Eq. (19) once and
by employing the y-boundary conditions we find that

v=—(8/Mn(l + r), (20)
(92 = (28/r)In(1 + ry?) — y* In(1 + r)]. (21)

Further integration of Eq. (21) leads to

1 1/2 3/
V2, _ 4 rdy ,
2B 'fy (n( + ry?®) ~ y? (1 + npe’ 22

from which the normalized bright-field profile y(s) can
be determined. Unfortunately the nature of the integral
of Eq. (22) is such that it prevents any closed-form solu-
tions. Nevertheless, y(s) can be easily obtained by use of
simple numerical integration procedures. Moreover, it is
straightforward to show that the quantity in the square
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bracket of Eq. (21) is always positive for all values of y2
between 0 = y2 < 1. Therefore bright PR spatial solitong
will be possible only when 8 or E, are positive quantitieg
(so as y2 > 0).

To illustrate our results, we consider the following ey.
amples: Let Ao = 0.5 um, %0 = 40 um, and E; = +9 X
10° V/m. The SBN parameters are taken here tq be
ne = 2.35 and r3; = 224 X 1072 m/V. For this set of
values, 8 = 173. Figure 1 depicts the normalized inten.
sity profiles of such bright PR solitons for three differ.
ent values of r when 8 = 173. This figure demonstrateg
that the two normalized field profiles obtained for r = 1
and r = 10 are quite similar, whereas the profile found
for r = 0.1 is considerably broader. The question naty.
rally arises as to what factors contribute to the FWHM of
these optical beams. To answer this question, one has to
consider Eq. (22). More specifically, Eq. (22) shows that’
the arbitrary width x; is no longer a variable since it hag
been entirely absorbed in the product (28)¥2s. In fact,
in this case the new spatial scale is associated with the
quantity [2/(ko®n.*rs3Eo)]V2, which is again independent
of xo. Whereas the value of E; is directly involved in
the beamwidth, the parameter r tends to determine the
functional form of y(s), and, in doing so, it also indi-
rectly affects the spatial width. In other words, for a
given physical system the spatial beamwidth of these
solitons depends on only two variables, namely, E; and
r= Imax/Id-

The dependence of the intensity FWHM of these bright
solitons on r and Ky is shown in more detail in Fig. 2
for the same system parameters considered above. In
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Fig. 1. Normalized intensity profiles of bright spatial solitons
for B =173, xo = 40 um, and r = 10, 1, and 0.1.

Intensity FWHM
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r

Fig. 2. Intensity FWHM of bright spatial photorefractive soli-
tons versus r in units of £9 = 8000(E)~ V2, where % is in units 0
micrometers and Ey is in units of volts per meter. The system
parameters are taken here to be Ag = 0.5 um, n, = 2.35, an

rag = 224 pm/V.
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this figure the FWHM is measured in units of £y =
8000(5'0)‘1’2, where £, is in micrometers and E; is ex-

ressed in units of volts per meter. Three regions of
different behavior can be immediately recognized in this
plot. In particular, for a given value of E, the FWHM
increases when r = 0.1 and when r = 100, whereas it
remains relatively constant in the region 0.1 =< r = 100.
We can intuitively understand the tendency of the FWHM
1o increase for large values of r (i.e., r > 10%) by keeping in
mind that, in this regime, the nonlinearity reaches over-
saturation. Conversely, for small values of r (r = 0.1),
the FWHM tends again to increase because the nonlinear-
ity is now approaching the Kerr limit. As a result, the
system obeys a NLSE, and the intensity FWHM varies
like r"¥2. The FWHM plateau between 107! = r = 10°
is also quite interesting, as one expects that (in this re-
gion) absorption losses will play a small role in the overall
dynamics of these solitary beams. As previously men-
tioned, these PR bright spatial solitons are always pos-
sible as long as E; is a positive quantity. The only re-
striction arises from the fact that E; must be appreciable
enough that one can justify the neglect of all the diffusion
terms in Eq. (11). Note that, for a given applied voltage
bias V, we can obtain the value of E; for bright solitons
by following the procedure outlined in Appendix A.

The low-amplitude case (r << 1 or |U}? << 1) also de-
serves special consideration. In this limit Eq. (16) is
given by

iU + Y2U,, — U + BIURU = 0, (23)

which is actually a modified version of the fully inte-
grable NLSE.!®* This correspondence can be quickly es-
tablished through the transformation U = u exp(—iB¢).
Therefore Eq. (23) can be formally solved in terms of
the so-called inverse scattering transform,!%!¢ and all the
knowledge regarding the NLSE carries on in this case.
The fundamental bright soliton solution of Eq. (23) is
given by U = r2 sech[(8r)Y2sJexp{i B[(r/2) — 1]¢}, from
which its intensity FWHM can be obtained directly and is
given by FWHM = 1.76[2/(ko%n.*rs3Eor)]¥2. This result
is in agreement with Fig. 2 (when r << 1) and explains
why the FWHM behaves like r~Y2 in this region. Fur-
thermore it is interesting to note that, had one retained
the diffusion term (KgT/e)(oI/ax)I; + I)-! in Eq. (11),
then in this low-amplitude regime Eq. (23) would have
taken the form

e + 12U, — BU + BIUIPU + y(U®U =0, (24)

where y = (KpT/2e)(ko2xon.trys). For relatively broad
9Ptica1 beams this term is known to dominate the dif-
fusion process and is responsible for beam self-bending
effects.® Equations similar to Eq. (24) have been previ-
ously studied extensively within the context of nonlin-
ear fiber optics,'® in which the term y(|U|%),U stood for
lhe effects arising from intrapulse Raman scattering.!”18
Similar procedures!”!8 can therefore be employed here to
describe the beam self-deflection process.

. The case of dark spatial solitons can be analyzed in a
similar fashion. These waves exhibit an antisymmetric
field profile (with respect to x), and, moreover, they are
¢mbedded in a constant intensity background, that is,
I, and p are finite quantities. Therefore from Eq. (13)
dark-type waves should evolve according to
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. 1 U
LU§+-2—USS—B(1+p)m~O. (25)

To obtain stationary waves, we let U = p'2y(s)exp(ivé),

where y(s) is a normalized odd function of s, i.e., y(s —
+w) = +1, y(0) = 0, and all the derivatives of y vanish
at infinity. Substitution of this form of U into Eq. (25)
yields

Y

y—2vy—23(1+p)ﬂ——p—y2=0, (26)
from which one can readily deduce that
v=-3. (27)

Equation (26) can be integrated once and leads to

(%= (—.‘aﬂ)[(y2 - 1re) ln( 1+ py2>] (28)
p 1+p

from which the dark envelope y(s) can be obtained by nu-
merical integration. It can be readily shown that the
quantity in the square bracket of Eq. (28) remains pos-
itive for all values of y2 = 1, and thus 8 or Ey must be
negative so that ¥2 > 0. In other words, the polarity of
the external bias field must be reversed or negative if the
dark PR spatial solitons are to be observed. Figure 3 il-
lustrates the normalized field profile of such a dark PR
soliton in the case in which x; = 40 pum, Ay = 0.5 um,
Ey=-12X10°V/m, p =1, and 8 = —103. The SBN
parameters are taken to be the same as those considered
in the previous examples. Again, for a given physical
system the spatial extent of these dark waves depends
only on two variables, namely, 8 and p or Eg and ... In
the low-amplitude regime, i.e., when p << 1 or |U|? << 1,
Eq. (25) takes the form of a NLSE:

iU, + YV2Uy,, — Bl + p)(1 = IUPU =0, (29)

the dark soliton solutions of which are given by U =
p¥2 tanh{((-B)p(1 + p)]"2slexp[—iB(1 — pHé] It is
worth pointing out that dark optical solitons have been re-
cently observed experimentally in PR media.'®!!  Again,
we can obtain the value of E; from the bias voltage V by
following the results of Appendix A.

Another interesting class of solitary waves can also be
obtained from Eq. (25). As will be later shown, these cor-
respond to gray solitary states.’® In this case the wave
power density attains a constant value I. at infinity, re-
sulting in a finite p. Thus this family of waves is also

Normalized Dark Envelope

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
s

Fig. 3. Normalized field profile of a dark solitary wave when
B = -103, xo = 40 um, and p = 1.
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expected to evolve according to Eq. (25). To obtain these
solutions, let us express U in the following fashion:

s Jds' )] ,
y4(s")

where in this section ¢ is a real constant to be determined.
For this class of stationary states the normalized ampli-
tude y(s) is an even function of s and satisfies the condi-
tion y(s — %) = 1. All the derivatives of y are also zero
at infinity. Moreover, we will assume that y%(s =0) =m
(i.e., the intensity is finite at the origin) and that ¥(0) = 0.
Substitution of Eq. (30) into Eq. (25) then yields the fol-
lowing ordinary differential equation:

U= pwy(s)exp[ i( vé + (30)

, J?
y—2vy—ﬁ—2ﬁ(1+p)———y =0.

1+ py? (1)

Using the boundary conditions of y at infinity, we find that
J2=-20v + B), (32)
and by further integrating Eq. (31) we obtain

I C:) [m(1+p) 1n(1+pm> +(1_m)}
p

T (m - 1)2 p 1+
(33)
and
SCE 2 _ 28 1+ py?
(9 =2v(y* - 1) + » (1+p)1n(————1+p )
— N2
Lo + B)(l = ) 34)

Given a physical system and a set of parameters 8, p, m,
the quantities J and » can be determined from Egs. (32)
and (33). The set (8, p, m) has to be judiciously se-
lected so that (y)? is positive for all values of y? and
that J2 > 0. Subsequently, the normalized amplitude
y(s) can be readily obtained by numerical integration of
Eq. (34). It can be shown that these solitary waves are
possible only when m < 1and 8 < 0. Therefore this class
of solutions is related to the dark family, and, in fact, they
represent a generalization of the so-called gray solitons
previously found'® in connection with the NLSE. Unlike
their bright/dark counterparts, their phase is no longer
constant across s but instead varies in a rather involved
fashion; i.e., it follows the term exp{i [ds'[J/y*(s"]} of
Eq. (30). Figure 4 shows the normalized intensity pro-
file of a gray spatial PR soliton when p = 5, xo = 40 pum,
m =04, and 8 = —34.5.

Finally, it is interesting to compare these steady-state
spatial solitons with those previously obtained on the ba-
sis of the two-wave-mixing response function.®*® First
of all, Egs. (18) and (25) now predict both bright and
darklike soliton states, unlike the evolution equation of
Refs. 3, 4, and 6 that exhibits only bright solitary waves.
Even within the subset of bright stationary waves,
significant differences also exist. In particular, we have
found that bright solitons are always possible whenever
E, > 0, and thus E; does not have to lie within a narrow
range of values, as previously predicted. The only re-
striction in this case arises from the fact that the applied
bias field strength E, must be appreciable enough that
the drift current dominates and thus the diffusion terms
in Eq. (11) can be neglected. Moreover, we have shown
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that the spatial extent of these waves is not arbitrary (aS E
in the case of transient solitons), but instead it is \lniquely 3
determined for a given physical system by E; and r (or
p). The ratio of the maximum power density of these ’
steady-state waves with respect to the dark irradiance2

was also found to play a key role.

4. CONCLUSIONS

In conclusion, a theory based on the Kukhtarev—Vinetski;
model has been developed that provides the evolution
equation of optical spatial solitons in photorefractive me.
dia. Under strong external bias conditions and in the
steady-state regime, our analysis indicates that the up.
derlying wave equation takes the form of a NLSE with 4
higher-order nonlinearity. Subsequently, this equation
was found to exhibit a variety of solitary wave solutions,
which include bright, dark, and gray stationary states,
Moreover, it has been shown that the bright family of
solutions is possible only when Ey > 0, whereas the dark
branch requires the polarity of the external bias field to be
reversed. The dependence of the spatial extent of these
waves on relevant parameters was also considered in de-
tail. In closing, we point out that there are a number of
additional issues that merit further investigation. These
include the dynamical behavior and stability of these PR
solitons as well as their response to loss and diffusion ef-
fects, topics we hope to address in the future.

APPENDIX A

To evaluate Eg in terms of V, W, r, or p, we first sim-
plify Eq.(13) by introducing new dimensionless vari-
ables, ie., n = (IB)Y%s = ax and ¢ = |B|£, where
a = (ko2n.trs3lEol/2)Y2. For SBN:60 and at A = 0.5 um,
a =~ 7.34 X 10%(|E,[)2 m™!, provided that Eg is expressed
in volts per meter. Using these transformations, we see
that Eq. (13) takes the form

=0.

iu; + %U,,,, FA+p) (A1)

U
1+ |U|?
The upper sign in the minus-or-plus symbol corresponds
to B > 0, whereas the lower one corresponds to negative
B’s. As previously noted, the bright solitons of Eq. (A1)
are given by |U|? = ry?(n) and the dark ones by U=
py*(n). If we define 7 as a half-spatial extent of these
solitary waves, that is, y2(5) = 1 X 107* for bright waves
and y2(#) = 0.9999 for dark domains, then it is straight-
forward to show (by use of their x symmetry) that

Normalized Intensity

1 1 1 | 1 1

-1.2 -0.8 -0.4 0 0.4 0.8 1.2
s

Fig. 4. Normalized intensity versus s for a gray spatial soliton
state when xg = 40 um, p =5, 8 = —34.5,and m = 0.4.
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Fig. 6. Correction factor hp for dark photorefractive solitons
versus p.

v-@fﬁ_(lﬂp)dn aW |
‘”‘2&[0 1+iwe \z " (42)

Equation (A2) can also be rewritten as V| = WIE,} +
h{(Eo])"2, where the correction factor h depends on r or
p and is defined as follows:

b 2 ]'.’(1+p)d77_,\ )
734 %102 Jo 1+ |UJ? K

The correction factors for both bright and dark solitary
waves have been evaluated by use of their functional
forms and are plotted in Figs. 5 and 6 versus r and p, re-
spectively. Given r or p, the value of Ey can be obtained
from the previous quadratic equation and is given by

(A3)

(Ad4)

2
—h +Jh2 + 4AW|V
|Eol = Vi .
2W

It can be easily shown that, for [A2/(IVIW)] << 1, ie,
when W is big enough, E, is approximately given by V/W.
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_NOte added in proof: Since this manuscript was sub-
"!ltted a similar treatment of bright and dark solitons in
lased PR media was presented by Segev et al.?!
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