Optimizing Video P2P Streaming over Wireless Mesh Networks

Nuno Salta, Ricardo Morla, Manuel Ricardo
Outline

• Introduction
• Work Context
• Problem Statement
• Proposed Solution
• Testbed
• Results
• Future Work
• Conclusion
Introduction

• Internet paradigm is changing in the recent years

• WLANs are
 – Changing the way people access Internet
 – Contributing to the Always Best Connected concept
 – Wireless Mesh Networks (WMN) enables further possibilities

• Peer-to-Peer is playing a decisive role in Internet
 – P2P traffic produced is one of the dominant on the Internet
 – User-side overlay networks created over physical networks
 – Video P2P is an emerging research topic
Work Context: WMN

- WMNs are dynamically self-organized and self-configured

- WMNs features
 - Links to multiple neighbours
 - L2 routing
 - Extended coverage

- Can be deployed on
 - Urban centres
 - Shopping areas
 - Public transportation systems

- Some standards
 - 802.11s, 802.15.5, 802.16j
Work Context: Video P2P

- Distribution types
 - Video-on-demand
 - Live feed streaming

- Applications can be classified as
 - Tree based
 - Swarm based

- Important parameters
 - Delay
 - Jitter
 - Chunk priority
Work Context: Swarm based

- Similar with the traditional P2P file sharing
- Each peer can receive from multiple parents
- A peer can be parent or child in different times
 - Request-reply scheme
 - More flexible
- More resilient to node departures
- Allows better support for mobility
Work Context: Motivation

- **P2P applications**
 - Deployed over physical networks
 - Peers selected from those having the demanded contents
 - Closest path defined at the application layer
 - Application layer paths may be suboptimal

- **In the Internet is difficult to match the physical and the overlay topologies**
 - Multiple domains and types of routing
 - Not all nodes support applications
 - Usually only the edge nodes are in the overlay network
Work Context: Motivation

- In Wireless Mesh Networks, these limitations may not apply

- WMNs have features that may improve P2P performance:
 - Routing behaviour similar to P2P applications
 - Nodes often appear/disappear/move, as in P2P applications
 - Most of the nodes may contain P2P application layer

- WMN topology and overlay topology can mapped in more effective way
Problem Statement: Reducing duplicated content

- In real-time more than one node may need the same chunk
 - Duplicated content
 - Wasted bandwidth

- Minimize requests for the same chunk
 - Opportunistic capture
 - Multicast-like behaviour but maintains P2P nature
 - Avoid nodes using other streams
 - Define routes (dynamic trees)
Problem Statement: Reducing duplicated content
Problem Statement: Reducing duplicated content

- In real-time more than one node may need the same chunk
 - Duplicated content
 - Wasted bandwidth

- Minimize requests for the same chunk
 - Opportunistic capture
 - Multicast-like behaviour but maintains P2P nature
 - Avoid nodes using other streams
 - Define routes (dynamic trees)
Testbed

- 3 virtual machines
- P2P App: Swarmplayer
 - Swarm-based app
 - Uses modified Bittorrent
- Video stream of 100 kbyte/s
- Traffic captured at middle node
 - Application based on libpcap
 - Stores data for P2P app
 - P2P app modified to use capture data
Results

• Objectives
 - Show the reduction of duplicated content
 - Usage of the links

• 4 flows defined
 - Seeder to middle node
 - Seeder to farthest node
 - Middle node to farthest node
 - Farthest node to middle node

\[T_{\text{total}} = T_{s \rightarrow m} + T_{s \rightarrow f} + T_{f \rightarrow m} + T_{m \rightarrow f} \]
Results: Duplicated Content – Original Solution

![Diagram of network with nodes S, M, F and traffic flow]

\[TFS = \frac{T_{s \rightarrow m} + T_{s \rightarrow f}}{T_{total}} \]

\[TFF = \frac{T_{f \rightarrow m}}{T_{total}} \]

\[TTF = \frac{T_{m \rightarrow f}}{T_{total}} \]

\[DT = \frac{T_{\text{duplicated}}}{T_{total}} \]

Traffic From Seeder **Traffic To Farthest node** **Traffic From Farthest node** **Duplicated Traffic**
Results: Duplicated Content – Original Solution

\[
TFS = \frac{T_{s\rightarrow m} + T_{s\rightarrow f}}{T_{total}} \quad TTF = \frac{T_{m\rightarrow f}}{T_{total}} \quad TFF = \frac{T_{f\rightarrow m}}{T_{total}} \quad DT = \frac{T_{\text{duplicated}}}{T_{total}}
\]

- Traffic From Seeder
- Traffic To Farthest node
- Traffic From Farthest node
- Duplicated Traffic
Results: Duplicated Content – Proposed Solution

Duplicated content reduced from 47% to 1.32%

Almost no traffic between receivers
Results: Link 1

Original solution: 192.52 kbyte/s
Proposed solution: 105.72 kbyte/s
Results: Link 2

Original solution: 109.73 kbyte/s
Proposed solution: 105.72 kbyte/s
Future Work

- Modify Bittorrent to explicit inform other nodes
- Test with more nodes
- Tweak some parameters
- Explore locality awareness
- Address mobility
Conclusions:

• WMNs and Video P2P are emerging

• WMNs can be explored to improve Video P2P performance
 – Reducing duplicated content by opportunistic capture
 – Multicast-like behaviour whilst maintaining P2P nature

• Modified P2P app to support captured traffic

• Results show
 – Reduction of duplicated content using the proposed solution
 – Reduction of traffic on the links - 300 kbyte/s to 211 kbyte/s