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a b s t r a c t 

Background and Objective: Glaucoma, an eye condition that leads to permanent blindness, is typically 

asymptomatic and therefore difficult to be diagnosed in time. However, if diagnosed in time, Glaucoma 

can effectively be slowed down by using adequate treatment; hence, an early diagnosis is of utmost 

importance. Nonetheless, the conventional approaches to diagnose Glaucoma adopt expensive and bulky 

equipment that requires qualified experts, making it difficult, costly and time-consuming to diagnose 

large amounts of people. Consequently, new alternatives to diagnose Glaucoma that suppress these issues 

should be explored. 

Methods: This work proposes an interpretable computer-aided diagnosis (CAD) pipeline that is capable 

of diagnosing Glaucoma using fundus images and run offline in mobile devices. Several public datasets 

of fundus images were merged and used to build Convolutional Neural Networks (CNNs) that perform 

segmentation and classification tasks. These networks are then used to build a pipeline for Glaucoma 

assessment that outputs a Glaucoma confidence level and also provides several morphological features 

and segmentations of relevant structures, resulting in an interpretable Glaucoma diagnosis. To assess the 

performance of this method in a restricted environment, this pipeline was integrated into a mobile ap- 

plication and time and space complexities were assessed. 

Results: Considering the test set, the developed pipeline achieved 0.91 and 0.75 of Intersection over Union 

(IoU) in the optic disc and optic cup segmentation, respectively. With regards to the classification, an 

accuracy of 0.87 with a sensitivity of 0.85 and an AUC of 0.93 were attained. Moreover, this pipeline runs 

on an average Android smartphone in under two seconds. 

Conclusions: The results demonstrate the potential that this method can have in the contribution to an 

early Glaucoma diagnosis. The proposed approach achieved similar or slightly better metrics than the cur- 

rent CAD systems for Glaucoma assessment while running on more restricted devices. This pipeline can, 

therefore, be used to construct accurate and affordable CAD systems that could enable large Glaucoma 

screenings, contributing to an earlier diagnose of this condition. 

© 2020 Published by Elsevier B.V. 
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. Introduction 

Glaucoma is a group of chronic eye diseases and a leading cause

f irreversible blindness worldwide [1] . 

The rise of intraocular pressure (IOP) inside the eye is consid-

red the main cause of Glaucoma. This pressure damages the optic

erve and is usually related to an inability of the eye to properly

anage the balance between the amount of fluid that is produced

nd the amount that is drained [2] . Although it is confirmed that
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he raised intraocular pressure is a causal risk factor for Glaucoma

nd the only one that can be treated, it is neither sufficient nor

ecessary for the diagnosis of the disease [3] . 

In the majority of Glaucoma cases, no early symptoms or pain

ccur, and for that reason, Glaucoma is often called a ‘silent thief

f sight’. 

Furthermore, the usual approaches to diagnose Glaucoma are

erformed by ophthalmologists and consist of a comprehensive

ye examination. This encompasses an external examination of the

ye, ocular mobility, examination of the pupil, slit lamp exami-

ation, tonometry, gonioscopy, and perimetry [3] . These methods

equire trained professionals and expensive equipment; therefore,

ue to the high costs incurred by them, some are only performed
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Fig. 1. Fundus image [5] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Fundus Image ROI [6] . 
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if Glaucoma is already suspected, which contributes to an increas-

ing number of undiagnosed Glaucoma cases. 

This number of undiagnosed cases is a big concern in the

healthcare community since, despite being irreversible, Glaucoma

can be effectively slowed down with appropriate treatment, phar-

maceutical or surgical [4] , therefore reducing the risk of total

blindness. Hence, achieving an early diagnosis of Glaucoma is of

utmost importance. This results in the demand for new diagnose

techniques that aid or replace the existing ones, turning Glaucoma

assessment into a more efficient process. 

To respond to this demand, fundus images can be used. These

images, illustrated in Fig. 1 , have the necessary morphological fea-

tures to diagnose several eye conditions, like Glaucoma, the topic

of this work. 

The region of interest (ROI), illustrated in Fig. 2 , shows the most

relevant structures for Glaucoma diagnosis present in fundus im-

ages. These structures are the optic disc and optic cup. 

This work contributes to improve Glaucoma management by

proposing an interpretable pipeline for Glaucoma detection pow-

ered by fundus images that can run offline on mobile devices and

achieves better or comparable results to the state-of-the-art tech-

niques in classification and segmentation tasks. 

2. Related work 

The first relevant implementations of CAD systems for Glau-

coma detection with fundus images started to arise in 2008 [2] .

Since then a significant collection of approaches has been pro-

posed. 

In 2016, A. Singh et al. [7] achieved an accuracy of 0.947. They

started by identifying the center of the disc, performing the disc

segmentation afterward. Then, the intuition that blood vessels rep-

resent noisy pixels that affect the performance of the system led

to the removal of these vessels from the obtained optic disc im-

ages. After this step, feature extraction was accomplished using

first level discrete wavelet decomposition that resulted in a fea-

ture vector of 18 features. For feature selection, two approaches

were tried, genetic algorithms and Principal Component Analysis

(PCA). The final feature vectors of each technique were then tested
ith several classifiers (Support Vector Machine (SVM), K-Nearest

eighbors (KNN), Random Forest, Naive Bayes, and Artificial Neural

etworks (ANN)). Since the fundus images are from a local dataset

f 63 images, which is rather small, leave-one-out cross-validation

as also performed to account for overfitting issues. The best per-

orming models were the SVM and KNN, with PCA feature selec-

ion that resulted in only 2 components. Both of these classifiers

btained 0.947 accuracies. 

More recently, Deep Learning approaches are proving to be ca-

able of surpassing the existing techniques and are being heavily

pplied. 

H. Fu et al. [1] proposed a new segmentation approach of

he optic disc and cup. The novelty of this work consists in the

oint segmentation of the optic disc and optic cup since most ap-

roaches achieve this segmentation separately. To deal with this

oint segmentation the work also proposes a new joint loss metric.

he first step of this method is the transformation of the fundus

mage to the polar coordinate system, in order to enlarge the cup

epresentation. Next, the segmentation is performed with a CNN,

onsisting of four key parts, the multi-scale input layer, U-shape

rchitecture, a side output layer, and the mentioned joint loss met-

ic. Several tests were performed in different conditions and it was

oncluded that the polar transformation attains a relevant perfor-

ance gain. Glaucoma screening was then performed calculating

he cup to disc ratio value and an AUC of 0.899 in the private SCES

ataset was obtained. 

A more recent approach by Z. li et al. [8] uses the Inception-

3 architecture, that has already proven its success in other tasks.

he images were resized to 299 × 299 and the RGB values were

ormalized between 0 and 1 before feeding the images to the net-

ork. A minibatch gradient descent of 32 was used in combination

ith the ADAM optimizer and a 0.002 learning rate. The key aspect

f this approach is its dataset since a total of 70 0 0 0 fundus images

ere downloaded from an unlabeled dataset and 48116 of those

mages were selected after verifying that they include a visible op-

ic disc. After this, 21 ophthalmologists performed the classification

f these images in an online platform and multiple interpretations

f each image were obtained for quality control. The result was
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Table 1 

Image count per dataset. G and NG represent Glaucoma and No- 

Glaucoma, respectively. 

Dataset G NG Total 

Origa [9] 168 482 650 

Drishti-GS [10] 70 31 101 

RIM-ONE r1 [11] 40 118 158 

RIM-ONE r2 [12] 200 255 455 

RIM-ONE r3 [12] 148 170 318 

iChallenge [13] 80 720 800 

RIGA [14] 749 749 
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9745 images, where 31745 were used as a training set and 80 0 0

s a validation set. The system achieved an AUC of 0.986, 0.956

ensitivity and 0.920 specificity, which demonstrates the relevance

f the dataset size and provides further evidence about the success

f deep learning techniques for Glaucoma detection. 

These approaches, however, do not target mobile devices and

espite the better results achieved recently with deep learning

echniques, these solutions have little or no concerns with respect

o the interpretability of the decision. 

. Proposed methodology 

The proposed methodology explores deep learning techniques

o build a Glaucoma assessment pipeline with a focus on inter-

retability and space and time complexities. 

.1. Datasets 

To construct a robust dataset for the two main tasks of this

ork, segmentation and classification, several publicly available

atasets, listed in Table 1 , were merged. 

Firstly, a dataset for segmentation tasks of both the optic disc

nd optic cup was created merging the Origa, Drishti-GS, iChal-

enge, RIM-ONE r3, and RIGA datasets, resulting in a total of 2618

mages. In the datasets where several annotations were provided

or the same image, the considered ground truth was the region of

greement between the annotators. 

Lastly, for the classification task, Origa, Drishti-GS, RIM-ONE

r1,r2,r3) and iChallenge were merged, resulting in 2482 images.

urthermore, only two classes were considered, Glaucoma and No-

laucoma, since most datasets only included a binary classification

or Glaucoma. 

Additionally, when considering the RIM-ONE r3 dataset, which

onsisted of stereo images, each of these images was divided into

wo, and considered as a separate case. With this in mind, the

umber of images in this dataset increased from 159 to 318. 

.2. Augmentation 

Real-time data augmentation was used since it is robust and

asy to implement, not requiring additional disk space to save the

ugmented images and providing different images in every batch

f data. 

The augmentation pipeline consists of four main steps that are

pplied in random order and from augmentation to augmentation

ome of them might even be skipped. The first step consists in the

pplication of blur to the image, this blur can be either a gaus-

ian, average or a median blur. Secondly, contrast normalization is

erformed by moving the pixel values away or closer to mid-scale.

hen, changes in the brightness and sharpness of the images are

lso employed. 
.3. Segmentation 

When considering Glaucoma, the optic disc and optic cup are

he most important structures to segment, since they can power

he calculation of several morphological features and the crop of

he ROI in the full fundus image. 

To target the first task, an architecture entitled GFI-ASPP-Depth

as developed to perform joint segmentation of the optic disc and

ptic cup in a ROI image. 

This network has a U-shaped structure where the encoding

ath consists of four depth levels. In each depth level, two depth-

ise separable convolution blocks, inspired in the MobileNet archi-

ectures [15,16] , are employed with 3 × 3 kernels, the number of

lters starts at 32 and is then doubled on every transition to the

ext depth level. 

The transition to the next depth level is performed through av-

rage pooling with a pool size of 2. Average pooling was selected

n detriment of max pooling since the literature reports better re-

ults on similar tasks [17] . Furthermore, two inputs are used in the

etwork in the first two depth levels and skip connections between

he encoder and decoder path are present at every depth level to

rovide more spatial context to the decoding path. 

When it comes to the transition from the encoder to the de-

oder path, an ASPP module [18–20] was chosen, consisting of four

arallel padded atrous convolutions with dilation rates of 1, 2, 4

nd 7. Additionally, image-level features obtained by performing a

lobal average pooling on the original feature map are also used.

his is done because when the dilation rate increases, the number

f filters weights that are applied to the valid feature region (re-

ion without the padded zeros) declines. The inclusion of image-

evel features helps to mitigate this problem and include more

lobal context in the network [19] . 

Then, the result of each level of the ASPP module and the

mage-level features are concatenated and the decoding path

tarts. This is very similar to the encoding path, however, in here,

he transition to an upper level leads to the decrease in the num-

er of filters in each convolution by a factor of 2 and is done with

earest interpolation. Finally, in the first two depth levels of the

ecoder, two outputs are generated and then averaged to form the

nal segmentation prediction. 

This architecture consists of a total of 1,152,131 parameters and

s represented in Fig. 3 . 

Additionally, given that the segmentation of the optic disc is a

impler task than the joint optic disc/cup segmentation or the op-

ic cup segmentation alone, a lighter and smaller architecture en-

itled GFI-SPP-Depth-simple was created. This network only per-

orms optic disc segmentation that can then be used to quickly

btain a ROI image. 

This network is similar to GFI-ASPP-Depth, but starts with 16

lters in the first depth layer instead of 32 that then increases and

ecreases in the same way as GFI-ASPP-Depth. Moreover, the tran-

ition between the encoder and decoder path consists solely in the

oncatenation of global average pooling performed on the original

eature map, the result of a convolution block applied to the origi-

al feature map and the original feature map itself. Resulting in an

rchitecture with 271,929 parameters. 

Both networks were trained using an Nvidia GPU Tesla V100 af-

er resizing the images to 224 × 224 and performing data normal-

zation. The multi-label dice loss was selected [1] , together with

he ADAM optimizer with a learning rate of 0.0 0 01. Additionally,

he learning rate was reduced during the learning process by a

actor of 2 if the validation loss was not improved in the last 10

pochs. Furthermore, the model was trained for 200 epochs, with

arly stopping if no improvements are verified in the validation

oss after 20 epochs to mitigate overtraining. 
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Fig. 3. GFI-ASPP-Depth architecture diagram. 

Fig. 4. Evolution of the loss during a GFI-ASPP-Depth training session. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Segmentation performance comparison with state-of-the-art meth- 

ods trained with the ORIGA dataset. Achieved results obtained on 

the test set of the dataset described in 3.1 . 

Method IoU disc IoU cup 

Transcribed from [1] 

R-Bend [22] 0.871 0.605 

ASM [23] 0.882 0.687 

Superpixel [24] 0.898 0.736 

LRR [25] – 0.756 

QDSVM [26] 0.89 –

U-net [27] 0.885 0.713 

M-net [1] 0.917 0.715 

M-net + PT [1] 0.929 0.77 

Achieved results 

M-net (self-trained) [1] 0.87 0.70 

GFI-ASPP-Depth 0.91 0.74 

GFI-SPP-Depth-Simple 0.89 –
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Considering GFI-ASPP-Depth in particular, the input images fed

to the network consist of the ROI images enhanced with CLAHE

[21] and the model was trained with a batch size of 16. This model

was used for joint segmentation of the optic disc and optic cup,

both with 0.5 weights in the multi-label dice loss. 

In the GFI-SPP-Depth-simple case, a batch size of 16 was again

used, but the input images were the center cropped full fundus

images. 

The validation approach consists of a stratified train/val/test

split with 80/10/10 proportions of the original dataset. Fig. 4 dis-

closes the evolution of the training and validation loss for a given

split in a training session with the GFI-ASPP-Depth model. The

type of convergence was identical in the GFI-SPP-Depth-simple

model. 

Moreover, Table 2 reveals the achieved results of the developed

networks along with the results of other methods from the litera-

ture. 

One issue when comparing these models with the literature is

that the used datasets and, consequently, the validation approaches

often differ significantly, making a direct comparison unfair in

some cases. To mitigate this issue, the M-net model [1] with-

out polar transformation (PT), was trained with the segmentation

dataset used in the developed models. Afterward, the results of
his model can be directly compared with GFI-ASPP-Depth and

FI-SPP-Depth-Simple. 

Furthermore, the state-of-the-art results extracted from [1] ,

ompare conventional methodologies with deep learning ap-

roaches and are comparable between themselves. Hence, by com-

aring the obtained M-net result with the result in the referred

aper and then with the other state-of-the-art methods, it is pos-

ible to establish a point of comparison between all models. 

The results indicate that the developed models outperform the

ost recent methods while being considerably faster and smaller.

or instance, in comparison with the M-net model, the number of

arameters is around 7 times smaller in GFI-ASPP-Depth and 31

imes smaller in GFI-SPP-Depth-Simple. 

Regarding wrong segmentations obtained by the developed

odels, the lack of contrast and the presence of reflections in the

undus image were identified as the main causes. 

.4. Morphological features 

The segmentation predictions of the optic disc and cup ob-

ained by GFI-ASPP-Depth can then be used to calculate several

orphological features. 

In this work, the cup to disc ratio was calculated based on both

he vertical length (VCDR) and the area of the cup and the disc

CDR). The enlargement of this ratio is known as ‘cupping’ [2] and

an be classified into mild (CDR up to 0.4), moderate (CDR be-
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Fig. 5. Evolution of the loss during GFI-C training session. 
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ween 0.5 and 0.7) and severe (CDR above 0.7) Glaucoma classes

4] . Rim to disc area ratio (RDAR), was also calculated as it also

rovides an interpretation of the optic nerve head shape. 

Furthermore, the ISNT rule states that, in normal eyes, the

euro-Retinal Rim (NRR) width in the inferior section (I) of the ROI

s greater than in the superior section (S) which in turn is greater

han the area in the nasal section (N) which in turn is greater than

he area in the temporal section (T); this can be translated by the

ollowing inequation. 

 > S > N > T (1) 

It has been declared that the compliance of this rule is useful in

ifferentiating normal from Glaucomatous optic nerves and is not

ffected by race [28] . Therefore, ISNT values and rule compliance

ere also computed. 

.5. Classification 

To obtain a Glaucoma confidence level, a classification network,

ntitled GFI-C, was created using MobileNetV2 [16] feature extrac-

or as a backbone. 

After the MobileNetV2 block, global average pooling is per-

ormed to flat the feature maps and then two fully connected lay-

rs, interleaved by heavy dropouts, are performed, resulting in an

rchitecture with 2,299,521 parameters. 

To better assess the impact of the MobileNetV2 backbone,

ther backbones have also been experimented, namely, VGG16 and

GG19 [29] , InceptionV3 [30] and ResNet50 [31] . 

All the models were trained using a Nvidia GPU Tesla V100,

atch size of 64, learning rate of 0.0 0 0 01, and resized 224x224 ROI

ropped images with CLAHE transformation as input. The valida-

ion approach was the same followed in the segmentation models.

urthermore, callbacks to reduce the learning rate by a factor of 2

fter 10 epochs and interrupt the training session after 20 epochs,

f no improvements are achieved in the validation loss, were also

sed to prevent overtraining. With regards to the backbones, Ima-

eNet weights were used on all networks and all the layers were

rained. 

Fig. 5 reveals the evolution of the training and validation loss

or a given split in a training session with the GFI-C architecture. 

Table 3 discloses the achieved results on the test set and the re-

ults of other methods from the literature. The proposed approach

ccomplishes very similar metrics to the most recent method (DL

), which consists of a network with around 30 million parameters,

nd is, therefore, more suitable for integration in computational re-
tricted devices. s  

Table 3 

Classification performance comparison with state-of-the-art method

method consists in a machine learning or deep learning approach, 

No-Glaucoma cases is marked with ‘ −’ and the number of Glaucoma 

for accuracy, sensitivity, and specificity, respectively. Achieved results 

Method Datasets 

Transcribed fr

ML 1 - Maheshwari et al. [33] RIM-ONE r2 + Private (280+/285

ML 2 - Acharya et al. [34] Private (559+/143 −) 

DL 1 - Al-Bander et al. [35] RIM-ONE r2 (200+/255 −) 

DL 2 - Fu et al. [36] ORIGA (168+/482 −) 

DL 3 - Li et al. [8] Private (48116) 

DL 4 - Christopher et al. [37] Private (5633+/9189 −) 

DL 5 - Mitsuhashi et al. [38] Private (1364+/1768 −) 

DL 6 - Antón et al. [32] Private + RIM-ONE r1,r2,r3 + Dri

Achieved re

DL 7 - GFI-C Dataset in 3.1 (706+/1776 −) 

DL 8 - GFI-C-VGG16 Dataset in 3.1 (706+/1776 −) 

DL 9 - GFI-C-VGG19 Dataset in 3.1 (706+/1776 −) 

DL 10 - GFI-C-InceptionV3 Dataset in 3.1 (706+/1776 −) 

DL 11 - GFI-C-ResNet50 Dataset in 3.1 (706+/1776 −) 
.6. CAD pipeline 

The developed segmentation and classification models along

ith the calculation of the morphological features were then as-

embled to construct an interpretable Glaucoma CAD pipeline. 

The pipeline, illustrated in Fig. 6 , starts with an acquired full

undus image; this image is then center cropped and the GFI-SPP-

epth-simple model is employed to segment the disc in step ‘ (1) ’.

his segmentation is then used to transform the full fundus im-

ge in a ROI image during step ‘ (2) ’, followed by the CLAHE trans-

ormation. The CLAHE ROI image is then utilized for two differ-

nt tasks that build the pipeline outputs. First, in step ‘ (3) ’, GFI-

SPP-Depth is used to obtain an optic disc and cup segmenta-

ion. This powers the calculation of several morphological features,

hat contribute to the interpretability of the decision. Additionally,

tep ‘ (5) ’, consists of running the images outputted from step ‘ (2) ’

hrough the GFI-C network, resulting in a Glaucoma confidence

evel. 

Finally, the decision is built, consisting of the Glaucoma confi-

ence level and the calculated morphological features. 

.7. Mobile integration 

To assess the performance of the developed pipeline in a re-

tricted environment, it was integrated into a mobile application.
s. In the methods column, ML and DL , indicate whether the 

respectively. Considering the datasets column, the number of 

cases is marked with ‘ + ’. The metrics Acc, Sens and Spec stand 

obtained on the test set of the dataset described in 3.1 . 

Acc Sens Spec AUC 

om [32] 

 −) 0.81-0.98 – – –

0.95 – – –

0.88 0.85 0.89 –

– 0.84 0.92 0.91 

– 0.95 0.92 0.98 

– 0.88 0.95 0.91 

– – – 0.96 

shti-GS (494+/1819 −) 0.88 0.87 0.89 0.94 

sults 

0.87 0.85 0.88 0.93 

0.86 0.81 0.88 0.95 

0.87 0.83 0.89 0.95 

0.90 0.80 0.94 0.95 

0.88 0.83 0.90 0.93 
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Fig. 6. Proposed pipeline. 

Fig. 7. Pipeline integration in a mobile environment. 

Table 4 

Metrics of the models used in the Glaucoma assessment pipeline (Obtained 

on a Samsung Galaxy S8). 

Model CPU (ms) GPU (ms) Size (mb) 

GFI-SPP-Depth-simple ≈ 250 ≈ 215 1.1 

GFI-SPP-Depth-simple_quantized ≈ 280 ≈ 220 0.3 

GFI-ASPP-Depth ≈ 580 ≈ 450 4.6 

GFI-ASPP-Depth_quantized – – 1.7 

GFI-C ≈ 80 ≈ 25 9.0 

GFI-C_quantized ≈ 110 ≈ 120 2.3 
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This integration consisted on the creation of a background service

that used TensorFlow Lite to perform inference with the developed

models on a mobile environment. This service is run for a given

fundus image and notifies the user when the pipeline is completed.

Afterward, the user can see the pipeline results, including the

first disc segmentation, the cropped image and the joint optic

disc/cup segmentation. Furthermore, the result of the morpholog-

ical feature calculation, as well as the glaucoma confidence level,

are also exposed in a dialog view. This visualization of the pipeline

results contributes to the interpretability of the Glaucoma diagno-

sis, as can be seen in Fig. 7 . 

In Table 4 , several time and size metrics of the developed classi-

fication and segmentation models after being converted to the Ten-

sorFlow Lite format are exposed. The time metrics were obtained

by performing 3 runs in isolation on the same mobile device and

averaging times. 
By analyzing the table, it is concluded that running the mod-

ls on GPU is preferred than quantizing and running on the CPU

ince the times are better and no performance losses will occur.

he selected models are highlighted in the table, and the pipeline

an run in under two seconds per fundus image. 

.8. Interpretability 

Interpretability is one of the main Achilles heels of deep learn-

ng models, since, despite having exhibited superior performances

n plenty of tasks, it is difficult to make sense of these types of

odels when compared to machine learning approaches [39] . This

ainly occurs because the feature representation is not engineered

y the developer, but by the network itself, turning its translation

nto representative values challenging. 

Also, this topic is not only important to further understand the

nner workings of a model and ease the development process, but

t is also essential, or even mandatory, for regulations and other

ureaucracies, needed in case these methods are intended to be

ntegrated into commercial solutions, especially in a medical con-

ext. 

The proposed solution has three interpretability measures,

ome of them have already been partially addressed, but below a

omplete description is provided. 

Pipeline intermediate results: These results are evidenced in

ig. 7 and were integrated into the system to allow quick confir-

ation of the pipeline outcome, since wrong segmentations may
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Fig. 8. Grad-cam activation maps of the GFI-C network. 
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ventually happen. Having the possibility to visualize those results

nables the user to discard them right away, if necessary. 

Morphological features: These features make the model more in-

erpretable since they have a defined and studied meaning among

he ophthalmologist community. Despite not being directly used in

he model that outputs the Glaucoma confidence level, the combi-

ation of the two output values turns the decision more trustwor-

hy. 

Activation maps: The used activation maps are gradient class ac-

ivation maps (Grad-CAM) [40] . These maps were calculated in the

FI-C network and an illustration of the results with images from

oth classes can be found in Fig. 8 . In the figure, the images are

verlayed with the calculated Grad-CAM maps and blue tones indi-

ate the area was not important to the classification, while redder

ones indicate a bigger influence of that region for the final deci-

ion. By analyzing the images, it is noticeable that the network is

ooking to the same structures that ophthalmologists inspect, such

s the optic disc, cup, retinal vessels topology, and more interest-

ng, on the left Glaucoma case, a focus on the Peripapillary Atro-

hy (PPA) region is visible, which is an identified Glaucoma risk

actor [2,41–43] . All these insights contribute to increase the confi-

ence in the network predictions. These maps are not available in

he mobile pipeline integration due to Tensorflow Lite limitations,

ince the library is only targeted at inference. Nonetheless, they are

vailable in a desktop environment and can be useful to make the

ipeline more believable and help in regulatory processes. 

. Conclusions 

The main novelty of this work is the fact that the developed

laucoma assessment pipeline runs offline in mobile devices in

econds. 

Moreover, this was achieved while having comparable, and

ometimes even better, results in the segmentation and classifica-

ion tasks of the developed system, contributing to the enhance-

ent of the state-of-the-art in these topics as well. 

Despite the aforementioned, the used dataset still poses some

hallenges, such as class imbalance, and the limited number of

amples for deep learning approaches. Therefore, new experiments

ith more data should be investigated and evaluated to confirm

his line of work. 
In conclusion, the developed pipeline can be used to enable

assive Glaucoma screenings in settings that were not possible be-

ore since it does not require an internet connection and runs on

ffordable mobile devices. This can increase the chance of detect-

ng Glaucoma at an earlier stage and contribute to decrease both

ndividual and economic burdens caused by the disease. 
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