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Abstract Transfer learning focuses on building better predictive models by
exploiting knowledge gained in previous related tasks, being able to soften the
traditional supervised learning assumption of having identical train-test distri-
butions. Most efforts on transfer learning consider revisiting the data from the
source tasks or rely on transferring knowledge for specific models. In this pa-
per, a general framework is proposed for transferring knowledge by including a
regularization factor based on the structural model similarity between related
tasks. The proposed approach is instantiated to different models for regres-
sion, classification, ranking and recommender systems, obtaining competitive
results in all of them. Also, we explore high-level concepts in transfer learning
like sparse transfer, partially-observable transfer and cross-model transfer.

Keywords Transfer Learning · Knowledge Transfer · Regularization ·
Supervised Learning

1 Introduction

Traditionally, supervised learning focuses on building models able to gener-
alize from labeled training instances to test instances drawn from the same
distribution [38]. However, since we are living in a data-driven world that is
constantly changing, domain distributions change quickly in real applications,
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and concepts that were valid in training time may not longer hold. Moreover,
requirements, understood as the predictive task, may have changed. Thereby,
classical approaches require to collect and to annotate new data, and to build
new models from scratch. Since the repetitive data collection and model fit-
ting process may become rapidly intractable in real world applications [38], it
would be advantageous to transfer knowledge obtained from related problems
to our target problem.

Transfer learning (TL) aims to extract knowledge from at least one source
task and use it when learning a predictive model for a target task [38]. The
intuition behind this idea is that learning a new task from related tasks should
be easier (faster or with better solutions) than learning the target task in
isolation. In this work, we focus on inductive TL, where both domains are
represented by the same feature space and where the source and target tasks
are different but related [38].

Pan and Yang [38] categorized previous efforts on inductive transfer into
four groups depending on what is being transferred: instances, feature-repre-
sentation, model parameters and relational knowledge [13]. Instance transfer
consists on using data from the source task when learning the target prob-
lem [11,44,4,21], usually by means of assigning different weights to the ob-
servations. Feature-representation transfer concerns on finding a shared low-
dimensional feature representation that is suitable for learning the target task
[1,15,41,34]. We group these two approaches under the umbrella of data-driven
transfer, where source data is re-used to train the target task. Although these
approaches may seem appealing, the vast amount of training data in the source
task turns the process prohibitively expensive. Analogously to Nearest Neigh-
bors techniques in traditional machine learning, deferring the entire learning
to the target-learning stage may be understood as lazy learning, i.e. deferring
the actual learning until the query (target task) is made to the system. From
a human-inspired point of view, this would be analogous to revisiting basic
arithmetic problems when learning differential calculus or re-learning to walk
when learning to run.

Thereby, transfer learning techniques (and its community) should be fo-
cused on adapting knowledge instead of data. This idea is handled by param-
eter transfer approaches, which rely on the idea that individual models for
related tasks should share some structure (parameters or hyperparameters)
[38]. In this sense, the knowledge generated from a source task is understood
as the parameters that define a given model: the coefficients of a regression,
the weights of a neural network, the feature hierarchy of a decision tree. A
few methods have been proposed on this line [16,2,6,30,25], most of them for
transferring parameters for specific models: Gaussian Processes [6], SVMs [16,
30], Neural Networks [49] and ensembles [26]. Also, initialization-based mod-
els [40,27] can be included in this group, which use the source model as an
initialization for the target task optimization process. This is frequently done
in Neural Networks to promote convergence to local optima near the source
model [27,43]. This behavior can also be achieved by applying a small number
of iterations in the optimization process [40,43] or by fixing certain parameters



Hypothesis Transfer Learning Based on Structural Model Similarity 3

from the source model [37,27]. However, this scheme does not guarantee that
knowledge is preserved during optimization.

Hypothesis Transfer Learning (HTL) is a generalization of parameter trans-
fer that has gained traction in the last few years [16,50,25,14,28,5,45,39,31,
29]. HTL assumes that knowledge is transferred directly from the source hy-
potheses. Experimental assessment [45,3] as well as theoretical properties re-
garding the stability of these models have been addressed by several authors in
the past [5,28,39]. However, these works assumed that transfer was done be-
tween generalized linear models by regularizing the difference between source
and target coefficients. In a more recent work [29], the problem of transfer-
ring knowledge from multiple source hypotheses with fast convergence using
Regularized Empirical Risk Minimization was addressed.

In this paper, we generalize the HTL framework to be able to include
other learning models and types of transfer. Thereby, we propose a unified
structure-transfer approach that aims to transfer knowledge by regularizing
the structural distance between the target and the source model. In order to
illustrate the potential and flexibility of the proposed framework, we instan-
tiate the proposed framework to four learning tasks: regression, classification,
learning to rank and recommender systems (Sect. 3). Also, we explore three
high-level concepts in the transfer learning area: sparse, partially observable
and cross-model transfer.

The motivation for sparse transfer relies on using almost equivalent decision
processes for related tasks by sparsely updating minor details in the model. For
example, when an English Checkers player tries to play International Checkers,
most of the decision rules learned for playing the former version are still valid
for the second version. Thereby, the effort devoted to transfer the knowledge
from one game to the other is spent in learning the few new rules instead of
learning slight variations of the entire set of rules. Further details about this
type of transfer are presented in Sect. 3.1.

On the other hand, partial transfer can be understood as having limited
observability of the source model. This partial observability can be defined as
restricting the set of assumed parameters by the source model that are observ-
able when fitting the target model or by limiting the source model properties
that are accessible during transfer. Being able to reuse knowledge in this con-
text allows transfer in environments where privacy and security are important.
Also, by transferring high-level properties instead of low-level parameters we
can cover a wider spectrum of related tasks. We illustrate this concept in Sect.
3.2 and 3.3.

Finally, we explore in Sect. 3.3.2 an additional capability of the proposed
framework, which relies on transferring knowledge between different types of
models (e.g. Logistic Regression and Decision Trees, SVM and AdaBoost, etc.).
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2 Transfer Learning using Structural Model Similarity

We consider the following scenario in this work. We have two learning tasks
denoted by source and target. Without loss of generality, we assume that both
tasks share the same feature space X ⊂ Rd and output type Y ⊂ T (e.g.
regression, classification). Although this notation is an oversimplification that
can be extended to other specific tasks like ranking and recommender systems,
we adopt this simplistic scenario to present the method. For a given task
T ∈ {source, target}, we have the training data DT ⊆ XT × Y T . Thus, the
learning objective, Eq. (1), is to find the best model M∗ given DT

M∗ = arg max
M

(
P (M |DT )

)
(1)

, where M is an instance belonging to the space of models. Applying the
Bayes theorem and a monotonous logarithmic transformation, Eq. (1) can be
transformed to Eq. (2) with the same solution.

M∗ = arg max
M

(
log(P (DT |M)) + log(P (M))

)
(2)

In this sense, Eq. (2) can be understood as finding the model that maxi-
mizes the (weighted) tradeoff between fitting the data (dataFitness) and hav-
ing a desired structure (modelFitness).

M∗ = arg max
M

(
dataFitness(M,XT ) + λ modelFitness(M)

)
, λ ≥ 0 (3)

In a transfer learning context, dataFitness is only associated to the model
performance on the target data. While in classical learning settings the mod-
elFitness term gives priority to simple models, we propose to prioritize models
with high similarity with the model obtained using the source data only:

M∗ = arg max
M

(
dataFitness(M,Xtarget) + λ similarity(M,M source)

)
, λ ≥ 0

(4)
Eq. (4) presents a unified framework for hypothesis-transfer that can be

instantiated to several predictive models given:

– A function that defines the similarity between the knowledge synthesized
in the target model and the one in the source model.

– An optimization framework that allows introducing the regularization term
using the structural similarity function.

The analogous minimization problem can be defined using a data-driven
loss function and a model-driven dissimilarity function.

As defined in Eq. (5), this framework can be extended to support transfer
from multiple sources S = {s1, s2, . . . , sn} in a straightforward manner, where
λj denotes the regularization level associated to the source task j.
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M∗ = arg max
M

dataFitness(M,Xtarget) +

n∑
j=1

λj similarity (M,M sj ) (5)

where λj ≥ 0, ∀j ∈ {1, . . . , n}

Thereby, instead of transferring data from the source task as done by pre-
vious methods in the literature, knowledge is transferred through the model
structure. Since a predictive model is a succinct representation of the data, the
proposed approach is an efficient way to introduce knowledge obtained from
the source task without resorting to the source data. Therefore, the proposed
approach is also useful in scenarios where source data is unavailable at transfer
time and in online learning settings.

3 Instantiations and Experimental Evaluation

In this section, several instantiations of the proposed framework to different
models are presented. These models explore general learning tasks usually
studied in the literature: regression, classification, learning to rank and rec-
ommender systems. Moreover, we validate high-level transfer concepts in each
one of them in order to prove the flexibility of the proposed framework. For
instance, concepts like sparsity, partial observability of the source model and
cross-model transfer are analyzed.

For readability, the experimental evaluation is presented along with the
model instantiation. Also, the following baselines [12,30] are used for compar-
ison purposes:

– Target-only: the target model is learned using the target data only. This
baseline is analogous to ignoring the source task and building a target
model from scratch.

– Weighting (W): the target model is learned using a weighted combination
of source and target data. The weight associated to each class is trained
using nested cross-validation.

– Extended (Ext): the target model is learned using the target data ex-
tended with the prediction obtained by the source model. For classification
tasks, the estimated probability is considered instead of the final class.

In order to avoid overfitting to the training data in these settings, all the
baselines are regularized using their corresponding penalty terms (e.g. L1, L2).

In the experimental evaluation, data was split using a stratified training-
test partition (80-20). Then, in order to validate the model performance on
different stages of the data acquisition process, the training set was randomly
subsampled in 10 nested subsets with several sizes (10%, 20%, 30%, . . . , 100%).
Each experiment was repeated 30 times varying the test partition. For repro-
ducibility purposes, source code, training-test partitions and the individual



6 Kelwin Fernandes, Jaime S. Cardoso

Fig. 1: The Signed Area under the Gain Curve (sAUC) is the sum of the area
of all positive transfer regions (dark areas) minus the area of the negative
transfer regions (light areas).

assessment per inclusion rate are made available1. The regularization factor
and all the remaining intrinsic meta-parameters were learned using nested
Stratified K-fold cross-validation (K = 3) over the training set. The same pa-
rameter fine-tuning scheme was conducted for all the baselines and proposed
methods.

For each method, the absolute gain is measured when compared with the
Target-only. Thus, positive gain reflects positive transfer and, analogously,
negative gain reflects negative transfer. Figure 1 illustrates this concept, where
dark regions represent positive transfer and light regions negative transfer.
Many papers in the literature confine the results to a predefined training-
test partition [11,16,26], restricting the comparison of the methods to specific
stages of the data acquisition process. Other methods enumerate the perfor-
mance when varying training set sizes [21,30,27]. In order to provide useful
feedback about the actual performance of the method through the entire spec-
trum of data acquisition, the normalized Discounted Cumulative Gain (nDCG)
was considered. nDCG is frequently used in learning to rank tasks to compare
different rankers and, to the best of our knowledge, has not been used for as-
sessing transfer learning. Its adequacy to TL stands as follows. If we consider
a sequence of nested training sets, the main focus of TL is to increase the
performance specially on the smallest sets [48], where data is scarce. Thereby,
considering the aforementioned nested training subsets, the gain obtained by
considering the i-th training subset is analogous to the relevance of the item
ranked at position i in a ranking setting. Wang et al. [47] show that nDCG
can decide in a consistent manner the best ranker in every pair of substan-
tially different ranking functions. Eq. (7) defines a continuous version of the
nDCG ∈ (−∞, 100] over the space of percentage inclusion of training data,

1 URL available after decision
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where BE(x) and ME(x) are the error of the baseline strategy and of the
model of interest when considering x% of the data. ME∗ is the zero con-
stant representing the error of the best model assuming a noiseless training
set. Given that it would be computationally intractable to build all possible
training sets, we considered an approximation of Eq. (7) using the trapezoidal
rule of the aforementioned partitions.

DCG(BE,ME) =

∫ 100

0

BE(x)−ME(x)

log2(x+ 1) + 1
dx (6)

nDCG(BE,ME) =100
DCG(BE,ME)

DCG(BE,ME∗)
(7)

In order to simplify the assessment of the proposed methodologies, we
validate the performance of the proposed methologies with single source-target
settings.

3.1 Regression

In this section we instantiate the proposed framework to the Linear Regression
model. In Eq. (8) we adopt the well known Elastic Net (EN) loss function,
where ωs and ωt stands for the source and target coefficients respectively
and ‖ ‖̇p is the p-norm of the coefficients. In this case, the model similarity
is instantiated as the distance between the target and source coefficients. In
order to allow concept drift, the independent term is not regularized.

JX,y(θ) =
∑
i∈N

(
yi −X>i · ωt

)2
+λ
(
α ‖ ωt − ωs ‖11 +(1− α) ‖ ωt − ωs ‖22

)
(8)

The target model ωt can be defined in terms of the source model as ωt =
ωs +∆ and, considering the residuals of the source model on the target task,
εi = yi−X>i ·ws, the optimization objective defined in Eq. (8) can be rewritten
as stated in Eq. (9). Thereby, the optimization objective is equivalent to fitting
a classical regularized linear regression to the residuals.

J ′X,ε(∆) =
∑
i∈N

(
εi −X>i ·∆

)2
+ λ

(
α ‖ ∆ ‖11 +(1− α) ‖ ∆ ‖22

)
(9)

Sparse transfer is an interesting concept that can be achieved using this
framework and the proper regularizer. The intuition behind this idea is that
an intelligent agent should be able to reuse a decision strategy obtained from a
related source task by changing a small number of details instead of updating
the entire model. In this specific instantiation, such property can be obtained
by using an L0 or L1 regularizer. Since Eq. (9) is agnostic about the source co-
efficients distribution, encouraging sparsity in the transfer stage induces sparse
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Table 1: Comparison of Regression models using different transfer strategies:
Ridge (L2), Lasso (L1) and ElasticNet (EN). Performance is measured using
Mean Absolute Error (MAE).

Dataset[32] W Ext
Proposed

L2 L1 EN
Automobile Gas/Diesel 6.75 3.07 22.01 19.31 17.74

Solar Flare M/C 11.83 0.14 1.67 -0.29 0.47
Parkinson Men/Women[46] 5.32 -0.42 5.74 -7.60 -7.48

Students P1/M1 [10] 0.30 0.29 2.06 0.09 0.25
Students P1/P2 [10] 4.08 1.00 3.83 4.30 4.23
Wine Red/White [9] -0.60 -0.06 0.15 -2.50 -0.92
Wine White/Red [9] 0.42 -0.16 0.52 -0.88 -0.21

Fig. 2: Average gains (left) and positive transfer rates (right) with nested
training sets on regression tasks

differences between the source and target model instead of sparse coefficients
per se.

In the experimental assessment, three regularizers for the transfer step were
used: Ridge (α = 0), Lasso (α = 1) and the general Elastic Net (0 ≤ α ≤ 1).

Table 1 shows the results obtained in several datasets. Gain was measured
in terms of decrease in the Mean Absolute Error (MAE). Hereafter, the best
scores are presented in bold, as well as all statistically identical scores, using a
paired difference Student’s t-test with a 90% confidence level. The best results
were obtained by at least one of the proposed regularization schemes on most
datasets (see Table 1). As can be seen in Fig. 2, the proposed strategy using L2

normalization dominates the other curves, specially in the smallest partitions
where the larger gains are achieved. As expected, while all the models achieved
positive transfer on the first partitions, as we move towards the full inclusion
of the training data, the gains become negative.

It is well known that, when evaluated using only prediction quality, Ridge
tends to be superior to Lasso (and Elastic Net). Thus, results are aligned with
this. An interesting behavior can be observed by studying the results obtained
in the Students Performance [10] dataset, where we explored predicting the
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students grades on maths (M) and Portuguese (P). In the case that knowl-
edge was transferred between different courses in the same academic period
(P1/M1) the L2 regularizer achieved the best results. On the other hand, when
knowledge was transferred between the same course but using different periods
(P1/P2), a sparse transfer strategy obtained the best results. These examples
validated the motivation behind sparse transfer, which focuses on changing a
small subset (sparse) of properties of the model when the tasks are strongly
related.

3.2 Classification

The proposed transfer learning framework is instantiated to Linear Support
Vector Machines and to the AdaBoost classifier in this section. Although other
classifiers can be adapted to this framework, these models are suitable to
explore the idea concisely. For example, Artificial Neural Networks may be
regularized using the coefficients difference and Decision Trees by considering
the edit distance between the source and target trees.

Also, we explore in this section the concept of partial transfer, allowing to
selectively transfer knowledge from the source model. Partial transfer can be
understood as improving the model performance on the target task by using
a partially observable source model. This can be done by considering regu-
larization schemes that explore high-level properties of the model instead of
its actual state (i.e. assumed values). This capability is specially important in
some scenarios, where unlimited access to the model parameters is not possible
due to privacy and security concerns (e.g. health and biometrics applications).
In these cases just high-level properties of the model are available. Also, regu-
larizing high-level properties of the models allows transfer between less similar
tasks. Thereby, even when the source model is fully observable, it could be
interesting to study partial transfer mechanisms.

3.2.1 Support Vector Machines

Similarly to the Linear Regression, the proposed framework can be instan-
tiated to linear Support Vector Machines (SVM) considering the difference
between the source and target coefficients. This idea was previously explored
for Structural SVMs by Lee and Jang [30] and in a multitask learning setting
by Evgeniou and Pontil [15]. In both cases, the dual formulation is used. In-
stead, we use the soft-margin primal formulation with hinge loss (cf. Eq. 10)
using stochastic subgradient descent [42]. Also, some authors explored this
problem from a theoretical point of view to show its stability [28,39].

arg min
ωt

1

N

N∑
i=1

max
(
0, 1− yiX>i · ωt

)
+ λ ‖ ωt − ωs ‖22 (10)
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Fig. 3: Sign regularization factors assuming ws
i > 0. First row illustrates the

penalization using L1 regularizers (p = 1) with same-sign uncontrolled penalty
on the left and with different α values on the right (0.9 - solid, 0.7 - dashed,
0.5 - dotted). Second row is analogous to the first row but using L2 penalty
(p = 2).

In order to validate the concept of partial transfer, we explore the idea
of transferring the contribution direction of each feature (i.e. coefficient sign)
instead of its importance in the source task (i.e. coefficient magnitude) [18].
This type of transfer is not only pertinent in partially observable settings but
also allows positive transfer between tasks that are only slightly related. Eq.
(11) defines a way to regularize the coefficient sign.

δp(ω
t , ωs) =

d∑
i=1

max(0,−ωt
i · sign(ωs

i ))p (11)

Although this regularizer is able to control the sign change between source
and target task, it does not establish any type of control on models with large
coefficients with the same sign. Thereby, we include the classical Tikhonov
regularization (see Eq. (12)). Fig. 3 illustrates the behavior of two particular
instances of the proposed regularizer with p = 1 and p = 2.

∆p,α(ωt
i , ω

s
i ) = αδp(ω

t
i , ω

s
i ) + (1− α) ‖ ωt ‖pp, 0 ≤ α ≤ 1 (12)

The proposed regularizer is based on the Hinge loss traditionally used in
the optimization of Support Vector Machines. In this sense, the particular case
when p = 2 is a smooth version that allows gradient computation on its entire
domain. Thereby, it does not introduce further complexity to the loss function
defined in Eq. (10).
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Table 2: Comparison of classifiers using different transfer strategies: SVM with
Structural regularization (SVM), SVM with Structural Sign regularization
(S-SVM), SVM with Structural Sign-mixed regularization (αS-SVM). Perfor-
mance is measured using accuracy.

Dataset [32] W Ext
Proposed

SVM S-SVM αS-SVM
Echocardiogram (fluid) 0.16 -3.76 3.77 5.22 9.21

Glass (RI high) 13.48 0.37 2.08 4.07 12.86
Hepatitis (No Histology) 9.05 -1.89 17.54 8.84 9.62
Car Evaluation high/med -1.00 -1.29 1.99 2.40 3.51

Pima Indian (old) -9.91 2.83 3.32 6.17 3.58
Contraceptive (Working) -7.94 0.78 5.75 9.13 9.84
Ionosphere Ft. 29 (High) 15.96 2.29 10.02 5.57 4.87

Wine (White/Red) -10.96 1.21 -0.46 11.76 18.74

Fig. 4: Average gains (left) and positive transfer rates (right) with nested
training sets on classification tasks using SVMs

On the other hand, when p = 1, the derivative at ωi = 0 is non-deterministic.
However, the subgradient at ωi = 0 can be computed, inducing a subgradient
descent optimization strategy. This type of regularization would also induce
sparse transfer, a concept previously studied in Section 3.1. In this work, we
only present results for the smooth version of the proposed regularizer.

Table 2 shows the results for SVMs. The proposed schemes achieved the
best results in most datasets using the proposed structural similarity trans-
fer. Moreover, the sign regularization scheme obtained better results than the
difference-based in several datasets. In this sense, structural regularization TL
offers a competitive and efficient framework for transferring knowledge from
SVM. As was validated in the experimental evaluation, considering partial-
transfer schemes improves the transfer gains between more dissimilar tasks.
For example, comparing the gain obtained in the Wine dataset by the partial
transfer strategy was higher than in the Hepatitis dataset. This suggest that
predicting life expectancy of patients with and without histology is more re-
lated than predicting quality of different types of wine. Thereby, using a strong
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regularization with full observability achieves the best performance in the lat-
ter while using a more flexible regularization (partial observability) achieves
the best performance in the former.

For this instantiation, the gain achieved by the models as we collect more
data doesn’t decrease. In general, we may observe that the gains achieved
by the models with partial observability dominate the other curves (see Fig.
4). Thereby, it was validated the relevance of transferring partial knowledge
instead of promoting low-level similarity between source and target models.

3.2.2 AdaBoost

In this case, we instantiate the proposed framework to the Discrete AdaBoost
model [20]. As typical, we used unidimensional decision thresholds as weak
learners. However, the concepts explored in this section can be easily extended
to other types of estimators.

In the AdaBoost model two type of concepts can be transferred from a
source model: the weak estimators and their associated importance. We reg-
ularized the weak estimators by encouraging similar decision thresholds, con-
sidering that the target model can probabilistically choose a learner from the
pool of source weak learners or can create a new estimator from scratch. On
the other hand, in order to regularize the relative importance of each esti-
mator, we encourage closeness between the iteration at which each estimator
was chosen in the source and target tasks. This type of regularization has the
secondary advantage of promoting similar updates to the weight distribution
associated to the training set in both, the source and the target task.

In this sense, at each iteration of the AdaBoost training algorithm, we select
the estimator (f, t, d, i) that minimizes the tradeoff between the exponential
loss, traditionally used in AdaBoost, and the regularizer defined in Eq. (13),
where f is the feature of interest, t is the threshold value, d ∈ {−1,+1} is the
estimator output when the thresholding condition is satisfied, i is the iteration
where the estimator was included in the ensemble and N is the maximum
number of estimators.

D(e, pool) = arg min
p∈pool

(αDthrs(e, p) + (1− α)Dorder(e, p)) (13)

Dthrs((f
t, tt, dt, it), (fs, ts, ds, is)) =

{
|tt − ts| , if f t = fs ∧ dt = ds

1 , otherwise

Dorder((f
t, tt, dt, it), (fs, ts, ds, is)) =

{
|it−is|

N , if f t = fs ∧ dt = ds

1 , otherwise

Given that Dthrs denotes the similarity between the decision thresholds in
the source and target hypotheses andDorder denotes the similarity between the
feature relevances, the α parameter controls the model observability. By setting
α = 1 we will observe the decision thresholds and ignore the importance.
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Table 3: Comparison of classifiers using different transfer strategies: AdaBoost
with observable thresholds and order (Full), AdaBoost with observable thresh-
olds (Thres) and Adaboost with observable order (Order). Performance is
measured using accuracy.

Dataset [32] W Ext
Proposed

Full Thres Order
Echocardiogram (fluid) 10.55 -0.28 -0.07 2.38 -4.53

Glass (RI high) 4.04 3.60 2.63 2.14 -5.56
Hepatitis (No Histology) -12.66 -2.76 -4.36 -6.70 -10.96
Car Evaluation high/med -37.81 17.83 2.51 19.61 17.56

Pima Indian (old) 0.32 -4.03 -0.06 -1.77 -2.87
Contraceptive (Working) 14.90 0.63 1.00 4.74 2.72
Ionosphere Ft. 29 (High) 28.66 12.45 5.13 16.47 13.13

Wine (White/Red) -0.38 -0.54 0.30 -0.74 -0.26

Fig. 5: Average gains (left) and positive transfer rates (right) with nested
training sets on classification tasks using AdaBoost

Conversely, using α = 0 will ignore the thresholds but will encourage the
target model to choose the features in a similar order. In the experimental
assessment we considered models with 50 estimators. Table 3 shows the results
for the proposed regularizers. While the proposed strategy achieved positive
transfer in most cases, the weighting strategy achieved the larger gains in the
smallest partitions on average (see Fig. 5).

Partial observability of the decision thresholds obtained better performance
than transferring the selection order of the weak estimators.

3.3 Learning to Rank

Learning to Rank in combinatorial domains has become a trendy topic in
recent years due to the growing number of applications involving the predic-
tion of structured preference data. Examples of applications where predicting
rankings is crucial are found in information retrieval (e.g. search engines) and
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main course

meat A fish

drink

wine A water

dessert

cake A pie

Fig. 6: Illustration of a unconditional Lexicographic Ranker with three at-
tributes

recommender systems. Learning to rank strategies can be categorized accord-
ing to their input type into pointwise, pairwise and listwise techniques. In this
section we consider pairwise rankers, which rely on deciding which observation,
if any, is better in a given pair.

3.3.1 Lexicographic Orders

Here, we instantiate the proposed TL framework to lexicographic orders [19],
which compactly express the order between any pair of observations. Instan-
tiating other ranking models like RankSVM [24] is very straightforward using
the techniques explored in previous sections. In order to simplify the presen-
tation of the structural similarity function between lexicographic orders, we
limit the scope of this work to unconditional/linear lexicographic orders – LO
– (e.g. LexRank [19]) with binary features. LO can be understood as a total
order of the attributes and of their respective values. Thereby, given a ranking
task with D binary attributes, a LO model M can be understood as a pair
M =< A, V > where A : N≤D → N≤D is a bijective function that indicates
the relevance of each feature and V : N≤D → B is a function that defines the
preferred value for a given feature.

Fig. 6 illustrates an instance of a linear Lexicographic Ranker with three
features: main course, drink and dessert. The attribute domains are {meat,
fish}, {wine, water} and {cake, pie} respectively. To predict the ordering of
two options using such model, the two observations are compared through the
model on a cascade manner (using the feature relevance), until they differ in
a given feature. The order direction is dictated by the preferred value for that
feature. For instance, using the model illustrated at Fig. 6, the following is a
valid ordering of options:

(meat,wine, cake) A (meat,wine,pie) A (meat,water,pie) A (fish,wine, cake)

Linear LO are of interest due to their high interpretability. Despite the
existence of lexicographic rankers with higher expressiveness, we limit the
scope of this work to this type of ranker to simplify the regularizer definition.
The ideas explored in this section can be extended to conditional LO [17].

We define the distance between two LO as the weighted sum of the nor-
malized Kendall tau distance between the attribute ordering and the number
of attributes with different preferred values in Eqs. (14)-(16). This distance
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can be extended to conditional Lexicographic Orders [7,17] by considering the
edit distance between trees instead of the Kendall tau distance.

distα(〈As, V s〉, 〈At, V t〉) = αK(As, At) + (1− α)P (V s, V t) (14)

K(As, At) =

(
D

2

)−1 ∑
1≤i<j≤D

[As(i) < As(j) 6≡ At(i) < At(j)]

(15)

P (V s, V t) =
1

D

D∑
i=1

[V s(i) 6≡ V t(i)] (16)

Given the discrete nature of LO, greedy algorithms have been used in the
literature to obtain models fitted to data [19]. In our experimental evaluation
the regularization term is introduced as part of the objective function in a
local search strategy. The neighborhood is defined by all possible swaps of
consecutive attribute pairs and by changing the preferred value of each fea-
ture. A first-best approach was conducted for choosing the next neighbor to be
expanded. Table 4 shows the results obtained for this task. Since local search
rapidly converges to local optima, two independent runs were executed starting
from different initial solutions. These solutions were generated using the greedy
LexRank algorithm proposed by Flach and Matsubara [19] on the source and
target data separately. Besides the instantiation with full-knowledge transfer,
which was denoted in Table 4 as Comb (α = 0.5), two instances with partial
observability of the model structure were considered: Priorities (α = 1) and
Preferences (α = 0). Performance is measured in terms of correctness [8] (see
Eq. (17)), which considers the balance between concordant (C) and discordant
(D) predicted pairs. As was observed with the classification models, using par-
tial transfer improved the model performance in most datasets. Morever, as
can be seen in Fig. 7 the gains achieved by the proposed strategies are consis-
tently higher than the ones achieved by the other methods in the literature,
being able to achieve positive transfer in more than 80% of the cases.

CR(A,A∗) =
|C| − |D|
|C|+ |D|

(17)

3.3.2 Cross-model Transfer: from RankSVM to Lexicographic Orders

In this section we explore another capability of the proposed transfer frame-
work: transferring knowledge between models with different nature. In order
to do this, we can use a regularizer that relies on high-level structural prop-
erties of the model instead of model specific parameters. We explored some
intuitions behind this idea in the sign regularization for the SVMs. In this
section, we will transfer information from the RankSVM model [24] to LO.
We can use linear SVMs in the context of rankings by transforming the de-
cision function f(a) < f(b) into g(a − b) > 0. In this sense, the final linear
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Table 4: Comparison of Ranking models using different transfer strategies:
Priorities (Prior), Preferences (Pref) and Combined (Comb). Performance is
measured using correctness.

Dataset[32] W Ext
Proposed

LexRank-LexRank RankSVM-LexRank
Prior Pref Comb Prior Pref Comb

Lenses (Hyper./Myope) 37.38 33.87 42.71 33.71 32.24 11.37 12.39 -2.24
T.A Regular/Summer 11.77 10.81 17.53 12.68 7.40 11.73 8.30 9.01
Acute Infl Urin./Renal 28.19 12.32 28.08 28.08 31.08 28.08 28.08 30.94

Servo A/C 1.83 -4.96 13.97 11.39 20.49 7.67 -5.27 7.56
Mammographic (Old) 3.44 1.49 1.70 0.19 1.67 9.34 7.91 9.18

Contraceptive/Std. Liv -7.50 -1.26 -0.17 -0.45 -0.48 -0.91 -1.02 -1.07

Fig. 7: Average gains (left) and positive transfer rates (right) with nested
training sets on ranking tasks using LexRank

SVM model will induce a decision boundary defined by ω>(a− b) > 0. Then,
for binary variables, the absolute-valued magnitude of each coefficient can be
understood as the feature relevance and the coefficient sign as the preferred
value of each feature in the lexicographic orders. Thereby, we can use the reg-
ularizer formalized in Eq. (20) to transfer knowledge from RankSVM to linear
Lexicographic Rankers.

distα(ωs, 〈At, V t〉) = αK(ωs, At) + (1− α)P (ωs, V t) (18)

K(ωs, At) =

(
D

2

)−1 ∑
1≤i<j≤D

[|ωsi | > |ωsj | 6≡ At(i) < At(j)] (19)

P (ωs, V t) =
1

D

D∑
i=1

[(sign(ωsi )) > 0) 6≡ V t(i)] (20)

Table 4 shows the behavior of the cross-model transfer between these two
models. As can be seen in the results, the proposed framework was able to
achieve competitive results, obtaining correctness values similar to other tra-
ditional techniques and even better results in some datasets. Although the
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performance gain is not transversal to the entire set of problems used for valida-
tion, it was shown that using regularization on high-level structural properties
of the models were able to transfer knowledge even between highly dissimilar
learning paradigms.

This idea can also be explored in other predictive tasks (e.g. classifica-
tion, regression) and between other models. For example, we can transfer the
thresholds decided by a decision tree as the weak estimators used in AdaBoost,
the features chosen by a sparse generalized linear model to the probabilities
of including each feature in a Random Forest, etc.

3.4 Recommender Systems

Collaborative filtering is a frequent paradigm in Recommender Systems based
on the idea of using preferences from many users to guide predictions about
a given user’s preferences, conversely, for items. Given N users and M items,
Matrix Factorization is a type of collaborative filtering technique that ap-
proximates the preference matrix R ∈ RN×M by combining two matrices
U ∈ RN×D, V ∈ RM×D, where D is a small number of unobserved factors that
model user and items preferences, U and V respectively [36]. As typical, we
consider the combination R = U · V >. Salakhutdinov and Mnih [36] proposed
Probabilistic Matrix Factorization, a method for fitting these latent factors
by means of minimizing the regularized sum-of-squared-errors (see Eq. (21)),
where ‖ · ‖2Fro denotes the Frobenius norm and Iij equals 1 if user i rated item
j and equals 0 otherwise.

J(U, V ) =
1

2

N∑
i=1

M∑
j=1

Iij(Rij−UiV >j )2+
λU
2

N∑
i=1

‖Ui‖2Fro+
λV
2

M∑
j=1

‖Vi‖2Fro (21)

A local minimum of J can be found using gradient descent. A well known
problem in Recommender Systems is the cold-start problem [33], which can
be understood as the impossibility of producing accurate predictions for users
(or items) with scarce information. This problem has been tackled in the past
by introducing content information, using some priors when initializing the
latent features of an entity, among others. In general, this problem can be
understood as transferring knowledge from existing users to new users. In this
work, we instantiate the proposed TL framework for solving the cold-start
problem. Given k new users, the fitted unobserved factors for a given user Ui
are regularized in order to be similar to its most similar previously fitted user
U∗i (see Eq. (22)).

J ′(U) =
1

2

N+k∑
i=N+1

M∑
j=1

Iij(Rij − UiV >j )2 +
λU
2

N+k∑
i=N+1

‖Ui − U∗i ‖2Fro (22)
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Table 5: Comparison of Recommender Systems using different transfer strate-
gies: Structural with a unique central user (Global) and Structural with a
subset of candidate users (Subset). Performance is measured using Mean Ab-
solute Error (MAE).

Dataset W Ext
Proposed

Global Subset
Movielens100k [23] 9.08 4.52 12.06 12.59

Amazon Instant Video [35] 5.67 -0.11 6.08 6.64
Amazon Musical Instruments [35] 2.45 6.30 3.88 5.12

Amazon Videogames [35] 9.27 0.22 10.12 11.05
Jester2+ [22] 2.92 -1.72 12.46 19.40

Fig. 8: Average gains (left) and positive transfer rates (right) with nested
training sets on Recommender Systems

In order to simplify the computation of the most similar user, two variations
of the proposed idea were considered: a subset of candidate users obtained
using K-means (K=10) and a unique central user with the averaged latent
features of the previously trained users. Applying the same ideas explored in
Linear Regression (cf. Section (3.1)), the problem can be formulated in terms
of the target residuals (Eqs. (23)).

J ′′(U) =
1

2

N+k∑
i=N+1

M∑
j=1

Iij(R̂ij −∆iV
>
j )2 +

λU
2

N+k∑
i=N+1

‖∆i‖2Fro (23)

where R̂ij = Rij − U∗i V >j

In the experimental evaluation, the Extended baseline was modeled by in-
terpolating the average ratings for the specified item and the predicted ratings.
All experiments were executed using D = 50 latent factors and λU = λV ∈
[10−3, . . . , 103]. The users considered for transfer were the top 100 users with
more votes in order to validate the widest spectrum of known ratings. As can
be seen in Table 5, the proposed transfer schemes obtained the best results
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Table 6: Overview of the performance of the proposed strategies. The table
summarizes the number of datasets (%) where each proposed strategy achieved
an average behavior better than the literature baselines. The cases where the
proposed techniques performed better than the baselines are presented in bold.

Task Model Type W Ext

Regression
L2 Full 71 100
L1 Full, Sparse 29 29
EN Full 29 43

Classification

SVM Full 75 88
S-SVM Partial 62 100
αS-SVM Partial 75 100

AdaBoost-Full Full 38 50
AdaBoost-Thres Partial 25 62
AdaBoost-Order Partial 38 50

Ranking

LexRank-LexRank-Prior Partial 67 83
LexRank-LexRank-Pref Partial 50 67

LexRank-LexRank-Comb Full 50 67
RankSVM-LexRank-Prior Cross-model, Partial 50 83
RankSVM-LexRank-Pref Cross-model, Partial 33 50

RankSVM-LexRank-Comb Cross-model, Full 67 67

RecSys
Global Partial 100 80
Subset Partial 100 80

in most cases. An interesting property on the results that wasn’t observed in
previous cases is that gains achieved by our model increases through most of
the spectrum of inclusion rates while the gains achieved by the other strategies
saturate and decrease drastically after a given point (60% of inclusion rate).
Moreover, the rate of cases with positive transfer using the proposed strategy
is close to 100% (see Fig. 8).

3.5 Discussion

The proposed generic strategies achieved good performance when compared
to traditional transfer strategies (see Table 6). For example, in more than
76% of the cases, the HTL techniques achieved better performance than their
literature counterparts in at least half of the datasets. In general, at least one
of the HTL-based strategies performed better than the alternative approaches
from the literature. Moreover, the proposed methodologies tend to dominate
the other approaches when data is scarce which is one of them main goals of
transfer learning (see Figures 2, 4, 5, 7 and 8).

The optimal performance of the gain curves should be a monotonically
decreasing curve, where the gains achieved by using transfer learning are high
when data is scarce and tend to zero as we add data to the training set.
However, given that we are measuring the performance of the model on a
small subset of partitions (30 runs), it is expectable to observe an irregular
behavior.
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We focused on providing a general framework that may be instantiated to
achieve good performance in a wide diversity of scenarios. As in traditional
machine learning settings where the best model is unknown a priori, find-
ing the best regularizer, its observability and the regularization strength (λ)
are application-dependent problems which can be solved – in general – using
cross-validation. Moreover, application knowledge can be used to conduct this
selection.

4 Conclusions

In this work we presented a new transfer learning framework based on struc-
tural model regularization. In contrast to most transfer learning techniques,
which either transfer data or are designed for specific models, the proposed
framework addresses the problem of transferring knowledge in a general way.
Namely, knowledge is transferred by including a regularization term that mea-
sures the structural similarity between source and target models. Thereby, the
proposed method is able to reuse knowledge gained from the source task with-
out revisiting source data, which might be prohibitively large or even unavail-
able at transfer time. In order to show its flexibility, the proposed framework
was instantiated to several learning tasks: regression, classification, learning to
rank and recommender systems. Positive results were obtained in most exper-
iments, being competitive with other methods in the literature both, in terms
of predictive performance and in terms of computational cost. Furthermore,
key problems like sparse, partial and cross-model transfer were analyzed and
assessed, showing their adequacy on several scenarios. The proposed method
relies on defining a good relatedness measure between models, which may allow
the integration of application-specific knowledge.

As future work, it is relevant to evaluate the performance of the proposed
methodology with multiple source tasks and with multiple similarity func-
tions, enabling the user to specify several alternatives to embed the desired
knowledge in the learning process. While this could be done in a straightfor-
ward manner using weighted regularization terms, the empirical study of this
problem is relevant.

Transfer learning research line should move towards a deep understanding
on how models encode knowledge and how to transfer this knowledge in a
general and unified way. Through this paper, we explored how this can be done
efficiently. Emerging regularization schemes that favor this kind of transfer are
feasible paths to explore, as well as similarity learning techniques able to infer
the actual relatedness between models for a specific task.
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ranking with abstention. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 215–230. Springer (2010)

9. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by
data mining from physicochemical properties. Decision Support Systems 47(4), 547–553
(2009)

10. Cortez, P., Silva, A.M.G.: Using data mining to predict secondary school student per-
formance (2008)

11. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: Proceedings
of the 24th International Conference on Machine Learning, pp. 193–200. ACM (2007)

12. Daume III, H., Marcu, D.: Domain adaptation for statistical classifiers. Journal of
Artificial Intelligence Research 26, 101–126 (2006)

13. Davis, J., Domingos, P.: Deep transfer via second-order markov logic. In: Proceedings
of the 26th annual International Conference on Machine Learning, pp. 217–224. ACM
(2009)

14. Dredze, M., Kulesza, A., Crammer, K.: Multi-domain learning by confidence-weighted
parameter combination. Machine Learning 79(1-2), 123–149 (2010)

15. Evgeniou, A., Pontil, M.: Multi-task feature learning. Advances in Neural Information
Processing Systems 19, 41 (2007)

16. Evgeniou, T., Pontil, M.: Regularized multi–task learning. In: Proceedings of the tenth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 109–117. ACM (2004)

17. Fernandes, K., Cardoso, J.S., Palacios, H.: Learning and ensembling lexicographic pref-
erence trees with multiple kernels. In: Proceedings of International Joint Conference on
Neural Networks (IJCNN) (2016)

18. Fernandes, K., Cardoso, J.S., Fernandes, J.: Transfer Learning with Partial Observabil-
ity Applied to Cervical Cancer Screening. Iberian Conference on Pattern Recognition
and Image Analysis, 243–250 (2017)

19. Flach, P., Matsubara, E.T.: A simple lexicographic ranker and probability estimator.
In: European Conference on Machine Learning (ECML), pp. 575–582. Springer (2007)

20. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and
an application to boosting. In: European conference on computational learning theory,
pp. 23–37. Springer (1995)

21. Garcke, J., Vanck, T.: Importance weighted inductive transfer learning for regression.
In: Machine Learning and Knowledge Discovery in Databases, pp. 466–481. Springer
(2014)



22 Kelwin Fernandes, Jaime S. Cardoso

22. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collabo-
rative filtering algorithm. Information Retrieval 4(2), 133–151 (2001)

23. Harper, F.M., Konstan, J.A.: The MovieLens Datasets: History and Context. ACM
Transactions on Interactive Intelligent Systems (TiiS) 5(4), 19 (2015)

24. Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal regression.
In: Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on
(Conf. Publ. No. 470), vol. 1, pp. 97–102. IET (1999)

25. Jiang, J.: Multi-task transfer learning for weakly-supervised relation extraction. In:
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP:
Volume 2-Volume 2, pp. 1012–1020. Association for Computational Linguistics (2009)

26. Jiang, L., Zhang, J., Allen, G.: Transferred correlation learning: An incremental scheme
for neural network ensembles. In: Neural Networks (IJCNN), The 2010 International
Joint Conference on, pp. 1–8. IEEE (2010)

27. Kandaswamy, C., Silva, L.M., Cardoso, J.S.: Source-target-source classification using
stacked denoising autoencoders. In: Pattern Recognition and Image Analysis, pp. 39–
47. Springer (2015)

28. Kuzborskij, I., Orabona, F.: Stability and hypothesis transfer learning. In: ICML (3),
pp. 942–950 (2013)

29. Kuzborskij, I., Orabona, F.: Fast rates by transferring from auxiliary hypotheses. Ma-
chine Learning 106(2), 171–195 (2017)

30. Lee, C., Jang, M.G.: A prior model of structural SVMs for domain adaptation. ETRI
Journal 33(5), 712–719 (2011)

31. Li, X., Mao, W., Jiang, W.: Extreme learning machine based transfer learning for data
classification. Neurocomputing 174, 203–210 (2016)

32. Lichman, M.: UCI machine learning repository (2013). URL
http://archive.ics.uci.edu/ml

33. Lika, B., Kolomvatsos, K., Hadjiefthymiades, S.: Facing the cold start problem in rec-
ommender systems. Expert Systems with Applications 41(4), 2065–2073 (2014)

34. Long, M., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks.
arXiv preprint arXiv:1605.06636 (2016)

35. McAuley, J., Pandey, R., Leskovec, J.: Inferring networks of substitutable and comple-
mentary products. In: Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2015)

36. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: J.C.
Platt, D. Koller, Y. Singer, S.T. Roweis (eds.) Advances in Neural Information
Processing Systems 20, pp. 1257–1264. Curran Associates, Inc. (2008). URL
http://papers.nips.cc/paper/3208-probabilistic-matrix-factorization.pdf

37. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level im-
age representations using convolutional neural networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1717–1724 (2014)

38. Pan, S.J., Yang, Q.: A survey on transfer learning. Knowledge and Data Engineering,
IEEE Transactions on 22(10), 1345–1359 (2010)

39. Perrot, M., Habrard, A.: A theoretical analysis of metric hypothesis transfer learning.
In: Proceedings of the 32nd International Conference on Machine Learning (ICML-15),
pp. 1708–1717 (2015)

40. Povey, D., Chu, S.M., Varadarajan, B.: Universal background model based speech recog-
nition. In: Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE Inter-
national Conference on, pp. 4561–4564. IEEE (2008)

41. Rückert, U., Kramer, S.: Kernel-based inductive transfer. In: Machine Learning and
Knowledge Discovery in Databases, pp. 220–233. Springer (2008)

42. Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: Primal estimated sub-
gradient solver for SVM. Mathematical programming 127(1), 3–30 (2011)

43. Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Sum-
mers, R.M.: Deep convolutional neural networks for computer-aided detection: Cnn ar-
chitectures, dataset characteristics and transfer learning. IEEE transactions on medical
imaging 35(5), 1285–1298 (2016)

44. Silver, D.L., Poirier, R., Currie, D.: Inductive transfer with context-sensitive neural
networks. Machine Learning 73(3), 313–336 (2008)



Hypothesis Transfer Learning Based on Structural Model Similarity 23

45. Tommasi, T., Orabona, F., Caputo, B.: Learning categories from few examples with
multi model knowledge transfer. IEEE transactions on pattern analysis and machine
intelligence 36(5), 928–941 (2014)

46. Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Accurate telemonitoring of
Parkinson’s disease progression by noninvasive speech tests. Biomedical Engineering,
IEEE Transactions on 57(4), 884–893 (2010)

47. Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T.Y.: A theoretical analysis of
NDCG ranking measures. In: Proceedings of the 26th Annual Conference on Learning
Theory (COLT 2013). Citeseer (2013)

48. Yang, L., Hanneke, S., Carbonell, J.: A theory of transfer learning with applications to
active learning. Machine learning 90(2), 161–189 (2013)

49. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep
neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–
3328 (2014)

50. Zhang, J., Ghahramani, Z., Yang, Y.: Flexible latent variable models for multi-task
learning. Machine Learning 73(3), 221–242 (2008)


