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ABSTRACT

Sign Language Recognition (SLR) has become an appealing topic in modern societies because such technology
can ideally be used to bridge the gap between deaf and hearing people. Although important steps have been
made towards the development of real-world SLR systems, signer-independent SLR is still one of the bottleneck
problems of this research field. In this regard, we propose a deep neural network along with an adversarial
training objective, specifically designed to address the signer-independent problem. Concretely speaking, the
proposed model consists of an encoder, mapping from input images to latent representations, and two classifiers
operating on these underlying representations: (i) the sign-classifier, for predicting the class/sign labels, and (ii)
the signer-classifier, for predicting their signer identities. During the learning stage, the encoder is simultaneously
trained to help the sign-classifier as much as possible while trying to fool the signer-classifier. This adversarial
training procedure allows learning signer-invariant latent representations that are in fact highly discriminative
for sign recognition. Experimental results demonstrate the effectiveness of the proposed model and its capability
of dealing with the large inter-signer variations.

Keywords: Sign Language Recognition, Gesture Recognition, Adversarial Neural Networks, Adversarial Train-
ing, Deep Learning

1. INTRODUCTION

Sign language is a nonverbal form of communication especially used by hearing impaired people within deaf
communities worldwide. It combines articulated hand gestures along with facial expressions to convey meaning.
Contrary to the popular belief, sign language is not universal and, just like spoken languages, it has its own
lexicon, syntax and grammar. This is why most of hearing people are unfamiliar with sign language, which
obviously creates a serious communication barrier between deaf communities and the hearing majority.

As a key technology to help bridging the gap between deaf and hearing people, Sign Language Recognition
(SLR) has become one of the most active research topics in the human-computer interaction field. Its main
purpose is to automatically translate the signs, from video or images, into the corresponding text or speech.
Although recent SLR methods have demonstrated remarkable performances in signer-dependent scenarios, i.e.
when training and test data come from the same signers, their recognition rates typically decrease significantly
when the signer is new to the system. This performance drop is the result of the large inter-signer variability in
the manual signing process of sign languages (see Figure 1). However, a practical SLR system must operate in
a signer-independent scenario, which means that the signer of the probe must not be seen during the training
routine of the models. Therefore, signer-independent SLR has become one of the bottleneck problems for the
development of a real-world and practical SLR system.

Borrowing from recent works on adversarial neural networks [3, 5] and domain transfer [4], we introduce a deep
neural network along with a novel adversarial training objective to specially tackle the signer-independent SLR
problem. The underlying idea is to preserve as much information as possible about the signs, while discarding the
signer-specific information that is implicitly present in the manual signing process. For this purpose, the proposed
deep model is composed by an encoder network, which maps from the input images to latent representations,



Figure 1. The inter-signer variability: it is possible to observe not only phonological variations (i.e., different handshapes,
palm orientations, and sign locations) but also a large physical variability (i.e., different hand sizes) when six signers are
performing the same sign.

as well as two discriminative classifiers operating on top of these underlying representations, namely the sign-
classifier network and the signer-classifier network. While the sign-classifier is trained to predict the sign labels,
the signer-classifier is trained to discriminate their signer identities. In addition, the parameters of the encoder
network are optimized to minimize the loss of the sign-classifier while trying to fool the signer-classifier network.
This adversarial and competitive training scheme encourages the learned representations to be signer-invariant
and highly discriminative for the sign classification task. To further constrain the latent representations to be
signer-invariant, we introduce an additional training objective that operates on the hidden representations of the
encoder network in order to enforce the latent distributions of different signers to be as similar as possible.

Although this adversarial training framework is similar to those initially introduced by Ganin et al [4], in
the context of domain adaptation, and then by Feutry et al [3] to learn anonymized representations, our main
contributions on top of these works are two-fold:

• The application of the adversarial training concept to the signer-independent SLR problem;

• A novel adversarial training objective that differs from the ones of Ganin et al [4] and Feutry et al [3] in
two ways. First, our training objective is minimum if and only if the adversarial classifier, which in our
case corresponds to the signer-classifier, produces a uniform distribution over the signer identities, meaning
that our model is completely invariant to the signer identity of the training data. Second, we introduce an
additional term to the adversarial training objective that further discourages the learned representations
of retaining any signer-specific information, by explicitly imposing similarity in the latent distributions of
different signers.

The remainder of the paper is organized as follows. Section 2 presents the related work. The proposed model
along with its adversarial training scheme are fully described in Section 3. Experimental results and conclusions
are reported in Sections 4 and 5, respectively.

2. RELATED WORK

According to the amount of data required from the test signers, previous signer-independent SLR works
can be roughly classified into two main groups, namely (i) signer adaptation approaches, where a previously
trained model is adapted to a new test signer by using a small amount of signer specific data, and (ii) truly
signer-independent methods, in which a generic model robust for new test signers is built without using data of
those test signers.

Greatly inspired by speaker adaptation methods from the speech recognition research, Von Agris et al [21] pro-
posed the combination of the eigenvoice (EV) approach [11] with maximum likelihood linear regression (MLLR)
and maximum a posteriori (MAP) estimation to adapt trained Hidden Markov Models (HMMs) to new signers.
More recently, Kim et al [8] investigated the potential of different deep neural network adaptation strategies for
the signer-independence problem. Yin et al [25] proposed an interesting weakly-supervised signer adaptation
approach, in which the adaptation data from the new signer has not to be labeled. Specifically, a generic metric
is first learnt from the available labeled data of several different signers and, then, adapted to the new signer
by considering clustering and manifold constraints along with the collected unlabeled data. Although signer
adaptation is a reasonable approach, in practice, collecting enough training data from each new signer to retrain
and adapt the model may not be feasible. In this regard, several works focused on the development of truly-
signer independent models that do not require any data from the new signers [1, 7, 10, 18, 22, 24, 26]. Most



of them involved a huge feature engineering effort in order to build normalized hand-crafted feature descriptors
robust to the large inter-signer variations. A major weakness across all the aforementioned methods is related
to the fact that representation and metric learning is not jointly performed. Motivated by the inherent difficulty
of designing reliable hand-crafted features to the large inter-signer variability, recent SLR systems are mostly
based on deep neural networks [9, 12, 15, 16, 23]. It is well-known that deep neural networks are remarkably
good in figuring out reliable high-level feature representations from the data. However, in previous deep SLR
methodologies, the learned representations are not explicitly constrained to be signer-invariant. Therefore, there
is nothing to prevent the learned representations of different signers and the same class of being far apart in the
representation space and, hence, signer invariance is not ensured.

This paper presents a novel adversarial training objective, based on representation learning and deep neural
networks, specifically designed to address the signer-independent SLR problem. Different from the aforemen-
tioned methodologies, our model jointly learns the representation and the classifier from the data, while explicitly
imposing signer invariance in the high-level representations for a robust and truly signer-invariant sign recogni-
tion.

3. PROPOSED METHOD

The ultimate goal of our model is to learn signer-invariant latent representations that preserve the relevant
part of the information about the signs while discarding the signer-specific traits that may hamper the sign
classification task. To accomplish this purpose, we introduce a deep neural network along with an adversarial
training scheme that is able to learn feature representations that combine both sign discriminativeness and
signer-invariance.

More specifically, let X = {Xi, yi, si}Ni=1 denote a labeled dataset of N samples, where Xi represents the i-th
colour image, and yi and si denote the corresponding class (sign) label and signer identity, respectively. To induce
the model to learn signer-invariant representations, the proposed model comprises three distinct sub-networks:

• an encoder network, which aims at learning an encoding function h(X; θh), parameterized by θh, that maps
from an input image X to a latent representation h;

• a sign-classifier network, which operates on top of this underlying latent representation h to learn our task-
specific function f(h; θf ), parameterized by θf , that maps from h to the predicted probabilities p(y|h; θf )
of each sign class.

• a signer-classifier network, with the purpose of learning a signer-specific function g(h; θg), parameterized
by θg, that maps the same hidden representation h to the predicted probabilities p(s|h; θg) of each signer
identity.

During the learning stage, the parameters of both classifiers are optimized in order to minimize their errors
on their specific tasks on the training set. In addition, the parameters of the encoder network are optimized in
order to minimize the loss of the sign-classifier network while forcing the signer-classifier of being a random
guessing predictor. In the course of this adversarial training procedure, the learned latent representations h
are encouraged to be signer-invariant and highly discriminative for sign classification. To further discourage
the latent representations of retaining any signer-specific traits, we introduce an additional training objective
that enforces the latent distributions of different signers to be as similar as possible. The result is a truly
signer-independent model robust to new test signers.

3.1 Architecture

As illustrated in Figure 2, the architecture of the proposed model is composed by three main sub-networks
or blocks, i.e. an encoder, a sign-classifier and a signer-classifier.

The encoder network attempts to learn a mapping from an input image X to a latent representation h. It
simply consists of a sequence of Le pairs of consecutive 3 × 3 convolutional layers with Rectified Linear Units
(ReLUs) as non-linearities. For downsampling, the last convolutional layer of each pair has a stride of 2. On
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Figure 2. The architecture of the proposed signer-invariant neural network. It comprises three main sub-networks or
blocks, i.e. an encoder, a sign-classifier and a signer-classifier.

top of that, there is a fully-connected layer, also with a ReLU, representing the desired signer-invariant latent
representations h.

Taking the latent representations h as input, the sign-classifier block is composed by a sequence of Ls fully-
connected layers, with ReLUs as the non-linear functions, for predicting the sign class ŷ = arg max f(h; θf ).
Therefore, the last fully-connected layer has a softmax activation function which outputs the probabilities for
each sign class.

The signer-classifier network has exactly the same topology as the sign-classifier net. However, it maps the
latent representations h to the predicted signer identity ŝ = arg max g(h; θg). Therefore, the number of nodes of
the output layer is defined accordingly to the number of signers in the training set.

3.2 Adversarial training

By definition, signer-invariant representations discard all signer-specific information and, as such, no function
(i.e., classifier) exists that maps such representations into the correct signer identity. This naturally leads to an
adversarial problem, in which: (i) a signer-classifier network g(·; θg) receives latent representations h = h(X; θh)
from an encoder network h(·; θh) and tries to predict the signer identity s corresponding to image X and (ii)
the encoder network tries to fool the signer-classifier network while still providing good representations for the
sign-classifier network f(·; θf ), which in turn receives the same representations h and aims to predict the sign
label y corresponding to image X.

Therefore, the signer-classifier network shall be trained to minimize the negative log-likelihood of correct
signer predictions:

min
θg
Lsigner(θh, θg) = − 1

N

N∑
i=1

log p(si|h(Xi; θh); θg) (1)

In the perspective of the encoder, the predictions of the sign-classifier should be as accurate as possible and
the predictions of the signer-classifier should be kept close to uniform, meaning that this latter classifier is not
capable of doing better than random guessing the signer identity. Formally, this may be translated into the
following constrained objective:

min
θh,θf

Lsign(θh, θf ) = − 1

N

N∑
i=1

log p(yi|h(Xi; θh); θf ), (2)

subject to
1

N

N∑
i=1

DKL(US(s)||p(s|h(Xi; θh); θg) ≤ ε, (3)



where DKL is the Kullback-Leibler (KL) divergence and US(s) denotes the discrete uniform distribution on the
random variable s, defined over the set of identities S in the training set. Here, ε ≥ 0 determines how far from
uniform the signer-classifier predictions are allowed to be (as measured by the KL divergence). The choice of
the uniform distribution implies the underlying assumption that the training set is balanced relatively to the
number of examples per signer (which should be true for most practical datasets). When this is not the case,
the empirical distribution of signer identities in the training set may be used instead.

The constraint inequality (3) may be rewritten as:

Ladv(θh, θg) = − 1

N |S|

N∑
i=1

∑
s∈S

log p(s|h(Xi; θh); θg) ≤ ε+ log |S|, (4)

and the constrained optimization problem may be equivalently formulated as:

min
θh,θf

L(θh, θf , θg) = Lsign(θh, θf ) + λLadv(θh, θg), (5)

where λ ≥ 0 depends on ε and Ladv plays the role of an adversarial loss with respect to the signer classification
loss Lsigner.

This objective and the structure of our model are similar to those used in [4], in the context of domain
adaptation, and in [3], to learn anonymized representations for privacy purposes. However, the former uses the
negative signer classification loss as the adversarial term (i.e., Ladv ← −Lsigner), which is not lower bounded,
leading to high gradients and difficult optimization. The latter addresses this problem by replacing this term with
the absolute difference between the adversarial loss as defined in equation (4) and the signer classification loss
(i.e., Ladv ← |Ladv −Lsigner|). This option has a nice information theoretic interpretation as being an empirical
upper-bound for the mutual information between the distribution of signer identities and the distribution of
latent representations. Nonetheless, there exist infinitely many (non-uniform) distributions for which this loss
vanishes. Our choice, besides being clearly lower bounded by the entropy of the uniform distribution, log |S|,
is minimum if and only if p(s|h(Xi; θh); θg) ≡ US(s), ∀i, meaning that the signer-classifier block is completely
agnostic relatively to the signer identity of the training data.

3.3 Signer-transfer training objective

To further encourage the latent representations h to be signer-invariant, we introduce an additional term
in objective (5), the so-called signer-transfer loss Ltransfer. The core idea of Ltransfer is to enforce the latent
distributions of different signers to be as similar as possible. In practise, this is achieved by minimizing the
difference between the hidden representations of different signers, at each layer of the encoder network. To
measure the signer’s distribution difference at the m-th layer, m = 1, ...,M , we compute a distance D(m) between
the hidden representations h(m)(·; θh) of two signers s and t at the output of that layer, such that:

D(m)(s, t; θh) =
∣∣∣∣∣∣ 1

Ns

∑
i: si=s

h(m)(Xi; θh)− 1

Nt

∑
j: sj=t

h(m)(Xj ; θh)
∣∣∣∣∣∣2
2
, (6)

where ||·||2 is the `2-norm, and Ns and Nt denote the number of training examples of signers s and t, respectively.
Accordingly, the signer-transfer loss at the m-th layer is the sum of the pairwise distances between all signers,
i.e.:

L(m)
transfer(θh) =

∑
s∈S

∑
t∈S,
t6=s

D(m)(s, t; θh) (7)

The overall signer-transfer loss Ltransfer is then a weighted sum of the losses computed at each layer of the
encoder network, such that:

Ltransfer(θh) =

M∑
m=1

β(m) L(m)
transfer(θh), (8)



where β(m) ≥ 0 is a hyperparameter that controls the relative importance of the loss obtained at the m-th layer.
By combining (5) and (8), the encoder and sign-classifier networks are trained to minimize the following loss
function:

min
θh,θf

L(θh, θf , θg) = Lsign(θh, θf ) + λLadv(θh, θg) + γLtransfer(θh), (9)

where γ ≥ 0 is the weight that controls the relative importance of the signer-transfer term.

Summing up, the adversarial training procedure is organized by alternatively either training both the encoder
and the sign-classifier in order to minimize objective (9) or training the signer-classifier in order to minimize
objective (1).

4. EXPERIMENTAL EVALUATION

The experimental evaluation of the proposed model was performed using two publicly available SLR databases:
the Jochen-Triesch database [19], and the Microsoft Kinect and Leap Motion American sign language (MKLM)
database [13, 14]. Jochen-Triesch [19] is a dataset of 10 hand signs performed by 24 signers against three different
types of backgrounds: uniform light, uniform dark and complex. Experiments on Jochen-Triesch were conducted
using the standard evaluation protocol of this dataset [6], in which 8 signers are used for the training and the
remaining 16 signers are used for the test. MKLM [13, 14] contains a total of 10 signs, each one repeated 10
times by 14 different signers. In this dataset, the performance of the models is assessed using 5 random splits,
created with signer-independence, yielding at each split a training set of 10 signers, a validation set of 2 signers
and a test set of 2 signers.

4.1 Implementation details

In order to extract the manual signs from the noisy background of the images, the automatic hand detection
algorithm [2] is used as a pre-processing step. The images are then cropped, resized to the average sign size
of the training set, and normalized to be in the range [−1, 1]. Throughout this section, the proposed model is
compared with state-of-the-art methods for each dataset. Nevertheless, to further attest the robustness of the
proposed model, two different baselines are also implemented:

• (Baseline 1) A CNN trained from scratch with `2 regularization. For a fair comparison, the architecture
of the baseline CNN corresponds to the architecture of the encoder network followed by the sign-classifier
network of the proposed model.

• (Baseline 2) A CNN with the baseline 1 topology, but trained with the triplet loss [17].

Here, the triplet loss concept is explored in order to impose signer-independence in the representation space and,
hence, build up a more robust baseline. The underlying idea is to minimize the distance between an anchor
and a positive latent representation, hyi,si and hyp,sp , respectively; while maximizing the distance between the
anchor hyi,si and a negative representation hyn,sn . It is important to note that while anchor and positive latent
representations have to be from the same sign class, their signer identity may or not change. On the other
hand, anchor and negative representations are from different sign classes, whereas their signer identity may also
change. In order to train baseline 2 in an end-to-end fashion for sign classification, the overall loss function to
be minimized is a trade-off between the triplet loss Ltriplet and a classification loss Lsign, such that:

L = Lsign +
ρ

N

N∑
i=1

[
||hyi,si − hyp,sp ||22 − ||hyi,si − hyn,sn ||22 + α

]
, (10)

where Lsign corresponds to the categorical cross-entropy as defined in equation (2). The second term denotes
the Ltriplet, where yp = yi and yn 6=, and ρ ≥ 0 is a hyperparameter controlling its the relative importance.
The margin enforced between positive and negative pairs was fixed as α = 1. In addition, following [17], an
online triplet generation strategy, by selecting the hardest positive/negative samples within every mini-batch,
was adopted.



Table 1. Hyperparameters sets.
Hyperparameters Acronym Set

Leaning rate - {1e−04,1e−03}
`2-norm coefficient - {1e−05,1e−04}
Ltriplet weight ρ {0.1,0.5,1,5,10}
Ladv weight λ {0.1,0.5,0.8,1,3}
Ltransfer weight γ {1.5e−04,2e−04,4e−04,1e−03}

Table 2. Experimental results on: (a) Jochen-Triesch dataset, and (b) MKLM dataset.
(a) Jochen-Triesch (b) MKLM

3*Method Classification accuracy (%)
Background

Uniform Complex Both

Just et al [6] 92.79 81.25 87.92
Kelly et al. [7] 91.80 - -

Dahmani et al [1] 93.10 - -
CNN (Baseline 1) 97.50 74.38 89.79

CNN with Triplet loss (Baseline 2) 98.13 75.63 90.63
Proposed method 98.75 91.25 96.25

2*Method Classification accuracy (%)
average (std) min max

Marin et al [13] 89.71 ( - ) - -
Ferreira et al [2] 93.17 ( - ) - -

CNN (Baseline 1) 89.90 (8.81) 73.00 98.00
CNN with Triplet loss (Baseline 2) 91.40 (3.93) 86.50 96.50

Proposed method 94.80 (3.53) 89.50 100.00

All deep models were implemented in PyTorch and trained with the Adam optimization algorithm using
a batch size of 32 samples. For reproducibility purposes, the source code as well as the weights of the trained
models are publicly available online∗. The hyperparameters that are common to all the implemented models (i.e.,
learning rate and `2 regularization weight) as well as some hyperparameters that are specific to the proposed
model (i.e., λ and γ) and to the implemented baseline 2 (i.e., ρ) were optimized by means of a grid search
approach and cross-validation on the training set (see Table 1 for more details). The signer-transfer penalty
Ltransfer is applied to the last two layers of the encoder network with a relative weight of 1. Regarding the
model’s architecture, the number of consecutive convolutional layers pairs Le was set to 3, which results in a
total of 6 convolutional layers. The number of filters starts as 32 which is then doubled after each convolutional
pair. The dense layer on top of the encoder network has 128 neurons. The number of dense layers of both
classifiers Ls was set to 3, and the number of nodes of each hidden layer was set as 128.

4.2 Results and discussion

Experiments on the Jochen-Triesch and MKLM databases are summarized in Tables 2(a) and 2(b), respec-
tively. The results on the Jochen-Triesch database are presented in terms of average classification accuracy in
the overall test set as well as against each specific background type (i.e., uniform and complex). For the MKLM
database, Table 2(b) depicts the average classification accuracy computed across all the 5 test splits, as well as
the minimum and maximum accuracy value achieved by each method.

The most interesting observation is the superior performance of the proposed model. Specifically, the pro-
posed model provides the best overall classification accuracy on both SLR databases, clearly outperforming both
implemented baselines and all the previous state-of-the-art models. In complex scenarios, as reported in Ta-
ble 2(a), the proposed model surpasses all the other methods by a large margin (i.e., 91.25% against 81.25%,
74.38% and 75.63%). In addition, by analyzing the standard deviation as well as the minimum and maximum
accuracy values, it possible to observe that the proposed model is the method with the lowest variability, yielding
consistently high accuracy rates across all test splits of the MKLM dataset (see Table 2(b)). These results attest
the robustness of the proposed model and its capability of better dealing with the large inter-signer variability
that exists in the manual signing process of sign languages. Interestingly, the obtained results also reveal that the
implemented baselines are in fact fairly strong models, both of them outperforming most of the state-of-the-art
methods on both datasets.

Table 3 illustrates the effect of each proposed training scheme by itself. For this purpose, the proposed
model was trained either (i) with just the adversarial procedure, without the signer-transfer Ltransfer loss, or
(ii) with just the Ltransfer penalty on the encoder network without adversarial training. The results clearly
demonstrate the complementary effect between the two training procedures, as their combination provides the
best overall classification accuracy. Interestingly, each training scheme outperforms on its own both baselines
and state-of-the-art methods.

∗https://github.com/pmmf/SI-SLR

https://github.com/pmmf/SI-SLR


Table 3. The effect of each training procedure in the proposed model. The results in the last column are replicated from
Tables 2(a) and 2(b) as they include both training procedures.

2*Dataset Classification accuracy (%)
Only adversarial training Only Ltransfer penalty Both

Jochen-Triesch 95.21 94.38 96.25
MKLM 94.00 94.10 94.80

(a) CNN - baseline 1 (b) CNN with triplet loss - baseline 2 (c) Proposed model
Figure 3. Two-dimensional projection of the latent representation space using the t-distributed stochastic neighbor em-
bedding (t-SNE) [20]. Markers • and + represent 2 different test signers, while the different colors denote the 10 sign
classes.

4.3 Latent space visualization

To further demonstrate the effectiveness of the proposed model in promoting signer-invariant latent repre-
sentation spaces, we have performed a visual inspection of the latent representations through the t-distributed
stochastic neighbor embedding (t-SNE) [20] (see Figure 3). These plots clearly demonstrate the better capability
of the proposed model of imposing signer-independence in the latent representations. The proposed model yields
a latent representation space in which representations of the same signer and different classes are close to each
other and well mixed, while it keeps latent representations of different classes far apart. By analyzing the t-SNE
plot of baseline 1, it is possible to observe that the latent representations of different signers and the same class
tend to be far apart in the latent space. In addition, there is some overlapping between clusters of different
classes. Although baseline 2 (CNN with the triplet loss) promoted slightly improvements over the standard
baseline CNN, the proposed model achieved by far the best signer-invariance and class separability.

5. CONCLUSION

This paper presents a novel adversarial training objective, based on representation learning and deep neural
networks, specifically designed to tackle the signer-independent SLR problem. The underlying idea is to learn
signer-invariant latent representations that preserve as much information as possible about the signs, while
discarding the signer-specific traits that are irrelevant for sign recognition. For this purpose, we introduce an
adversarial training procedure for simultaneously training an encoder and a sign-classifier over the target sign
variables, while preventing the latent representations of the encoder to be predictive of the signer identities.
To further discourage the underlying representations of retaining any signer-specific information, we propose an
additional training objective that enforces the latent distributions of different signers to be as similar as possible.
Experimental results demonstrate the effectiveness of the proposed model in several SLR databases.
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