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Abstract—Traditionally, convolutional neural networks are
trained for semantic segmentation by having an image given
as input and the segmented mask as output. In this work, we
propose a neural network trained by being given an image
and mask pair, with the output being the quality of that
pairing. The segmentation is then created afterwards through
backpropagation on the mask. This allows enriching training with
semi-supervised synthetic variations on the ground-truth. The
proposed iterative segmentation technique allows improving an
existing segmentation or creating one from scratch. We compare
the performance of the proposed methodology with state-of-
the-art deep architectures for image segmentation and achieve
competitive results, being able to improve their segmentations.

I. INTRODUCTION

Segmentation of images into its constituent parts is a
decades-old problem. Traditional methods range from the
usage of color threshold to clustering, and iterative methods
such as region growing and active contours. However, all these
methods require strong human supervision and tuning to find
the right parameters.

The advent of machine learning, in particular convolutional
ncural networks like SegNet [1], has allowed semantic scg-
mentation — where the parameters of the model are optimized
automatically in a supervised manner on the object of interest.
These new methods lack the iterative nature of previous
techniques. The downside of such methods is the great amount
of data required for training. Furthermore, applying these
models to slightly different contexts, without re-training or
fine-tuning, proves problematic.

Opposite to how machine learning algorithms are trained,
as humans, we do not have a single ground-truth solution on
our daily tasks, but a spectrum of alternative choices that are
able to fulfill our goal to a certain degree. From an economics
and social choice perspective, this decision process usually
involves a utility function that reflects our satisfaction degree
about a solution [2]-[4]. Based on such utility function, we
are able to apply local (and non-local) updates in order to
fulfill the requirements. In this work, we propose a novel
segmentation paradigm: the convolutional neural network is
trained to learn the quality of an image-segmentation pair.
For a given dataset of images, multiple possible synthetically-
created segmentations of varying qualities are used in the
training process. The model not only has more information,
but the problem complexity is reduced. The output, instead
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Fig. 1: Diagram representing segmentation flows.

of having size 2%dhxheight which is the area of the entire
segmentation probability mask, the output is a single number
corresponding to the quality of the given segmentation. This
is represented in a diagram in Fig. 1.

Once training is performed, the segmentation process is no
longer done in a single forward-pass like in the traditional ap-
proach. In our proposal, the segmentation process also makes
use of the network as an oracle of the current segmentation
quality to refine the mask in an iterative fashion. In order to do
this, we rely on the backpropagation algorithm. This iterative
process is inspired by previous segmentation techniques such
as region growing, and the human visual system; human
design evolves steps of “anticipated emergence” — sketching,
in particular, involves seeing-moving-seeing steps [5]. The
proposed model is an iterative process that can, not only
produce segmentations from scratch, but also improve on those
provided by an existing model.

II. STATE-OF-THE-ART

Many traditional computer vision techniques have involved
iterative processes. This is the case, for example, of region
growing and active contours (also known as snakes).

In region growing [6], the segmentation is initialized from a
seed point R(0) at time 0, and then grows to include its neigh-
bor pixels N, R(t + 1) = |J, R(t) U N, according to a user-
provided logical predicate P(RUN;). In active contours [7],
a curve composed of discrete points v(s) = {(x(s),y(s))},
indexed by s € [0,1], is found by minimizing an energy
function Egae = fol [Einternal (X(8)) + Fexterna(x(s))] ds. The
Einermal acts as a regularizer punishing many oscillations in
the curve, while FEexema is a function of the intensity or
gradients within the image and can be both negative (repellent)
or positive (attractor).
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These traditional techniques have recently been surpassed
by convolutional neural networks, which are capable of “se-
mantic segmentation”; i.e. the ground-truth is used to guide
the learning process.

The most widely used architectures are based on an
encoder-decoder two-phased neural network; the image is
first compressed into a smaller semantic representation, usually
using convolutions and pooling (the encoding phase), and then
decompressed into the final segmentation, usually using con-
volutions transposes (the decoding phase). The first example
of this was SegNet [1].

A big problem in the encoding-decoding strategy is in
avoiding the so-called checkerboard problem. Some detail is
lost during the encoding step, which prevents the decoding step
of doing as good a job as it could in refining the segmentation.
This can result in a segmentation with a checkerboard effect.
Since the encoding-decoding phases of the neural network are
symmetric, U-Net [8] created so-called “skip-layers” where
each decoding layer ¢ does not only receive as input the
activation output of the previous layer £ — 1, but also of the
symmetric layers L — ¢ from the encoding phase, where L is
the number of layers and ¢ > % In summary, each encoding
layer computes the usual function a(®) = f(a(*~1) and each
decoding layer computes the function a©) = f(a*=1) a(L=0)
which is also using information from the encoding phase.
It should be pointed out that U-Net was the best perform-
ing model in the ISBI 2016 Skin Lesion Analysis Towards
Melanoma Detection Challenge [9], which supports its choice
as one of the baseline models in this work.

Another important landmark in avoiding the checkerboard
effect are dilated kernels (originally known as atrous con-
volutions). DeepLab [10], which makes use of such kernels,
ranks first place in many benchmarks, including PASCAL
VOC. There are no distinct encoding and decoding phases
which produce activation maps of varying size. In this model,
the activation maps remain the same size across the network.
Filters are interconnected to the layers in a way, that each
weight is shared across the same activation, so that the
activation produced can have the same dimension along the
network. Such a model is also used as a baseline in this work.

Also, worth mentioning is that iterative segmentation al-
ready exists in the form of recurrent neural networks adapted
for segmentation [11]. The current work is innovative in that
it is far simpler than any previous approach, since it most
resembles traditional architectures used for segmentation.

III. DEEP SEGMENTATION BY QUALITY INFERENCE

The main idea of this paper can be summarized as follows:

1) learn to evaluate the quality of a certain segmentation
mask for a given image;

2) use the model learned in 1) to find a local optimal
segmentation by walking in the space of segmentation
masks.

The proposed idea is illustrated in Fig. 2, where the image-

mask is iteratively fed to the quality oracle in order to estimate
the correspondence between them. Then, a search procedure

Fig. 2: Illustration of the iterative process of quality estimation
and improvement. The search procedure indicates that red/blue
regions should be added/removed from the input mask to
improve the quality estimated by the oracle.

is used to discover potential improvements to the input mask.
This process is repeated until a convergence criterion (c.g.
desired quality, improvement tolerance, number of iterations)
is met.

We propose to achieve 1) by using Deep Convolutional
Neural Networks and 2) by using gradient ascent (back-
propagation) over the input mask. We argue that it is more
robust to learn to evaluate the quality of a given im-
age/segmentation pair than to learn how to segment the image.
Also, the quality concept has the potential to be more generic
and easily transferred between tasks.

A. Quality Inference as Deep Similarity Learning

In this section, we address several aspects of the con-
struction of a model capable of predicting the quality of a
semantic image segmentation mask. How to express a utility
of an entity (e.g. commodity, good, segmentation mask) is an
open problem in economics and social choice [4]. The main
choices for modeling utilities are pairwise preferences [12]
and cardinal/ordinal functions [13]. These paradigms can be
mapped (o similarity learning as regression and ranking sim-
ilarity learning respectively. In order to simplify the learning
process (i.e. decision models and optimization), we model the
utility (quality) of a segmentation mask as a cardinal function.
Thereby, we are interested in regression models where pairs
of objects — image ¢ and mask m — are given to the model,
being the quality ¢ the outcome of the model. In our case,
the utility is a measure of quality or correspondence between
the mask and the image. This can be learnt by minimizing the
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Fig. 4: Diagram representing a potential dual stream approach
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regularized loss function

meinzk: Lo (f(Gig,mr), qx) + AR(0), ()

where £ can be instantiated to the squared error of the
estimated quality and the corresponding ground-truth quality
and R is a regularizer of the model complexity (e.g. Lo).
In this approach, we assume that, during training, a quality
function for each image-mask pair is available.

The most straightforward strategy to solve this problem
would be to use a traditional Convolutional Neural Net-
work (CNN) where the mask is appended to the image as
an additional channel (see Fig. 3). These two data sources
(i.e. image and mask) belong to different categories (real-
valued and binary) but are handled by the same operation (i.e.
convolution) which may difficult the learning process.

An alternative approach would be to have separate streams
for the input image and masks (see Fig. 4), being merged in the
final dense blocks by concatenating their latent representation.
The main drawback of this model would be that as we move
deeper through the network, the intrinsic loss of resolution
would limit the analysis of low-level patterns. Moreover, since
cach strcam works with a different type of data, it is not clear
how similar would be their latent representation.

In this work, we propose a deep architecture to tackle this
problem, allowing an early integration of the information from
image and masks. The main intuition behind this architecture
is (i) having two streams that attempt to model the regions
defined as foreground and background respectively by the
input mask; (ii) streams communicate — “gossips” — to each
other in order to increase/decrease their confidence on the
recognition of their corresponding regions. In the rest of this
section, we formalize the proposed architecture and its training
procedure.
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Fig. 6: Diagram of the two streams containing the gossip
blocks.
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Fig. 7: Diagram of the gossip block. Thick arrows define the
first argument of the operations that are not commutative.
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1) Gossip Networks: Gossip networks are structured in
such a way that the foreground and background representation
is modeled by a pair of streams. This architecture is best
described in three degrees of scale:

1) The general architecture is composed of the initial split
into background and foreground streams, followed by
dense layers, which produce the final quality score (see
Fig. 5).

2) Within each stream, gossip blocks are consecutively
intertwined with traditional convolutions; pooling is
applied at the end of the stream to feature maps and
masks (see Fig. 6).

3) At the lower-level, the gossip block combines the
information from the two streams (see Fig. 7). The
gossip block receives the feature maps obtained by 2D
convolutional layers for the corresponding stream S
and reciprocal layer S. Then, for the region of interest
of each channel, we penalize the activations where
the reciprocal channel has stronger activations than the
current one. We set the non-linearity term of these layers
to the penalty term in order to favor the propagation
of gradients to the original source pixels at inference.
Namely, we avoid the problem of dead units where
gradients are zero [14].

This type of double-helix connection between streams seen
in the diagram was used to ensure an early interaction between
both streams in order to reinforce/penalize their assumptions
on each resolution-level.

The propagation of gradients through max-pooling blocks is
sparse, leading to an unstable refinement of the segmentation
masks (see section III-C). Thereby, we decided to use average
pooling that ensures gradients are propagated through all the
pixels in the block. Also, we restrain the activations of the
convolutions to the valid regions in order to avoid unbalanced
magnitude of the gradients in the edges of the image.

B. Training

Here, we describe how to efficiently train the proposed ar-
chitecture in order to cover the space of potential segmentation
masks in an efficient manner.

1) Similarity Metric: The similarity metric used in this
work was the Sgrensen-Dice coefficient D, often referred to
as simply the Dice Coefficient. This index is given by the
intersection over the union of the true and predict masks,

D(Y,Y) = M )
Y]+ Y]

The index may be seen as a kind of F, score, hereby ensuring

both positives and negatives (mis)classifications are captured

equally in the metric.

2) Transformations: Two levels of transformations were
applied: at the level of the ground-truth image and mask pairs,
and then further transformations were applied to synthetically
generate different segmentations of varying degrees of quality

a/4@ a/®®

Original ~ Elastic  Dilation Erosion Random  Rotate Flip &
switches offset

Fig. 8: Examples of synthetically created segmentations.

similarities — the ability to perform this latter data augmenta-
tion process is one of the key features that makes the Gossip
architecture stand out from the current state-of-the-art.

Traditional data augmentation was applied to the ground-
truth image and mask pairs. These transformations encom-
pass random horizontal and vertical flips, horizontal and
vertical shifts, random zoom scales, as well as shear and
contrast stretching deformations. These transformations were
customized for each trained dataset.

Furthermore, the Gossip architecture has the ability to be
trained for new segmentation masks created synthetically
— with their corresponding similarity metric. The following
transformations have been used. Notice all of them have one
or multiple parameters, which are listed in brackets.

o Elastic deformation (a, o, o), which is a type of local,
affine distortion [15]

« Morphological erosion and dilation (size)

« Random pixel switching (#pixels)

« Rotations (angle)

« Flip transformations (horizontal and/or vertical) and hor-
izontal and vertical mask shifts (xoffset, yoffset).

These transformations are illustrated in Fig. 8. The parameters
of these transformations were grid-searched in order to provide
a balanced range of qualities of Dice. There is an inverse re-
lation between the magnitude of each one of these parameters
and the similarity index, but quantifying this relation is not
straightforward. For this reason, the following procedure was
applied.

First, the impact each combination of transformations and
respective parameters had on the similarity index is computed
empirically. For each transformation, the parameters are drawn
by grid-search, and a similarity index D(Y,Y”) is computed
between the ground-truth mask Y and the synthetically cre-
ated Y. Dice was discretized into B bins (in our case, B = 8).
A frequency distribution p;, was then found, representing the
number of times p that the parameter combination ¢ resulted
in Dice b.

A couple of these transformations are stochastic (elastic
and random pixel switch), therefore these two transformations
were repeated 10 times for each ground-truth mask.

A second distribution is then computed from which we
can sample parameters in order to ensure the similarity index
is being drawn equitably across all bins (so that dice is
evenly represented). This was performed by finding 8 which
minimized the system composed of B equations, representing
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cach bin b as
B-p1=%
: 3
B-pP=%.
This was solved as a non-negative linear square problem, in
order to ensure that each J represented a probability, which
was then used to draw the parameters.

Notice there is a different 3 for each dataset and for each
transformation. The reason why a different 3 was computed
for each transformation was to ensure that each transformation
was used uniformly. First, a transformation is chosen ran-
domly, then the parameters are chosen using the respective p
distribution. Otherwise, some transformations might have been
used more than others. Notice that horizontal/vertical flips and
mask shift offsets transformations were combined into a single
transformation (see the previous bullet list) because the limited
number of parameters made it impossible to create an equitable
distribution for flip transformations alone.

C. Improving Segmentation by Backpropagation

The Gossip network f is trained to predict the quality of an
image-mask pair, § = f(i,m) for a given image ¢ and mask
m pair.

During training, the Gossip network uses traditional gradient
descent by computing the gradients of the loss function £
relative to each weight w; within the network, %, where
q is the expected quality for the given image and mask pair.
Each weight is then updated in the opposite direction of the
gradient, w; < w; — ag—fi, using a learning rate «. This step
is known as backpropagation.

On segmentation inference, inspired by the literature on
generating adversarial examples [16], we propose improving
a given segmentation by performing backpropagation on the
predicted segmentation mask 7 by maximizing the predicted
quality ¢. An initial mask 77;; is then updated iteratively by
gradient ascent,

g
O

T?L,;j < ’ﬁl,‘,j +« (4)
We have found, as reported below, that this technique works
well both for improving existing segmentations, as well as
creating segmentations from scratch, by starting with a black
mask.

Some architectural design choices were based on allowing
using gradients to update the mask. In order to avoid coarse
gradients, average pooling has been used, rather than the
more traditional maximum pooling approach. The derivative of
average pooling is the averaging constant, while the derivative
of maximum pooling is 1 for one pixel (the activation pixel)
and O for all others. Empirically, maximum pooling would
result in a very coarse segmentation.

For better convergence, gradients are normalized so that

%?_—_ [—1,1] per mask and a sigmoid smoothness, S(z) =
ij
m, is also applied to the gradients. We used a fixed

number of backpropagation iterations on the segmentation

TABLE I: Summary of the datasets used in this paper. FS
denotes the average foreground area.

Dataset Ref. | # Imgs. % FS
SmartSkins [17] 80 37.5
PH2 [18] 200 49.1
ISBI 2017 9] 2750 9.3
Teeth-UCV [19] 100 23.7
Breast-Aesthetics [20] 120 19.1
Cervix-HUC [21] 287 5.8
Cervix-MobileODT | [22] 1613 17.1
Mobbio [23] 2164 5.1

mask. The sigmoid smoothness k, the number of backprop-
agation iterations, and the fixed update rate o were found
empirically for each dataset using the validation set.

An alternative to backpropagation would have been using
an exhaustive or heuristic exploration of the space of segmen-
tation masks using the network as a fitness oracle. While these
techniques would be able to discover non-local improvements,
backpropagation stands as an efficient exploration strategy
when the decision function is known and C' (differentiable).

IV. EXPERIMENTS

In this section, we provide a dctailed analysis of the
experiments and results. First, we describe the datasets and
baselines used in the validation of the proposed strategy. Then,
we validate the performance of the proposed strategy on these
datasets and on cross-database applications, where models are
trained and validated on different datasets. We made the source
code available for reproducibility purposes’.

A. Data

We validated the performance of the proposed architectures
on six real-life biomedical datasets. The datasets cover ap-
plications on the segmentation of melanoma, teeth, breast,
cervix, and iris. Further details and sample images are shown
in Table I and Fig. 9 respectively. These datasets were chosen
to provide a range of segmentation of diverse complexity used
in real clinical applications.

The goal of the first three datasets (i.e. SmartSkins, PH2,
and ISBI 2017) is to segment skin lesions in dermoscopic
images. The task on the Teeth-UCV, Breast-Aesthetics and
Mobbio databases is to segment teeth, breasts, and iris from
the background on natural RGB images. Finally, the object
of interest in Cervix-HUC and Cervix-MobileODT datasets is
the cervix, being the images acquired using digital colposcopy
with several modalitics (i.e. Hinselmann, Schiller and Green
filter [24]).

We divided all the datasets into training, validation and test
sets following the standard 60-20-20 partitioning. All images
were first resized to 128 x 128 for easy comparison.

B. Models

In order to validate the performance of the proposed
technique, we compared our results with the state-of-the-art

Thttps://github.com/kelwinfc/segmentation-by-quality
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Fig. 9: Sample images and masks [rom the several datasets
used for training.

U-Net [8] and U-Net with Dilated Convolutions (Dilated-
Net) [10]. For each model, we choose the best number of
blocks (i.e. two convolutional layers and one pooling layer)
on the validation set within the interval 2, 3 and 4. We use
32 filters on the first convolutional layer and double the value
on each level as typically done in the literature [8]. The loss
function for the Gossip Network was the mean squared error,
and the networks were trained with 2, 3 and 4 gossip-gossip-
pooling blocks, with one and two dense layers per each stream
and in the final common section. ReLU activations were used
on the intermediate dense layers and a sigmoid activation on
the final layer to predict a quality value between O and 1.

We trained the models using Adam [25] for a maximum
number of 500 iterations. In order to avoid overfitting, early-
stopping was used after 50 iterations without improvement,
and the best validation model was used.

C. Results

First, we explore the performance of the model in the most
extreme scenario, where the initial segmentation is completely
empty (i.e. black mask). Fig. 10 shows the performance of
the network after IV iterations of refinement. As can be seen
in the Fig. 10, the network converges to a good solution on
about 20 iterations. The remaining steps of the optimization
focus on minor details with little impact on the overall

Breast Aesthetics

--- PH2

<<<<<<<< Teeth-UCV

Cervix-MobileODT

—— ISBI 2017

- - — Cervix-HUC
Mobbio

- » — SmartSkins

Dice’s Coefficient

300

Iterations

Fig. 10: Average Gossip Network performance after N itera-
tions of refinement starting from empty masks.

performance. Some degenerated cases were observed where
the network performance decayed after some iterations. This
effect is the result of miss-estimations of the quality function,
where the network was not able to learn the right direction
for improvement. Fig. 11 illustrates the network progress at
several stages of the refinement. As can be seen in the figure,
the proposed approach emulates the traditional region-growing
strategy [6], where the mask is progressively extended.

The second scenario we explored was the iterative refine-
ment of base segmentation done by the UNet and DilatedNet
architectures. In this case, we choose the best number of
refinement steps on the validation set, being 100 the maximum
number of iterations. As can be seen in Table II, the proposed
strategy improved the performance of the UNet and DilatedNet
architectures in all databases.

The main drawback of the proposed strategy is that, being
an iterative procedure, it requires more time to segment an
image than a single-shot model. However, as can be seen in
Figure 10, the proposed methodology was able to achieve good
results after a few iterations, even when starting from a blank

TABLE II: Contrasting models with and without Gossip en-
hancement, in terms of Dice’s coefficient. Best results per
database are presented in bold.

Dataset o U-Net . . .Dilated-Net .

Original W/Gossip | Original W/Gossip
SmartSkins 76.62 79.45 76.35 83.36
PH2 83.70 84.09 85.52 86.41
ISBI 2017 71.35 76.52 72.06 76.11
Teeth-UCV 85.85 85.91 86.03 86.14
Breast Aesthetics 93.08 93.31 94.03 94.15
Cervix-HUC 77.25 77.26 75.37 75.37
Cervix-MobileODT 88.24 88.25 86.38 88.25
Mobbio 67.91 68.23 69.90 70.11

TABLE III: Cross-database
Dice’s coefficient

model performance in terms of

Source Target U-Net Dilated-Net
Original W/Gossip |Original W/Gossip
PH2 SmartSkins 76.87 81.21 75.71 81.60
PH2 ISBI 2017 64.44 67.02| 66.13 72.10
Cervix-MobileODT|Cervix-HUC| 57.94 57.99| 32.18 36.00
PH2 Cervix-HUC| 44.44 50.28|  60.42 60.62

2018 International Joint Conference on Neural Networks (IJCNN)
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(i) Initial mask

(d) 5 steps (e) 10 steps (f) 100 steps

(j) 5 steps (k) 10 steps

(1) 100 steps

Fig. 11: Tterative refinement of images from PH2 and Breast Aesthetics datasets, respectively, using Gossip Networks. Initial

masks are completely void.

mask.

Finally, we validate the performance of the proposed model
on cross-database scenarios, where the model was trained
for a given task and validated on a different dataset. This
is common in applications where training data is synthetic
due to field restrictions (e.g. aerospace) and cross-sensor
applications. Results of this experiment arc presented in Ta-
ble III. In the first two cases, we use datasets for melanoma
segmentation. We can observe large gains achieved by the
Gossip network being initialized by the U-Net and Dilated-Net
masks. For the validation of cervix segmentation (i.e. Cervix-
MobileODT to Cervix-HUC), we observe a drop in the model
performance when compared to training on the Cervix-HUC
dataset directly. However, the Gossip Network achieves better
performance than its counterparts. The last case covers cross-
domain transitions, from melanoma to cervix segmentation.
We observe a gain of about 6% when comparing the U-Net
and Gossip Networks. The intuition behind these gains is that
the notion of segmentation quality is more robust to changes
in the data distribution. Namely, some concepts associated to
predicting the quality of a segmentation such as the alignment
between edges, the difference of contrast between foreground
and background can be easily transferred among tasks.

V. CONCLUSION

This paper addresses the problem of semantic image seg-
mentation with deep neural networks. We propose a new
paradigm, based on similarity learning techniques, that tries
to learn a quality function that maps an image-mask pair to
the corresponding segmentation quality. Using the proposed
architecture and, in combination with backpropagation, the
proposed strategy is able to improve segmentation masks by
maximizing the expected quality. By framing the problem as
a regression task, we reduce the output complexity. Moreover,
we are able to exploit the dataset size by learning from a

large number of synthetically-generated candidate segmenta-
tion masks with their corresponding quality values.

We validated the proposed strategy in several biomedical
applications and achieved good results when compared with
the state-of-the-art U-Net and Dilated-Net architectures, with
negligible computational expense. Also, we validated the
proposed approach on cross-database scenarios and achieved
promising results.

As future work, we intend to explore pairwise approaches
based on the triplet loss [26], where the learning process is
driven by comparing the outcome of pairs of masks for a
single image. The proposed network could also be used for
dynamic ensembles of models from which to produce the final
segmentation. Namely, the importance of each model on the
decision can rely on the quality predicted by the proposed
network. Smaller details that could be improved are the fixed
learning rate and the fixed number of iterations used on the
segmentation by backpropagation part of the work.
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