5. Programas Universais

- 5.1 Funções universais e programas universais
- 5.2 Duas aplicações de programa universal
- 5.3 Operações efectivas sobre funções computáveis

Considere-se a seguinte função: $y(x, y) = f_x(y)$

O que faz?

Tudo o que qualquer função unária computável pode fazer!

Esta função engloba todas as funções unárias computáveis.

Seja **g(y)** uma função qualquer computável. Então, tem um índice **n**.

$$g(y) = \boldsymbol{f}_{n}(y) = \boldsymbol{y}(n, y)$$

Diz-se que $oldsymbol{y}$ é a **função universal** para as funções unárias computáveis.

Definição

A função universal para funções n-árias computáveis é a função (n+1)-ária $\mathbf{y}_{U}^{(n)}$ definida por: $\mathbf{y}_{U}^{(n)}(e,x_{1},x_{2},...,x_{n}) \approx \mathbf{f}_{e}(x_{1},x_{2},...,x_{n})$

$$oldsymbol{y}_{U}^{(n)}$$
 é computável ?

Se for, existirá um programa $\,P_{U}^{\ (n)}\,$ capaz de computar qualquer função n-ária computável. Então, esse programa irá englobar todos os programas e será designado por **Programa Universal.**

Teorema

Para cada n, a função universal $\mathbf{y}_{U}^{(n)}$ é computável.

Prova 1: (Recurso à Tese de Church)

Para um \mathbf{n} fixo e dados um índice \mathbf{e} e um n-uplo \mathbf{x} , vamos estabelecer um procedimento informal para computar $\mathbf{y}_{U}^{(n)}$:

"Descodificar o número ${\bf e}$ e escrever o programa ${\bf P_e}$.

Imitar a computação ${\bf P_e(x)}$ passo por passo.

Se e quando a computação terminar, o valor requerido de ${\bf y}_U^{(n)}(e,x)$ é o número que se encontra em ${\bf R_1}$."

Recorrendo à Tese de Church, podemos concluir que $\mathbf{y}_{U}^{(n)}$ é computável.

Prova 2: (Esboço de uma prova formal)

Esquema da prova:

- 1. usar um único número S para codificar a situação corrente de uma computação
- **2.** Definir uma função computável que exprima a dependência de S relativamente:
 - (i) ao número do programa: e;
 - (ii) ao vector x (input);
 - (iii) ao número de passos da computação que já foram efectuados: t.

- Para **n** fixo, consideremos o índice **e** e o vector **x**. Queremos computar $\mathbf{\mathcal{Y}}_{U}^{(n)}(e,x)$
- Descodificamos e e escrevemos o programa P_e.
- Para um dado x, a situação corrente durante a computação P_e(x) é completamente descrita por:
 - a configuração corrente dos registos $\mathbf{r_1}$, $\mathbf{r_2}$, $\mathbf{r_3}$,...
 - o número j da instrução seguinte.

Como apenas um número finito de $\mathbf{r_i}$ é diferente de zero, a configuração corrente pode ser univocamente dada pelo número:

$$c=2\ ^{r_1}\ 3^{\ r_2}\ 5^{\ r_3}...=\prod_{i\geq 1}p_i^{\ r_i}$$
 código de configuração i-ésimo número primo

Note-se que o conteúdo de R_i pode ser recuperado a partir de c, pois $r_i = (c)_i$.

A descrição da situação corrente pode assim ser completa através

$$\mathbf{s} = \mathbf{p}(\mathbf{c}, \mathbf{j})$$

estado corrente da computação Pe(x)

Convenção: Se a computação parou, então $\mathbf{j} = \mathbf{0}$ e a configuração final é \mathbf{c} .

Mas os valores de **c**, **j** e **S** variam durante a computação:

Vamos exprimir a sua dependência relativamente

- ao número do programa (e)
- ao input (**x**)
- ao número de passos já efectuados (t) através das seguintes funções (n+2)-árias.

$$c_n(e, x, t) = configuração após t passos de $P_e(x)$
(= configuração final, se $Pe(x)$ parou em t ou menos passos)$$

$$j_n(e,\,x,\,t) \,= \left\{ \begin{array}{ll} \text{n\'umero da instru\'ção seguinte de $P_e(x)$} & \text{, se $P_e(x)$ n\~ao parou ap\'os t} \\ \text{quando t passos foram executados} & \text{ou menos passos} \\ \text{, se $P_e(x)$ parou ap\'os t ou menos passos} \end{array} \right.$$

$$\mathbf{S}_n$$
 (e, x, t) = estado da computação $\mathbf{P}_e(\mathbf{x})$ após t passos
= \mathbf{p} (c_n(e, x, t), j_n(e, x, t))

O nosso objectivo agora será provar que S_n Vamos supor que é computável. (provaremos depois)

Então, se a computação $P_e(x)$ termina,

- o número de passos será $mt (j_n(e, x, t) = 0)$
- a configuração final será $c_n (e, x, mt (j_n(e, x, t) = 0))$
- e o resultado final (o conteúdo do registo R₁) será:

$$(c_n (e, x, \mathbf{m}t (j_n(e, x, t) = 0)))_1 = \mathbf{y}_U^{(n)}(e, x)$$

e, então $\mathbf{y}_{\mathrm{U}}^{(n)}(\mathrm{e},\mathrm{x})$ é computável. (c.q.d.)

Usamos agora a Tese de Church para provar que S_n é computável. Damos o seguinte algoritmo informal para determinar efectivamente

$$\mathbf{S}_n(\mathbf{e}, \mathbf{x}, \mathbf{t}+1)$$
 a partir de $\mathbf{S}_n(\mathbf{e}, \mathbf{x}, \mathbf{t})$ e do índice **e**:

"Descodificar o número $\mathbf{S}_n(\mathbf{e}, \mathbf{x}, \mathbf{t})$ e obter os

$$c = c_n(e, x, t) e j = j_n(e, x, t).$$

*

Se j = 0,
$$S_n(e, x, t+1) = S_n(e, x, t)$$

Senão, escrever a configuração codificada em c:

Descodificar o índice \mathbf{e} , obtendo-se o programa $\mathbf{P}_{\mathbf{e}}$.

Determinar a instrução \mathbf{j} de $\mathbf{P}_{\mathbf{e}}$ e aplicá-la à configuração (*). dando origem a uma nova configuração, codificada pelo número \mathbf{c} .

Encontrar o número j' da próxima instrução. Temos agora: $s_n(e, x, t+1) = p(c', j')$

Então, $\mathbf{S}_n(\mathbf{e}, \mathbf{x}, \mathbf{t})$ é computável por recursão em \mathbf{t}

e, para
$$\mathbf{t} = \mathbf{0}, \mathbf{S}_n(e, x, 0) = \mathbf{p}(2^{x_1}3^{x_2}...p_n^{x_n}, 1)$$

Recorrendo à Tese de Church, $S_n(e, x, t)$ é

e o teorema fica provado.

Uff!!

Corolário

Para cada n > 0, os seguintes predicados são decidíveis:

- (a) $S_n(e, x, y, t) \equiv P_e(x) \downarrow y \text{ em t ou menos passos'}$
- (b) $H_n(e, x, t) \equiv P_e(x) \downarrow em t ou menos passos'$

Prova: (a) $S_n(e, x, y, t) \equiv 'j_n(e, x, t) = 0 e(c_n(e, x, t))_1 = y'$

(b)
$$H_n(e, x, t) \equiv ' j_n(e, x, t) = 0'$$

Corolário

Existe uma função total computável U(x) e, para cada n > 0, um predicado decidível $T_n(e, x, z)$, tais que:

(a) $\mathbf{f}_{e}^{(n)}(x)$ está definida se e só se $\exists z : T_{n}(e, x, z)$

(b) $\mathbf{f}_{e}^{(n)}(x) \approx U(\mathbf{m}z T_{n}(e,x,z))$

Prova: Para determinar onde $f_e^{(n)}(x)$ está definida e o valor que toma, é necessário procurar um par de números **y**, **t**, tais que $S_n(e,x,y,t)$.

O operador n permite-nos perquisar efectivamente por um único número que possua uma determinada propriedade. Para o usar na pesquisa de um par de números, podemos tomar o número z como uma codificação dos números $(z)_1$ e $(z)_2$.

Então, definimos: $T_n(e, x, z) = S_n(e, x, (z)_1, (z)_2)$

Prova (cont.):

Para **(a)**, vamos supor que $\boldsymbol{f}_{e}^{(n)}(x)$ está definida; então, existem \boldsymbol{y} , \boldsymbol{t} , tais que $S_{n}(e,x,y,t)$ Fazendo $z=2^{y}3^{t}$ temos $T_{n}(e,x,z)$ Inversamente, se existe um z tal que $T_{n}(e,x,z)$, então, pela definição de \boldsymbol{T}_{n} , $P_{e}(x)$ ψ e $\boldsymbol{f}_{e}^{(n)}(x)$ está definida.

Para **(b)**, é claro da definição de $\mathbf{T_n}$ que, se $\mathbf{f_e}^{(n)}(\mathbf{x})$ está definida, então para qualquer \mathbf{z} tal que $\mathbf{T_n}(\mathbf{e},\ \mathbf{x},\ \mathbf{z})$, temos $\mathbf{f_e}^{(n)}(\mathbf{x}) = (\mathbf{z})_1$.

Fazendo $\mathbf{U}(\mathbf{z}) = (\mathbf{z})_1$, vem $\mathbf{f}_{e}^{(n)}(\mathbf{x}) \approx \mathbf{U} (\mathbf{m} \mathbf{z} \, \mathbf{T}_{n}(e, x, z))$

5.2 Uma aplicação do Programa Universal

O problema " $oldsymbol{f}_{\scriptscriptstyle \mathcal{X}}$ é total" é indecidível

Seja **g** a função característica deste problema, ou seja: $g(x) = \begin{cases} 1, \text{ se } \mathbf{f}_x \text{ e total} \\ 0, \text{ se } \mathbf{f}_x \text{ nao e total} \end{cases}$

Vamos mostrar que g não é computável.

(Por redução ao absurdo, usamos o método da diagonal para construir uma função total **f** diferente de todas as funções computáveis, por forma que, se **g** é computável, também o seria **f**.)

Seja **f** definida por: $f(x) = \begin{cases} \mathbf{f}_x(x) + 1, & \text{se } \mathbf{f}_x \text{ e total} \\ 0, & \text{se } \mathbf{f}_x \text{ nao e total} \end{cases}$

Claramente, **f** é total e não computável. Usando **g** e \mathbf{y}_U , podemos escrever f como:

$$f(x) = \begin{cases} \mathbf{y}_{U}(x, x) + 1 & \text{se } g(x) = 1 \\ 0 & \text{se } g(x) = 0 \end{cases}$$

Se **g** fosse computável, então como \mathbf{y}_U é computável, pela Tese de Church poderíamos concluir que **f** era computável (!!). Logo, **g** não é computável .