INFORMATION SECURITY

Cryptographic Keys (<u>2</u>) Definition (<u>3</u>) *Key types* of cryptographic keys (<u>7</u>) Key Management (<u>8</u>) Generation (<u>9</u>) Storage (<u>10</u>) Distribution (<u>11</u>) Key Distribution Center, KDC (<u>12</u>) Digital Certificates (<u>14</u>) Why digital certificates? (<u>18</u>) Public Key Infrastructure, PKI (<u>22</u>) Problems with Certificate Authorities (<u>25</u>)

Cryptographic Keys

Symmetric key for AES-128 cipher (16 bytes):

```
iA3_ jNHOIo DZSz [ASCII] =
```

= 69:41:33:5f:20:6a:4e:48:4f:49:6f:20:44:5a:53:7a [hexadecimal]

RSA 1024b public key of www.fe.up.pt (FEUP, 2009):

e: 65537 [decimal] = 10001 [hexadecimal]

n: [hexadecimal]

00:be:50:2a:81:7c:75:5c:c0:38:2c:f4:a8:0d:3d:e2:95:53:30:be:af:94:c5 :9f:fe:1d:06:62:67:13:8d:71:be:d8:66:91:79:74:fb:7c:3f:6a:a9:74:c4:9 3:87:7a:bc:47:df:07:dc:f7:65:4c:56:81:43:b3:e8:67:ad:6c:2d:37:b3:34: 14:e7:47:8b:ed:1a:b3:cb:04:93:4f:12:22:8e:d6:47:80:3c:a6:da:d6:f8:e2 :6b:ad:de:73:3b:ee:33:3b:31:b5:ef:b8:ed:52:f4:52:60:59:5e:c2:ed:b7:f b:8d:4a:8a:52:ed:9f:25:d2:ee:00:ed:f9:15:ef:41

Passwords for accessing SiFEUP: IamJohnDoe007 [average] Iam00John7Doe [better]

Definition

- <u>cryptographic key</u> piece of data needed for cryptographic operations
 - usually: number or string hard to memorize
 - many times: fit to a mathematical procedure (algorithm)
 - so, user cannot "choose" it: a "cryptographic key generator" is needed
 - $\circ~$ is secret: known just by 1 to very few people
 - (depending on the algorithm or on the application)

Clarification

- <u>Key</u> is not, **usually**, <u>password</u>!
- Because, **usually**,
 - *password* is memorable, *key* is not
 - *password* is system-independent, *key* depends on cryptographic system
 - *password* is personal, *key* might be or not
 - *password* is used at the beginning of a computer session work, *key* is not
 - *password* is not directly used in cryptographic operations, *key* is
- But <u>password</u> can
 - act as a <u>key</u> (e.g in symmetric cryptography)
 - be used to generate a key (e.g. Password-Based Key Derivation Functions)
 - then, *password* strength limits strength of *key*!
 - (even as *passphrase*)

Examples of keys and passwords

- Public key, RSA-1024b of FEUP, www.fe.up.pt (2009...):
 - *e*: 65537 (decimal) = 10001 (hexadecimal)
 - o n (byte by byte, in hexadecimal): 00:be:50:2a:81:7c:75:5c:c0:38:2c:f4:a8:0d:3d:e2:95:53:30:be:af:94:c5:9f :fe:1d:06:62:67:13:8d:71:be:d8:66:91:79:74:fb:7c:3f:6a:a9:74:c4:93:87:7 a:bc:47:df:07:dc:f7:65:4c:56:81:43:b3:e8:67:ad:6c:2d:37:b3:34:14:e7:47: 8b:ed:1a:b3:cb:04:93:4f:12:22:8e:d6:47:80:3c:a6:da:d6:f8:e2:6b:ad:de:73 :3b:ee:33:3b:31:b5:ef:b8:ed:52:f4:52:60:59:5e:c2:ed:b7:fb:8d:4a:8a:52:e d:9f:25:d2:ee:00:ed:f9:15:ef:41
 - or, in PEM^1 format:

----BEGIN PUBLIC KEY-----

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC+UCqBfHVcwDgs9KgNPeKVUzC+ r5TFn/4dBmJnE41xvthmkXl0+3w/aql0xJ0HerxH3wfc92VMVoFDs+hnrWwtN7M0 F0dHi+0as8sEk08SIo7WR4A8ptrW+0Jrrd5z0+4z0zG177jtUvRSYFlewu23+41K ilLtnyXS7gDt+RXvQQIDAQAB

----END PUBLIC KEY----

- Symmetric key for an AES-128 cipher:
 - iA3_ jNHOIO DZSz [16 chars]
 - 69:41:33:5f:20:6a:4e:48:4f:49:6f:20:44:5a:53:7a [hexadecimal]

1 Privacy-Enhanced Mail (https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail)

...Examples of keys and passwords (cont.)

- Passphrase for accessing some sites:
 - $\circ~$ I am JohnDoe 007 [16 chars] 2
- Password for entering an authentication-protected sector of SiFEUP:
 - o IamJohnDoe007
- One Time Password, OTP (S/Key), RFC 2289:
 - o (hash = MD5; n = 99; init passwd: A_Valid_Pass_Phrase; seed: AValidSeed)
 - o password 64b: 0x85c43ee03857765b
 - alternative form: FOWL KID MASH DEAD DUAL OAF

2 Could also be used as a AES-128b key!

Key types of cryptographic keys

Designation	"Owner" entity	Main application	Cryptographic type	Longevity	Efficiency
personal	human	authentication	public-key	extended	low
session	communication channel	confidentiality	shared-key	short ³	high⁴

- 3 to be use-resistant (prevent brute-force search and repetition attacks)
- 4 to accommodate heavy traffic

Key Management

- generation
 - problem solved: just take care with choosing of numbers (randomness...)
- storage
 - many "solutions", but still a problem swept under the rug!
- distribution
 - $\circ~$ popular "research" topic with plenty of solutions

...Key management (cont.)

Generation

Problem

- randomness is essential
 - $\circ~$ generation of random numbers: (special) physical source...
 - e.g.: one-time pad...
- other issues
 - $\circ~$ choosing of numbers depends on algorithm
 - $\circ ~~$ some known situations have to be avoided

Solution

- practical: <u>cryptographically secure pseudo</u>-random number generators
 - e.g. Ron Rivest's RC4 (with much care)
 - AES, SHA, etc. can also be used for generation!

...Key management (cont.)

Storage

Problem

- human memory has limitations: of space and of operation (faults)
 - $\circ~$ so, keys have to be kept in physical (secure) places
 - normal solution:
 - cipher the keys with a (symmetric) key derived from a... password!!
- acute in asymmetrical systems:
 - having a (private) key is **being** an entity!

Recovery

- can be very important in certain situations (personal and political)
- can be made by special systems (key escrow systems)

...Key management (cont.)

Distribution

Problem

- physically separated entities must exchange/agree on cryptographic keys
 - acute in symmetrical systems
 - repeated problem for every key substitution (that should be frequent!)
 - o conundrum: agreement needs authenticated entities
 - but authentication needs cryptographic keys!...

Solutions

- meeting in person (at least at first time)
- use <u>previously secured channels</u> (or alternative ones *out-of-band*)
- use <u>insecure channels</u> with special protocols (e.g. Diffie-Hellman's)
- \rightarrow in practice, a combination of these "solutions" might be used
- use a *trusted* Key Distribution Center

...Key management: distribution (cont.)

Key Distribution Center, KDC

- entity trusted by all other (user) entities
 - (at first) each (user) entity do not trust other (user) entities
 - definition of X trusts T:
 - X believes T operates in an honest way!
 - X have exchanged with T cryptographic info⁵
- <u>symmetric systems</u>:
 - generate, store and distribute secret keys (e.g. Kerberos)
 - mostly used for session keys (and even so...)
- <u>asymmetric systems</u>:
 - store and distribute public user keys (Public Key Server)
 - should **not** handle private keys!

⁵ $K_{X,T}$, or $K_X^+ \& K_T^+$

...Key management: distribution (cont.)

Public Key Servers, PKS

- Key Distribution Center for public key distribution!
- key generation <u>not</u> implied⁶
- key storage may be not implied⁷
- "entity public key" mapping <u>should</u> be assured. So:
 - either the PKS scrutinizes and authenticates the keys it keeps and distributes
 - and then the PKS should be authenticated by the clients that rely on it
 - $\circ~$ or the key information the PKS keeps is self-authenticated
 - and then the PKS does not control the mapping
 - clients need not authenticate the PKS, but should validate the keys themselves
 - e.g. PGP⁸ public key server: <u>keys.openpgp.org</u>
- 6 Of course! Why not?!...
- 7 see below the role of a Certification Authority (CA)
- 8 Pretty Good Privacy (to be seen later)

Digital Certificates

Basics

- document that maps an entity to a cryptographic *public* key
 - $\circ~$ the mapping is guaranteed by a "trusted" entity T⁹ that "signs" it 10
- with a reliable public key one can:
 - o <u>authenticate</u> its owner, being it
 - a person, company, *website*...
 - $\circ~$ and so $\underline{validate}~$ owner's
 - documents, software...
 - <u>send confidential</u> information to owner

⁹ usually, but not necessarily, T is connoted with a Certification Authority (CA) (see below)10 so, assuring the accuracy of the certificate's content (to be seen later)

Typical content

I hereby certify that the public key 19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A belongs to Robert John Smith 12345 University Avenue Berkeley, CA 94702 Birthday: July 4, 1958 Email: bob@superdupernet.com SHA-1 hash of the above certificate signed with the CA's private key

- <u>name of the subject</u> (entity to whom the certificate applies)
- <u>subject's public key</u>
- <u>name of the emitter</u> (e.g. *Certificate Authority*)
- <u>digital signature of emitter</u>

- expiration time of certificate
- serial number
- specific purpose
- etc.

Physical "face" of digital certificate

Fig. Old certificate of website sigarra.up.pt.

General Details

This certificate has been verified for the following uses:

SSL Client Certificate

SSL Server Certificate

Issued To

Common Name (CN)	sigarra.up.pt
Organization (O)	Universidade do Porto
Organizational Unit (OU)	<not certificate="" of="" part=""></not>
Serial Number	02:DD:3A:C0:61:EE:53:5B:FF:7A:54:3F:45:F6:F0:7A
Issued By	
Common Name (CN)	TERENA SSL High Assurance CA 3
Organization (O)	TERENA
Organizational Unit (OU)	<not certificate="" of="" part=""></not>
Period of Validity	

June 30, 2017
July 5, 2019

Expires On Fingerprints

Begins On

68:2E:EB:2F:CE:D9:53:DF:27:72:08:AB:5F:29:07:08: SHA-256 Fingerprint 80:D0:5A:AD:8E:27:54:EA:34:28:47:9D:35:DB:72:15 SHA1 Fingerprint

1A:DC:44:B5:28:C3:7B:6E:05:7D:4B:72:6E:97:C4:71:AE:AF:DF:66

<u>C</u>lose

Physical "face" of digital certificate (cont.)

Fig. Details of certificate of sigarra.up.pt.

Certificate Hierarchy				
 DigiCert High Assurance EV Root CA TERENA SSL High Assurance CA 3 sigarra.up.pt Certificate Fields Validity Not Before Not After Subject Public Key Info Subject Public Key Algorithm Subject Public Key and the subject Publ				
▼ TERENA SSL High Assurance CA 3 Sigarra.up.pt Certificate Fields Validity Not Before Not After Subject Public Key Info Subject Public Key Algorithm Subject Public Key Algorithm				
Certificate Fields Certificate Fields Validity Not Before Not After Subject Subject Public Key Info Subject? Public Key Algorithm				
Certificate Fields Validity Not Before Not After Subject Validity Subject Public Key Info Subject Public Key Algorithm				
Validity Not Before Not After Subject Subject Public Key Info Subject Public Key Algorithm Subject's Public Key				
Extensions Certificate Authority Key Identifier				
Field <u>V</u> alue				
Modulus (2048 bits): c1 59 c9 c9 81 99 f5 85 1a 9d 9f c2 ad bb 2a d3 b0 54 18 3b 39 97 02 81 73 43 63 20 28 ba 76 28 ab 73 e9 d0 4c 79 dd 5e 5e d2 96 e6 34 80 85 b5 3e 1c 96 6a 8b 50 05 8c 48 68 cc cc ae cd da 0d 76 89 18 d7 60 08 11 e1 43 be 3f f5 43 59 10 8d				
E <u>x</u> port				
<u>C</u> lose				

Why digital certificates?

- for getting reliable public keys¹¹
 - o reliability depends on the trust on the certificate issuer/signer
- but, usually:
 - o certificates are Internet X.509 Public Key Infrastructure's
 - emitters are "Certificate Authorities" (CA)
 - private, commercial, worldwide companies, operating in isolation or aggregation (more further down)
 - e.g. DigiCert, Sectigo (previously, Comodo)
 - some exceptions:
 - CAcert¹², Let's Encrypt¹³

11 to be used for whatever purpose (authenticate entities, validate documents, cipher communications...)

12 emits all types of certificates (see below)

13 emits only Domain Validation certificates (see below)

...Utilization of digital certificates (cont.)

Revocation of certificates

- needed if one wants to change keys (private-public pair), for whatever reason
 - use of revocation lists, *Certificate Revocation Lists*
 - use of Online Certificate Status Protocol (RFC 2560)
 - use of expiration times (eventually, also with revocation lists)

...Utilization of digital certificates (cont.)

Types of Digital Certificates

- what? types? isn't it just a mapping: entity ↔ public key ?
 - Yes, but... **\$\$\$** and, perhaps, increased security...
- Rough classification:

Certificate type	Entity "type"	Checking "type" (by CA)	Application type
Address Validation (AV)	Individual	simple (e.g. email address is ok)	S/MIME email
Individual Validation (IV)	Individual	"more" precise verification (e.g. is employee of company)	S/MIME email SSL/TLS client authentication
Domain Validation (DV)	Organization	simple (e.g. postmaster@domain answers)	SSL/TLS server authentication
Organization Validation (OV)	Organization	organization is legal and "owns" domain	SSL/TLS-enabled sites Code signing
Extended Validation (EV)	Organization	conformance to specific <u>CA/Browser Forum</u> guidelines ¹⁴	SSL/TLS-enabled sites Code signing

14 "EV SSL Certificate Guidelines", which includes thorough, human verifiable checking of organization.

...Digital Certificates: Utilization...

X.509 v.3 Digital Certificates

- currently, worldwide prevalent (in PKI dominated by Certification Authorities)
- based on the (old) OSI X.500 Directory Service, with some updating
 - e.g. X.500 name:
 - /C=PT/0=Universidade Porto/OU=Dept. Informatica/CN=J.M. Cruz
 - $\circ~$ e.g. DNS name (X.509 v.3):
 - jmcruz@fe.up.pt
- many information fields¹⁵
 - some mandatory
 - Subject Public Key Algorithm, Validity, ...
 - lots of optionals (extensions)
 - Certificate Key Usage, Subject Alternative Name, ...

15 beyond subject's name and subject's public key!

Public Key Infrastructure, PKI

- formally (& commercially):
 - «set of roles, policies, and procedures needed to create, manage, distribute, use, store & revoke digital certificates and manage public-key encryption»¹⁶
 - «[aims] to facilitate the secure electronic transfer of information for a range of network activities such as e-commerce, Internet banking and confidential email»
- really, simply:
 - $\circ~$ general scheme for binding public keys with entities
 - (certificate authorities?... digital certificates?...)
 - applications vary and security properties should be assured by communicating parties

Examples of PKIs

- Internet X.509 Public Key Infrastructure (IETF RFC 5280...)
- OpenPGP model (IETF RFC 4880...)

 $16 \ \underline{en.wikipedia.org/wiki/Public_key_infrastructure}$

...PKI (cont.)

Digital certificate's chain of certification - the centralized hierarchical model

Fig. Certification of certificates in a centralized PKI. a) hierarchy; b) chain of certificates.

...PKI (cont.)

Digital certificate's chain of certification – the oligarchic model

Fig. Certification of certificates in a oligarchic PKI. (Notice the self-signed certificates.)

Exercises:

- For each of the models, what minimum secure information must an user possess in order to use the corresponding Public Key Infrastructure?
- What can a user possibly gain with the oligarchic model?

Problems with Certificate Authorities

- they should be honest and reliable CAs, but:
 - \circ $\$ they keep not acting as $such^{17}$
- there are many of them¹⁸, so
 - there are many points of failure!
- they should issue certificates in a controlled manner, but:
 - probably, not for <u>any</u> domain!
 - certainly, not without the knowledge of domain owner!

¹⁷ see for instance, <u>sslmate.com/blog/post/history_of_ca_sanctions</u>18 more than 100 are installed in some renowned web browsers

...Problems with CAs

Solutions (?)

- do not use Certificate Authorities services!
 - get public keys first hand (e.g. FEUP!...) or from trusted parties (e.g. Web of Trust)
 - Prob: SSL/TLS **needs** certificates¹⁹;
 - so, create "local" CA and add them to software's *Certificate data store*!
- restrain CA's issuing to certain domains
 - use new DNS record type "Certification Authority Authorization" in own domain
- Certificate/Public Key Pinning
 - associate a host/person with its/his certificates or public keys collected from first time contacts²⁰ or from trustworthy sources
 - e.g. Secure Shell (SSH)'s solution
- Perspectives (Carnegie-Mellon), Transparency (Google)...

¹⁹ true in practice, but not in principle (<u>RFC 7250</u>)20 technique sometimes called Trust on First Use (TOFU)