INFORMATION SECURITY

Cryptography (2) Basics (3) Practical uses (<u>4</u>) Traditional usage of Cryptography (5) Added newer usage of Cryptography $(\underline{6})$ Breaking cryptographic systems (9) Classification of cryptographic systems (11) Classification of cryptographic systems: on the secret (12) Classification of cryptographic systems: on the method (15) Classification of cryptographic systems: on the *purpose* (20) Cryptographic transformations (27) Some famous cryptographic algorithms (28) Case study (simplified): RSA (*Rivest-Shamir-Adleman*) (29) Some numbers... (32)

Cryptography¹

What is the secret meaning of the following phrase, knowing that it was built with "Caesar's cipher"?

«Sxw#pruh#frgh/#jhw#pruh#exjv1»

Note: cipher adapted to Latin 1 (ISO 8859-1) table; delimiting quotes are not part of code.

¹ However, keep in mind: «Cryptography is rarely ever the solution to a security problem. (D. Gollmann, Computer Security, p. 203)»

Basics

- Originally:
 - \circ $\,$ science (and art) of secret writing $\,$
 - $\circ~$ aimed at hinder the knowledge of sensitive information
- Currently:
 - science (and art) of providing mechanisms to ensure security properties (confidentiality, integrity...)
 - \circ aims to control of access to information
- Relevant types of professionals:
 - *cryptographers* try to master and enhance that access control
 - *cryptanalysts* try to break the enabled access control

Practical uses

- Traditional
 - control access to information by **concealing** it, i.e. making it unintelligible
- Modern:
 - the traditional, plus
 - control access to information by **identifying** it with a *fingerprint* (or *hash*¹)
 - $\circ~$ **support** all above uses and produce "random" numbers, e.g. keys^2 $\,$

Traditional	New		
Р			
ciphering:	fingerprinting:	transmission:	
С	h	<i>P'</i>	
deciphering:	verification:		
Р	P = P	? יי	

Cryptography usage:

2 pieces of data necessary for using cryptographic security mechanisms

¹ PT: síntese, sumário

Traditional usage of Cryptography

- confidentiality protection:
 - conceal information, by making it unintelligible
 - elsewhere or later, retrieve original information

Fig. Original Cryptography: basic model of concealment and recovery of info with examples of attacks (in several of Tanenbaum's books).

Added newer usage of Cryptography

- integrity protection:
 - information is *fingerprinted*,¹ by calculating its *hash* (or *digest*)
 - *elsewhere or later*, the hash will be used to detect the adulteration of the original information

Fig. Modern Cryptography: basic model for the validation of info (e.g. integrity protection). Note the need for a protected channel!

¹ small array of bytes that represents the original information

Notation

Symbol	Name of symbol	Meaning of symbol
Р	plaintext ¹	original, uncovered information
E	enciphering algorithm	method to conceal the info
Ke	enciphering key	parameter of the concealment methods
С	ciphertext	hidden information
D	deciphering algorithm	method to recover the original info
K _d	deciphering key	parameter of the recovering methods
H, h	hash algorithm, hash value	method to transform (hash) the info, transformed info
F	fingerprint, hash value	transformed info

1 PT: texto inteligível

...Notation (cont.)

Operation	Symbolic representation	If	Cryptography type	
ciphering	$C = E_{Ke}\left(P\right)$	$K_e = K_d$	symmetric	
	$C = E(P, K_e)$ $C = K_e(P)$	$K_e \neq K_d$	asymmetric	
deciphering	$P = D_{Kd} (C)$ $P = D (C, K_d)$	$K_e = K^+$ $K_d = K^-$	public-key (asymmetric)	
	$P = K_d(C)$	Advance noti	Advance notice for Digital Signatures	
(cyptographic) hashing ¹	h = H (P) F = H (P) F = h (P)	Advance notice for Digital Signature: $[Doc]_E <==> K_E^- (Doc) <==> K_E^- (H(Doc))$		
reversing	$D_{Kd}\left(E_{Ke}\left(P ight) ight)=P$			

1 Note: *cryptographic* hashing is different from *database* hashing.

Breaking cryptographic systems

- Professionals: cryptanalysts, random crackers
- Methods: mathematics, statistics, intuition¹
- Goals: depend on type of usage

Attacks in traditional use

- Goal: grasp the deciphering key! Sometimes, at least, grasp plaintexts.
- Approaches (in descending order of difficulty):
 - o <u>normal</u>
 - only ciphertexts are available
 - <u>known original text</u> ("passively" obtained)
 - both some original texts and their enciphered counterparts are available
 - <u>planned original text</u> ("actively" prepared)
 - specific original texts are made to be enciphered

¹ For an example, see Bishop: "Introduction", Chap.8; "Art & Science", chap.9.

...Breaking cryptographic systems (cont.)

Attacks in added recent usage

- Goal: break integrity protection
- Approaches¹ (in descending order of difficulty):
 - $\circ \quad find \ collisions^2$
 - produce chosen document pairs (*birthday attack*³)
 - produce another document for a specific original

Ideal cryptographic system:

- *hard to break* in a reasonable future horizon
- *easy to use* otherwise will be rejected or bypassed by users
- *if broken, easily replaceable* this should be a must, as systems **will** be broken!

¹ The special case of "digital signatures" will be seen elsewhere.

² meaning: different documents with same fingerprint

³ https://en.wikipedia.org/wiki/Birthday_attack

Classification of cryptographic systems

Perspective	Variant	Sub-variant	Examples
on the secret	secret algorithm	-	RC4 (originally)
	secret key(s)	single key, shared-key, symmetric	AES
		two-key, public key, asymmetric	RSA
on the method	stream ¹	-	RC4
	block	-	AES, RSA ²
on the purpose	bidirectional, reversible, two-way	confidentiality ³	AES
		authentication ⁴	RSA
	unidirectional, irreversible, one-way	-	MD5, SHA-2

¹ PT: contínuo

² Some texts do not consider this to be a "block" cipher, just because of its comparative inefficiency...

³ Keys are temporary and efficient

⁴ Keys are personal and durable (long-lasting)

Classification of cryptographic systems: on the secret

Types of secret

- secret(s) algorithm(s)
- secret(s) key(s)

Secret algorithm systems

Example:

Discover the algorithm¹ that turns the phrase (quotes not included):
 «Put more code, get more bugs.»

into

«Wklt!jx%f){xm ~v"cojrvmx|!54w»

Usage:

• typically in military systems; also in commercial ones

¹ and then tell me about it, because I have forgotten the algorithm!

...Classification of cryptographic systems: on the secret (cont.)

Secret key's systems

- single key
- two-key

Example:

Knowing that a variant of "Caesar's cipher"¹ is being used (adapted to Latin 1, ISO 8859-1, table), find the "key" that turns the phrase²
 «Put more code, get more bugs.»

into

«Sxw#pruh#frgh/#jhw#pruh#exjv1»

Usage:

• common in many military, commercial and personal applications

¹ apparently, the original Caesar's cipher used a simple "3" as key

² French quotes are just delimiters

...Classification of cryptographic systems: on the secret

Enciphering systems with key

Symmetric, secret key, or shared key

- $K_e = K_d = K$
- very efficient computation; so, very suitable for large amounts of data
- difficult combination and sharing of key, so, preferred for closed environments
- e.g. AES (Advanced Encryption Standard)

Asymmetric, public key, or double-key

- $K_e = K^+ \neq K_d = K^-$
- very heavy computation, so, not suitable for large amounts of data
- easy combination and exchange of keys, so, ideal for open environments
- e.g. RSA (Rivest-*Shamir-Adleman*)

Classification of cryptographic systems: on the method

Enciphering methods for "long" texts

- Encipher (and decipher) operations have to be done in pieces (blocks)
 - pieces could be of 1 b, 1 B, 8 B,...
 - typical: 8 B (64 b) and 16 B (128 b)
- So, *plaintext P* is divided into parts of equal size:
 - $\circ \quad P = P_1 P_2 \dots$
 - \circ each, is separately enciphered (and later deciphered) by one of the methods:
 - stream¹
 - block
 - "mix" of previous...

Exercise:

• In practice, almost any text is "long". Why?

¹ PT: contínuo

...Classification of cryptographic systems: on the method (cont.)

Stream method

- each part is enciphered with a different key $K = K_1 K_2...$
- $C = K(P) = K_1(P_1) K_2(P_2)...$
- Examples: Ronald Rivest's RC4 (ARC4), one-time pad

Example:

...Classification of cryptographic systems: on the method - stream (cont.)

Example of cryptographic technique: One-time Pad

- stream-type system
- random key (or cryptographically secure pseudo-random...)
- size of key equal to the the original text's
- key used only once
- <u>Advantages</u>: proved unbreakable¹
- <u>Disadvantages</u>: exercise!

enciphering:

- original text: *P*
- key: *K*
- enciphered text: $C = P \oplus K$

Exercises:

• Show that the system is bidirectional. Why is it not very much used?

1 If...

deciphering:

• $P = C \oplus K$

...Classification of cryptographic systems: on the method

Block Method

- each part of text is enciphered with the same key *K*: ECB¹ mode
- $C = K(P) = K(P_1) K(P_2)...$
- Examples: *AES*, *RSA*²

Example and exercise (complete the blank boxes):

¹ Electronic Code Book

² Many texts do not consider RSA to be a block cipher, as it is not efficient to use consecutively (block after block) in long documents.

...Classification of cryptographic systems: on the method - block (cont.)

Serious problem:

- with this method, identical blocks give identical codes!
- visual example:

Fig. danger of using the basic block method: plaintext is exposed.

Solutions to the problem:

- mixing additional (and different) information per block!
 - **but** several of the "solutions" are still vulnerable!

¹ here, with algorithm AES 256b, ECB

Classification of cryptographic systems: on the purpose

Purpose types

- Confidentiality: bidirectional, reversible (*two-way*)
- Integrity: unidirectional, irreversible (*one-way*)

...Classification of cryptographic systems: on the purpose

Reversible (or bidirectional, *two-way*) encipherment:

Usage area

- Confidentiality
- (Authentication)
- (Integrity checking)

...Classification of cryptographic systems: on the purpose... Reversible (cont.)

(Desired) properties of the bidirectional algorithm:

Simplicity:

- the enciphering of the *plaintext P* (with *K*_e) is (relatively) easy;
- the deciphering of the *ciphertext C* (with *K*_d) also is.

Resistance:

• given a *plaintext P* and its ciphered counterpart *C*, it is <u>impractical</u> to compute the key *K*, used to produce $C = E_K(P)$

Uniqueness:

• given a *plaintext P* and a key *K*, it is <u>impractical</u> to compute another key *K*' such as $E_K(P) = E_K(P)$

Note: <u>impractical</u> = currently, computationally infeasible

...Classification of cryptographic systems: on the purpose

Irreversible (or unidirectional, one-way) "encipherment":

Usage area

- Integrity checking
- Authentication

...Classification of cryptographic systems: on the purpose... Irreversible (cont.)

Basic idea:

- from an original text, compute a number that is characteristic of the text:
 - *hash value, digest¹, fingerprint* [, *checksum*]
- (The original text is not recoverable from the hash!)

Usually,

- a key is not necessary: C = H(P)
- the "number" has a fixed length
- the hashing function is somewhat akin to database dispersion functions, but has very different features and purpose

¹ PT: sumário

...Classification of cryptographic systems: on the purpose... Irreversible (cont.)

(Desired) properties of the unidirectional algorithm:

Simplicity:

• the encoding of the original text is easy

No reversibility:

• it is impractical to invert the function $H: P \neq H^{-1}(C)$

Uniqueness (or collision resistance):

- it is <u>impractical</u> to find two texts *P1* and *P2* such that H(P1) = H(P2)
- Note:
 - a variant¹ of this property, says that, for a given specified text *P*1, it is impractical to find a text *P*2 such that H(P1) = H(P2).

¹ This variant is even "more impractical" than the first!

...Classification of cryptographic systems: on the purpose... Irreversible (cont.)

Weaknesses of irreversible systems

Problem:

- The number produced by the hashing operation is usually fixed (and finite)!
 - \circ $\;$ So, there **have to be** collisions, in an infinite universe of inputs^1
 - Will they be likely or easy to cause?

Answer:

- that depends
 - $\circ~$ on the randomness of the numbers resulting from the operation
 - \circ on the size of those numbers (number of bits)
 - \circ on the intended application

¹ Let us suppose you use a specific hash with 3 decimal digits; the possible values will be: 000, 001, ... 567, ... 998, 999, a total of 1000 (=10³) possibilities. If you calculate the hash of 1001 documents, two of then will have the same hash – a collision!

Cryptographic transformations

- <u>Transposition</u> exchange or swapping of positions of elements *P*-box
- <u>Substitution</u> exchange of elements (e.g. Caeser's cipher) *S*-box
- <u>Combination</u> transposition and substitution cascade *product cipher*

Cryptographic transformations: a) permutation box; b) substitution box; "complete" system. Exercise: find out the algorithms for P- and S- boxes and validate them with c).

Some famous cryptographic algorithms

- <u>RC4</u>: stream key generation (1987, survives with medication)
- <u>DES</u>¹: reversible system, secret key (1975, defunct)
- <u>AES</u>: reversible system, secret key (1998, still healthy)
- <u>RSA</u>²: reversible system, public key (1977, still healthy)
- <u>MD5</u>³: irreversible system (1992, defunct)
- <u>SHA-1</u>⁴: irreversible system (1995, defunct)
- <u>SHA-2</u>: irreversible system (2001, still healthy)
- <u>SHA-3</u>⁵: irreversible system (2015, yet in phase of wide adoption)

¹ Data Encryption Standard, a landmark of cryptography

² another landmark of (public-key) cryptography

³ yet another landmark of cryptography

⁴ about SHA-1 end of life, see <u>sha-mbles.github.io</u>

⁵ based on new paradigm - sponge construction (<u>keccak.team/sponge_duplex.html</u>)

Case study (simplified): RSA (Rivest-Shamir-Adleman)

- reversible, public key system
- published in 1977; protected by patent in USA until 2000
- unbroken, so far:¹
 - \circ if keys are well chosen (e.g. made with very large prime numbers, > 10¹⁵⁰)
 - if *padding* of *P* receives appropriate consideration!
- base of operation:
 - modular arithmetic
 - \circ *P* and *C* will be used as numbers!

¹ before the advent of serious quantum computers

...Case study: RSA (cont.)

(Very simple) example of using of RSA:

- $K^+ = K_e = (3, 33); K^- = K_d = (7, 33);$
- P = "S U Z A N N E": $P_1 = "S" = 19 (< 33); P_2 = "U" = 21 (< 33) ...$
- $C = "28\ 21\ 20\ 1\ 5\ 5\ 26"$: $C_1 = 28\ (<33)\ ;\ C_2 = 21\ (<33)\ ...$

Plaintext (P)			Ciphertext (C)		After decryption	
Symbolic	Numeric	P ³	P ³ (mod 33)	<u>C</u> ⁷	C ⁷ (mod 33)	Symbolic
S	19	6859	28	13492928512	19	S
U	21	9261	21	1801088541	21	U
Z	26	17576	20	128000000	26	Z
А	01	1	1	1	01	А
N	14	2744	5	78125	14	N
N	14	2744	5	78125	14	N
Е	05	125	26	8031810176	05	E
<u> </u>		γ				
Sender's computation			on	Receiver's c	omputation	

Exercise: Redo the demo, but now replacing each letter by its ASCII equivalent.

...Case study: RSA (cont.)

Ciphering with RSA¹

- Key: $K^+ = K_e = (e, n)$
- $C = P^e \pmod{n}$

Deciphering with RSA

- Key: $K^{-} = K_{d} = (d, n)$
 - with $e.d = 1 \pmod{\phi(n)^2}$
- $Q = C^d \pmod{n} = (P^e \pmod{n})^d = P^{ed} \pmod{n} = P$ Q = P !

Notes:

- *n* is a very large prime number (e.g. $\approx 10^{300} \approx 2^{1024}$)
- *e* is usually much smaller than *d* (typical values of *e*: 3, 65537...)

¹ Note that *C* and *P* are interpreted as (binary) numbers; the exponentiation operation is the usual, e.g. $a^3 = a \times a \times a$.

 $^{2 \}phi$ is a well known mathematical function.

Some numbers...

•	$2^8 = 256$	number of values represented by a byte
•	$2^{32} = 4\ 294\ 967\ 296$	maximum number of IPv4 addresses
		\simeq 0,5 * number of people on Earth in 2023
•	$2^{56} = 72\ 057\ 594\ 037\ 927\ 936$	number of different keys for DES algorithm
•	$2^{64} = 18\ 446\ 744\ 073\ 709\ 551\ 61$	16
	1+ number of grains of wheat	in chess board (from 1, doubled in each square)
•	$2^{76} \simeq 10^{23}$	mass of the Moon in kg
•	$2^{79} \simeq 10^{24}$	Avogadro's constant
•	$2^{82} \simeq 10^{25}$	mass of the Earth in kg
•	$2^{101} \simeq 10^{30}$	mass of the Sun in kg
•	2 ¹²⁸ = 340 282 366 920 938 463 4	463 374 607 431 768 211 456
	$\simeq 10^{38}$	maximum number of IPv6 addresses
•	$2^{256} \simeq 10^{77}$	number of values of SHA-256 hash
•	$2^{280} \simeq 10^{84}$ number of fun	damental particles in the observable universe