

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Mestrado em Engenharia Electrotécnica e de Computadores

Sistemas de Informação e Bases de Dados Exame, 3 de Fevereiro de 1999

DURAÇÃO MÁXIMA 2 horas e 30 minutos, com consulta

Problema 1: Modelização de dados (6 valores)

Suponha que se pretende projectar uma base de dados para um Infantário, com informação sobre:

- os(as) colaboradores(as) do infantário, com o nome, fotografia, função (directora, educadora, cozinheira, professor de música, etc.), e ainda, no caso das educadoras, o ano e local de obtenção do diploma de educadora infantil;
- as actividades que se desenvolvem no infantário (natação, música, etc.), com a descrição, preço e local de funcionamento;
- as crianças que frequentam o infantário, com o nome, fotografia, sexo, data de nascimento, data de entrada no infantário, número da cédula pessoal, morada e necessidades especiais;
- o encarregado de educação de cada criança, com o nome, parentesco (pai, mãe, tio, etc.), morada, telefone de casa, local de trabalho, telefone do trabalho e número de contribuinte;
- a educadora responsável por cada criança;
- as actividades em que cada criança está inscrita, com a data de inscrição em cada actividade;
- ocorrências importantes relacionadas com cada criança, com a data, hora, descrição e colaborador responsável pelo registo de cada ocorrência.
- **1.1** (4.0) Obtenha um diagrama Entidade-Associação relativo a esta base de dados, empregando a notação das aulas. Indique também chaves e restrições adicionais.
- 1.2 a.o Converta o diagrama obtido em 1.1 para um esquema relacional, seguindo a metodologia exposta nas aulas. Justifique devidamente as opções tomadas. Utilize uma notação abreviada da forma R1(A1,A2,...,An), em que R1 é o nome de uma relação, A1, ...,An são nomes de atributos, e os atributos sublinhados constituem a chave primária. Indique à parte as chaves alternativas (chaves candidatas que não são chaves primárias) e as chaves estrangeiras.

Problema 2: Dependências funcionais e normalização (2 valores)

Considere uma relação R(A,G,P,T,N) nos seguintes atributos: A - aluno, G - grupo, P - posição no grupo, T - trabalho, N - nota do trabalho. Nesta relação foi identificado o seguinte conjunto de dependências funcionais: $F = \{A \rightarrow GP, GP \rightarrow A, G \rightarrow T, T \rightarrow G, G \rightarrow N\}$.

Determine as chaves candidatas de *R*, determine se *R* obedece à forma normal de Boyce-Codd (BCNF), e, no caso negativo, decomponha *R* em duas ou mais relações na BCNF, indicando se a decomposição efectuada preserva as dependências.

(continua ...)

Problema 3: Interrogação e manipulação de dados em SQL e Álgebra Relacional (3 valores)

Suponha que tem uma base de dados com as seguintes tabelas:

Professores(pid: integer, pnome: string, deptid: integer, salario: money)

Estudantes(enum: integer, enome: string, idade: integer, media: integer)

Cadeiras(cnome: string, sala: string, hora: time, pid: integer)

Inscrições(enum: integer, cnome: string, nota: integer)

Para além das chaves primárias indicadas (a sublinhado), e das chaves estrangeiras óbvias, suponha que se verificam as seguintes restrições de integridade:

- R1: Um professor do departamento 2 ganha pelo menos 300.
- R2: Não podem decorrer aulas de duas cadeiras na mesma sala à mesma hora.
- R3: Um estudante não pode estar inscrito a mais do que 6 cadeiras.
- R4: Um professor não pode leccionar mais do que 3 cadeiras.
- R5: Um estudante não pode estar inscrito em duas cadeiras cujas aulas decorrem à mesma hora.

Formule em **SQL** as seguintes interrogações:

- 3.1 Listar os nomes dos alunos menores do que 28 anos inscritos na cadeira de SIBD, por ordem alfabética.
- 3.2 Listar o nº de estudantes inscritos, a nota média e a nota máxima por cadeira.
- 3.3 Listar o(s) nome(s) do(s) alunos com média mais alta.
- 3.4 Inserir inscrições na cadeira de TABD para todos os alunos inscritos na cadeira de SIBD.
- 3.5 Eliminar todas as inscrições dos alunos com média inferior a 10.

Formule em Álgebra Relacional as seguintes interrogações:

- **3.6** Listar os nomes dos alunos inscritos a *pelo menos uma* cadeira leccionada por docentes do departamento com deptid=1.
- **3.7** Listar os nomes dos alunos inscritos a *todas* as cadeiras leccionadas por docentes do departamento com deptid=1.

Problema 4: Definição de dados em SQL (3 valores)

Considere de novo a base de dados do Problema 3.

- **4.1** Escreva comandos em SQL para criar as tabelas indicadas, com as chaves primárias e estrangeiras, mas sem contemplar as restrições R1 a R5.
- **4.2** Escreva comandos em SQL para alterar as tabelas criadas em 4.1, por forma a impor as restrições R1 e R2.
- **4.3** Escreva uma asserção em SQL para impor a restrição R3.
- **4.4** Escreva um ou mais gatilhos em SQL para impor as restrições R4 e R5.

(continua ...)

Problema 5: Concorrência e Recuperação (3 valores)

Considere o seguinte escalonamento, onde S(x), X(x) e U(x) representam as operações de lock partilhado para leitura, lock exclusivo para escrita e a libertação de locks, respectivamente.

	Т1	Т2	Т3
t1	X(A)		
t2		S(B)	
t3	U(A)		
t4		X(B)	
t5			S(A)
t6		U(B)	
t7	X(B)		
t8	U(B)		
t9			X(B)
t10			U(A)
t11		X(A)	
t12			U(B)
t13		U(A)	

- **5.1** Averigue se o escalonamento apresentado é legal e obedece ao protocolo das duas fases "2PL", justificando a sua resposta.
- 5.2 Averigue se é seriável e, no caso de ser, apresente um escalonamento série equivalente.
- 5.3 Diga como é que o componente de um SGBD conhecido como "Gestor de Recuperação" assegura as propriedades de atomicidade e durabilidade de transacções.

Problema 6: Sistemas de Apoio à Decisão (3 valores)

Considere a seguinte instância da tabela de factos relativos às vendas de uma empresa:

produto	dia	local	vendas
P1	D1	L1	225
P2	D1	L1	130
P3	D1	L1	83
P1	D1	L2	315
P2	D1	L2	261
P3	D1	L2	220
P1	D2	L1	85
P2	D2	L1	249
P3	D2	L1	100
P1	D2	L2	212
P2	D2	L2	415
P3	D2	L2	401
P1	D3	L1	215
P2	D3	L1	508
P1	D3	L2	110
P3	D3	L2	52

- **6.1** Mostre o resultado de "pivotar" a relação em produto e dia.
- **6.2** Escreva duas das interrogações SQL necessárias para obter o resultado da pivotação referida na alínea anterior.
- **6.3** Diga qual é a diferença fundamental entre sistemas MOLAP e ROLAP.

(Fim.)