The Sieve of Eratosthenes

Jorge Barbosa, FEUP

Outline

- Sequential algorithm
- Sources of parallelism
- Data decomposition options
- Parallel algorithm development, analysis
- Benchmarking
- Optimizations

Sequential Algorithm

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
47	48	49	50	51	52	53	54	55	56	57	58	59	60	61

Complexity: $\Theta(n \ln \ln n)$

Pseudocode

1. Create list of unmarked natural numbers $2,3, \ldots, n$
2. $k \leftarrow 2$
3. Repeat
(a) Mark all multiples of k between k^{2} and n
(b) $k \leftarrow$ smallest unmarked number $>k$ until $k^{2}>n$
4. The unmarked numbers are primes

Sources of Parallelism

- Domain decomposition
- Divide data into pieces
- Associate computational steps with data
- One primitive task per array element

Making 3(a) Parallel

Mark all multiples of k between k^{2} and n
\Rightarrow
for all j where $k^{2} \leq j \leq n$ do if $j \bmod k=0$ then mark j (it is not a prime)
endif
endfor

Making 3(b) Parallel

Find smallest unmarked number $>k$
\Rightarrow

Min-reduction (to find smallest unmarked number $>k$)

Shared variable (to get results from all processes)

Agglomeration Goals

- Consolidate tasks
- Reduce sharing costs
- Balance computations among processes

Data Decomposition Options

- Interleaved (cyclic)
- Easy to determine "owner" of each index
- Leads to load imbalance for this problem (with $\mathrm{P}=2$, one processor would be idle after first step)
- Block
- Balances loads
- More complicated to determine owner if n not a multiple of p

Block Decomposition Options

- Want to balance workload when n not a multiple of p
- Each process gets either $\lceil n / p\rceil$ or $\lfloor n / p\rfloor$ elements
- Seek simple expressions
- Find low, high indices given an owner
- Find owner given an index

Method \#1

- Let $r=n \bmod p$
- If $r=0$, all blocks have same size
- Else
- First r blocks have size $\lceil n / p\rceil$
- Remaining p-r blocks have size $\lfloor n / p\rfloor$

Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

Method \#1 Calculations

- First element controlled by process i

$$
i\lfloor n / p\rfloor+\min (i, r)
$$

- Last element controlled by process i

$$
(i+1)\lfloor n / p\rfloor+\min (i+1, r)-1
$$

- Process controlling element j

$$
\max (\lfloor j /(\lfloor n / p\rfloor+1)\rfloor,\lfloor(j-r) /\lfloor n / p\rfloor\rfloor)
$$

Method \#2

- Scatters larger blocks among processes
- First element controlled by process i

$$
\lfloor i n / p\rfloor
$$

- Last element controlled by process i

$$
\lfloor(i+1) n / p\rfloor-1
$$

- Process controlling element j

$$
\lfloor(p(j+1)-1) / n\rfloor
$$

Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes
$\square \square \square$

Comparing Methods

Our choice

Operations	Method 1	Method 2
Low index	4	2
High index	6	4
Owner	7	4

Assuming no operations for "floor" function

Block Decomposition Macros

\#define BLOCK_LOW (i,p,n) ((i)*(n)/(p))
\#define BLOCK_HIGH(i,p,n) \}
(BLOCK_LOW ((i) $+1, p, n)-1$)
\#define BLOCK_SIZE (i,p,n) \} (BLOCK_LOW ((i) +1)-BLOCK_LOW (i))
\#define BLOCK_OWNER(index, p, n) $\left(\left(p^{\prime}\right)\right.$ (index) +1$\left.\left.)-1\right) /(n)\right)$

Looping over Elements

- Sequential program
for (i = 0; i $<n$; i++) \{
\}
- Parallel program size = BLOCK_SIZE (id,p,n); for (i = 0; i < size; i++) \{ gi $=\mathrm{i}+$ BLOCK_LOW(id,p,n); \}

Decomposition Affects Implementation

- Largest prime used to sieve is $\sqrt{ } n$
- First process has $\lfloor n / p\rfloor$ elements
- It has all sieving primes if $p<\sqrt{ } n$
- First process always broadcasts next sieving prime
- No reduction step needed

Fast Marking

Find j the first multiple of k on the block:
$j, j+k, j+2 k, j+3 k, \ldots$
instead of
for all j in block if $j \bmod k=o$ then mark j (it is not a prime)

Parallel Algorithm Development

1. Create list of unmarked natural numbers $2,3, \ldots, n$
2. $k \leftarrow 2$ Each process does this Each process creates its share of list
3. Repeat

Each process marks its share of the list
(a) Mark all multiples of k between k^{2} and n
(h) $k \leftarrow$ smallest unmarked number $>k \quad$ Process 0 only
(c) Process 0 shares k with the rest of processes
until $k^{2}>n$
4. The unmarked numbers are primes

Improvements

- Delete even integers
- Cuts number of computations in half
- Frees storage for larger values of n
- Each process finds own sieving primes
- Replicating computation of primes to $\sqrt{ } n$
- Eliminates broadcast step
- Reorganize loops
- Increases cache hit rate

Reorganize Loops

3-99: multiples of 3

3-99: multiples of 5

3-99: multiples of 7

(a)

3-17: multiples of 3

19-33: multiples of 3,5
(21) 22 (25

35-49: multiples of 3,5,7
51-65: multiples of $3,5,7$
67-81: multiples of 3,5,7

83-97: multiples of 3,5,7
99: multiples of 3,5,7

(b)

Lower

Cache hit rate

Higher

Lab work

- Develop a shared memory parallelization of the Sieve of Eratosthenes
- Suggestion:
- Parallel design by domain decomposition
- Select block distribution
- Consider optimizations to maximize single-processor (core) performance

