The Sieve of Eratosthenes

Jorge Barbosa, FEUP

- Sequential algorithm

 Sources of parallelism

Data decomposition options

Parallel algorithm development, analysis
Benchmarking

Optimizations

R
Sequential Algorithm

Complexity: O(n In In n)

R,

Pseudocode

1. Create list of unmarked natural numbers 2, 3, ..., n
2.k« 2
3. Repeat
(a) Mark all multiples of k between k? and n
(b) k <« smallest unmarked number > &
until &2 > n
4. The unmarked numbers are primes

R,

Sources of Parallelism

- Domain decomposition
= Divide data into pieces

= Associate computational steps with data

- One primitive task per array element

I
Making 3(a) Parallel

Mark all multiples of k£ between &% and n

—

for all j where k& <j < n do
1f j mod & = 0 then
mark j (it 1s not a prime)
endif
endfor

=y
Making 3(b) Parallel

Find smallest unmarked number > &

—

Min-reduction (to find smallest unmarked number > k)

Shared variable (to get results from all processes)

Agglomeration Goals

« Consolidate tasks
» Reduce sharing costs

- Balance computations among processes

Data Decomposition Options

- Interleaved (cyclic)
= Easy to determine “owner” of each index
= Leads to load imbalance for this problem
(with P=2, one processor would be idle after first step)

« Block

= Balances loads

= More complicated to determine owner if n not a
multiple of p

.

Block Decomposition Options

- Want to balance workload when n not a multiple of p
- Each process gets either| n/p | or L.n/p] elements

» Seek simple expressions
= Find low, high indices given an owner

= Find owner given an index

e O
Method #1

Letr=nmodp

 If r = 0, all blocks have same size

» Else

> First r blocks have size| n/p |
= Remaining p-r blocks have size | n/p

.

Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

|
Method #1 Calculations

- First element controlled by process i
i| n/ p |+min(,r)

- Last element controlled by process i
G+ n/p|+minG+1,7)—1

 Process controlling element j

max(_j /(n/ p)+) [(G—=r)/n/ p L)

|
Method #2

Scatters larger blocks among processes
First element controlled by process i

in/p|
Last element controlled by process i

L(i+l)n/pJ—1

Process controlling element j

(p(i+D)~1)/n_

.,

Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

.y

Comparing Methods
Our choice
Operations | Method 1 ~ Method 2)
Low index 4 2|
High index 6 4
Owner 7 4

Assuming no operations for “floor” function

I,

Block Decomposition Macros

#define BLOCK LOW(i,p,n) ((i)*(n)/(p))

#define BLOCK HIGH(i,p,n) \
(BLOCK LOW((i)+1l,p,n)-1)

#define BLOCK SIZE(i,p,n) \
(BLOCK LOW((i)+1)-BLOCK LOW(i))

#define BLOCK OWNER (index,p,n) \
(((p) * (index)+1)-1)/(n))

.

Looping over Elements

« Sequential program
for (i = 0; 1 < n; i++) {

}

- Parallel program
size = BLOCK SIZE (id,p,n);
for (1 = 0; i < size; i++) {
gi = i + BLOCK LOW(id,p,n);
}

.y

Decomposition Affects Implementation

- Largest prime used to sieve is Vn

- First process has | n/p | elements

- It has all sieving primes if p < Vn

- First process always broadcasts next sieving
prime

» No reduction step needed

R
Fast Marking

Find j the first multiple of k on the block:
J, j+k, j+2k, j+3k, ..

instead of

for all j in block
if j mod k = 0 then mark j (it is not a prime)

A,

Parallel Algorithm Development

1. Create list of unmarked natural numbers 2, 3, ..., n

Each process creates its share of list

2. k<2

Each process does this

3. Repeat Each process marks its share of the list
(a) Mark all multiples of k between k? and n

{h) k < smallest unmarked number > k Process 0 only

(c) Process 0 shares k£ with the rest of processes

until &2 >n

4. The unmarked numbers are primes

R,

Improvements

- Delete even integers
= Cuts number of computations in half
= Frees storage for larger values of n
- Each process finds own sieving primes
= Replicating computation of primes to Vn
= Eliminates broadcast step
- Reorganize loops
= Increases cache hit rate

I,

Reorganize Loops

3-99: multiples of 3

3-99: multiples of 5

3-99: multiples of 7

Lower

(a)

Cache hit rate

3-17: multiples of 3

19-33: multiples of 3, 5

35-49: multiples of 3, 5, 7 @@
51-65: multiples of 3, 5.7 °°

67-81: multiples of 3, 5, 7

Higher

opgoloN
OOOO®

83-97: multiples of 3. 5.7

99: multiples of 3, 5, 7

85888
()

(b

I,

Lab work

- Develop a shared memory parallelization of the Sieve of
Eratosthenes

» Suggestion:
= Parallel design by domain decomposition
= Select block distribution

- Consider optimizations to maximize single-processor
(core) performance

