The Sieve of Eratosthenes

Jorge Barbosa, FEUP

Outline

- Sequential algorithm
- Sources of parallelism
- Data decomposition options
- Parallel algorithm development, analysis
- Benchmarking
- Optimizations

Sequential Algorithm

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
47	48	49	50	51	52	53	54	55	56	57	58	59	60	61

Complexity: $\Theta(n \ln \ln n)$

Pseudocode

- 1. Create list of unmarked natural numbers 2, 3, ..., n
- 2. $k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n (b) $k \leftarrow$ smallest unmarked number > k until $k^2 > n$
- 4. The unmarked numbers are primes

Sources of Parallelism

- Domain decomposition
 - Divide data into pieces
 - Associate computational steps with data
- One primitive task per array element

Making 3(a) Parallel

Mark all multiples of k between k^2 and n

 \Rightarrow

for all *j* where $k^2 \le j \le n$ do if *j* mod k = 0 then mark *j* (it is not a prime) endif endfor

Making 3(b) Parallel

Find smallest unmarked number > k

Min-reduction (to find smallest unmarked number > k)

Shared variable (to get results from all processes)

Agglomeration Goals

- Consolidate tasks
- Reduce sharing costs
- Balance computations among processes

Data Decomposition Options

• Interleaved (cyclic)

- Easy to determine "owner" of each index
- Leads to load imbalance *for this problem* (with P=2, one processor would be idle after first step)

• Block

- Balances loads
- More complicated to determine owner if n not a multiple of p

Block Decomposition Options

- Want to balance workload when n not a multiple of p
- Each process gets either $\lceil n/p \rceil$ or $\lfloor n/p \rfloor$ elements
- Seek simple expressions
 - Find low, high indices given an owner
 - Find owner given an index

Method #1

- Let $r = n \mod p$
- If r = 0, all blocks have same size
- Else
 - First *r* blocks have size $\lceil n/p \rceil$
 - Remaining *p*-*r* blocks have size $\lfloor n/p \rfloor$

Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

Method #1 Calculations

- First element controlled by process *i i*[*n* / *p*]+min(*i*, *r*)
- Last element controlled by process i $(i+1)\lfloor n/p \rfloor + \min(i+1,r) - 1$
- Process controlling element j

$$\max(\lfloor j / (\lfloor n / p \rfloor + 1) \rfloor, \lfloor (j - r) / \lfloor n / p \rfloor)$$

Method #2

- Scatters larger blocks among processes
- First element controlled by process $i \lfloor in/p \rfloor$
- Last element controlled by process i $\lfloor (i+1)n/p \rfloor - 1$
- Process controlling element j

 $\lfloor (p(j+1)-1)/n \rfloor$

Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

Comparing Methods

Our choice

Operations	Method 1	Method 2
Low index	4	2
High index	6	4
Owner	7	4

Assuming no operations for "floor" function

Block Decomposition Macros

#define BLOCK_LOW(i,p,n) ((i) * (n) / (p))

#define BLOCK_HIGH(i,p,n) \
 (BLOCK_LOW((i)+1,p,n)-1)

#define BLOCK_SIZE(i,p,n) \
 (BLOCK_LOW((i)+1)-BLOCK_LOW(i))

#define BLOCK_OWNER(index,p,n) \
 (((p)*(index)+1)-1)/(n))

Looping over Elements

Sequential program

. . .

}

for (i = 0; i < n; i++) {

• Parallel program
size = BLOCK_SIZE (id,p,n);
for (i = 0; i < size; i++) {
 gi = i + BLOCK_LOW(id,p,n);
}</pre>

Decomposition Affects Implementation

- Largest prime used to sieve is \sqrt{n}
- First process has $\lfloor n/p \rfloor$ elements
- It has all sieving primes if $p < \sqrt{n}$
- First process always broadcasts next sieving prime
- No reduction step needed

Fast Marking

Find *j* the *first* multiple of *k* on the block: *j*, *j* + *k*, *j* + 2*k*, *j* + 3*k*, ...

instead of

for all *j* in block if *j* mod *k* = 0 then mark *j* (it is not a prime)

Parallel Algorithm Development

1. Create list of unmarked natural numbers 2, 3, ..., n

Each process creates its share of list Each process does this

3. Repeat

2. $k \leftarrow 2$

Each process marks its share of the list

(a) Mark all multiples of k between k^2 and n

(b) $k \leftarrow$ smallest unmarked number > k > Process 0 only

(c) Process 0 shares k with the rest of processes

until $k^2 > n$

4. The unmarked numbers are primes

Improvements

- Delete even integers
 - Cuts number of computations in half
 Frees storage for larger values of n
- Each process finds own sieving primes
 Replicating computation of primes to √n
 Eliminates broadcast step
- Reorganize loops
 - Increases cache hit rate

Reorganize Loops

Lower

Cache hit rate

Higher

Lab work

- Develop a shared memory parallelization of the Sieve of Eratosthenes
- Suggestion:
 - Parallel design by domain decomposition
 - Select block distribution
- Consider optimizations to maximize single-processor (core) performance