
The Sieve of Eratosthenes
Jorge Barbosa, FEUP

Outline

• Sequential algorithm
• Sources of parallelism
• Data decomposition options
• Parallel algorithm development, analysis
• Benchmarking
• Optimizations

2

3

Sequential Algorithm

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

2 4 6 8 10 12 14 16
18 20 22 24 26 28 30

32 34 36 38 40 42 44 46
48 50 52 54 56 58 60

3 9 15
21 27

33 39 45
51 57

5
25

35
55

7

49

Complexity: Q(n ln ln n)

Pseudocode

1. Create list of unmarked natural numbers 2, 3, …, n
2. k¬ 2
3. Repeat

(a) Mark all multiples of k between k2 and n
(b) k¬ smallest unmarked number > k

until k2 > n
4. The unmarked numbers are primes

4

Sources of Parallelism

• Domain decomposition

▫ Divide data into pieces

▫ Associate computational steps with data

• One primitive task per array element

5

Making 3(a) Parallel

Mark all multiples of k between k2 and n

Þ

for all j where k2 £ j £ n do
if j mod k = 0 then

mark j (it is not a prime)
endif

endfor

6

Making 3(b) Parallel

Find smallest unmarked number > k

Þ

Min-reduction (to find smallest unmarked number > k)

Shared variable (to get results from all processes)

7

Agglomeration Goals

• Consolidate tasks

• Reduce sharing costs

• Balance computations among processes

8

Data Decomposition Options

• Interleaved (cyclic)
▫ Easy to determine “owner” of each index
▫ Leads to load imbalance for this problem
(with P=2, one processor would be idle after first step)

• Block
▫ Balances loads
▫ More complicated to determine owner if n not a

multiple of p

9

Block Decomposition Options

• Want to balance workload when n not a multiple of p

• Each process gets either én/pù or ën/pû elements

• Seek simple expressions
▫ Find low, high indices given an owner

▫ Find owner given an index

10

Method #1

• Let r = n mod p
• If r = 0, all blocks have same size
• Else
▫ First r blocks have size én/pù
▫ Remaining p-r blocks have size ën/pû

11

Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

12

Method #1 Calculations

• First element controlled by process i

• Last element controlled by process i

• Process controlling element j

ë û),min(/ ripni +

ë û 1),1min(/)1(-+++ ripni

ë ûë û ë ûë û)//)(,)1//(max(pnrjpnj -+

13

Method #2

• Scatters larger blocks among processes
• First element controlled by process i

• Last element controlled by process i

• Process controlling element j

ë ûpin /

ë û 1/)1(-+ pni

ë ûnjp /)1)1((-+

14

Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

15

Comparing Methods

Operations Method 1 Method 2

Low index 4 2

High index 6 4

Owner 7 4

Assuming no operations for “floor” function

Our choice

16

Block Decomposition Macros

#define BLOCK_LOW(i,p,n) ((i)*(n)/(p))

#define BLOCK_HIGH(i,p,n) \
(BLOCK_LOW((i)+1,p,n)-1)

#define BLOCK_SIZE(i,p,n) \
(BLOCK_LOW((i)+1)-BLOCK_LOW(i))

#define BLOCK_OWNER(index,p,n) \
(((p)*(index)+1)-1)/(n))

17

Looping over Elements

• Sequential program
for (i = 0; i < n; i++) {

…
}

• Parallel program
size = BLOCK_SIZE (id,p,n);
for (i = 0; i < size; i++) {

gi = i + BLOCK_LOW(id,p,n);
}

18

Decomposition Affects Implementation

• Largest prime used to sieve is Ön

• First process has ën/pû elements

• It has all sieving primes if p < Ön

• First process always broadcasts next sieving

prime

• No reduction step needed

19

Fast Marking

Find j the first multiple of k on the block:
j, j + k, j + 2k, j + 3k, …

instead of

for all j in block
if j mod k = 0 then mark j (it is not a prime)

20

Parallel Algorithm Development

1. Create list of unmarked natural numbers 2, 3, …, n

2. k¬ 2

3. Repeat

(a) Mark all multiples of k between k2 and n

(b) k¬ smallest unmarked number > k

until k2 > n

4. The unmarked numbers are primes

Each process creates its share of list
Each process does this

Each process marks its share of the list

Process 0 only

(c) Process 0 shares k with the rest of processes

21

Improvements

• Delete even integers
▫ Cuts number of computations in half
▫ Frees storage for larger values of n

• Each process finds own sieving primes
▫ Replicating computation of primes to Ön
▫ Eliminates broadcast step

• Reorganize loops
▫ Increases cache hit rate

22

Reorganize Loops

Cache hit rate

Lower

Higher

23

Lab work

• Develop a shared memory parallelization of the Sieve of
Eratosthenes

• Suggestion:
▫ Parallel design by domain decomposition
▫ Select block distribution

• Consider optimizations to maximize single-processor
(core) performance

24

