
Shared memory programming
Jorge Barbosa, FEUP

Parallel Programming
in C with MPI and OpenMP

Michael J. Quinn

1

Using OpenMP
Barbara Chapman, Gabriele
Jost and Ruud van der Pas

Contents

• OpenMP
• Shared-memory model
• Parallel for loops
• Declaring private variables
• Critical sections
• Reductions
• Performance improvements
• More general data parallelism
• Functional parallelism

2

OpenMP

• OpenMP: An application programming interface
(API) for parallel programming on multicores
▫ Compiler directives
▫ Library of support functions

• OpenMP works in conjunction with Fortran, C,
or C++

3

What’s OpenMP Good For?

• C + OpenMP sufficient to program multicores

• Easy to convert sequential data parallel
programs

4

Shared memory model

• Global address space

• There is no reference to communications

5

Fork/Join Parallelism

• Initially only master thread is active

▫ Master thread executes sequential code

• Fork: Master thread creates or awakens
additional threads to execute parallel code

• Join: At end of parallel code created threads die
or are suspended

6

Paralelismo Fork/Join

7

Shared-memory Model vs.
Message-passing Model (#1)

• Shared-memory model
▫ Number active threads is 1 at start and finish of

program, changes dynamically during execution
• Message-passing model
▫ All processes active throughout execution of

program

8

Incremental Parallelization

• Sequential programming is a special case of a
shared-memory parallel program

• Parallel shared-memory programs may only
have a single parallel loop

• Incremental parallelization: process of
converting a sequential program to a parallel
program a little bit at a time

9

Shared-memory Model vs.
Message-passing Model (#2)
• Shared-memory model
▫ Execute and profile sequential program
▫ Incrementally make it parallel
▫ Stop when further effort not warranted

• Message-passing model
▫ Sequential-to-parallel transformation requires major

effort
▫ Transformation done in one giant step rather than

many tiny steps

10

Parallel for Loops

• C programs often express data-parallel operations as
for loops
for (i = first; i < size; i += prime)

marked[i] = 1;

• OpenMP makes it easy to indicate when the iterations
of a loop may execute in parallel

• Compiler takes care of generating code that
forks/joins threads and allocates the iterations to
threads

11

Pragmas

• Pragma: a compiler directive in C or C++
• Stands for “pragmatic information”
• A way for the programmer to communicate with

the compiler
• Compiler free to ignore pragmas
• Syntax:
#pragma omp <rest of pragma>

12

Parallel for Pragma

• Format:
#pragma omp parallel for
for (i = 0; i < N; i++)

a[i] = b[i] + c[i];

13

Canonical Shape of for Loop Control
Clause

14

Execution Context

• Every thread has its own execution context

• Execution context: address space containing all
of the variables a thread may access

• Contents of execution context:
▫ static variables
▫ dynamically allocated data structures in the heap
▫ variables on the run-time stack
▫ additional run-time stack for functions invoked by the

thread

15

Shared and Private Variables

• Shared variable: has same address in execution
context of every thread

• Private variable: has different address in
execution context of every thread

• A thread cannot access the private variables of
another thread

16

Shared and Private Variables

17

Function omp_get_num_procs

• Returns number of physical processors available
for use by the parallel program

int omp_get_num_procs (void)

18

Function omp_set_num_threads

• Uses the parameter value to set the number of
threads to be active in parallel sections of code

• May be called at multiple points in a program

void omp_set_num_threads (int t)

19

Parallel Blocks

#pragma omp parallel [num_threads(n)]
{

…
}
This command overwrites: omp_set_num_threads

20

Declaring Private Variables

for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
for (j = 0; j < n; j++)

a[i][j] = MIN(a[i][j],a[i][k]+tmp);

• Either loop could be executed in parallel
• We prefer to make outer loop parallel, to reduce

number of forks/joins
• We then must give each thread its own private copy

of variable j

21

private Clause

• Clause: an optional, additional component to a
pragma

• Private clause: directs compiler to make one or
more variables private

private (<variable list>)

22

Example Use of private Clause

#pragma omp parallel for private(j)
for (i = 0; i < BLOCK_SIZE(id,p,n); i++)

for (j = 0; j < n; j++)
a[i][j] = MIN(a[i][j],a[i][k]+tmp);

23

firstprivate Clause

• Private variables are undefined on thread entry

• Used to create private variables having initial values
identical to the variable controlled by the master
thread as the loop is entered

• Variables are initialized once per thread, not once per
loop iteration

• If a thread modifies a variable’s value in an iteration,
subsequent iterations will get the modified value

24

Exemple - firstprivate

25

int main()
{ int TID;

#pragma omp parallel private(TID)
{

TID = omp_get_thread_num();

printf("Thread %d executes the outer parallel region\n",TID);

#pragma omp parallel num_threads(3) firstprivate(TID)
{ printf("TID %d: Thread %d executes inner parallel region\n",

TID,omp_get_thread_num());
} /*-- End of inner parallel region --*/

} /*-- End of outer parallel region --*/

return(0);
}

nested-parallel-mod.c

lastprivate Clause

• Sequentially last iteration: iteration that occurs
last when the loop is executed sequentially

• lastprivate clause: used to copy back to the
master thread’s copy of a variable the private
copy of the variable from the thread that
executed the sequentially last iteration

26

lastprivate Clause
#pragma omp parallel for lastprivate(a)
for (i=0; i<5; i++)
{ a=i+1;

printf(“Thread %d has value a=%d for i=%d\n”,
omp_get_thread_num(), a, i);

}
Printf(“value after loop a=%d”,a)
Output:
Thread 0 has value a=1 for i=0
Thread 1 has value a=2 for i=1
Thread 4 has value a=5 for i=4
Thread 2 has value a=3 for i=2
Thread 3 has value a=4 for i=3
value after loop a=5

27

Critical Sections

• Consider the program to compute p using the
rectangle rule:

double area, pi, x;
int i, n;
...
area = 0.0;
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;

28

Race Condition

• If we simply parallelize the loop...

double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;

29

Race Condition (cont.)

• ... we set up a race condition in which one
process may “race ahead” of another and not see
its change to shared variable area

11.667area

area += 4.0/(1.0 + x*x)

Thread A Thread B

15.432

11.66711.66715.432 15.230

15.230 Answer should be 18.995

30

Race Condition Time Line

31

critical Pragma

• Critical section: a portion of code that only a thread at
a time may execute

• We denote a critical section by putting the pragma

#pragma omp critical

in front of a block of C code

32

Correct, But Inefficient, Code

double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
#pragma omp critical

area += 4.0/(1.0 + x*x);
}
pi = area / n;

33

Source of Inefficiency

• Update to area inside a critical section
• Only one thread at a time may execute the statement;

i.e., it is sequential code
• Time to execute statement significant part of loop
• By Amdahl’s Law we know speedup will be severely

constrained

34

Reductions

• Reductions are so common that OpenMP provides
support for them

• May add reduction clause to parallel for pragma
• Specify reduction operation and reduction variable
• OpenMP takes care of storing partial results in

private variables and combining partial results after
the loop

35

reduction Clause

• The reduction clause has this syntax:
reduction (<op> :<variable>)

• Operators
▫ + Sum
▫ * Product
▫ & Bitwise and
▫ | Bitwise or
▫ ^ Bitwise exclusive or
▫ && Logical and
▫ || Logical or

36

p-finding Code with Reduction Clause

double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for \

private(x) reduction(+:area)
for (i = 0; i < n; i++) {

x = (i + 0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;

37

nowait Clause
• Compiler puts a barrier synchronization at end

of every parallel for statement

#pragma omp parallel
{

#pragma omp for nowait
for (j = low; j < high; j++)

c[j] = (c[j] - a[i])/b[i];

other();
}

38

parallel Pragma

• The parallel pragma precedes a block of code
that should be executed by all of the threads

• Note: execution is replicated among all threads

39

Use of parallel Pragma

#pragma omp parallel private(task_ptr)
{

task_ptr = get_next_task (&job_ptr);
while (task_ptr != NULL) {

complete_task (task_ptr);
task_ptr = get_next_task (&job_ptr);

}
}

40

Blocks executed by a single thread

• #pragma omp master
• #pragma omp single
• #pragma omp barrier

41

Blocks executed by a single thread
int main()
{ int a[5], i;

#pragma omp parallel
{ // Perform some computation.

#pragma omp for
for (i = 0; i < 5; i++)

a[i] = i * i;

// Print intermediate results.
#pragma omp master // single

for (i = 0; i < 5; i++)
printf_s("a[%d] = %d\n", i, a[i]);

// Wait.
#pragma omp barrier

// Continue with the computation.
#pragma omp for
for (i = 0; i < 5; i++)

a[i] += i;
}

}

42

Performance Improvement #1
• Too many fork/joins can lower performance
▫ Inverting loops may help performance if
� Parallelism is in inner loop
� After inversion, the outer loop can be made parallel

▫ Or, by defining outside the parallel region

43

for (i=0; i<n; i++)
for (j=0; j<n; j++)

#pragma omp parallel for
for (k=0; k<n; k++)

{}

#pragma omp parallel private(i,j)
for (i=0; i<n; i++)

for (j=0; j<n; j++)
#pragma omp for
for (k=0; k<n; k++)

{}

Performance Improvement #1
• Maximize parallel regions
▫ Reduces the number of fork/joins

▫ Figs 5.23 e 5.24

44

Figures 5.23 and 5.24 from “Using OpenMP”

Performance Improvement #2
Conditional Parallelism

• If loop has too few iterations, fork/join overhead
is greater than time savings from parallel
execution

• The if clause instructs compiler to insert code
that determines at run-time whether loop should
be executed in parallel; e.g.,

#pragma omp parallel for if(n > 5000)

45

Performance Improvement #3
Optimize Barrier Use
• #pragma omp for loop – has an implicit barrier

46

#pragma omp parallel shared(n,a,b,c,d,sum) private(i)
{

#pragma omp for nowait
for (i=0; i<n; i++)

a[i] += b[i];

#pragma omp for nowait
for (i=0; i<n; i++)

c[i] += d[i];

#pragma omp barrier

#pragma omp for nowait reduction(+:sum)
for (i=0; i<n; i++)

sum += a[i] + c[i];
} /*-- End of parallel region --*/

nowait do not
Influences here

Performance Improvement #4
Load Balance
• We can use schedule clause to specify how

iterations of a loop should be allocated to
threads

• Static schedule: all iterations allocated to
threads before any iterations executed

• Dynamic schedule: only some iterations
allocated to threads at beginning of loop’s
execution. Remaining iterations allocated to
threads that complete their assigned iterations.

47

Static vs. Dynamic Scheduling

• Static scheduling
▫ Low overhead
▫ May exhibit high workload imbalance

• Dynamic scheduling
▫ Higher overhead
▫ Can reduce workload imbalance

48

Chunks

• A chunk is a contiguous range of iterations
• Increasing chunk size reduces overhead and may

increase cache hit rate
• Decreasing chunk size allows finer balancing of

workloads

49

schedule Clause

• Syntax of schedule clause
schedule (<type>[,<chunk>])

• Schedule type required, chunk size optional
• Allowable schedule types
▫ static: static allocation
▫ dynamic: dynamic allocation
▫ guided: guided self-scheduling
▫ runtime: type chosen at run-time based on value of

environment variable OMP_SCHEDULE

50

Scheduling Options

• schedule(static): block allocation of about n/t
contiguous iterations to each thread

• schedule(static,C): interleaved allocation of chunks of
size C to threads

• schedule(dynamic): dynamic one-at-a-time allocation
of iterations to threads

• schedule(dynamic,C): dynamic allocation of C
iterations at a time to threads

51

Scheduling Options (cont.)

• schedule(guided, C): dynamic allocation of chunks to
tasks using guided self-scheduling heuristic. Initial
chunks are bigger, later chunks are smaller, minimum
chunk size is C.

• schedule(guided): guided self-scheduling with
minimum chunk size 1

• schedule(runtime): schedule chosen at run-time based
on value of OMP_SCHEDULE; Unix example:
setenv OMP_SCHEDULE “static,1”

52

Scheduling Options (cont.)

53

Scheduling example (1)
int main (int argc, char *argv[])
{ int n = 10, int i;

#pragma omp parallel num_threads(4)
{ #pragma omp master

{ cout << endl << "my thread " << omp_get_thread_num();
cout << endl << "Num thread: " << omp_get_num_threads();

}
#pragma omp barrier // try if clause
#pragma omp for schedule (dynamic, 4) // try (static,4) (dynamic,1)
for (i = 0; i < n; i++) {

#pragma omp critical // why is it used?
cout << endl << "inside: " << omp_get_thread_num() << " i= " << i ;
Sleep(1000*omp_get_thread_num());

}
}

}

54

loop.cppHow would it be using pthreads?

Scheduling example (2)
for (i=0; i<N; i++) {

ReadFromFile(i,...);

for (j=0; j<ProcessingNum; j++)
ProcessData(); /* here is the work */

WriteResultsToFile(i);
}

55

pipeline1.c

Scheduling example
#pragma omp parallel private(i)
{

/* preload data to be used in first iteration of the i-loop */
#pragma omp single

{ReadFromFile(0,...);}

for (i=0; i<N; i++) {
/* preload data for next iteration of the i-loop */
#pragma omp single nowait
{ReadFromFile(i+1...);}

#pragma omp for schedule(dynamic)
for (j=0; j<ProcessingNum; j++)

ProcessChunkOfData(); /* here is the work */
/* there is a barrier at the end of this loop */

#pragma omp single nowait
{WriteResultsToFile(i);}

} /* threads immediately move on to next iteration of i-loop */

} /* one parallel region encloses all the work */
/* Fig 5.28 from “Using OpenMP” */

56

A single thread
reads data for
1st iteration

Creates team of
threads

Sequential for

pipeline2.c

Functions for SPMD-style Programming

• The parallel pragma allows us to write SPMD-
style programs

• In these programs we often need to know
number of threads and thread ID number

• OpenMP provides functions to retrieve this
information

57

Functional Parallelism

Function omp_get_thread_num

• This function returns the thread identification
number

• If there are t threads, the ID numbers range
from 0 to t-1

• The master thread has ID number 0

int omp_get_thread_num (void)

58

Function omp_get_num_threads

• Function omp_get_num_threads returns the
number of active threads

• If call this function from sequential portion of
program, it will return 1

int omp_get_num_threads (void)

59

Functional Parallelism

• To this point all of our focus has been on
exploiting data parallelism

• OpenMP allows us to assign different threads to
different portions of code (functional
parallelism)

60

Functional Parallelism Example

v = alpha();
w = beta();
x = gamma(v, w);
y = delta();
printf ("%6.2f\n", epsilon(x,y));

May execute alpha,
beta, and delta in
parallel

61

parallel sections Pragma

• Precedes a block of k blocks of code that may be
executed concurrently by k threads

• Syntax:

#pragma omp parallel sections

62

section Pragma

• Precedes each block of code within the
encompassing block preceded by the parallel
sections pragma

• May be omitted for first parallel section after the
parallel sections pragma

• Syntax:

#pragma omp section

63

Example of parallel sections

#pragma omp parallel sections
{

#pragma omp section /* Optional */
v = alpha();

#pragma omp section
w = beta();

#pragma omp section
y = delta();

}
x = gamma(v, w);
printf ("%6.2f\n", epsilon(x,y));

64

sections Pragma

• Appears inside a parallel block of code
• Has same meaning as the parallel
sections pragma

• If multiple sections pragmas inside one
parallel block, may reduce fork/join costs

65

Another Approach

Execute alpha and
beta in parallel.
Execute gamma and
delta in parallel.

66

Use of sections Pragma
#pragma omp parallel

{
#pragma omp sections

{
v = alpha();

#pragma omp section
w = beta();

}
#pragma omp sections

{
x = gamma(v, w);

#pragma omp section
y = delta();

}
}
printf ("%6.2f\n", epsilon(x,y));

67

Another Approach

68

task Construct

69

• Binding
▫ Thread set à inner most parallel region (current

parallel team)

#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task
b = beta();

#pragma omp task
a = alpha();

}
}

Start team of threads

Schedule tasks to
threads

a b

Why is single used to start the parallel
region?

task Construct

70

• Variables
▫ By default variables are firstprivate. To share we

need to say it explicitly.

int a=2, b=3, c;
#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task
b = beta();

#pragma omp task
a = alpha();

}
}
c = a + b; // c = ?

int a=2, b=3, c;
#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task shared(b)
b = beta();

#pragma omp task shared(a)
a = alpha();

}
}
c = a + b; // c = ?

task Construct

71

• No need to create extra tasks
▫ Child tasks are executed concurrently with their

parent

#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task
b = beta();

a = alpha();
}

}

ab

task Construct

72

• taskwait
▫ Specifies a wait on the completion of child tasks

generated since the beginning of the current task.

A

B

C
f1

f2

y = A()
v = B()
w = C()
x = f1(b, c)
e = f2(y,x)

task Construct - taskwait

73

#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task shared(a)
y = A();

#pragma omp task shared(b)
v = B();

#pragma omp task shared(c)
w = C();

#pragma omp taskwait

x = f1(v,w)

e = f2(y,x)
}

}

1st version

What can be improved?

Should be a taskgroup …

but there is no such construct

task Construct - taskwait

74

#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task shared(a)
y = A();

#pragma omp task if(0) shared (b, c)
{

#pragma omp task shared(b)
v = B();

#pragma omp task shared(c)
w = C();

#pragma omp taskwait
}
x = f1(v,w)
#pragma omp taskwait
e = f2(y,x)

}
}

2nd version

Is this solution correct?
Compare to sections pragma, page 64.

task Construct - taskwait

75

OpenMP Application Program Interface, page 60:
When an if clause is present on a task construct and

the if clause expression evaluates to false, the

encountering thread must suspend the current task

region and begin execution of the generated task

immediately, and the suspended task region may not be

resumed until the generated task is completed.

task Construct - reduction

76

int count_good (item_t *item)
{

int n = 0;
int pn[P]; /* P is the number of threads used. */
#pragma omp parallel
{

pn[omp_get_thread_num()] = 0;
#pragma omp single nowait
{

while (item) {
#pragma omp task firstprivate(item)
{

if (is_good(item)) {
pn[omp_get_thread_num()] ++;

}
}
item = item->next;

}
}
#pragma omp barrier
#pragma omp atomic
n += pn[omp_get_thread_num()];

}
return n;

} C
re

di
ts

 to
 Y

ua
n

Li
n,

 S
un

 M
ic

ro
sy

st
em

s
O

pe
nM

P
te

am

Exercise: Pipeline with tasks
#pragma omp parallel private(i)
{

/* preload data to be used in first iteration of the i-loop */
#pragma omp single

{ReadFromFile(0,...);}

for (i=0; i<N; i++) {
/* preload data for next iteration of the i-loop */
#pragma omp single nowait
{ReadFromFile(i+1...);}

#pragma omp for schedule(dynamic)
for (j=0; j<ProcessingNum; j++)

ProcessChunkOfData(); /* here is the work */
/* there is a barrier at the end of this loop */

#pragma omp single nowait
{WriteResultsToFile(i);}

} /* threads immediately move on to next iteration of i-loop */

} /* one parallel region encloses all the work */
/* Fig 5.28 from “Using OpenMP” */

77

Nested parallel regions: parallel regions vs tasks

78

void quick_sort (int p, int r, float *data)
{

If (p < r) {
Int q = partition (p, r, data);
#pragma omp parallel sections firstprivate(data, p, q, r)
{

#pragma omp section
quick_sort (p, q-1, data, low_limit);
#pragma omp section
quick_sort (q+1, r, data, low_limit);

}
}

}
void par_quick_sort (int n, float *data)
{

quick_sort (0, n, data);
}

Only 2 threads have
work.
What happens if we
put 4, 6 or 8?

Nested parallel regions vs tasks

79

void quick_sort (int p, int r, float *data)
{

If (p < r) {
int q = partition (p, r, data);
#pragma omp task
quick_sort (p, q-1, data, low_limit);
#pragma omp task
quick_sort (q+1, r, data, low_limit);
}

}
void par_quick_sort (int n, float *data)
{

#pragma omp parallel
{

#pragma omp single nowait
quick_sort (0, n, data);

}
}

Here we have a single place
to select the number of threads

Main difference between parallel regions
and tasks

80

Once a Parallel region is created:
- No threads in the team can leave the region until the end of the region
- No threads can join the parallel region

Results

81

OMP_NUM_T
HREADS

Task Nested
parallelism

2 2.6s 1.8s
4 1.7s 2.1s
8 1.2s 2.6s

C
re

di
ts

 to
 R

ic
ha

rd
 F

rie
dm

an
, S

un
 M

ic
ro

sy
st

em
s

O
pe

nM
P

te
am

, 2
00

7

Task version:
- any thread can work on any task resulting a more efficient thread usage
- There is only one parallel region and therefore the user can control better
the number of threads used.

Summary (1/3)

• OpenMP an API for shared-memory parallel
programming

• Shared-memory model based on fork/join
parallelism

• Data parallelism
▫ parallel for pragma
▫ reduction clause

82

Summary (2/3)

• Functional parallelism: parallel sections and
task constructs.

• SPMD-style programming (parallel pragma)
• Critical sections (critical pragma)
• Atomic construct
• Enhancing performance of parallel for loops
▫ Inverting loops
▫ Nowait
▫ Conditionally parallelizing loops
▫ Changing loop scheduling

83

Summary (3/3)

Characteristic OpenMP MPI

Suitable for multiprocessors Yes Yes

Suitable for multicomputers No Yes

Supports incremental
parallelization

Yes No

Minimal extra code Yes No

Explicit control of memory
hierarchy

No Yes

84

