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OpenMP

• OpenMP: An application programming interface 
(API) for parallel programming on multicores
▫ Compiler directives
▫ Library of support functions

• OpenMP works in conjunction with Fortran, C, 
or C++
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What’s OpenMP Good For?

• C + OpenMP sufficient to program multicores

• Easy to convert sequential data parallel 
programs
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Shared memory model

• Global address space

• There is no reference to communications
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Fork/Join Parallelism

• Initially only master thread is active

▫ Master thread executes sequential code

• Fork: Master thread creates or awakens 
additional threads to execute parallel code

• Join: At end of parallel code created threads die 
or are suspended
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Paralelismo Fork/Join
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Shared-memory Model vs.
Message-passing Model (#1)

• Shared-memory model
▫ Number active threads is 1 at start and finish of 

program, changes dynamically during execution
• Message-passing model
▫ All processes active throughout execution of 

program
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Incremental Parallelization

• Sequential programming is a special case of a 
shared-memory parallel program

• Parallel shared-memory programs may only 
have a single parallel loop

• Incremental parallelization: process of 
converting a sequential program to a parallel 
program a little bit at a time
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Shared-memory Model vs.
Message-passing Model (#2)
• Shared-memory model
▫ Execute and profile sequential program
▫ Incrementally make it parallel
▫ Stop when further effort not warranted

• Message-passing model
▫ Sequential-to-parallel transformation requires major 

effort
▫ Transformation done in one giant step rather than 

many tiny steps
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Parallel for Loops

• C programs often express data-parallel operations as 
for loops
for (i = first; i < size; i += prime)

marked[i] = 1;

• OpenMP makes it easy to indicate when the iterations 
of a loop may execute in parallel

• Compiler takes care of generating code that 
forks/joins threads and allocates the iterations to 
threads
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Pragmas

• Pragma: a compiler directive in C or C++
• Stands for “pragmatic information”
• A way for the programmer to communicate with 

the compiler
• Compiler free to ignore pragmas
• Syntax:
#pragma omp <rest of pragma>
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Parallel for Pragma

• Format:
#pragma omp parallel for
for (i = 0; i < N; i++)

a[i] = b[i] + c[i];
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Canonical Shape of for Loop Control 
Clause
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Execution Context

• Every thread has its own execution context

• Execution context: address space containing all 
of the variables a thread may access

• Contents of execution context:
▫ static variables
▫ dynamically allocated data structures in the heap
▫ variables on the run-time stack
▫ additional run-time stack for functions invoked by the 

thread
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Shared and Private Variables

• Shared variable: has same address in execution 
context of every thread

• Private variable: has different address in 
execution context of every thread

• A thread cannot access the private variables of 
another thread
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Shared and Private Variables
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Function omp_get_num_procs

• Returns number of physical processors available 
for use by the parallel program

int omp_get_num_procs (void)
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Function omp_set_num_threads

• Uses the parameter value to set the number of 
threads to be active in parallel sections of code

• May be called at multiple points in a program

void omp_set_num_threads (int t)
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Parallel Blocks

#pragma omp parallel [num_threads(n)]
{

…
}
This command overwrites: omp_set_num_threads
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Declaring Private Variables

for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
for (j = 0; j < n; j++)

a[i][j] = MIN(a[i][j],a[i][k]+tmp);

• Either loop could be executed in parallel
• We prefer to make outer loop parallel, to reduce 

number of forks/joins
• We then must give each thread its own private copy

of variable j
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private Clause

• Clause: an optional, additional component to a 
pragma

• Private clause: directs compiler to make one or 
more variables private

private ( <variable list> )
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Example Use of private Clause

#pragma omp parallel for private(j)
for (i = 0; i < BLOCK_SIZE(id,p,n); i++)

for (j = 0; j < n; j++)
a[i][j] = MIN(a[i][j],a[i][k]+tmp);
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firstprivate Clause

• Private variables are undefined on thread entry

• Used to create private variables having initial values 
identical to the variable controlled by the master 
thread as the loop is entered

• Variables are initialized once per thread, not once per 
loop iteration

• If a thread modifies a variable’s value in an iteration, 
subsequent iterations will get the modified value
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Exemple - firstprivate
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int main()
{      int TID;

#pragma omp parallel private(TID)   
{    

TID = omp_get_thread_num();

printf("Thread %d executes the outer parallel region\n",TID);

#pragma omp parallel num_threads(3) firstprivate(TID) 
{        printf("TID %d: Thread %d executes inner parallel region\n",

TID,omp_get_thread_num()); 
}  /*-- End of inner parallel region --*/

}   /*-- End of outer parallel region --*/

return(0);
}

nested-parallel-mod.c



lastprivate Clause

• Sequentially last iteration: iteration that occurs 
last when the loop is executed sequentially

• lastprivate clause: used to copy back to the 
master thread’s copy of a variable the private 
copy of the variable from the thread that 
executed the sequentially last iteration
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lastprivate Clause
#pragma omp parallel for lastprivate(a)
for (i=0; i<5; i++)
{ a=i+1;

printf(“Thread %d has value a=%d for i=%d\n”, 
omp_get_thread_num(), a, i);

}
Printf(“value after loop a=%d”,a)
Output:
Thread 0 has value a=1 for i=0
Thread 1 has value a=2 for i=1
Thread 4 has value a=5 for i=4
Thread 2 has value a=3 for i=2
Thread 3 has value a=4 for i=3
value after loop a=5
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Critical Sections

• Consider the program to compute p using the 
rectangle rule:

double area, pi, x;
int i, n;
...
area = 0.0;
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;
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Race Condition

• If we simply parallelize the loop...

double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;
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Race Condition (cont.)

• ... we set up a race condition in which one 
process may “race ahead” of another and not see 
its change to shared variable area

11.667area

area += 4.0/(1.0 + x*x)

Thread A Thread B

15.432

11.66711.66715.432 15.230

15.230 Answer should be 18.995
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Race Condition Time Line
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critical Pragma

• Critical section: a portion of code that only a thread at 
a time may execute

• We denote a critical section by putting the pragma

#pragma omp critical

in front of a block of C code
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Correct, But Inefficient, Code

double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
#pragma omp critical

area += 4.0/(1.0 + x*x);
}
pi = area / n;
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Source of Inefficiency

• Update to area inside a critical section
• Only one thread at a time may execute the statement; 

i.e., it is sequential code
• Time to execute statement significant part of loop
• By Amdahl’s Law we know speedup will be severely 

constrained
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Reductions

• Reductions are so common that OpenMP provides 
support for them

• May add reduction clause to parallel for pragma
• Specify reduction operation and reduction variable
• OpenMP takes care of storing partial results in 

private variables and combining partial results after 
the loop
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reduction Clause

• The reduction clause has this syntax:
reduction (<op> :<variable>)

• Operators
▫ + Sum
▫ * Product
▫ & Bitwise and
▫ | Bitwise or
▫ ^ Bitwise exclusive or
▫ && Logical and
▫ || Logical or
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p-finding Code with Reduction Clause

double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for \

private(x) reduction(+:area)
for (i = 0; i < n; i++) {

x = (i + 0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;
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nowait Clause
• Compiler puts a barrier synchronization at end 

of every parallel for statement

#pragma omp parallel
{

#pragma omp for nowait
for (j = low; j < high; j++)

c[j] = (c[j] - a[i])/b[i];

other();
}
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parallel Pragma

• The parallel pragma precedes a block of code 
that should be executed by all of the threads

• Note: execution is replicated among all threads
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Use of parallel Pragma

#pragma omp parallel private(task_ptr)
{

task_ptr = get_next_task (&job_ptr);
while (task_ptr != NULL) {

complete_task (task_ptr);
task_ptr = get_next_task (&job_ptr);

}
}
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Blocks executed by a single thread 

• #pragma omp master
• #pragma omp single
• #pragma omp barrier
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Blocks executed by a single thread 
int main( ) 
{    int a[5], i;

#pragma omp parallel
{   // Perform some computation.

#pragma omp for
for (i = 0; i < 5; i++)

a[i] = i * i;

// Print intermediate results.
#pragma omp master // single

for (i = 0; i < 5; i++)
printf_s("a[%d] = %d\n", i, a[i]);

// Wait.
#pragma omp barrier

// Continue with the computation.
#pragma omp for
for (i = 0; i < 5; i++)

a[i] += i;
}

}

42



Performance Improvement #1
• Too many fork/joins can lower performance
▫ Inverting loops may help performance if
� Parallelism is in inner loop
� After inversion, the outer loop can be made parallel

▫ Or, by defining outside the parallel region
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for (i=0; i<n; i++)
for (j=0; j<n; j++)

#pragma omp parallel for
for (k=0; k<n; k++)

{ .........}

#pragma omp parallel private(i,j)
for (i=0; i<n; i++)

for (j=0; j<n; j++)
#pragma omp for
for (k=0; k<n; k++)

{ .........}



Performance Improvement #1
• Maximize parallel regions
▫ Reduces the number of fork/joins

▫ Figs 5.23 e 5.24
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Figures 5.23 and 5.24 from “Using OpenMP”



Performance Improvement #2
Conditional Parallelism

• If loop has too few iterations, fork/join overhead 
is greater than time savings from parallel 
execution

• The if clause instructs compiler to insert code 
that determines at run-time whether loop should 
be executed in parallel; e.g.,

#pragma omp parallel for if(n > 5000)
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Performance Improvement #3
Optimize Barrier Use
• #pragma omp for loop – has an implicit barrier
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#pragma omp parallel shared(n,a,b,c,d,sum) private(i)
{

#pragma omp for nowait
for (i=0; i<n; i++)

a[i] += b[i];

#pragma omp for nowait
for (i=0; i<n; i++)

c[i] += d[i];

#pragma omp barrier

#pragma omp for nowait reduction(+:sum)
for (i=0; i<n; i++)

sum += a[i] + c[i];
} /*-- End of parallel region --*/

nowait do not
Influences here



Performance Improvement #4 
Load Balance
• We can use schedule clause to specify how 

iterations of a loop should be allocated to 
threads

• Static schedule: all iterations allocated to 
threads before any iterations executed

• Dynamic schedule: only some iterations 
allocated to threads at beginning of loop’s 
execution. Remaining iterations allocated to 
threads that complete their assigned iterations.
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Static vs. Dynamic Scheduling

• Static scheduling
▫ Low overhead
▫ May exhibit high workload imbalance

• Dynamic scheduling
▫ Higher overhead
▫ Can reduce workload imbalance
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Chunks

• A chunk is a contiguous range of iterations
• Increasing chunk size reduces overhead and may 

increase cache hit rate
• Decreasing chunk size allows finer balancing of 

workloads

49



schedule Clause

• Syntax of schedule clause
schedule (<type>[,<chunk> ])

• Schedule type required, chunk size optional
• Allowable schedule types
▫ static: static allocation
▫ dynamic: dynamic allocation
▫ guided: guided self-scheduling
▫ runtime: type chosen at run-time based on value of 

environment variable OMP_SCHEDULE
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Scheduling Options

• schedule(static): block allocation of about n/t 
contiguous iterations to each thread

• schedule(static,C): interleaved allocation of chunks of 
size C to threads

• schedule(dynamic): dynamic one-at-a-time allocation 
of iterations to threads

• schedule(dynamic,C): dynamic allocation of C 
iterations at a time to threads
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Scheduling Options (cont.)

• schedule(guided, C): dynamic allocation of chunks to 
tasks using guided self-scheduling heuristic. Initial 
chunks are bigger, later chunks are smaller, minimum 
chunk size is C.

• schedule(guided): guided self-scheduling with 
minimum chunk size 1

• schedule(runtime): schedule chosen at run-time based 
on value of OMP_SCHEDULE; Unix example:
setenv OMP_SCHEDULE “static,1”
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Scheduling Options (cont.)
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Scheduling example (1)
int main (int argc, char *argv[])
{ int n = 10, int i;

#pragma omp parallel num_threads(4)
{ #pragma omp master

{ cout << endl << "my thread " << omp_get_thread_num();
cout << endl << "Num thread: " << omp_get_num_threads();

}
#pragma omp barrier // try if clause
#pragma omp for schedule (dynamic, 4)  // try (static,4)   (dynamic,1)
for (i = 0; i < n; i++) {

#pragma omp critical // why is it used?
cout << endl << "inside: " << omp_get_thread_num() << "   i= " << i ;
Sleep(1000*omp_get_thread_num());

}
}

}
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loop.cppHow would it be using pthreads?



Scheduling example (2)
for (i=0; i<N; i++) {

ReadFromFile(i,...);

for (j=0; j<ProcessingNum; j++)
ProcessData(); /* here is the work */

WriteResultsToFile(i);
}
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pipeline1.c



Scheduling example
#pragma omp parallel private(i)
{

/* preload data to be used in first iteration of the i-loop */
#pragma omp single

{ReadFromFile(0,...);}

for (i=0; i<N; i++) {
/* preload data for next iteration of the i-loop */
#pragma omp single nowait
{ReadFromFile(i+1...);}

#pragma omp for schedule(dynamic)
for (j=0; j<ProcessingNum; j++)

ProcessChunkOfData(); /* here is the work */
/* there is a barrier at the end of this loop */

#pragma omp single nowait
{WriteResultsToFile(i);}

} /* threads immediately move on to next iteration of i-loop */

} /* one parallel region encloses all the work */
/* Fig 5.28 from “Using OpenMP” */
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A single thread 
reads data for 
1st iteration

Creates team of 
threads

Sequential for

pipeline2.c



Functions for SPMD-style Programming

• The parallel pragma allows us to write SPMD-
style programs

• In these programs we often need to know 
number of threads and thread ID number

• OpenMP provides functions to retrieve this 
information

57

Functional Parallelism



Function omp_get_thread_num

• This function returns the thread identification 
number

• If there are t threads, the ID numbers range 
from 0 to t-1

• The master thread has ID number 0

int omp_get_thread_num (void) 
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Function omp_get_num_threads

• Function omp_get_num_threads returns the 
number of active threads

• If call this function from sequential portion of 
program, it will return 1

int omp_get_num_threads (void)
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Functional Parallelism

• To this point all of our focus has been on 
exploiting data parallelism

• OpenMP allows us to assign different threads to 
different portions of code (functional 
parallelism)
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Functional Parallelism Example

v = alpha();
w = beta();
x = gamma(v, w);
y = delta();
printf ("%6.2f\n", epsilon(x,y));

May execute alpha,
beta, and delta in
parallel
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parallel sections Pragma

• Precedes a block of k blocks of code that may be 
executed concurrently by k threads

• Syntax:

#pragma omp parallel sections
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section Pragma

• Precedes each block of code within the 
encompassing block preceded by the parallel 
sections pragma

• May be omitted for first parallel section after the 
parallel sections pragma

• Syntax:

#pragma omp section
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Example of parallel sections

#pragma omp parallel sections
{

#pragma omp section  /* Optional */
v = alpha();

#pragma omp section
w = beta();

#pragma omp section
y = delta();

}
x = gamma(v, w);
printf ("%6.2f\n", epsilon(x,y));
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sections Pragma

• Appears inside a parallel block of code
• Has same meaning as the parallel 
sections pragma

• If multiple sections pragmas inside one 
parallel block, may reduce fork/join costs
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Another Approach

Execute alpha and
beta in parallel.
Execute gamma and
delta in parallel.
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Use of sections Pragma
#pragma omp parallel

{
#pragma omp sections

{
v = alpha();

#pragma omp section
w = beta();

}
#pragma omp sections

{
x = gamma(v, w);

#pragma omp section
y = delta();

}
}
printf ("%6.2f\n", epsilon(x,y));
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Another Approach
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task Construct

69

• Binding
▫ Thread set à inner most parallel region (current 

parallel team)

#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task
b = beta();

#pragma omp task
a = alpha();

}
}

Start team of threads

Schedule tasks to 
threads

a b

Why is single used to start the parallel 
region?



task Construct
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• Variables
▫ By default variables are firstprivate. To share we 

need to say it explicitly.

int a=2, b=3, c;
#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task
b = beta();

#pragma omp task
a = alpha();

}
}
c = a + b;   // c = ?

int a=2, b=3, c;
#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task shared(b)
b = beta();

#pragma omp task shared(a)
a = alpha();

}
}
c = a + b;   // c = ?



task Construct
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• No need to create extra tasks
▫ Child tasks are executed concurrently with their 

parent

#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task
b = beta();

a = alpha();
}

}

ab



task Construct
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• taskwait
▫ Specifies a wait on the completion of child tasks 

generated since the beginning of the current task.

A

B

C
f1

f2

y = A()
v = B()
w = C()
x = f1(b, c)
e = f2(y,x)



task Construct - taskwait
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#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task shared(a)
y = A();

#pragma omp task shared(b)
v = B();

#pragma omp task shared(c)
w = C();

#pragma omp taskwait

x = f1(v,w)

e = f2(y,x)
}

}

1st version

What can be improved?

Should be a taskgroup …

but there is no such construct



task Construct - taskwait
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#pragma omp parallel
{

#pragma omp single nowait
{

#pragma omp task shared(a)
y = A();

#pragma omp task if(0) shared (b, c)
{

#pragma omp task shared(b)
v = B();

#pragma omp task shared(c)
w = C();

#pragma omp taskwait
}
x = f1(v,w)
#pragma omp taskwait
e = f2(y,x)

}
}

2nd version

Is this solution correct?
Compare to sections pragma, page 64.



task Construct - taskwait
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OpenMP Application Program Interface, page 60:
When an if clause is present on a task construct and 

the if clause expression evaluates to false, the 

encountering thread must suspend the current task 

region and begin execution of the generated task 

immediately, and the suspended task region may not be 

resumed until the generated task is completed.



task Construct - reduction
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int count_good (item_t *item)
{

int n = 0;
int pn[P]; /* P is the number of threads used. */
#pragma omp parallel
{

pn[omp_get_thread_num()] = 0;
#pragma omp single nowait
{

while (item) {
#pragma omp task firstprivate(item)
{ 

if (is_good(item)) {
pn[omp_get_thread_num()] ++;

}
}
item = item->next;

}
}
#pragma omp barrier
#pragma omp atomic
n += pn[omp_get_thread_num()];

}
return n;
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Exercise: Pipeline with tasks
#pragma omp parallel private(i)
{

/* preload data to be used in first iteration of the i-loop */
#pragma omp single

{ReadFromFile(0,...);}

for (i=0; i<N; i++) {
/* preload data for next iteration of the i-loop */
#pragma omp single nowait
{ReadFromFile(i+1...);}

#pragma omp for schedule(dynamic)
for (j=0; j<ProcessingNum; j++)

ProcessChunkOfData(); /* here is the work */
/* there is a barrier at the end of this loop */

#pragma omp single nowait
{WriteResultsToFile(i);}

} /* threads immediately move on to next iteration of i-loop */

} /* one parallel region encloses all the work */
/* Fig 5.28 from “Using OpenMP” */
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Nested parallel regions: parallel regions vs tasks
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void quick_sort (int p, int r, float *data)
{

If (p < r) {
Int q = partition (p, r, data);
#pragma omp parallel sections firstprivate(data, p, q, r)
{

#pragma omp section
quick_sort (p, q-1, data, low_limit);
#pragma omp section
quick_sort (q+1, r, data, low_limit);

}
}

}
void par_quick_sort (int n, float *data)
{

quick_sort (0, n, data);
}

Only 2 threads have
work.
What happens if we
put 4, 6 or 8?



Nested parallel regions vs tasks
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void quick_sort (int p, int r, float *data)
{

If (p < r) {
int q = partition (p, r, data);
#pragma omp task
quick_sort (p, q-1, data, low_limit);
#pragma omp task
quick_sort (q+1, r, data, low_limit);
}

}
void par_quick_sort (int n, float *data)
{

#pragma omp parallel
{

#pragma omp single nowait
quick_sort (0, n, data);

}
}

Here we have a single place
to select the number of threads



Main difference between parallel regions
and tasks
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Once a Parallel region is created:
- No threads in the team can leave the region until the end of the region
- No threads can join the parallel region



Results
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OMP_NUM_T
HREADS 

Task Nested
parallelism

2 2.6s 1.8s
4 1.7s 2.1s
8 1.2s 2.6s
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Task version:
- any thread can work on any task resulting a more efficient thread usage
- There is only one parallel region and therefore the user can control better
the number of threads used.



Summary (1/3)

• OpenMP an API for shared-memory parallel 
programming

• Shared-memory model based on fork/join 
parallelism

• Data parallelism
▫ parallel for pragma
▫ reduction clause
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Summary (2/3)

• Functional parallelism: parallel sections and 
task constructs.

• SPMD-style programming (parallel pragma)
• Critical sections (critical pragma)
• Atomic construct
• Enhancing performance of parallel for loops
▫ Inverting loops
▫ Nowait
▫ Conditionally parallelizing loops
▫ Changing loop scheduling
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Summary (3/3)

Characteristic OpenMP MPI

Suitable for multiprocessors Yes Yes

Suitable for multicomputers No Yes

Supports incremental 
parallelization

Yes No

Minimal extra code Yes No

Explicit control of memory 
hierarchy

No Yes
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