
Introduction to Parallel Computing
Jorge Barbosa
University of Porto
www.fe.up.pt/~jbarbosa

Introduction
CPU Gflop/s increased by increasing frequency Until

recently: “the more ticks you have per second, the
more work will get done”

Why not push the clock faster? Speed/power tradeoff
It's no longer worth the cost in terms of
power consumed and heat dissipated.

Underclocking a single core by 20% saves 50% of the power while
sacrificing just 13% of the performance.

Dividing the work between two cores running at an 80% clock rate,
we get 43% better performance for the same power.

Source: “Why CPU Frequency Stalled” By Philip E. Ross, IEEE Spectrum April 2008

2004 was the
turn over year!

2

CPU clock frequency

CPU power

CPU MIPS

Example of a IBM cluster node
PPC 970 (2006)

2MB L2 cache

core
1

core
2

core
1

core
2

Shared Global Memory
4 GB

2 MB L2 cache

6

4MB L2 cache

core
1

core
2

core
3

core
4

Shared Global Memory
6 GB

4MB L2 cache

Intel Core 2 Quad Q6600 Processor
(2008)

7

Available on
desktop

Computers!

• A sequential program only uses 25% of the capacity

Intel Core 2 Quad Q6600 Processor
(2008)

8

Intel Core i7 Q3, 2013

9

Intel Xeon Phi (2013)
10

60 Intel cores in a
desktop

Manycore GPUs (attached processors)

• GeForceGTX 280
▫ 240 scalar cores

� Organized in blocks of 8 scalar cores
� 16K 32-bit registers (64KB)
� usual ops: float, int, branch, …

� Shared double precision unit
� …

• TESLA
▫ Up to 2880 scalar cores

• Manycore programming
▫ CUDA -- NVIDIA only
▫ OpenCL -- integration of CPU and GPU
▫ OpenACC

11

Mobile	Computing

Quad-Core 1.4GHz

How to program multicore processors?

• Will compilers do the job?
▫ Unfortunately they won’t
▫ Even for sequential programming we need to write

code carefully if we want to get performance and
scalable programs (data size and locality).

• Main challenge
▫ To write scalable programs that:
� Keep the efficiency level as Data increases
� Keep the efficiency level as more cores are available

13

Parallel Computing technologies
• Multicore programming:
▫ OpenMP (Open Multi-Processing), OpenCL
▫ Intel TBB (Parallel Studio)

• Multi-computer programming (cluster):
▫ MPI – message passing user interface

• Multicore clusters / processors:
▫ OpenMP + MPI

• Manycore processors:
▫ CUDA, OpenCL, OpenACC

14

Main	goal	of	Parallel	Computing
15

• Scalable (resource-aware) computing

• Resources in computing:
▫ sets of (processor + memory + interconnection)
▫ understand the trend past-present-future
▫ be prepared for heterogeneity: general-purpose &

attached devices

• Performance evaluation
▫ Performance and Efficiency measures
▫ Scalability analysis

Scientific method: Classic approach

16

Problem

Observation

TheoryExperimentation

Modern Scientific method

17

Problem

Observation

TheoryExperimentationNumeric
Simulation

Scientific Computing

Ex: aerodinâmica de nave espacial

Audi A8 car-crash model contains numerous materials and
structural components modeled by 290,000 finite elements
(shown here as squares on a grid). The model predicts the

extent of deformation in the car after a crash.

18

Simulation

Theory Experiment

Limitations:
–To difficult—build large wind tunnels
–To expensive—car crash tests
–To slow—wait for climate or galactic evolution
–To dangerous—weapons, drug design, climate

experimentation

Simulation: The Third
Pillar of Science

Heterogeneous	Computing
• Evolution of computing systems:

highly parallel & heterogeneous !
▫ new computing units: gpGPU/MIC/...

HPC systems in
Top500:

#1,2,6,10 with
Intel Xeon MIC
& NVidia GPU

…
Tianhe-2:

3,120,000 cores
16,000 nodes

…
NVidia K20x:

2,880 arith
cores

Top 500

20

Parallel Computing

• Why shall we use parallel computing?

▫ Possibility of solving bigger problems and with more
realistic representation (higher accuracy/detail)
� Example: weather forecast for more days and with more

accuracy

▫ To reduce development costs

▫ To have higher freedom to “explore” alternatives.

▫ To explore modern multi-core processors and GPUs.

21

Performance
• Performance metrics
▫ MIPS

� million instructions per second
� For integer operations

� Also called “Meaningless Indicator of Performance”
▫ FLOPS

� floating-point operations per second
� For scientific applications

• Peak performance (Rpeak Top500)
▫ Related to the CPU speed

• Maximum performance (Rmax Top500)
▫ Maximum performance for a given algorithm (Linpack for Top500 list)

• Nmax - Problem size to achieve Rmax

22

Performance
• Sustained performance
▫ Computer performance depends on several factors: I/O speed,

data access pattern, memory hierarchy.

▫ The relevant performance is the one that results from the real
execution of an algorithm

▫ The sustained performance depends also on the algorithm design
� An implementation compatible with the computer architecture can

achieve the same performance (sustained) for a wider range of input
data

▫ Example: matrix multiplication algorithm

23

Parallelism and Amdahl law
• In an application there is always a part that cannot be

parallelized.
• Amdahl Law
▫ Let s be the piece of work that is sequential (1-s) will

be the piece of work that can be parallelized.
▫ P – number of processors

• Even if the parallel part is perfectly scalable, the
performance (Speedup) is limited by the sequential part.

24

Amdahl Law

The Amdahl Law imposes a limit for the Speedup
that can be obtained with P processors.

25

PT
TSpeedup 1=

s
P
sTP +

-
=

)1(

s
P
sSpeedup
+

-
= 1

1

The gain obtained with the parallel
program is defined as Speedup:

Example: if the total execution time of an algorithm is 93s and the sequential
time susceptible of parallelization is 90s, then:
(1-s) = 90/93=0.968 à 96.8% of the code can be parallelized
s = 1-0.968 = 0.032 à 3.2% of the code is inherently sequential

Amdahl Law

26

Code susceptible of parallelization:
Is the part of the code that executes with Speedup=P if it runs on P
processors.

Code inherently sequential:
Is the part of the code that cannot be parallelized, such as data input/output,
variable initialization, etc.

If P à ∞ the Speedup à 1/s.

For the last example the maximum speedup will be:
SpeedupMax = 1/0.032 = 31.25

In conclusion: whatever the most number of processors used the processing
time will not be less then 1/31.25

Example 1

• 95% of a program’s execution time occurs inside
a loop that can be executed in parallel. What is
the maximum speedup we should expect from a
parallel version of the program executing on 8
CPUs?

9.5
8/)05.01(05.0

1
@

-+
£Speedup

Example 2

• 20% of a program’s execution time is spent
within inherently sequential code. What is the
limit to the speedup achievable by a parallel
version of the program?

5
2.0
1

/)2.01(2.0
1lim ==
-+¥® pp

Amdahl Law

Several important considerations are taken from Amdahl Law:
1. It allows to have a realistic expectation, for a given algorithm,

about what we can obtain with the parallel approach.
2. It shows that to achieve higher Speedups it is necessary to reduce

or eliminate the algorithm sequential blocks.
3. It also gives a comparison metric to measure parallelizability of

several algorithm for the same problem.

29

Theorectical Speedup
according to Amdahl
Law

Amdahl Law

Observed Speedup
In fact the observed speedup when P
increases is exemplified in the figure.
This behavior is due to the fact that the
inherently sequential part s increases as
P increases.

30

The increase of the number of processors leads to an increase of communication
times, conflicts to access resources (memory, network), CPU cycles spent to
support parallelism and process synchronization.

The Speedup function increases until a given number of processors P, and
decreases after that. The number of processor that ensures the minimum
processing time will be less then the obtained by Amdahl law.

n = 100

n = 1,000

n = 10,000
Speedup

Processors

Ways of extracting parallelism

• Functional Parallelism
• Data Parallelism
• Streaming

31

Functional Parallelism

• Independent tasks execute different operations
on different data sets

Example:

32

1. a = 2
2. b = 3
3. m = (a + b) / 2
4. s = (a2 + b2) / 2
5. v = s - m2

• Instruction 1 and 2 are independent
• Instructions 3 and 4 are dependent from 1 and 2

but are independent from each other.

Functional Parallelism: data dependency
graph

33

Data input

Histogram analysis
Edge Detection

Filter X
Edge Detection

Filter Y

Modulus

Threshold

• Direct acyclic graph
• Edges: Functional

dependencies
• Vertices: tasks

Example

• Sum the elements of a vector x

34

Data Parallelism

• Independent tasks execute the same operation
over different data.

Example:

The vectors elements can be added in a independent way. The sum
operation can be applied simultaneously over the different vector
elements b and c.

35

For (i = 0; i< 99; i++)
a[i] = b[i] + c[i]

Streaming (1)
• To process streams of data
▫ Divide the process in steps
▫ The number of steps limits the Speedup.

36

KERNEL 1
(filter a)

KERNEL 2
(filter b)

KERNEL n
(…)…..Input

stream
Output
stream

Streaming (2)
• To process multiple

streams of data
▫ Examples: real time

data analysis; real
time decision
making support.

37

Parallel Programming models

• Shared Memory Model
• Distributed Memory Model

38

Shared memory model

• Each processor (or core) executes a thread
• Threads interact by shared variables

39

Shared memory model

• Fork/Join parallelism
▫ Number of fork/joins

influences performance

40

Shared memory model

• Threads
▫ Each thread has its own process state, but share global variables

defined by the master thread

41

Process

Global variables

Thread Thread

Process state
Program counter
Stack Pointer
Local Variables

Process state
Program counter
Stack Pointer
Local Variables

Shared memory model

• Parallel for Loops
▫ C programs often express data-parallel operations as
for loops
for (i = first; i < size; i += prime)

marked[i] = 1;

▫ A multithreaded program can split the for loop
to execute concurrently

42

Shared memory model

• With OpenMP
▫ Format:

#pragma omp parallel for num_threads(k)
for (i = 0; i < N; i++)

a[i] = b[i] + c[i];

▫ Implicitly k threads are created
� Each thread computes N/k elements

43

Shared memory model
• With POSIX threads

int main(){
...

for (i = 0; i < k; i++)
thread_create(mythread, i);

for (i = 0; i < k; i++)
thread_join();

}
void mythread(int id){

int it_per_thread = N/k;
int first = id * it_per_thread;

for (i=start; i<start+it_per_thread;i++)
a[i] = b[i] + c[i];

}

44

Example

• Consider the program to compute p using the
rectangle rule:

double area, pi, x;
int i, n;
...
area = 0.0;
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;

45

Performance
n = 10^8

serial

3.7s

Example 1st solution
• If we simply parallelize the loop...

double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;

46

Race Condition
• ... we set up a race condition in which one

process may “race ahead” of another and not see
its change to shared variable area

11.667area

area += 4.0/(1.0 + x*x)

Thread A Thread B

15.432

11.66711.66715.432 15.230

15.230 Answer should be 18.995

47

Race Condition Time Line

• A date race occurs when two or more threads can modify
the same memory location at the same time

48

Critical section
• Critical section: a portion of code that only a thread at

a time may execute
• We denote a critical section by putting the pragma

#pragma omp critical

in front of a block of C code

49

Example 2nd solution

50

double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
#pragma omp critical

area += 4.0/(1.0 + x*x);
}
pi = area / n;

Why not to put AREA as private?

Performance

serial

3.7s

t=1

13.1s

t=2

13.7s

Example 3rd solution

51

double area[2], pi, x;
int i, n;
...
for (i=0; i<2; i++) area[i]=0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
area[omp_get_thread_num()]+= 4.0/(1.0 + x*x);

}
pi = 0;
for (i=0; i<2; i++)

pi += area[i];
pi /= n;

Performance

serial

3.7s

t=1 t=2

5.4s4.1s

False sharing

52

• False Sharing: occurs when 2 or more threads access different
data on the same cache line (read/write).

• Example: Access close positions of a global vector

Memory

Cache

P P

Cache

area[0] area[1]

• The effort required to maintain consistency degrades performance

Example 4th solution
• Reduction Clause

53

double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for \

private(x) reduction(+:area)
for (i = 0; i < n; i++) {

x = (i + 0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;

Performance

serial

3.7s

t=1 t=2

1.8s3.7s

Distributed Memory Model

Task/channel model ó Developed for a Distributed Memory Computer

Abstraction to develop parallel algorithms.

54

task
channel

Distributed Memory Model

Parallel Program = a set of tasks executing concurrently.
• Task
▫ Sequential Program (von Neumann model)
▫ Local memory
▫ A set of I/O ports

• Tasks interact by sending messages through the
communication channels.

55

Distributed Memory Model

Methodology to develop parallel programs:

• Problem partitioning

• Communication Patterns

• Agglomeration

• Mapping

This methodology addresses first the problem characteristics, such as data
dependencies, and postpones the analysis related with the parallel machine.

56

Parallel Programming
57

Problem
Partitioning

Communication

AgglomerationMapping

Lab work
• Download the pi_openmp.zip file
• Compare sequential and parallel execution
• Register the maximum precision obtained
• Propose and implement a solution able to improve

precision.

58

Classification of the operations

• Sequential operations
▫ Operations that require some effort to be

parallelized. The computation of the current
element uses a previously computed element.

• Parallel operations
▫ Operations that are embarrassingly parallel

59

LU Decomposition – sequential operation

Matrix multiplication – parallel operation

Image from wikipedia

Parallel version: block oriented

Edge detection: convolution operator

62

Parallel or sequential operation?

