Introduction to Parallel Computing

Jorge Barbosa University of Porto www.fe.up.pt/~jbarbosa

Introduction

Until
recently:CPU Gflop/s increased by increasing frequency
"the more ticks you have per second, the
more work will get done"

Why not push the clock faster?

Speed/power tradeoff

It's no longer worth the cost in terms of power consumed and heat dissipated.

Underclocking a single core by **20%** saves **50% of the power** while sacrificing just **13%** of the performance.

Dividing the work between **two cores** running at an **80%** clock rate, we get **43% better** performance for the **same power**.

2004 was the turn over year!

Source: "Why CPU Frequency Stalled" By Philip E. Ross, IEEE Spectrum April 2008

CPU clock frequency

CPU power

CPU MIPS

Example of a IBM cluster node PPC 970 (2006)

Intel Core 2 Quad Q6600 Processor (2008)

Available on desktop Computers!

Intel Core 2 Quad Q6600 Processor (2008)

• A sequential program only uses 25% of the capacity

Intel Core i7 Q3, 2013

inside" CORE "i7	Brand Name & Processor Number ¹	Base Clock Speed (GHz)	Turbo Frequency ² (GHz)	Cores/ Threads	Cache	Memory Support	TDP	Socket (LGA)	Pricing (1k USD)
	^{NEW} Intel® Core™ i7 4960X Unlocked	3.6	Up to 4.0	6/12	15 MB	4 channels DDR3 1866	130W	2011	\$990
	NEW Intel® Core™ i7 4930K Unlocked	3.4	Up to 3.9	6/12	12 MB	4 channels DDR3 1866	130W	2011	\$555
	NEW Intel® Core™ i7 4820K Unlocked	3.7	Up to 3.9	4/8	10 MB	4 channels DDR3 1866	130W	2011	\$310
	Intel [®] Core™ i7-4770K Unlocked	3.5	Up to 3.9	4/8	8 MB	2 channels DDR3 1600	95W	1150	\$317

9

Intel Xeon Phi (2013)

Cintel Anside Xeon Phi

60 Intel cores in a desktop

Intel[®] Xeon Phi[™] coprocessor 5110P: Ideal for high density environments

- Highly parallel applications using over 100 threads
- Memory bandwidth-bound applications
- Applications with extensive vector use

Buy the Intel[®] Xeon Phi[™] coprocessor 5110P today >

xeon-phi-serverblade-feature-320x160.jpgKey specifications:

- 60 cores/1.053 GHz/240 threads
- 8 GB memory and 320 GB/s bandwidth
- Standard PCle* x16 form factor, passively cooled
- Linux* operating system, IP addressable
- 512-bit single instruction, multiple data instructions
- Supported by the latest Intel[®] software development products
- Built using Intel's 22nm process technology—Intel's most energy efficient process yet—featuring the world's first 3-D tri-gate transistors.

Manycore GPUs (attached processors)

- GeForceGTX 280
 - 240 scalar cores
 - Organized in blocks of 8 scalar cores
 - 16K 32-bit registers (64KB)
 - usual ops: float, int, branch, ...
 - Shared double precision unit
 - •
- TESLA
 - Up to 2880 scalar cores
- Manycore programming
 - CUDA -- NVIDIA only
 - OpenCL -- integration of CPU and GPU

Brunow TESLA

• **OpenACC**

Mobile Computing

iPhone 5

How to program multicore processors?

• Will compilers do the job?

- Unfortunately they won't
- Even for sequential programming we need to write code carefully if we want to get performance and scalable programs (data size and locality).

• Main challenge

- To write **scalable** programs that:
 - Keep the **efficiency** level as **Data** increases
 - Keep the **efficiency** level as **more** cores are available

Parallel Computing technologies

Multicore programming:

OpenMP (Open Multi-Processing), **OpenCL Intel TBB (Parallel Studio)**

Multi-computer programming (cluster): MPI – message passing user interface

Multicore clusters / processors: OpenMP + MPI

Manycore processors: CUDA, OpenCL, OpenACC

Main goal of Parallel Computing

- Scalable (resource-aware) computing
- Resources in computing:
 - sets of (processor + memory + interconnection)
 - understand the trend past-present-future
 - be prepared for heterogeneity: general-purpose & attached devices
- Performance evaluation
 - Performance and Efficiency measures
 - Scalability analysis

Scientific method: Classic approach

Scientific Computing

Simulation: The Third Pillar of Science

Limitations:

- -To difficult—build large wind tunnels
- -To expensive—car crash tests
- -To slow—wait for climate or galactic evolution
- -To dangerous—weapons, drug design, climate experimentation

Audi A8 car-crash model contains numerous materials and structural components modeled by 290,000 finite elements (shown here as squares on a grid). The model predicts the extent of deformation in the car after a crash.

Heterogeneous Computing

- Evolution of computing systems: highly parallel & heterogeneous
 - new computing units: gpGPU/MIC/...

HPC systems in Top500: #1,2,6,10 with Intel Xeon MIC & NVidia GPU

Tianhe-2: 3,120,000 cores 16,000 nodes

> NVidia K20x: 2,880 arith cores

Top 500

K Computer: RIKEN Advanced Institute for Computational Science No.1 from Jun 2011 until Nov 2011

Tianhe-1A: National Supercomputing Center in Tianjin No.1 in Nov 2010

Jaguar: Oak ridge National Laboratory No.1 from Nov 2009 until Jun 2010

Parallel Computing

- Why shall we use parallel computing?
 - Possibility of solving bigger problems and with more realistic representation (higher accuracy/detail)
 - Example: weather forecast for more days and with more accuracy
 - To reduce development costs
 - To have higher freedom to "explore" alternatives.
 - To explore modern multi-core processors and GPUs.

Performance

- Performance metrics
 - MIPS
 - million instructions per second
 - For integer operations
 - Also called "Meaningless Indicator of Performance"
 - FLOPS
 - **fl**oating-point **op**erations per **s**econd
 - For scientific applications
- Peak performance (*Rpeak Top500*)
 - Related to the CPU speed
- Maximum performance (*Rmax Top500*)
 - Maximum performance for a given algorithm (Linpack for *Top500* list)
- *Nmax* Problem size to achieve *Rmax*

Performance

- Sustained performance
 - *Computer performance* depends on several factors: I/O speed, data access pattern, memory hierarchy.
 - The relevant performance is the one that results from the real execution of an algorithm
 - The sustained performance depends also on the algorithm design
 - An implementation compatible with the computer architecture can achieve the same performance (sustained) for a wider range of input data
 - **Example**: matrix multiplication algorithm

Parallelism and Amdahl law

- In an application there is always a part that cannot be parallelized.
- Amdahl Law
 - Let *s* be the piece of work that is sequential *(1-s)* will be the piece of work that can be parallelized.
 - □ *P* − number of processors
- Even if the parallel part is perfectly scalable, the performance (Speedup) is limited by the sequential part.

Amdahl Law

The gain obtained with the parallel program is defined as *Speedup*:

$$Speedup = \frac{T_1}{T_P}$$

1

The Amdahl Law imposes a limit for the *Speedup* that can be obtained with **P** processors.

Example: if the total execution time of an algorithm is 93s and the sequential time susceptible of parallelization is 90s, then:

 $(1-s) = 90/93 = 0.968 \rightarrow 96.8\%$ of the code can be parallelized s = 1-0.968 = 0.032 $\rightarrow 3.2\%$ of the code is inherently sequential 25

Amdahl Law

Code susceptible of parallelization:

Is the part of the code that executes with Speedup=P if it runs on P processors.

Code inherently sequential:

Is the part of the code that cannot be parallelized, such as data input/output, variable initialization, etc.

If $P \rightarrow \infty$ the Speedup $\rightarrow 1/s$.

For the last example the maximum speedup will be: Speedup_{Max} = 1/0.032 = 31.25

In conclusion: whatever the most number of processors used the processing time will not be less then 1/31.25

Example 1

 95% of a program's execution time occurs inside a loop that can be executed in parallel. What is the maximum speedup we should expect from a parallel version of the program executing on 8 CPUs?

$$Speedup \le \frac{1}{0.05 + (1 - 0.05)/8} \cong 5.9$$

Example 2

• 20% of a program's execution time is spent within inherently sequential code. What is the limit to the speedup achievable by a parallel version of the program?

$$\lim_{p \to \infty} \frac{1}{0.2 + (1 - 0.2)/p} = \frac{1}{0.2} = 5$$

Amdahl Law

Theorectical Speedup according to Amdahl Law

Several important considerations are taken from Amdahl Law:

- 1. It allows to have a realistic expectation, for a given algorithm, about what we can obtain with the parallel approach.
- 2. It shows that to achieve higher Speedups it is necessary to reduce or eliminate the algorithm sequential blocks.
- 3. It also gives a comparison metric to measure parallelizability of several algorithm for the same problem.

Amdahl Law

Observed Speedup

In fact the observed speedup when *P* increases is exemplified in the figure. This behavior is due to the fact that the inherently sequential part *s* increases as *P* increases.

The increase of the number of processors leads to an increase of communication times, conflicts to access resources (memory, network), CPU cycles spent to support parallelism and process synchronization.

The *Speedup* function increases until a given number of processors *P*, and decreases after that. The number of processor that ensures the minimum processing time will be less then the obtained by Amdahl law.

Ways of extracting parallelism

- Functional Parallelism
- Data Parallelism
- Streaming

Functional Parallelism

• Independent tasks execute different operations on different data sets

Example:

1.
$$a = 2$$

2. $b = 3$
3. $m = (a + b) / 2$
4. $s = (a^2 + b^2) / 2$
5. $v = s - m^2$

- Instruction 1 and 2 are independent
- Instructions 3 and 4 are dependent from 1 and 2 but are independent from each other.

Functional Parallelism: data dependency graph

Example

• Sum the elements of a vector *x*

Data Parallelism

• Independent tasks execute the same operation over different data.

Example:

For (i = 0; i< 99; i++) a[i] = b[i] + c[i]

The vectors elements can be added in a independent way. The sum operation can be applied simultaneously over the different vector elements \boldsymbol{b} and \boldsymbol{c} .

Streaming (1)

- To process streams of data
 - Divide the process in steps
 - The number of steps limits the Speedup.

$$\begin{array}{c|c} Input \\ stream \end{array} \xrightarrow{\begin{subarray}{c} KERNEL 1 \\ (filter a) \end{array}} \xrightarrow{\begin{subarray}{c} KERNEL 2 \\ (filter b) \end{array} \xrightarrow{\begin{subarray}{c} KERNEL 2 \\ (filter b) \end{array}} \xrightarrow{\begin{subarray}{c} KERNEL n \\ (...) \end{array} \xrightarrow{\begin{subarray}{c} KERNEL n \\ (...) \end{array}} \xrightarrow{\begin{subarray}{c} Output \\ stream \end{array}} \xrightarrow{\begin{subarray}{c} KERNEL n \\ (...) \end{array} \xrightarrow{\begin{subarray}{c} KERNEL n \\ (...) \end{array}} \xrightarrow{\begin{subarray}{c} Cutput \\ stream \end{array}}$$

Streaming (2)

- To process multiple streams of data
 - Examples: real time data analysis; real time decision making support.

The diagram shows the business user (top left corner), and how the user's analysis request is converted into a stream processing application, deployed into the compute environment as a distributed stream processing job. It also shows how the analysis results are returned, rendered as a dynamic mashup and presented to the business user. (Credit: IBM)

Parallel Programming models

- Shared Memory Model
- Distributed Memory Model

- Each processor (or core) executes a thread
- Threads interact by shared variables

39

 Fork/Join parallelism
 Number of fork/joins influences performance

- Threads
 - Each thread has its own process state, but share global variables defined by the master thread

- Parallel for Loops
 - C programs often express data-parallel operations as for loops

for (i = first; i < size; i += prime)
 marked[i] = 1;</pre>

 A multithreaded program can split the for loop to execute concurrently

- With OpenMP
 - Format:

#pragma omp parallel for num_threads(k)
for (i = 0; i < N; i++)
 a[i] = b[i] + c[i];</pre>

- Implicitly k threads are created
 - Each thread computes N/k elements

```
• With POSIX threads
```

. . .

```
int main() {
```

```
for (i = 0; i < k; i++)
   thread_create(mythread, i);</pre>
```

```
for (i = 0; i < k; i++)
    thread_join();</pre>
```

```
void mythread(int id) {
```

```
int it_per_thread = N/k;
int first = id * it per thread;
```

```
for (i=start; i<start+it_per_thread;i++)
a[i] = b[i] + c[i];</pre>
```

```
}
```

Example

• Consider the program to compute π using the rectangle rule:

```
double area, pi, x;
int i, n;
...
area = 0.0;
for (i = 0; i < n; i++) {
    x = (i+0.5)/n;
    area += 4.0/(1.0 + x*x)
}
pi = area / n;
```


45

Example 1st solution

• If we simply parallelize the loop...

```
double area, pi, x;
int i, n;
. . .
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {
   x = (i+0.5)/n;
   area += 4.0/(1.0 + x*x);
}
pi = area / n;
```

Race Condition

 ... we set up a race condition in which one process may "race ahead" of another and not see its change to shared variable **area**

Race Condition Time Line

• A date race occurs when two or more threads can modify the same memory location at the same time

Critical section

- Critical section: a portion of code that only a thread at a time may execute
- We denote a critical section by putting the pragma

#pragma omp critical

in front of a block of C code

Example 2nd solution

```
double area, pi, x;
int i, n;
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {
   x = (i+0.5)/n;
#pragma omp critical
   area += 4.0/(1.0 + x*x);
pi = area / n;
```

Why not to put AREA as private?

Example 3rd solution

```
double area[2], pi, x;
int i, n;
. . .
for (i=0; i<2; i++) area[i]=0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {
   x = (i+0.5)/n;
   area[omp_get thread num()]+= 4.0/(1.0 + x*x);
}
pi = 0;
                                Performance
for (i=0; i<2; i++)
                                             5.4s
     pi += area[i];
                                      4.1s
                                3.7s
pi /= n;
```

serial

t=1

t=2

51

False sharing

- False Sharing: occurs when 2 or more threads access different data on the same cache line (read/write).
- Example: Access close positions of a global vector

• The effort required to maintain consistency degrades performance

Example 4th solution

Reduction Clause

```
double area, pi, x;
int i, n;
. . .
area = 0.0;
#pragma omp parallel for \
       private(x) reduction(+:area)
for (i = 0; i < n; i++) {
   x = (i + 0.5)/n;
   area += 4.0/(1.0 + x*x) Performance
}
pi = area / n;
                                    3.7s
                              3.7s
                                           1.8s
```

serial

t=1

53

Distributed Memory Model

Task/channel model \Leftrightarrow Developed for a Distributed Memory Computer Abstraction to develop parallel algorithms.

Distributed Memory Model

Parallel Program = a set of tasks executing concurrently.

- Task
 - Sequential Program (von Neumann model)
 - Local memory
 - A set of I/O ports
- Tasks interact by sending messages through the communication channels.

Distributed Memory Model

Methodology to develop parallel programs:

- Problem partitioning
- Communication Patterns
- Agglomeration
- Mapping

This methodology addresses first the problem characteristics, such as data dependencies, and postpones the analysis related with the parallel machine.

Parallel Programming

57

Lab work

- Download the pi_openmp.zip file
- Compare sequential and parallel execution
- Register the maximum precision obtained
- Propose and implement a solution able to improve precision.

Classification of the operations

- Sequential operations
 - Operations that require some effort to be parallelized. The computation of the current element uses a previously computed element.
- Parallel operations
 - Operations that are embarrassingly parallel

LU Decomposition – sequential operation

A' = A(i+1:n-1,i+1:n-1) = A(i+1:n-1,i+1:n-1) $-A(i+1:n-1,i) \times A(i,i+1:n-1)$

Matrix multiplication – parallel operation

Parallel version: block oriented

Edge detection: convolution operator

Parallel or sequential operation?

62