
Parallel Computing
Jorge Barbosa
University of Porto
www.fe.up.pt/~jbarbosa

Introduction
CPU Gflop/s increased by increasing frequency Before:

“the more ticks you have per second, the more
work will get done”

Why not push the clock faster? Speed/power tradeoff
It's no longer worth the cost in terms of power
consumed and heat dissipated.

Underclocking a single core by 20% saves 50% of the power while sacrificing
just 13% of the performance.

Dividing the work between two cores running at an 80% clock rate, we get
43% more performance for the same power.

Source: “Why CPU Frequency Stalled” By Philip E. Ross, IEEE Spectrum April 2008

2

Heterogeneous	Computing
• Evolution of computing systems:

highly parallel & heterogeneous !
▫ new computing units: gpGPU/MIC/...

HPC systems in
Top500:

#1,2,6,10 with
Intel Xeon MIC
& NVidia GPU

…
Tianhe-2:

3,120,000 cores
16,000 nodes

…
NVidia K20x:

2,880 arith cores

Intel Xeon Phi (2013)
4

60 Intel cores in a
desktop

Manycore GPUs (attached processors)

• GeForceGTX 280
▫ 240 scalar cores

� Organized in blocks of 8 scalar cores
� 16K 32-bit registers (64KB)
� usual ops: float, int, branch, …

� Shared double precision unit
� …

• TESLA
▫ Up to 2880 scalar cores

• Manycore programming
▫ CUDA -- NVIDIA only
▫ OpenCL -- integration of CPU and GPU
▫ OpenACC

5

Mobile	Computing

Quad-Core 1.4GHz

Programming multicore processors

• Will compilers do the job?
▫ Probably they won’t
▫ Even for sequential programming we need to do explicitly memory

management to get performance and scalable programs (data size
and data locality).

7

for (i=1; i<n; i++)
for (j=1; j<n; j++)

for (k=1; k<n; k++)
c[i,j]+= a[i,k]*b[k,j]

for (i=1; i<n; i++)
for (k=1; k<n; k++)

for (j=1; j<n; j++)
c[i,j]+= a[i,k]*b[k,j]

a,b,c are matrices nxn

Equivalent programs in terms of results
Substantially different performance

Programming multicore processors

• APIs for Multicore programming:
▫ OpenMP (Open Multi-Processing)
▫ Intel Parallel Studio (TBB - Threading Building Blocks)
▫ OpenCL, OpenACC
▫ MPI

• Main challenge
▫ To write scalable programs that:

� Keep efficiency level as Data increases
� Keep efficiency level as more Cores are available

8

Main	goal	of	PCOM
9

• Scalable (resource-aware) computing

• Resources in computing
▫ sets of (processor + memory + interconnection)
▫ understand the trend past-present-future
▫ be prepared for heterogeneity: general-purpose &

attached devices

• Performance evaluation
▫ Performance and Efficiency measures
▫ Scalability analysis

Course Contents

• Introduction to Parallel Computing
• Cache memory effect on processor performance
• Shared Memory model
• Distributed Memory model
• Data Parallel model
• Parallel machines
• Computational Models
• Performance measures and Scalability analysis

10

Course Evaluation

● Course work:
– Two assignments (60%)

● Written test (40%)

11

