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Abstract

Energy consumption is nowadays one of the most important concerns worldwide. While

hardware is generally seen as the main culprit for a computer’s energy usage, software

too has a tremendous impact on the energy spent, as it can cancel the efficiency introdu-

ced by the hardware. Green Computing is not a new field of study, but the focus has been,

until recently, on hardware. While there has been advancements in Green Software tech-

niques, there is still not enough support for software developers so they can make their

code more energy-aware, with various studies arguing there is both a lack of knowledge

and lack of tools for energy-aware development.

This thesis intends to tackle these two problems and aims at further pushing

forward research on Green Software. This software energy consumption issue is faced

as a software engineering question. By using systematic, disciplined, and quantifiable

approaches to the development, operation, and maintenance of software we defined se-

veral techniques, methodologies, and tools within this document. These focus on provi-

ding software developers more knowledge and tools to help with energy-aware software

development, or Energyware Engineering.

Insights are provided on the energy influence of several stages performed during

a software’s development process. We look at the energy efficiency of various popular

programming languages, understanding which are the most appropriate if a develo-

per’s concern is energy consumption. A detailed study on the energy profiles of different

Java data structures is also presented, along with a technique and tool, further providing

more knowledge on what energy efficient alternatives a developer has to choose from. To

help developers with the lack of tools, we defined and implemented a technique to detect

energy inefficient fragments within the source code of a software system. This technique

and tool has been shown to help developers improve the energy efficiency of their pro-

grams, and even outperforming a runtime profiler.
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Finally, answers are provided to common questions and misconceptions within

this field of research, such as the relationship between time and energy, and how one can

improve their software’s energy consumption.

This thesis provides a great effort to help support both research and education on

this topic, helps continue to grow green software out of its infancy, and contributes to

solving the lack of knowledge and tools which exist for Energyware Engineering.
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Resumo

Hoje em dia o consumo energético é uma das maiores preocupações a nível global. Ape-

sar do hardware ser, de uma forma geral, o principal culpado para o consumo de energia

num computador, o software tem também um impacto significativo na energia con-

sumida, pois pode anular, em parte, a eficiência introduzida pelo hardware. Embora

Green Computing não seja uma área de investigação nova, o foco tem sido, até recen-

temente, na componente de hardware. Embora as técnicas de Green Software tenham

vindo a evoluir, não há ainda suporte suficiente para que os programadores possam

produzir código com consciencialização energética. De facto existem vários estudos que

defendem que existe tanto uma falta de conhecimento como uma escassez de ferramen-

tas para o desenvolvimento energeticamente consciente.

Esta tese pretende abordar estes dois problemas e tem como foco promover avan-

ços em green software. O tópico do consumo de energia é abordado duma perspectiva

de engenharia de software. Através do uso de abordagens sistemáticas, disciplinadas

e quantificáveis no processo de desenvolvimento, operação e manutencão de software,

foi possível a definição de novas metodologias e ferramentas, apresentadas neste do-

cumento. Estas ferramentas e metodologias têm como foco dotar de conhecimento e

ferramentas os programadores de software, de modo a suportar um desenvolvimento

energeticamente consciente, ou Energyware Engineering.

Deste trabalho resulta a compreensão sobre a influência energética a ser usada

durante as diferentes fases do processo de desenvolvimento de software. Observamos as

linguagens de programação mais populares sobre um ponto de vista de eficiência ener-

gética, percebendo quais as mais apropriadas caso o programador tenha uma preocu-

pação com o consumo energético.
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Apresentamos também um estudo detalhado sobre perfis energéticos de diferen-

tes estruturas de dados em Java, acompanhado por técnicas e ferramentas, fornecendo

conhecimento relativo a quais as alternativas energeticamente eficientes que os progra-

madores dispõem. Por forma a ajudar os programadores, definimos e implementamos

uma técnica para detetar fragmentos energicamente ineficientes dentro do código fonte

de um sistema de software. Esta técnica e ferramenta têm demonstrado ajudar progra-

madores a melhorarem a eficiência energética dos seus programas e em algum casos

superando um runtime profiler.

Por fim, são dadas respostas a questões e conceções erradamente formuladas den-

tro desta área de investigação, tais como o relacionamento entre tempo e energia e como

é possível melhorar o consumo de energia do software.

Foi empregue nesta tese um esforço árduo de suporte tanto na investigação como

na educação relativo a este tópico, ajudando à maturação e crescimento de green com-

puting, contribuindo para a resolução da lacuna de conhecimento e ferramentas para

suporte a Energyware Engineering.
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Chapter 1

Introduction

This chapter briefly introduces the concept and research area of this thesis known as

Green Computing. We look at how the energy consumption problem is a major con-

cern for our environment, with a specific emphasis on the negative contributions from

information technology (IT).

It follows with a look on the specific motivation behind our research, a sub-area

known as Green Software, where we aim to tackle the energy consumption problem in

IT through a software-based approach. By focusing on reducing energy consumption

through software analysis and optimization, one can heavily increase IT energy effi-

ciency. Additionally, we see how the lack of knowledge and tools for energy efficient

software development are also an issue.

Finally, this thesis’s research questions are presented along with an explanation of

their reasoning and importance, a list of all the contributions which originated during

this thesis’s development, and this document’s structure.

1
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1.1 Green Computing

Ever since the industrial revolution, society has built its intensive development pace on top

of the widespread use of energy resources. The problem is that the growing energy demands

have significant side-effects such as global warming, but even more importantly that it is

simply not able to match such demands on the production side.

For the last couple of years, the world has begun to express heavy concern over the im-

pact it has done to the environment with activities such as oil-drilling, CO2 emissions, and

energy consumption. Yet, even though environmentalism and computer sciences are usu-

ally mentioned separately, the world has come to realize the annually increasing impact that

information technology has on the environment with its emissions of greenhouse gases and

electrical costs, something we cannot ignore. This has raised awareness in multiple con-

texts (Tiwari et al., 1994; Yuan and Nahrstedt, 2003), that recently include the community

acknowledgment of the need for sustainable software development (Becker et al., 2014).

This can be attributed to the exponential growth we are witnessing in the Information

and Communications Technology (ICT) sector. Almost everyone has access to a computer,

and the Internet is virtually accessible everywhere. While undoubtedly a milestone in our era,

all of this occurs at the expense of high energy costs needed to supply servers, data centers,

and any use of computers (Guelzim and Obaidat, 2013; Gelenbe and Caseau, 2015). This cost

continues to increase as the demand for more cloud services rises and the traditional tech-

nologies are migrating from local servers to remote servers (Ricciardi et al., 2013; Mouftah

and Kantarci, 2013).

Koomey has reported that electrical energy consumption by IT was estimated to be be-

tween 1.1% and 1.5% of the world’s emissions, nearly 1 gigaton of emissions a year (Koomey,

2011), and with the increasing demand for computation and data storage, emissions will in-

crease to 1.54 gigatons, or 3% of global emissions by 2020.

IT businesses have also come to realize this impact, along with another major concern:

energy costs. There are studies suggesting that in average, close to 50% of the energy costs of

an organization can be attributed to the IT departments (Harmon and Auseklis, 2009).
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Step-by-step, some businesses have begun to promote Green initiatives, in hopes of re-

ducing the emissions and energy costs. For example, looking at the data center sector, Syman-

tec Corporation1, a software manufacturing company with massive data-centers around the

globe, decided to reduce CO2 emissions by 15% by 2012 (Symantec, 2008). To accomplish

this goal, Symantec decided to look at the Sunnyvale Data Center, and after finding out 60%

of end user’s computers were left powered on overnight, they decided to place users’ comput-

ers in stand-by mode after four hours of inactivity (Thompson, 2008). These two steps helped

reduce approximately $2 million and over 6 million kilowatts of energy.

But sometimes, businesses cannot just physically reduce consumption as Symantec did,

so now there are two options to turn to: physical IT components (hardware) and code (soft-

ware). Much research has been done with hardware and other IT components in regards of

reducing energy, such as new hardware level designs and energy efficient architecture (Su

et al., 1994; Douglis et al., 1995; Kravets and Krishnan, 1998; Delaluz et al., 2001; Iyer and

Marculescu, 2001; Chandrakasan et al., 1992; David et al., 2010), system level designs (Ribic

and Liu, 2014; Bartenstein and Liu, 2014), optimizing operating system’s energy usage (Flaut-

ner et al., 2001; Pettis et al., 2006; Pering et al., 2000), or even data center layouts for efficient

cooling. For example, Google uses a customized evaporative cooling to reduce its data cen-

ters’ energy consumption (Hooper, 2008), and Shukla (2012) proposes some hardware design

techniques for power reduction, and shows how using OLEDs instead of other light sources

also significantly reduces power reduction in data centers. Kerstens and DuChene (2008) pre-

sented a way to use Ganglia Moab to save power in data centers by detecting hotspots in clus-

ters and spreading out the workload to unused nodes, or even shutting them down if they are

not needed at certain times.

Yet while great advances have been made to decrease energy consumption and emis-

sions of hardware, these Green IT initiatives stem from reducing energy loss in the power

supply chain (Brown et al., 2008). And even so, energy consumption keeps rising steeply,

which shows that the rising demand is exceeding efficiency improvement, and the window

for optimization is closing.

1https://www.symantec.com/

https://www.symantec.com/
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Additionally, energyefficiency in the hardware level is canceled out by poorly optimized

software, where "energy used by ICT hardware can be attributed to software" (Standard,

2017). This is not shocking, since software development has always focused on response

efficiency/functionality, rather than the minimization of power consumption (Wirth, 1995),

making software design/construction energy-unaware.

Such as how goals of optimizing performance or memory usage cannot be achieved by

purely looking at low-level systems and hardware, optimizing energy consumption cannot

take the same route. Thus, there is a great need to turn to software code, and apply prac-

tices of using our computational resources in a more efficient manner, while maintaining or

increasing their overall performance. In other words, we need to look into green software

practices.

1.2 Motivation - Green Software

This section details the motivation for working on Green Software, including the work pre-

sented in this thesis.

The Green Software field focuses on reducing energy consumption through software anal-

ysis and optimization. It is known that "even small inefficiencies in apps add up across the

system, significantly affecting battery life" (Pinto and Castor, 2017). While still in its early

years, Green Software research has grown significantly. There are countless works showing

how having knowledge on software energy efficiencies and inefficiencies can make a signif-

icant impact on the energy consumption. Studies have shown how different programming

languages (Couto et al., 2017b; Oliveira et al., 2017; Pereira et al., 2017b; Georgiou et al., 2018),

design patterns (Sahin et al., 2012; Bunse and Stiemer, 2013), sorting algorithms (Bunse et al.,

2009b,a), multicore smartphones (Li and Mishra, 2016), software testing (Li et al., 2014; Jab-

barvand et al., 2016), Android API and advertisements (Linares-Vásquez et al., 2014; Jabbar-

vand et al., 2015; Rasmussen et al., 2014; Cruz and Abreu, 2017; Couto et al., 2015), software

version changes (Hindle, 2015), code obfuscations (Sahin et al., 2016), machine-learning al-

gorithms (McIntosh et al., 2018), refactorings and transformations (Brandolese et al., 2002;
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Sahin et al., 2014; Park et al., 2014), and different Java based collections (Pereira et al., 2016;

Manotas et al., 2014; Pinto et al., 2016; Hasan et al., 2016) have a statistically significant im-

pact on energy usage.

Various energy consumption measurement and estimation software tools exist (Grech

et al., 2015; Stulova et al., 2016; Li et al., 2013; Liqat et al., 2013; Noureddine et al., 2015; Hao

et al., 2013; Pathak et al., 2012; Hoque et al., 2015; Chowdhury and Hindle, 2016). Unfor-

tunately, most do not provide guidance or insights on understanding what they can do to

reduce energy consumption, and most programmers don’t even know these exist or how they

can use them (Pang et al., 2016).

As researchers, we continuously face these problems of how to analyze, interpret, and

optimize energy consumption. However, these problems also extend to programmers. In

fact, studies (Manotas et al., 2014, 2016; Pang et al., 2016; Pinto et al., 2014a) have shown that

programmers are very concerned with the energy consumption power of their applications,

many times seeking help. In fact, there are many misconceptions within the programming

community as to what causes high energy consumption, how to solve these issues, and have

expressed a heavy lack of support and knowledge for energy-aware development.

Pinto and Castor (2017) and Manotas et al. (2016) argue that there are two main problems

in regards to energy efficient software development: the lack of knowledge and the lack of

tools. These two problems are what motivates this thesis. Additionally, they also discuss

twelve different paths for future research in green software, organized according to the Soft-

ware Engineering Body of Knowledge structure (SWEBOK) (Bourque et al., 1999). Of these

listed paths, the work produced during this thesis also touches on:

• Software Tools & Methods: Static Analysis Tools

• Software Maintenance: Refactoring

• Software Design & Construction

• Software Design & Construction: Data structures

• Software Quality & Testing: Software Debugging



6 CHAPTER 1. INTRODUCTION

1.3 Research Questions

Since the beginning of this thesis, research in green-computing, green-software, and energy

efficient software systems has been both in its infancy and yet, also growing rapidly.

We wish to provide developers knowledge on what practices can improve or harm the

energy efficiency of their programs. The main strategy is to approach the software energy

consumption problem as a software engineering problem. The solution comes by using sys-

tematic, disciplined, and quantifiable approaches to the development, operation, and main-

tenance of software, supplemented with a focus on energy consumption. We define this soft-

ware engineering discipline as Energyware Engineering.

While many questions have collaterally and spontaneously arisen during this work, the

following Thesis Research Questions (TRQ) have been the main focus:

• TRQ1: What influence do different programming languages have on energy consump-

tion? Properly understanding the differences in energy consumption between differ-

ent programming languages will allow both researchers and programmers the means

to compare the energy efficiency of popular languages. In turn, this will allow energy-

aware decision making during the initial steps of developing software: choosing a lan-

guage.

• TRQ2: Can fault localization techniques be adapted to detect energy hotspots in source

code? Fault localization is traditionally used to statically identify program faults or bugs

within a program’s source code. By drawing a parallel between fault detection and en-

ergy hotspot detection, a programmer would be able to statically locate what sections

within their program are causing energy inefficiency. Having such a technique and

tool available would both help developers in Energyware Engineering, and also further

close the absence of tools aimed at energy-aware programming.

• TRQ3: What influence do different Java data structures and their methods have on en-

ergy consumption? As in TRQ1, fully understanding the energy impact coming from

different data structures, or Collections in this case, will allow one to be more en-
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ergy conscientious during the development of a program. If we were able to know

which Collections are energy-greedy, alternatives can be easily suggested. Additionally,

if looking down one level at the Collection’s methods, we can have an even deeper un-

derstanding of what scenarios (methods) contribute more or less to energy consump-

tion, and offer more fine-tuned suggestions.

1.4 Contributions

The main scientific contributions of this thesis are divided in three principle topics:

Programming Language Energy Efficiency A study on the energy efficiency of 27 popular

programming languages, across 10 different set of problems. This study focuses on the lack of

knowledge, and helps developers choose a programming language if energy consumption is

a concern. Additionally, performance and memory usage are also analyzed, and the relation-

ship between these three (energy, performance, and memory) categories are also compared.

This work, described in Chapter 3, was also published in:

• Towards a Green Ranking for Programming Languages (Best Paper) – Marco Couto,

Rui Pereira, Francisco Ribeiro, Rui Rua, João Saraiva. In Brazilian Symposium on Pro-

gramming Languages, 2017. (Couto et al., 2017b)

• Energy Efficiency across Programming Languages (Submitted)– Rui Pereira, Marco

Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes, João Saraiva.

In International Conference on Software Language Engineering, 2017. (Pereira et al.,

2017b)

• Ranking Programming Languages by Energy Efficiency – Rui Pereira, Marco Couto,

Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes, João Saraiva. Sub-

mitted to Journal of Science of Computer Programming, 2018.
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Additionally, a public repository containing the complete set of tools and programs used

is available at:

• https://github.com/greensoftwarelab/Energy-Languages

Spectrum-based Energy Leak Localization The development of a language and context in-

dependent technique, based on using Spectrum-based Fault Localization, to point to energy

inefficient blocks, or what we call energy leaks, within source-code. The result is an energy

ranking of energy inefficient source code fragments. This technique has been implemented

and evaluated in a prototype toolkit. This work, described in Chapter 4, focused on the lack

of tools, and has been partially published in:

• Locating Energy Hotspots in Source Code – Rui Pereira. In International Conference

on Software Engineering - ACM Student Research Competition, 2017. (Pereira, 2017)

• Helping Programmers Improve the Energy Efficiency of Source Code – Rui Pereira,

Tiago Carção, Marco Couto, Jácome Cunha, João Paulo Fernandes, João Saraiva. In In-

ternational Conference on Software Engineering Companion 2017. (Pereira et al., 2017a)

The SPELL prototype toolkit can be found at:

• https://github.com/greensoftwarelab/SPELL

Java Collection Framework Energy Efficiency A study on the energy efficiency of 43 meth-

ods, across 22 different Java collections, divided into three groups (Sets, Lists, and Maps), and

varying population sizes. This work allows us to give developers more information on which

data structures to choose if their concern is energy efficiency, based on what methods will be

used within the program. Additionally, we developed a tool, jStanley, to automatically detect

all the used collections and their used methods, and suggest a better (energy or time) alterna-

tive based on our methodology. This work focused on the lack of knowledge and lack of tools,

and has been published in:

https://github.com/greensoftwarelab/Energy-Languages
https://github.com/greensoftwarelab/SPELL
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• The Influence of the Java Collection Framework on Overall Energy Consumption –

Rui Pereira,Marco Couto, Jácome Cunha, João Paulo Fernandes, João Saraiva. In Inter-

national Workshop on Green and Sustainable Software, 2016. (Pereira et al., 2016)

• jStanley: Placing a Green Thumb on Java Collections – Rui Pereira, Pedro Simão, Já-

come Cunha, João Saraiva. In 33rd IEEE/ACM International Conference on Automated

Software Engineering, 2018. (Pereira et al., 2018)

The interactive data tables, the jStanely prototype, and public repository for future re-

search can be respectively found at:

• http://greenlab.di.uminho.pt/collections/

• https://github.com/greensoftwarelab/jStanley

• https://github.com/greensoftwarelab/Collections-Energy-Benchmark

Green Computing In addition to the prior, further work and activities on Green Computing

included:

• GreenDroid: A tool for Analyzing Energy Consumption in the Android Ecosystem –

Marco Couto, Jácome Cunha, João Paulo Fernandes, Rui Pereira, João Saraiva In Inter-

national Scientific Conference on Informatics 2015. (Couto et al., 2015)

• Static Energy Consumption Analysis in Variability Systems – Marco Couto, Jácome

Cunha, João Paulo Fernandes, Rui Pereira, João Saraiva. In 2nd Green in Software Engi-

neering Workshop, 2016. (Couto et al., 2016)

• Products go Green: Worst-Case Energy Consumption in Software Product Lines –

Marco Couto, Rui Pereira, Paulo Borba, Jácome Cunha, João Paulo Fernandes, João

Saraiva. In International Systems and Software Product Line Conference, 2017. (Couto

et al., 2017a)

http://greenlab.di.uminho.pt/collections/
https://github.com/greensoftwarelab/jStanley
https://github.com/greensoftwarelab/Collections-Energy-Benchmark
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In summary, the list of contributions of this thesis include:

• A large-scale analysis on the energy efficiency of 27 programming languages.

• Public repository for future research on the energy efficiency of programming languages.

• Development of a language and context independent technique to detect energy inef-

ficiencies within source-code.

• Development and evaluation of a prototype toolkit, termed SPELL, implementing the

previously mentioned technique.

• An analysis on the energy profiles of methods from the Java Collection Framework

(JCF).

• Public repository for future research on the energy efficiency of the Java Collection

Framework.

• A methodology to use the previously defined JCF energy profiles to choose a more effi-

cient solution.

• Online interactive energy data tables for the Java Collection Framework.

• Development and evaluation of a prototype, termed jStanely, implementing the previ-

ous methodology, suggesting more efficient solutions, and automatically changing the

source code to the suggested alternative.
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1.5 Document Structure

This document describes the work accomplished while developing this thesis. The contents

in this document are organized as follows:

Chapter 1 Introduces the topics and motivation of this thesis, the goals which this thesis

aims to accomplish, the research questions which we aim to answer, and the list of

contributions accomplished during this thesis.

Chapter 2 Touches on the State of the Art directly pertaining to topics presented in this doc-

ument.

Chapter 3 Presents a large scale analysis on the energy efficiency on 27 popular program-

ming languages.

Chapter 4 Describes a language and context independent technique to localize energy hotspots

in source code, along with an implementation of the technique in a tool called SPELL.

Chapter 5 Details a study on the energy efficiency of the Java Collection Framework on a

method level, presenting a methodology to help programmers choose the most appro-

priate collection for their program, and the implementation of the jStanely tool.

Chapter 6 Discusses some of the interesting observations found during work on this thesis,

and empirical studies. The analyses and tests presented in this chapter are preliminary

in nature. They show very promising energy efficient approaches to certain issues, but

nevertheless, a more thorough validation is needed.

Chapter 7 Final thoughts, conclusions, and possible future lines of work based on the con-

tributions from this thesis.
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Chapter 2

State of the Art

In this chapter, we will look into what has been done thus far on the three main re-

search topics worked on during this thesis. The first section will focus on research into

understanding the energy efficiency and costs of programming languages. Afterwards,

we will look into what techniques and tools exist to help developers detect and under-

stand where are problematic (energy inefficient) code fragments in their source code.

Finally, we will look into research in regards to understanding how different data struc-

tures compare to each other in terms of energy consumption, and what solutions exist to

help produce more energy efficient programs.

13
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2.1 Programming Languages and Energy Efficiency

There has been previous works based on analyzing the performance of programming lan-

guages (Nanz and Furia, 2015; Pankratius et al., 2012; Williams et al., 2010; St-Amour et al.,

2012), but only recently has research been done on programming language energy efficiency.

Researchers (Nobre et al., 2018) have observed how different compiler optimizations im-

pact the energy consumption within the C programming language. They were able to observe

a reduction in the energy consumption by up to 24%, and showed how only some of these

improvements could be explained by improvements in execution time. Additionally, their

experiments show cases where applications were faster, yet consumed more energy.

Lima et al. (2016) looked at the energy behavior of a purely functional and lazy language,

Haskell, using extracted examples from Rosetta Code 1 and The Computer Language Bench-

mark Game 2 (CLBG). In this work, the authors chose to look at the energy efficiency of

Haskell from both a strictness and concurrency perspective, while also analyzing the energy

influence of small implementation changes (which will be detailed in Subsection 2.3).

Oliveira et al. (2017) took a different approach, and compare JavaScript, Java, and C++

in an Android setting. As with the previous work, these authors also used examples from both

Rosetta Code and the CLBG along with a few examples from the F-Droid repository 3. In this

setting, they found that in terms of energy consumption there is no overall winner. Depend-

ing on the tasks at hand, the three languages fluctuated. They also showed that development

across different devices had very little differences, supporting that an approach consuming

less energy on one device should translate to another. Additionally, they also found instances

where a faster implementation did not translate into a more energy efficient one, which is

also something reoccurring throughout this thesis.

A more recent effort by Georgiou et al. (2018) calculated the Energy Delay Product on 14

programming languages performing 25 different tasks. For this study, they obtained the pro-

grams from Rosetta Code, and ran the study on three different platforms: a server, a laptop,

1Rosetta Code: http://rosettacode.org
2The Computer Language Benchmarks Game: https://benchmarksgame-team.pages.debian.net/

benchmarksgame/
3F-Droid: https://f-droid.org/en/

http://rosettacode.org
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://f-droid.org/en/
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and an embedded system. Their analysis was focused on the different types of tasks such as

file handling, I/O-intensive operations, arithmetic, etc. They showed that while the differ-

ent platforms often times produced different rankings, there was no statistical evidence that

there is a difference between the embedded and the server or the laptop and the server. Addi-

tionally, their study showed that compiled languages outperformed the others both in terms

of energy consumption and performance.

2.2 Energy Inefficient Code Detection

It is common for software developers to use debugging tools and profilers to help detect bugs

or performance inefficient code fragments. Applying these concepts to help detect energy

inefficient code fragments is a much more challenging task. There is still very little knowl-

edge as to what can be directly done, from a software developers position, to manipulate and

improve energy consumption. Even if a developer takes the steps and effort to use one of the

many energy/power measuring devices, a lot has to be taken into account such as the contex-

tual information about what the program is supposed to be doing, or where it was executed.

Thus, this challenging problem has attracted several researchers to propose solutions, but

with a focus on mobile applications.

Ma et al. (2013) presented a tool, eDoctor, for mobile users to troubleshoot any irregular

battery draining issues they were having on their smartphones. The authors’ tool analyzes a

mobile application’s behavior, and identify abnormalities. It then suggests the user the most

appropriate repair solutions, such as disabling device locations, downgrade to previous ver-

sions, turn on airplane mode, etc. A different approach was done by Oliner et al. (2013), where

a black-box diagnostic is performed. The client application sends coarse-grained measure-

ments to a server where the data is correlated with client properties (for example running

applications). It then suggests actions the user may take to improve battery life.

While the previous tool was for end-users, Pathak et al. (2012) focused their eProf tool

for developers. eProf is a fine-grained energy profiler for smartphone apps. It instruments

app binaries with system-call and routine tracing, and uses this information with their self
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proposed power model to understand where the energy is spent in the app. The developer

is then shown what external modules are used, and attributes a percentage to different tasks

and events performed such as HTTP requests, game rendering, map downloading, user track-

ing, etc. The developer can then use this information to modify their application to optimize

the energy inefficient blocks. Additionally, the authors found that "wakelock bugs" and I/O

events were the most energy draining issues.

Linares-Vásquez et al. (2014) conducted a large empirical study on API calls and usage

patterns, within the Android development framework, to find which have a tendency to have

high consumption costs. Their study was conducted on 55 different apps, looking into 807

different API methods and defined 131 as energy-greedy APIs. Similarly, Liu et al. (2014) ana-

lyzed 402 different Android applications and found that there were two main causes of energy

problems: missing deactivation of sensors or wake locks, and cost ineffective use of sensory

data. In response, they developed GreenDroid, a tool to identify these two problems to further

help developers find these issues.

Two similar and complementary works (Cruz and Abreu, 2017; Banerjee and Roychoud-

hury, 2016), also within the Android domain, defined energy efficient guidelines for mobile

development. The former was based on performance guidelines for mobile and focused on

code smells affecting CPU usage. The latter focus on resource usage, leakage, and sensors.

Banerjee et al. (2014) constructed an automated test generation framework to produce

tests simulating user interactions, such as touches or taps, to heavily stress I/O components.

As these tend to be one of the main causes of high energy consumption in mobile, they are

able to capture possible energy hotspots/energy leaks within the application.

Couto et al. (2014) presented a technique where they relate the energy consumption to

the source code of the application while giving classifications of methods as Red, Yellow, or

Green. They do so by running each test case twice on the program, where first they log the

stack trace of each test, and then they log the energetic values for a test. By correlating the

stack trace with the energy values, and using thresholds, they classify the tests as Red, Yellow,

or Green. Finally, depending on what methods were called in those tests, they also classify

each test as Red, Yellow, or Green.
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Recently, Verdecchia et al. (2018) presented a naive spectrum-based fault localization

technique aimed to efficiently locate energy hotspots in source code. Their work is very

closely related to the one presented in Chapter 4. The authors state that while our contri-

bution lies more in providing the means to precisely locate energy hotspots in source code,

their work aims to investigate if more naive approaches can be used to locate them. Thus,

understanding both sides, research can be further done on finding the best balance of per-

formance and precision.

2.3 Data Structures and Energy Efficiency

When developing software for commercial use, research, or toy programs, a programmer al-

most always has at least one data structure involved. These common programming storage

formats are able to be implemented in many different ways, each with its own benefits, draw-

backs, and performance. In recent years however, analyzing data structures and their energy

efficiency has attracted the attention of many researchers.

Pinto et al. (2016) specifically studied the energy efficiency on Java’s thread-safe collec-

tions, based on traversal, insertion, and removal operations. They were able to improve up

to 17% energy savings by switching out collections, showing how such simple changes can

reduce the energy consumption considerably.

Another study specifically focused on different map data structures in Android Saborido

et al. (2018). They analyzed the CPU time, memory usage, and energy consumption in HashMap,

ArrayMap, and SpareArray variants. Finally, they offered guidelines for Android developers

for choosing the most appropriate choice if the developer is worried about energy usage.

Lima et al. (2016) analyzed the energy behavior of various Haskell sequential and concur-

rent data structures. They too were able to show how making changes on which data struc-

tures are used can have large impacts, saving up to 60% of energy in one of their settings.

Finally, they argue that tools to support developers in quickly refactoring a program to switch

between such primitives can be of great help if energy is a concern.

Hasan et al. (2016) looked at Java collections from the Java Collections Framework (8 col-
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lections), Apache Commons Collections (5 collections), and Trove (4). They measured the

energy costs of iterations, insertions (beginning, middle, and end for Lists), and random ac-

cess/query. They divided the collections into three groups, Sets, Lists, and Maps, representing

the three possible collection interfaces. They were able to see that there are differences in

the energy consumption profiles of collections within a group, and showed how one can use

those profiles to choose a more energy efficient alternative. A study they performed showed

how switching out one List for a worse one can decrease energy consumption by 300%, or

improve the energy consumption by 36%.

Finally, Manotas et al. (2014) developed the SEEDS framework. This was the first auto-

mated support for optimizing the energy usage of applications by making code-level changes.

A specific instantiation of this framework was presented by the authors to improve the energy

consumption of projects using Java’s Collections API, producing good results. SEEDS is a dy-

namic approach which follows a trial and error method, testing each possible alternative,

until the most energy efficient one is found.



Chapter 3

Energy Efficiency Across Programming

Languages

This chapter presents a study of the runtime, memory usage and energy consumption of

twenty seven well-known software languages. We monitor the performance of such lan-

guages using ten different programming problems, expressed in each of the languages.

Our results show interesting findings, such as, slower/faster languages consuming less/-

more energy, and how memory usage influences energy consumption. We show how to

use our results to provide software engineers support to decide which language to use

when energy efficiency is a concern.

19
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3.1 Introduction

Software language engineering provides powerful techniques and tools to design, implement

and evolve software languages. Such techniques aim at improving programmers productivity

- by incorporating advanced features in the language design, like for instance powerful mod-

ular and type systems - and at efficiently execute such software - by developing, for example,

aggressive compiler optimizations. Indeed, most techniques were developed with the main

goal of helping software developers in producing faster programs. In fact, in the last century

performance in software languages was in almost all cases synonymous of fast execution time

(embedded systems were probably the single exception).

In this century, this reality is quickly changing and software energy consumption is be-

coming a key concern for computer manufacturers, software language engineers, program-

mers, and even regular computer users. Nowadays, it is usual to see mobile phone users

(which are powerful computers) avoiding using CPU intensive applications just to save bat-

tery/energy. While the concern on the computers’ energy efficiency started by the hardware

manufacturers, it quickly became a concern for software developers too (Pinto et al., 2014a).

In fact, this is a recent and intensive area of research where several techniques to analyze and

optimize the energy consumption of software systems are being developed. Such techniques

already provide knowledge on the energy efficiency of data structures (Pereira et al., 2016;

Hasan et al., 2016) and android language (Oliveira et al., 2017), the energy impact of differ-

ent programming practices both in mobile (Li and Halfond, 2014; Sahin et al., 2012; Linares-

Vásquez et al., 2014) and desktop applications (Sahin et al., 2014; Pereira et al., 2017a), the en-

ergy efficiency of applications within the same scope (Chowdhury and Hindle, 2016; Jabbar-

vand et al., 2015), or on how to predict energy consumption in several software systems (Hao

et al., 2013; Couto et al., 2017a), among with several other works.

An interesting question that frequently arises in the software energy efficiency area is

whether a faster program is also an energy efficient program, or not. If the answer is yes,

then optimizing a program for speed also means optimizing it for energy, and this is exactly

what the compiler construction community has been hardly doing since the very beginning
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of software languages. However, energy consumption does not depend only on execution

time, as shown in the equation:

Ener g y = Ti me ×Power (3.1)

In fact, there are several research works showing different results regarding this subject (Yuki

and Rajopadhye, 2014; Pinto et al., 2014b; Trefethen and Thiyagalingam, 2013a; Lima et al.,

2016; Pereira et al., 2016; Abdulsalam et al., 2015).

A similar question arises when comparing software languages: is a faster language, a

greener one? Comparing software languages, however, is an extremely complex task, since

the performance of a language is influenced by the quality of its compiler, virtual machine,

garbage collector, available libraries, etc. Indeed, a software program may become faster by

improving its source code, but also by "just" optimizing its libraries and/or its compiler. This

chapter focuses on answering TRQ1: What influence do different programming languages

have on energy consumption?.

In this chapter we analyze the performance of twenty seven software languages. We con-

sider ten different programming problems that are expressed in each of the languages, fol-

lowing exactly the same algorithm, as defined in the CLBG (Gouy, 2018). We compile/exe-

cute such programs using the state-of-the-art compilers, virtual machines, interpreters, and

libraries for each of the 27 languages. Afterwards, we analyze the performance of the different

implementation considering three variables: execution time, memory consumption and en-

ergy consumption. Moreover, we analyze those results according to the languages’ execution

type (compiled, virtual machine and interpreted), and programming paradigm (imperative,

functional, object oriented, scripting) used. For each of the execution types and program-

ming paradigms, we compiled a software language ranking according to each variable con-

sidered. Our results show interesting findings, such as, slower/faster software languages con-

suming less/more energy, and how memory usage influences energy consumption. Finally,

we discuss how to use such results to provide software engineers support to decide which

language to use when energy efficiency is a concern.
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This chapter is organized as follows: Section 3.2 exposes the detailed steps of our method-

ology to measure and compare energy efficiency in software languages, followed by a presen-

tation of the results. Section 3.3 contains the analysis and discussion on the obtained results,

where we first analyze whether execution time performance implies energy efficiency, then

we examine the relation between memory usage and memory energy consumption, and fi-

nally we present a discussion on how energy, time and memory relate in the 27 software lan-

guages. In Section 3.4 we discuss the threats to the validity of our study. Finally, in Section

3.5 we present the conclusions of our work.

3.2 Measuring Energy in Software Languages

The initial motivation and primary focus of this work is to understand the energy efficiency

across various programming languages. This might seem like a simple task, but it is not as

trivial as it sounds.

To have a fair and proper analysis, we need a good representation of different program-

ming problems (and their solutions) written across a large set of programming languages.

Additionally, the different solutions should follow the same guidelines and rules to be as fair

as possible in such a comparison. It would not be enough just to get from point A to point B

in a solution, they would also need to follow the same path in between while also performing

as best as possible.

With this in mind, we begin by trying to answer the following research question:

• RQ1: Can we compare the energy efficiency of software languages? This will allow us

to have results in which we can in fact compare the energy efficiency of popular pro-

gramming languages. In having these results, we can also explore the relations between

energy consumption, execution time, and memory usage.

The following subsections will detail the methodology used to answer this question, and

the results we obtained.
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3.2.1 The Computer Language Benchmarks Game

In order to obtain a comparable, representative and extensive set of programs written in

many of the most popular and most widely used programming languages we have explored

CLBG (Gouy, 2018).

The CLBG initiative includes a framework for running, testing and comparing imple-

mented coherent solutions for a set of well-known, diverse programming problems. The

overall motivation is to be able to compare solutions, within and between, different program-

ming languages. While the perspectives for comparing solutions have originally essentially

analyzed runtime performance, the fact is that CLBG has recently also been used in order to

study the energy efficiency of software (Lima et al., 2016; Couto et al., 2017b; Oliveira et al.,

2017). It is to note, that implementations submitted are written by experts in each of the

languages, with the intention of being the fastest performing solution.

In its current stage, the CLBG has gathered solutions for 13 benchmark problems, such

that solutions to each such problem must respect a given algorithm and specific implemen-

tation guidelines. Solutions to each problem are expressed in, at most, 28 different program-

ming languages.

The complete list of benchmark problems in the CLBG covers different computing prob-

lems, as described in Table 3.1. Additionally, the complete list of programming languages in

the CLBG is shown in Table 3.2, sorted by their paradigms. The sorting of the paradigms are

based on a combination of the self definition of each language acquired from their official

site and the community-defined paradigms for each language (for example on Wikipedia 1).

3.2.2 Design and Execution

Although CLBG includes 28 languages, we excluded Smalltalk since the compiler for that

language is proprietary. Also, for comparability, we have discarded benchmark problems

whose language coverage is below the threshold of 80%. By language coverage we mean,

for each benchmark problem, the percentage of programming languages (out of 27) in which

1https://en.wikipedia.org/

https://en.wikipedia.org/
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Table 3.1: CLBG corpus of programs

Benchmark Description Input

n-body Double precision N-body simulation 50M
fannkuch-redux Indexed access to tiny integer sequence 12
spectral-norm Eigenvalue using the power method 5,500

mandelbrot Generate Mandelbrot set portable bitmap
file

16,000

pidigits Streaming arbitrary precision arithmetic 10,000

regex-redux Match DNA 8mers and substitute magic
patterns

fasta output

fasta Generate and write random DNA
sequences

25M

k-nucleotide Hashtable update and k-nucleotide strings fasta output

reverse-complement Read DNA sequences, write their
reverse-complement

fasta output

binary-trees Allocate, traverse and deallocate many
binary trees

21

chameneos-redux Symmetrical thread rendezvous requests 6M

meteor-contest Search for solutions to shape packing
puzzle

2,098

thread-ring Switch from thread to thread passing one
token

50M

Table 3.2: Languages sorted by paradigm

Paradigm Languages

Functional Erlang, F#, Haskell, Lisp, Ocaml, Perl, Racket, Ruby, Rust;
Imperative Ada, C, C++, F#, Fortran, Go, Ocaml, Pascal, Rust;

Object-Oriented
Ada, C++, C#, Chapel, Dart , F#, Java, JavaScript, Ocaml, Perl, PHP, Python,
Racket, Rust, Smalltalk, Swift, TypeScript;

Scripting Dart, Hack, JavaScript, JRuby, Lua, Perl, PHP, Python, Ruby, TypeScript;

solutions for it are available. This criteria excluded chameneos-redux, meteor-contest and

thread-ring from our study.

We then gathered the most efficient (i.e. fastest) version of the source code in each of the

remaining 10 benchmark problems, for all the 27 considered programming languages.

The CLBG documentation also provides information about the specific compiler/runner

version used for each language, as well as the compilation/execution options considered (for

example, optimization flags at compile/run time). We strictly followed those instructions

and installed the correct compiler versions, and also ensured that each solution was com-

piled/executed with the same options used in the CLBG. Once we had the correct compiler

and benchmark solutions for each language, we tested each one individually to make sure

that we could execute it with no errors and that the output was the expected one.

The next step was to gather the information about energy consumption, execution time
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and peak memory usage for each of the compilable and executable solutions in each lan-

guage. It is to be noted that the CLBG already contains measured information on both the

execution time and peak memory usage. We measured both not only to check the consis-

tency of our results against the CLBG, but also since different hardware specifications would

bring about different results. For measuring the energy consumption, we used Intel’s Run-

ning Average Power Limit (RAPL) tool (Dimitrov et al., 2015), which is capable of providing

accurate energy estimates at a very fine-grained level, as it has already been proven (Hähnel

et al., 2012; Rotem et al., 2012). Also, the current version of RAPL allows it to be invoked from

any program written in C and Java (through jRAPL (Liu et al., 2015)).

In order to properly compare the languages, we needed to collect the energy consumed

by a single execution of a specific solution. In order to do this, we used the system function

call in C, which executes the string values which are given as arguments; in our case, the com-

mand necessary to run a benchmark solution (for example, the binary-trees solution writ-

ten in Python is executed by writing the command /usr/bin/python binarytrees.py 21).

The energy consumption of a solution will then be the energy consumed by the system

call, which we measured using RAPL function calls. The overall process (i.e., the workflow of

our energy measuring framework 2) is described in Listing 3.1.

1 ...

2 for (i = 0 ; i < N ; i++){

3 time_before = getTime (...);

4 // performs initial energy measurement

5 rapl_before (...);

6

7 // executes the program

8 system(command );

9

10 // computes the difference between

11 //this measurement and the initial one

12 rapl_after (...);

2The measuring framework and the complete set of results are publicly available at
https://sites.google.com/view/energy-efficiency-languages

https://sites.google.com/view/energy-efficiency-languages
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13 time_elapsed = getTime (...) - time_before;

14 ...

15 }

16 ...

Listing 3.1: Overall process of the energy measuring framework.

In order to ensure that the overhead from our measuring framework, using the system

function, is negligible or non-existing when compared to actually measuring with RAPL in-

side a program’s source code, we design a simple experiment. It consisted of measuring the

energy consumption inside of both a C and Java language solution, using RAPL and jRAPL

respectively, and comparing the results to the measurements from our C language energy

measuring framework. We found the resulting differences to be insignificant, and therefore

negligible, thus we conclude that we could use this framework without having to worry about

imprecisions in the energy measurements.

Also, we chose to measure the energy consumption and the execution time of a solution

together, since the overhead will be the same for every measurement, and so this should not

affect the obtained values.

The peak memory usage of a solution was gathered using the time tool, available in Unix-

based systems. This tool runs a given program, and summarizes the system resources used

by that program, which includes the peak of memory usage.

Each benchmark solution was executed and measured 10 times, in order to obtain 10

energy consumption and execution time samples. We did so to reduce the impact of cold

starts and cache effects, and to be able to analyze the measurements’ consistency and avoid

outliers. We followed the same approach when gathering results for memory usage.

For some benchmark problems, we could not obtain any results for certain programming

languages. In some cases, there was no source code available for the benchmark problem

(i.e., no implementation was provided in a concrete language which reflects a language cov-

erage below 100%).3

In other cases, the code was indeed provided but either the code itself was already buggy

3In these cases, we will include an n.a. indication when presenting their results.



3.2. MEASURING ENERGY IN SOFTWARE LANGUAGES 27

or failing to compile or execute, as documented in CLBG, or, in spite of our best efforts, we

could not execute it, e.g., due to missing libraries 3. From now on, for each benchmark prob-

lem, we will refer as its execution coverage to the percentage of (best) solutions for it that we

were actually able to successfully execute.

All studies were conducted on a desktop with the following specifications: Linux Ubuntu

Server 16.10 operating system, kernel version 4.8.0-22-generic, with 16GB of RAM, a Haswell

Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz.

3.2.3 Results

The results from our study are partially shown in this section, with the remainder shown

both in the online appendix for this chapter 4, and in this document’s Chapter 3 appendix

(Appendix A). Tables 3.3-3.5 contains the measured data from different benchmark solutions.

We only show the results for binary-trees, fannkuch-redux, and fastawithin the chapter,

which are the first 3 ordered alphabetically. Each row in a table represents one of the 27

programming languages which were measured.

The four rightmost columns, from left to right, represent the average values for the En-

ergy consumed (Joules), Time of execution (milliseconds), Ratio between Energy and Time,

and the amount of peak memory usage in Mb. The Energy value is the sum of CPU and

DRAM energy consumption. Additionally, the Ratio can also be seen as the average Power,

expressed in Kilowatts (kW). The rows are ordered according to the programming language’s

energy consumption, from lowest to highest. Finally, the online appendix contains the stan-

dard deviation and average values for our measured CPU, DRAM, and Time, allowing us to

understand the variance.

The first column states the name of the programming languages, preceded by either a

(c), (i), or (v) classifying them as either a compiled, interpreted, or virtual-machine language,

respectively. In some cases, the programming language name will be followed with a ↑x /↓y

and/or ⇑x /⇓y symbol. The first set of arrows indicates that the language would go up by x

4Chapter 3 Online Appendix:
https://sites.google.com/view/energy-efficiency-languages/results

https://sites.google.com/view/energy-efficiency-languages/results
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Table 3.3: Results for binary-trees

binary-trees
Energy Time Ratio Mb

(c) C 39.80 1125 0.035 131
(c) C++ 41.23 1129 0.037 132
(c) Rust ⇓2 49.07 1263 0.039 180
(c) Fortran ⇑1 69.82 2112 0.033 133
(c) Ada ⇓1 95.02 2822 0.034 197
(c) Ocaml ↓1 ⇑2 100.74 3525 0.029 148
(v) Java ↑1 ⇓16 111.84 3306 0.034 1120
(v) Lisp ↓3 ⇓3 149.55 10570 0.014 373
(v) Racket ↓4 ⇓6 155.81 11261 0.014 467
(i) Hack ↑2 ⇓9 156.71 4497 0.035 502
(v) C# ↓1 ⇓1 189.74 10797 0.018 427
(v) F# ↓3 ⇓1 207.13 15637 0.013 432
(c) Pascal ↓3 ⇑5 214.64 16079 0.013 256
(c) Chapel ↑5 ⇑4 237.29 7265 0.033 335
(v) Erlang ↑5 ⇑1 266.14 7327 0.036 433
(c) Haskell ↑2 ⇓2 270.15 11582 0.023 494
(i) Dart ↓1 ⇑1 290.27 17197 0.017 475
(i) JavaScript ↓2 ⇓4 312.14 21349 0.015 916
(i) TypeScript ↓2 ⇓2 315.10 21686 0.015 915
(c) Go ↑3 ⇑13 636.71 16292 0.039 228
(i) Jruby ↑2 ⇓3 720.53 19276 0.037 1671
(i) Ruby ⇑5 855.12 26634 0.032 482
(i) PHP ⇑3 1,397.51 42316 0.033 786
(i) Python ⇑15 1,793.46 45003 0.040 275
(i) Lua ↓1 2,452.04 209217 0.012 1961
(i) Perl ↑1 3,542.20 96097 0.037 2148
(c) Swift n.e.

positions (↑x ) or down by y positions (↓y ) if ordered by execution time. For example in Ta-

ble 3.5, for the fasta benchmark, Fortran is the second most energy efficient language, but

falls off 6 positions down if ordered by execution time. The second set of arrows states that

the language would go up by x positions (⇑x ) or down by y positions (⇓y ) if ordered according

to their peak memory usage. Looking at the same example benchmark, Rust, while the most

energy efficient, would drop 9 positions if ordered by peak memory usage.

Table 3.6 shows the global results (on average) for Energy, Time, and Mb normalized to

the most efficient language in that category. Since the pidigits benchmark solutions only

contained less than half of the languages covered, we did not consider this one for the global

results. The base values are as follows: Energy for C is 57.86J, Time for C is 2019.26ms, and

Mb for Pascal is 65.96Mb. For instance, Lisp, on average, consumes 2.27x more energy

(131.34J) than C, while taking 2.44x more time to execute (4926.99ms), and 1.92x more mem-

ory (126.64Mb) needed when compared to Pascal.



3.2. MEASURING ENERGY IN SOFTWARE LANGUAGES 29

Table 3.4: Results for fannkuch-redux

fannkuch-redux
Energy Time Ratio Mb

(c) C ⇓2 215.92 6076 0.036 2
(c) C++ ⇑1 219.89 6123 0.036 1
(c) Rust ⇓11 238.30 6628 0.036 16
(c) Swift ⇓5 243.81 6712 0.036 7
(c) Ada ⇓2 264.98 7351 0.036 4
(c) Ocaml ↓1 277.27 7895 0.035 3
(c) Chapel ↑1 ⇓18 285.39 7853 0.036 53
(v) Lisp ↓3 ⇓15 309.02 9154 0.034 43
(v) Java ↑1 ⇓13 311.38 8241 0.038 35
(c) Fortran ⇓1 316.50 8665 0.037 12
(c) Go ↑2 ⇑7 318.51 8487 0.038 2
(c) Pascal ⇑10 343.55 9807 0.035 2
(v) F# ↓1 ⇓7 395.03 10950 0.036 34
(v) C# ↑1 ⇓5 399.33 10840 0.037 29
(i) JavaScript ↓1 ⇓2 413.90 33663 0.012 26
(c) Haskell ↑1 ⇑8 433.68 14666 0.030 7
(i) Dart ⇓7 487.29 38678 0.013 46
(v) Racket ⇑3 1,941.53 43680 0.044 18
(v) Erlang ⇑3 4,148.38 101839 0.041 18
(i) Hack ⇓6 5,286.77 115490 0.046 119
(i) PHP 5,731.88 125975 0.046 34
(i) TypeScript ↓4 ⇑4 6,898.48 516541 0.013 26
(i) Jruby ↑1 ⇓4 7,819.03 219148 0.036 669
(i) Lua ↓3 ⇑19 8,277.87 635023 0.013 2
(i) Perl ↑2 ⇑12 11,133.49 249418 0.045 12
(i) Python ↑2 ⇑14 12,784.09 279544 0.046 12
(i) Ruby ↑2 ⇑17 14,064.98 315583 0.045 8

To better visualize and interpret the data, we also generated two different sets of graphi-

cal data for each of the benchmarks. The first set, Figures 3.1-3.3 contains the results of each

language for a benchmark, consisting of three joint parts: a bar chart, a line chart, and a scat-

ter plot. The bars represent the energy consumed by the languages, with the CPU energy

consumption on the bottom half in blue dotted bars and DRAM energy consumption on the

top half in orange solid bars, and the left y-axis representing the average Joules. The execu-

tion time is represented by the line chart, with the right y-axis representing average time in

milliseconds. The joining of these two charts allow us to better understand the relationship

between energy and time. Finally, a scatter plot on top of both represents the ratio between

energy consumed and execution time. The ratio plot allows us to understand if the relation-

ship between energy and time is consistent across languages. A variation in these values

indicates that energy consumed is not directly proportional to time, but dependent on the

language and/or benchmark solution.
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Table 3.5: Results for fasta

fasta
Energy Time Ratio Mb

(c) Rust ⇓9 26.15 931 0.028 16
(c) Fortran ↓6 27.62 1661 0.017 1
(c) C ↑1 ⇓1 27.64 973 0.028 3
(c) C++ ↑1 ⇓2 34.88 1164 0.030 4
(v) Java ↑1 ⇓12 35.86 1249 0.029 41
(c) Swift ⇓9 37.06 1405 0.026 31
(c) Go ↓2 40.45 1838 0.022 4
(c) Ada ↓2 ⇑3 40.45 2765 0.015 3
(c) Ocaml ↓2 ⇓15 40.78 3171 0.013 201
(c) Chapel ↑5 ⇓10 40.88 1379 0.030 53
(v) C# ↑4 ⇓5 45.35 1549 0.029 35
(i) Dart ⇓6 63.61 4787 0.013 49
(i) JavaScript ⇓1 64.84 5098 0.013 30
(c) Pascal ↓1 ⇑13 68.63 5478 0.013 0
(i) TypeScript ↓2 ⇓10 82.72 6909 0.012 271
(v) F# ↑2 ⇑3 93.11 5360 0.017 27
(v) Racket ↓1 ⇑5 120.90 8255 0.015 21
(c) Haskell ↑2 ⇓8 205.52 5728 0.036 446
(v) Lisp ⇓2 231.49 15763 0.015 75
(i) Hack ⇓3 237.70 17203 0.014 120
(i) Lua ⇑18 347.37 24617 0.014 3
(i) PHP ↓1 ⇑13 430.73 29508 0.015 14
(v) Erlang ↑1 ⇑12 477.81 27852 0.017 18
(i) Ruby ↓1 ⇑2 852.30 61216 0.014 104
(i) JRuby ↑1 ⇓2 912.93 49509 0.018 705
(i) Python ↓1 ⇑18 1,061.41 74111 0.014 9
(i) Perl ↑1 ⇑8 2,684.33 61463 0.044 53

The second set, Figures 3.4-3.6 consists of two parts: a bar chart, and a line chart. The

blue bars represent the DRAM’s energy consumption for each of the languages, with the left

y-axis representing the average Joules. The orange line chart represents the peak memory

usage for each language, with the right y-axis representing the average Mb. The joining of

these two allows us to look at the relation between DRAM energy consumption and the peak

memory usage for each language in each benchmark.

By turning to the CLBG, we were able to use a large set of software programming lan-

guages which solve various different programming problems with similar solutions. This al-

lowed us to obtain a comparable, representative, and extensive set of programs, written in

several of the most popular languages, along with the compilation/execution options, and

compiler versions. With these joined together with our energy measurement framework,

which uses the accurate Intel RAPL tool, we were able to measure, analyze, and compare the

energy consumption, and in turn the energy efficiency, of software languages, thus answer-
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Table 3.6: Normalized global results for Energy, Time, and Memory

Total

Energy Time Mb
(c) C 0.800 (c) C 0.800 (c) Pascal 0.800
(c) Rust 0.803 (c) Rust 0.804 (c) Go 0.805
(c) C++ 1.34 (c) C++ 1.56 (c) C 1.17
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45
(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 (c) Swift 4.20 (c) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52
(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

ing RQ1 as shown with our results. Additionally, we were also able to measure the execution

time and peak memory usage which allowed us to analyze how these two relate with energy

consumption. The analysis and discussion of our results is shown in the next section.

3.3 Analysis and Discussion

In this section we will present an analysis and discussion on the results of our study. While

our main focus is on understanding the energy efficiency in languages, we will also try to

understand how energy, time, and memory relate. Additionally, in this section we will try to

answer the following three research questions, each with their own designated subsection.

• RQ2: Is the faster language always the most energy efficient? Properly understanding

this will not only address if energy efficiency is purely a performance problem, but also

allow developers to have a greater understanding of how energy and time relates in a
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Figure 3.1: Energy and time graphical data for binary-trees

language, and between languages.

• RQ3: How does memory usage relate to energy consumption? Insight on how memory

usage affects energy consumption will allow developers to better understand how to

manage memory if their concern is energy consumption.

• RQ4: Can we automatically decide what is the best programming language considering

energy, time, and memory usage? Often times developers are concerned with more

than one (possibly limited) resource. For example, both energy and time, time and

memory space, energy and memory space or all three. Analyzing these trade-offs will

allow developers to know which programming languages are best in a given scenarios.
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Figure 3.2: Energy and time graphical data for fannkuch-redux

3.3.1 Is Faster, Greener?

A very common misconception when analyzing energy consumption in software is that it will

behave in the same way execution time does. In other words, reducing the execution time

of a program would bring about the same amount of energy reduction. In fact, the Energy

equation 3.1, indicates that reducing time implies a reduction in the energy consumed. How-

ever, the Power variable of the equation, which cannot be assumed as a constant, also has an

impact on the energy. Therefore, conclusions regarding this issue diverge sometimes, where

some works do support that energy and time are directly related (Yuki and Rajopadhye, 2014),

and the opposite was also observed (Lima et al., 2016; Pinto et al., 2014b; Trefethen and Thiya-
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Figure 3.3: Energy and time graphical data for fasta

galingam, 2013a).

The data presented in the aforementioned tables and figures lets us draw an interesting

set of observations regarding the efficiency of software languages when considering both en-

ergy consumption and execution time. Much like (Abdulsalam et al., 2015) and (Pereira et al.,

2016), we observed different behaviors for energy consumption and execution time in differ-

ent languages and tests.

By observing the data in Table 3.6, we can see that the C language is, overall, the fastest

and most energy efficient. Nevertheless, in some specific benchmarks there are more effi-

cient solutions (for example, in the fasta benchmark it is the third most energy efficient and
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Figure 3.4: Energy and memory graphical data for binary-trees

second fastest).

Execution time behaves differently when compared to energy efficiency. The results for

the 3 benchmarks presented in Tables 3.3-3.5 (and the remainder shown in the appendix un-

der Appendix A.2 Data tables) show several scenarios where a certain language energy con-

sumption rank differs from the execution time rank (as the arrows in the first column indi-

cate). In the fasta benchmark, for example, the Fortran language is second most energy

efficient, while dropping 6 positions when it comes to execution time. Moreover, by observ-

ing the Ratio values in Figures 3.1 to 3.3 (and the remainder in the appendices under under

Appendix A.3 Energy and Time Graphs), we clearly see a substantial variation between lan-

guages. This means that the average power is not constant, which further strengthens the
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Figure 3.5: Energy and memory graphical data for fannkuch-redux

previous point. With this variation, we can have languages with very similar energy con-

sumptions and completely different execution times, as is the case of languages Pascal and

Chapel in the binary trees benchmark, which energy consumption differ roughly by 10%

in favor of Pascal, while Chapel takes about 55% less time to execute.

Compiled languages tend to be, as expected, the fastest and most energy efficient ones.

On average, compiled languages consumed 120J to execute the solutions, while for virtual

machine and interpreted languages this value was 576J and 2365J, respectively. This ten-

dency can also be observed for execution time, since compiled languages took 5103ms, vir-

tual machine languages took 20623ms, and interpreted languages took 87614ms (on average).

Grouped by the different paradigms, the imperative languages consumed and took on aver-
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Figure 3.6: Energy and memory graphical data for fasta

age 125J and 5585ms, the object-oriented consumed 879J and spent 32965ms, the functional

consumed 1367J and spent 42740ms and the scripting languages consumed 2320J and spent

88322ms.

Moreover, the top 5 languages that need less energy and time to execute the solutions

are: C (57J, 2019ms), Rust (59J, 2103ms), C++ (77J, 3155ms), Ada (98J, 3740ms), and Java

(114J, 3821ms); of these, only Java is not compiled. As expected, the bottom 5 languages are

all interpreted: Perl (4604J), Python (4390J), Ruby (4045J), JRuby (2693J), and Lua (2660Js)

for energy; Lua (167416ms), Python (145178ms), Perl (132856ms), Ruby (119832ms), and

TypeScript (93292ms) for time.

The CPU-based energy consumption always represents the majority of the energy con-
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sumed. On average, for the compiled languages, this value represents 88.94% of the energy

consumed, being the remaining portion assigned to DRAM. This value is very similar for vir-

tual machine (88.94%) and interpreted languages (87.98%). While, as explained in the last

point, the overall average consumption for these 3 language types is very different, the ratio

between CPU and DRAM based energy consumption seems to generally maintain the same

proportion. This might indicate that optimizing a program to reduce the CPU-based energy

consumption will also decrease the DRAM-based energy consumption. However, it is inter-

esting to notice that this value varies more for interpreted languages (min of 81.57%, max

of 92.90%) when compared to compiled (min of 85.27%, max of 91.75%) or virtual machine

languages (min of 86.10%, max of 92.43%).

With these results, we can try to answer the question raised in RQ2: Is the faster language

always the most energy efficient? By looking solely at the overall results, shown in Table 3.6, we

can see that the top 5 most energy efficient languages keep their rank when they are sorted

by execution time and with very small differences in both energy and time values. This does

not come as a surprise, since in 9 out of 10 benchmark problems, the fastest and most energy

efficient programming language was one of the top 3. Additionally, it is common knowledge

that these top 3 language (C,C++, and Rust) are known to be heavily optimized and efficient

for execution performance, as our data also shows. Thus, as time influences energy, we had

hypothesized that these languages would also produce efficient energy consumptions as they

have a large advantage in one of the variables influencing energy, even if they consumed more

power on average.

Nevertheless, if we look at the remaining languages in Table 3.6, we can see that only 4

languages maintain the same energy and time rank (OCaml, Haskel, Racket, and Python),

while the remainder are completely shuffled. Additionally, looking at individual benchmarks

we see many cases where there is a different order for energy and time.

Moreover, the tables in Appendix A.2 Data Tables also allows us to understand that this

question does not have a concrete and ultimate answer. Although the most energy efficient

language in each benchmark is almost always the fastest one, the fact is that there is no lan-

guage which is consistently better than the others. This allows us to conclude that the situa-
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tion on which a language is going to be used is a core aspect to determine if that language is

the most energy efficient option. For example, in the regex-redux benchmark, which ma-

nipulates strings using regular expressions, interpreted languages seem to be an energy effi-

cient choice (TypeScript, JavaScript and PHP, all interpreted, are in the top 5), although

they tend to be not very energy efficient in other scenarios. Thus, the answer for RQ2 is: No,

a faster language is not always the most energy efficient.

3.3.2 Memory Impact on Energy

How does memory usage affect the memory’s energy consumption? There are two main pos-

sible scenarios which may influence this energy consumption: continuous memory usage

and peak memory usage. With the data we have collected, we will try to answer the latter

scenario.

The top 5 languages, also presented in Table 3.6, which needed the least amount of mem-

ory space (on average) to execute the solutions were: Pascal (66Mb), Go (69Mb), C (77Mb),

Fortran (82Mb), and C++ (88Mb); these are all compiled languages. The bottom 5 languages

were: JRuby (1309Mb), Dart (570Mb), Erlang (475Mb), Lua (444Mb), and Perl (437Mb); of

these, only Erlang is not an interpreted language.

On average, the compiled languages needed 125Mb, the virtual machine languages needed

285Mb, and the interpreted needed 426Mb. If sorted by their programming paradigm, the

imperative languages needed 116Mb, the object-oriented 249Mb, the functional 251Mb, and

finally the scripting needed 421Mb.

Additionally, the top 5 languages which consumed the least amount of DRAM energy (av-

erage) were: C (5J), Rust (6J), C++ (8J), Ada (10J), and Java (11J); of these, only Java is not a

compiled language. The bottom 5 languages were: Lua (430J), JRuby (383J), Python (356J),

Perl (327J), and Ruby (295J); all are interpreted languages. On average, the compiled lan-

guages consumed 14J, the virtual machine languages consumed 52J, and the interpreted lan-

guages consumed 236J.

Looking at the visual data from Figures 3.4-3.6, and the right most figures under Ap-

pendix A.4 Energy and Memory Graphs in the appendix, one can quickly see that there does
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not seem to be a consistent correlation between the DRAM energy consumption and the peak

memory usage. To verify this, we first tested both the DRAM energy consumption and peak

memory usage for normality using the Shapiro-Wilk (Shapiro and Wilk, 1965) test. As the data

is not normally distributed, we calculated the Spearman (Zwillinger and Kokoska, 1999) rank-

order correlation coefficient. The result was a Spearman ρ value equal to 0.2091, meaning it

is between no linear relationship (ρ = 0) and a weak uphill positive relationship (ρ = 0.3).

While we did expect the possibility of little correlation between the DRAM’s energy con-

sumption and peak memory usage, we were surprised that the relationship is almost non-

existent. Thus, answering the first part of RQ3, this indicates that the DRAM’s energy con-

sumption has very little to do with how much memory is saved at a given point, but possibly

more of how it is used.

Continuous Memory Usage

As there was no apparent relation between DRAM’s energy consumption and peak memory

usage, we decided to turn our attentions towards a different approach on memory usage:

continuous memory usage. Thus, a new research question was asked, extending from our

previous RQ3.

• RQ3.5: How does total memory usage relate to energy consumption? We looked at how

peak memory usage has almost no statistical effect on the DRAM’s energy consump-

tion. Thus, approaching an alternative side of memory usage, in this case total memory

usage over the program’s execution, can help us better understand this relationship.

The experiment methodology was the same as the one performed for peak memory us-

age analysis. For each language, we executed every solution while keeping track of the total

amount of memory used. We used the Python memory_profiler 5 library to obtain the val-

ues, and afterwards we calculated, for each language, the average of all solutions. Table 3.7

summarizes the results of the experiment, by showing the relation between DRAM energy

consumption and total memory usage.

5Python memory profiler page: https://pypi.org/project/memory_profiler/.

https://pypi.org/project/memory_profiler/
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Table 3.7: Results for DRAM Energy Consumption and Total Memory

DRAM Joules Peak MB Total MB
(c) C 5.28 77 626
(c) Rust 5.70 102 1087
(c) C++ 8.54 88 2274
(c) Ada 10.00 97 3020
(c) Pascal 15.24 66 3046
(v) Erlang 205.36 475 5457
(c) Go 15.49 69 5797
(v) Lisp 23.84 127 7544
(c) Haskell 22.40 162 8126
(c) Chapel 12.37 264 10513
(c) Fortran 24.16 82 10715
(v) Java 12.89 397 13935
(v) C# 18.62 188 14351
(c) Swift 25.72 179 23102
(v) F# 35.28 280 30218
(i) Dart 36.24 570 33891
(c) OCaml 19.62 186 36839
(v) Racket 63.29 232 38921
(i) TypeScript 272.30 309 52967
(i) JavaScript 42.70 303 88831
(i) Python 358.75 185 116265
(i) PHP 155.13 169 188136
(i) Hack 133.88 221 194589
(i) Ruby 353.00 262 203864
(i) Perl 326.82 437 255738
(i) Lua 487.50 444 690087
(i) JRuby 383.85 1309 890144

The average values presented in the table, and most importantly the order in which the

languages appear, gives as a clear first impression that the DRAM’s energy consumption re-

lates differently with peak memory usage and continuous memory usage. In the previous

section, we saw that the top 5 languages with lowest peak memory usage were Pascal, Go, C,

Fortran, and C++. For continuous memory usage, the top 5 less consuming languages are C

(626 Mb), Rust (1,087 Mb), C++ (2,274 Mb), Ada (3,020 Mb), and Pascal (3,046 Mb). In fact,

almost every other language switches places from one ranking to another.

In order to test if there is a correlation between DRAM energy consumption and continu-

ous memory usage, we repeated the statistical test performed for peak memory usage. Once

again, the Shapiro-Wilk test revealed the values were not normally distributed, thus we cal-

culated the Spearman correlation coefficient, which resulted in a ρ value of 0.744, indicating

a strong positive relationship. Thus, answering RQ3.5, we now know that there is a strong

uphill relationship between total memory usage and DRAM energy consumption. The most

memory used over a program’s lifecyle, the more DRAM energy consumption is spent.
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There seems to be in fact a clear relation between the DRAM energy and total memory

used, where a lower memory usage value leads to less energy consumed. Since the oppo-

site was observed for peak memory usage (i.e., almost no relation with DRAM energy), these

results seem to indicate that, it might be more energy efficient to store high amounts of mem-

ory at once and releasing it right afterwards than continuous memory usage throughout the

execution.

3.3.3 Energy vs. Time vs. Memory

There are many situations where a software engineer has to choose a particular software lan-

guage to implement his algorithm according to functional or non functional requirements.

For instance, if he is developing software for wearables, it is important to choose a language

and apply energy-aware techniques to help save battery. Another example is the implementa-

tion of tasks that run in background. In this case, execution time may not be a main concern,

and they may take longer than the ones related to the user interaction.

With the fourth research question RQ4, we try to understand if it is possible to automati-

cally decide what is the best programming language when considering energy consumption,

execution time, and peak memory usage needed by their programs, globally and individually.

In other words, if there is a “best” programming languages for all three characteristics, or if

not, which are the best in each given scenario.

To this end, we present in Table 3.8 a comparison of three language characteristics: en-

ergy consumption, execution time, and peak memory usage. In order to compare the lan-

guages using more than one characteristic at a time we use a multi-objective optimization

algorithm to sort these languages, known as Pareto optimization (Deb et al., 2005, 2002). It

is necessary to use such an algorithm because in some cases it may happen that no solution

simultaneously optimizes all objectives. For our example, energy, time, and peak memory

are the optimization objectives. In these cases, a dominant solution does not exist, but each

solution is a set, in our case, of software languages. Here, the solution is called the Pareto

optimal.

We used this technique, and in particular the software available at (Woodruff and Her-
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Table 3.8: Pareto optimal sets for different combination of objectives.

Time & Memory Energy & Time

C • Pascal • Go C
Rust • C++ • Fortran Rust

Ada C++
Java • Chapel • Lisp • Ocaml Ada

Haskell • C# Java
Swift • PHP Pascal • Chapel

F# • Racket • Hack • Python Lisp • Ocaml • Go
JavaScript • Ruby Fortran • Haskell • C#

Dart • TypeScript • Erlang Swift
JRuby • Perl Dart • F#

Lua JavaScript
Racket

TypeScript • Hack
PHP

Erlang
Lua • JRuby

Ruby
Perl • Python

Energy & Memory Energy & Time & Memory

C • Pascal C • Pascal • Go
Rust • C++ • Fortran • Go Rust • C++ • Fortran

Ada Ada
Java • Chapel • Lisp Java • Chapel • Lisp • Ocaml

OCaml • Swift • Haskell Swift • Haskell • C#
C# • PHP Dart • F# • Racket • Hack • PHP

Dart • F# • Racket • Hack • Python JavaScript • Ruby • Python
JavaScript • Ruby TypeScript • Erlang

TypeScript Lua • JRuby • Perl
Erlang • Lua • Perl

JRuby

man, 2013), to calculate different rankings for the analyzed software languages. In Table 3.8

we present four multi-objective rankings: time & peak memory, energy & time, energy & peak

memory, and energy & time, & peak memory. For each ranking, each line represents a Pareto

optimal set, that is, a set containing the languages that are equivalent to each other for the

underlying objectives. In other words, each line is a single rank or position. A single software
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language in a position signifies that the language was clearly the best for the analyzed charac-

teristics. Multiple languages in a line imply that a tie occurred, as they are essentially similar;

yet ultimately, the languages lean slightly towards one of the objectives over the other as a

slight trade-off.

The most common performance characteristics of software languages used to evaluate

and choose them are execution time and peak memory usage. If we consider these two char-

acteristics in our evaluation, C, Pascal, and Go are equivalent. However, if we consider energy

and time, C is the best solution since it is dominant in both single objectives. If we prefer en-

ergy and peak memory, C and Pascal constitute the Pareto optimal set. Finally, analyzing all

three characteristics, this scenario is very similar as for time and peak memory.

It is interesting to see that, when considering energy and time, the sets are usually reduced

to one element. This means, that it is possible to actually decide which is the best language.

This happens possibly because there is a mathematical relation between energy and time and

thus they are usually tight together, thus being common that a language is dominant in both

objectives at the same time. However, there are cases where this is not true. For instance, for

Pascal and Chapel it is not possible to decide which one is the best as Pascal is better in

energy and peak memory use, but worse in execution time. In these situations the developer

needs to intervene and decide which is the most important aspect to be able to decide for

one language.

It is also interesting to note that, when considering peak memory use, languages such

as Pascal tend to go up in the ranking. Although this is natural, it is a difficult analysis to

perform without information such as the one we present.

Given the information presented in Table 3.8 we can try to answer RQ4: Can we auto-

matically decide what is the best software language considering energy, time, and peak

memory usage? If the developer is only concerned with execution time and energy con-

sumption, then yes, it is almost always possible to choose the best language. Unfortunately,

if peak memory is also a concern, it is no longer possible to automatically decide for a single

language. In all the other rankings most positions are composed by a set of Pareto optimal

languages, that is, languages which are equivalent given the underlying characteristics. In
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these cases, the developer will need to make a decision and take into consideration which

are the most important characteristics in each particular scenario, while also considering

any fuctional/non-functional requirements necessary for the development of the applica-

tion. Still, the information we provide in this study is quite important to help group languages

by equivalence when considering the different objectives. For the best of our knowledge, this

is the first time such work is presented. Note that we provide the information of each indi-

vidual characteristic in Table 3.6 so the developer can actually understand each particular set

(we do not show such information in Table 3.8 to avoid cluttering the section with to many

tables with numbers).

3.4 Threats to Validity

The goal of our study was to both measure and understand the energetic behavior of several

programming languages, allowing us to bring about a greater insight on how certain lan-

guages compare to each other mainly in terms of energy consumption, but also performance

and memory. We present in this subsection some threats to the validity of our study, divided

into four categories (Cook and Campbell, 1979), namely: conclusion validity, internal validity,

construct validity, and external validity.

Conclusion Validity From our experiment it is clear that different programming paradigms

and even languages within the same paradigm have a completely different impact on energy

consumption, time, and memory. We also see interesting cases where the most energy ef-

ficient is not the fastest, and believe these results are useful for programmers. For a better

comparison, we not only measured CPU energy consumption but also DRAM energy con-

sumption. This allowed us to further understand the relationship between DRAM energy

consumption and peak memory usage, while also understanding the behavior languages

have in relation the energy usage derived from the CPU and DRAM. Additionally, the way

we grouped the languages is how we felt is the most natural to compare languages (by pro-

gramming paradigm, and how the language is executed). Thus, this was the chosen way to

present the data. Nevertheless, all the data is available and any future comparison groups
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such as “.NET languages” or “JVM languages” can be very easily analyzed.

Internal Validity This category concerns itself with what factors may interfere with the re-

sults of our study. When measuring the energy consumption of the various different pro-

gramming languages, other factors alongside the different implementations and actual lan-

guages themselves may contribute to variations, i.e. specific versions of an interpreter or

virtual machine. To avoid this, we executed every language and benchmark solution equally.

In each, we measured the energy consumption (CPU and DRAM), execution time, and peak

memory 10 times, removed the furthest outliers, and calculated the median, mean, standard

deviation, min, and max values. This allowed us to minimize the particular states of the tested

machine, including uncontrollable system processes and software. However, the measured

results are quite consistent, and thus reliable. In addition, the used energy measurement tool

has also been proven to be very accurate.

Construct Validity We analyzed 27 different programming languages, each with roughly 10

solutions to the proposed problems, totaling out to almost 270 different cases. These solu-

tions were developed by experts in each of the programming languages, with the main goal

of "winning" by producing the best solution for performance time. While the different lan-

guages contain different implementations, they were written under the same rules, all pro-

duced the same exact output, and were implemented to be the fastest and most efficient as

possible. Having these different yet efficient solutions for the same scenarios allows us to

compare the different programming languages in a quite just manner as they were all placed

against the same problem. Albeit certain paradigms or languages could have an advantage

for certain problems, and others may be implemented in a not so traditional sense. Never-

theless, there is no basis to suspect that these projects are best or worst than any other kind

we could have used.

External Validity We concern ourselves with the generalization of the results. The obtained

solutions were the best performing ones at the time we set up the study. As the CLBG is an

ongoing "competition", we expect that more advanced and more efficient solutions will sub-
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stitute the ones we obtained as time goes on, and even the languages’ compilers might evolve.

Thus this, along with measurements in different systems, might produce slightly different re-

sulting values if replicated. Nevertheless, unless there is a huge leap within the language, the

comparisons might not greatly differ. The actual approach and methodology we used also fa-

vors easy replications. This can be attributed to the CLBG containing most of the important

information needed to run the experiments, these being: the source code, compiler version,

and compilation/execution options. Thus we believe these results can be further generalized,

and other researchers can replicate our methodology for future work.

3.5 Conclusions

In this chapter, we first present an analysis and comparison of the energy efficiency of 27

well-known software languages from the popular software repository The Computer Lan-

guage Benchmarks Game. We are able to show which were the most energy efficient software

languages, execution types, and paradigms across 10 different benchmark problems.

Through also measuring the execution time and peak memory usage, we were able to

relate both to energy, as to understand not only how memory usage affects energy consump-

tion, but also how time and energy relate. This allowed us to understand if a faster language

is always the most energy efficient. As we saw, this is not always the case.

As often times developers have limited resources and may be concerned with more than

one efficiency characteristic we calculated which were the best/worst languages according to

a combination of the previous three characteristics: Energy & Time, Energy & Peak Memory,

Time & Peak Memory, and Energy & Time & Peak Memory.

Finally, the work in this chapter has been further extended, where we additionally ana-

lyzed the Rosetta Code chrestomathy repository and compare the results from this and The

Computer Language Benchmarks Game, and has been submitted and is currently under re-

view. Our work helps contribute another stepping stone in bringing more information to

developers to allow them to become more energy-aware when programming.
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Chapter 4

Spectrum-based Energy Leak

Localization

This chapter proposes a technique to detect energy inefficient fragments in the source

code of a software system. Test cases are executed to obtain energy consumption mea-

surements, and a statistical method, based on spectrum-based fault localization, is in-

troduced to relate energy consumption to the source code. The result of our technique is

an energy ranking of source code fragments pointing developers to possible energy leaks

in their code. This technique was implemented in the SPELL toolkit.

In order to evaluate our technique, we conducted an empirical study where we

asked participants to optimize the energy efficiency of a software system using the SPELL

toolkit, while also having two other groups using no tool assistance and a profiler, re-

spectively. We showed statistical evidence that developers using our technique and tool

were able to improve the energy efficiency by 43% on average, and even out performing

a runtime profiler when used for energy optimization.

49
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4.1 Introduction

In the previous chapter, we looked at the varying energy efficiency of different programming

languages. With all the possible approaches to solve the same problem (different algorithms,

design patterns, data structures, etc), even the most energy efficient language, such as C, can

be written in an energy (or runtime) inefficient way.

To detect inefficiency at runtime, many programming languages offer advanced profilers

which locate source code fragments which are possibly responsible for such inefficiencies.

In the same line of reasoning, while IDEs have traditionally incorporated powerful advanced

type and modular systems, testing and debugging frameworks, and other tools to improve

software developers productivity and effectiveness, there is no concrete evidence that this

trend has included techniques to optimize or even analyze source code energy consump-

tion (Pinto et al., 2014a; Pang et al., 2016).

Indeed, if we compare energy-aware software engineering, or Energyware Engineering,

with the long lasting series of engineering techniques that aim at helping software developers

quickly construct correct programs with optimal runtime we see an obvious deficit. While the

latter includes compiler constructions such as partial and/or runtime compilation, advanced

garbage collectors or parallel execution, the former is still clearly more modest in terms of

achievements (Lago, 2015).

In this chapter, we present a technique to locate energy inefficiencies within a program’s

source code, such as how a profiler would locate performance inefficiencies in a program’s

source code. Focusing on TRQ2, this chapter defines a technique, named SPELL - SPectrum-

based Energy Leak Localization, which has been implemented in a tool, to determine red

(energy inefficient) areas in software. The idea of this approach has been previously pro-

posed in (Pereira et al., 2017a). In this work, we consider an energy leak synonymous to an

energy inefficiency. In this context, a parallel is made between the detection of anomalies in

the energy consumption of software during program execution, and the detection of faults in

the execution of a program. Having this parallelism established, we adapted fault detection

techniques, often used to investigate software bugs in program executions, to detect ener-
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getic faults in programs.

The software system to be analyzed is executed with a set of test cases, and compo-

nents of such system (for example, packages, functions, loops, etc.) are instrumented to

estimate/measure the energy consumption at runtime. Inefficient energy consumption, the

so-called energy leaks, are interpreted in SPELL as program faults, and we adapt Spectrum-

based Fault Localization (SFL) techniques (Abreu et al., 2009, 2007) to relate energy consump-

tion to the system’s source code. Our analysis associates different percentage of responsibil-

ity for the energy consumed to the different components of the underlying system. Thus, the

result of our analysis is a ranking of components sorted by their likelihood of being respon-

sible for energy leaks, essentially pinpointing and prioritizing the developer’s attention on

the most critical red spots in the analyzed system. Thus, giving more useful information to

have better support in making decisions of what parts of the system need to be optimized,

ultimately helping place a new stepping stone for energy-aware programming.

Our proposed technique is language independent, allowing the analysis of programs writ-

ten in any programming language. Additionally, it is also context independent, allowing it to

be applied to detect red areas on various levels of code. This means we could use it to de-

tect the inefficiencies at different granularity levels, be that packages, classes, methods, func-

tions, lines of code, etc. Even more so, the technique allows the use of different hardware

component’s energy values (CPU, DRAM, HDD, GPU, etc.) to compute the energy spent by

a program, and may return the analysis of one specific factor (energy, time, or frequency of

usage), or a global analysis considering all three factors.

Supported by our tool, our technique was able to identify potential energy leaks in the

source code of concrete Java projects. Based on this identification, a set of expert Java pro-

grammers were then asked to improve the (energy) efficiency of those projects. The analysis

of their success in doing so provided statistical evidence that the programs they ended up

altering indeed consume less energy that the ones they were originally given, with an im-

provement, for different projects, between 15% and 74%.

Complementary, we compared the energy efficiency of the programs obtained as ex-

plained above against programs obtained from the original ones but by programmers work-
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ing without the knowledge of any energy leak. From such comparison, we found statistical

evidence that the difference is significant, in favor of the former: their performance is be-

tween 14% and 38% better.

A recurrent debate when optimizing energy consumption in software is whether a per-

formance optimization is always an energy consumption optimization. Indeed, the Energy

equation (EQ 3.1) does indicate that reducing time would imply a reduction in energy. How-

ever, the Power variable of the equation, not to be assumed as a constant, also has an im-

pact alongside Time. Therefore, conclusions regarding this issue tend to diverge, where some

works do support that optimizing for energy is optimizing for performance (Yuki and Ra-

jopadhye, 2014), while many others have studied contexts where the opposite was observed (Pinto

et al., 2014b; Trefethen and Thiyagalingam, 2013b; Couto et al., 2017b; Lima et al., 2016;

Lorenzo et al., 2015; Nobre et al., 2018; Kambadur and Kim, 2014; Li et al., 2013; Abdulsalam

et al., 2015; Pereira et al., 2016, 2017b). This suggests that only looking at performance might

not be enough for optimizing energy.

Consequently, performance profilers are also not enough as they focus on indicating

where one should optimize in order to improve execution time. Therefore, an energy pro-

filer is needed if one wishes to optimize for energy consumption. Indeed we will show this is

the case in Section 4.4.

In order to shed light and contribute to this debate with a particular focus on our context,

we have complementary analyzed and compared our tool with an off the shelf profiler. This

means that the experts were asked to improve the efficiency of the projects we considered

with the guidance of SPELL and with the guidance of a runtime profiler. Our analysis pro-

vided statistical evidence that experts with access to located energy leaks were able to better

optimize the energy consumption of those projects than when using a profiler, with improve-

ments between 2% and 72%.

The contributions of this chapter are three-fold:

• A language independent technique to locate energy inefficient components in the source

code of software systems. This technique is also independent of the approach used to

measure (via external devices (Ferreira et al., 2013; Hähnel et al., 2012; Rotem et al.,
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2012)) or estimate (via predictive models (Liqat et al., 2013; Noureddine et al., 2015))

energy consumption (Section 4.2).

• An implementation of our technique as a Java-based tool that is able to (automatically)

instrument the energy consumption of Java source code fragments, relying on the RAPL

power estimation consumption model provided by Intel (Dimitrov et al., 2015; Hähnel

et al., 2012), and to locate energy leaks in Java source code (Section 4.3).

• An evaluation of our technique and tool by detecting energy leaks in an empirical study.

Programmers following SPELL recommendations were able to optimize programs to

have energetic gains of 43% on average (Section 4.4).

This chapter concludes with final comments in Section 4.6.

4.2 Spectrum-based Energy Leak Localization

In this chapter, we present a language independent technique, termed SPELL – or Spectrum-

based Energy Leak Localization – that localizes red areas in source code.

4.2.1 Spectrum-based Fault Localization

Our technique is based on spectrum-based fault localization (Abreu et al., 2009, 2007; Perez,

2018), a statistical analysis technique to detect faults in a program based on its implementa-

tion (source code).

In particular, SFL uses a hit spectrum (set of flags which reflect if a certain component

is used or not in a particular run of the software) (Abreu et al., 2009; Passos et al., 2015) to

build a matrix A of dimension n ×m, where m columns represent the different components

(e.g. methods, classes) of a program during n independent test executions. A component can

be anything being analyzed, be this a program, a package, a class, a method, or even a line of

code. An entry ai , j in A of value 0 means that component j was not executed in test execution

i , and an entry of value 1 means that it was. Complementing the hit spectrum, SFL also uses
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a vector e, with n elements, each of which indicates whether each of the n tests succeeded or

not.

Equation 4.1 illustrates the generic format of A and e, and Equation 4.2 presents a con-

crete (simulated) example of the application of SFL with 3 test cases executed on a program

with 4 components. The first line of the matrix A in the example, e.g., reads as: in the execu-

tion of the first test case, components c1, c2 and c4 were executed and component c3 was not.

The first element of e, i.e., the value 0, indicates that the execution of the first test case met its

expected output (or in other words, that it did not fail).

m components error detection

n spectra



a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m

...
...

. . .
...

an,1 an,2 · · · an,m





e1

e2

...

en

 (4.1)


1 1 0 1

1 0 1 1

1 0 1 0




0

1

1

 (4.2)

Using (A,e), SFL tries to find which components are the most likely to be faulty by calcu-

lating: n11( j ): the number of failed runs (indicated by the second 1 subscript) where compo-

nent j was involved (indicated by the first 1 subscript); n10( j ): the number of successful runs

in which component j was involved; and n01( j ): the number of failed runs where component

j was not involved. This produces a 3×m matrix N , where m is the number of components

in the program, and whose first/second/third line holds, for each component j ∈ {1, ...,m},

n11( j ), n10( j ) and n01( j ), respectively.

Equation 4.3 shows the generic formulation of N and Equation 4.4 shows its instance

for the illustration in Equation 4.2. Finally, SFL applies the Ochiai coefficient of similarity

(Equation 4.5) to each component j ∈ [1..m] to indicate which component has the highest

probability of being faulty. This produces the matrix S given in Equation 4.6.
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m components
n11(1) n11(2) · · · n11(m)

n10(1) n10(2) · · · n10(m)

n01(1) n01(2) · · · n01(m)


(4.3)


2 0 2 1

1 1 0 1

0 2 0 1

 (4.4)

S j = n11( j )√
(n11( j )+n01( j )) · (n11( j )+n10( j ))

(4.5)

4 components

S
[

0.82 0.0 1.0 0.5
] (4.6)

Analyzing the elements of matrix S, we finally conclude that component 3 is the most

likely to be faulty. The rationale for this is that such component was involved in all the test

executions that failed and was not involved in the test execution that succeeded.

In our proposed technique, that we introduce in the following subsections, we also rely

on the spectrum of a program, which allows us to discriminate the usage of each component,

and in what cases it was used, further extracting more information of the components being

analyzed.

4.2.2 Static Model Formalization

Similarly to SFL, the technique that we propose, SPELL, relies on an input matrix A, with

dimension n ×m, where the n lines also correspond to the number of test executions, and

the m columns to the number of components.1 It is very important to note that by test we

mean test scenarios which replicate a real-world usage of the application, i.e., system tests.

The quality of the tested scenarios is also important because only with tests which stress the

1For a complete example please refer to Section 4.2.4.
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components with different inputs replicating real-world scenarios, can one extract reliable

information.

Differently to SFL, however, elements of A actually hold triples. Each such element λi , j is

defined as follows:

{ (0,0,0), if component j was not executed in test i ;

(Ei , j , Ni , j ,Ti , j ), otherwise.

The execution data of each component is therefore segmented in 3 categories: E for en-

ergy consumption, N for the number of executions and T for the execution time.

In the energy consumption category, E , values of the energy consumed by different hard-

ware components may be present, for example: CPU (ECPU), DRAM (EDRAM), fans (Efans),

HDD (Edisk), GPU (EGPU), etc. At least one hardware component must be present.

The energy consumption values are expressed in the energy unit Joules (J), and the exe-

cution time is represented in milliseconds (ms). Finally, N holds the number of executions

(cardinality).

4.2.3 Energy Leak Localization

Now that we have our spectrum model, we can begin extracting useful information and lo-

calizing the energy leaks.

While in SFL there is an error vector to reason about the validity of the output obtained

by a test, the SPELL analysis does not receive an error vector. This is because there is still

no known understanding to signal what can be seen as an excess of energy consumption.

Therefore, an error vector needs to be calculated, and we define two different perspectives to

calculate error vectors and similarities. These perspectives, that we describe next, are called

Component Category Similarity and Global Similarity. An interesting consideration to draw

here is that use of the error vector cannot result in a binary decision (pass or fail) for a test

execution; the criterion has to use continuous values to represent the greenness of a test.

Component Category Similarity. The construction of this oracle was based on the regu-

lation of greenhouse gas emissions for countries. After assessing how much is the total emis-
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sion of gases in the different years, and depending on what each country contributed to these

total emissions, each country is assigned a percentage of responsibility. We try to establish

an analogy, where the n years are the different tests, and the m countries are the different

components with the total for each category (energy, cardinality, and execution time), with

the goal of assigning responsibilities to each component comparing with the total value.

To construct the error vector, we sum up all the values of all m components for each test

i ∈ {1, ...,n}, shown in Equation 4.7:

ei = (
m∑

j=1
Ei , j ,

m∑
j=1

Ni , j ,
m∑

j=1
Ti , j ) (4.7)

As this is applied for all tests, we obtain Equation 4.8, a vector of triples called e:2

e = [e1 e2 . . . en]T (4.8)

With (A,e) at hand, we now have an oracle model, and can begin localizing the energy

leaks. Continuing our analogy of gas emissions, we need to relate the (3-category) data of

each component with the total data. This is achieved comparing each component in A with

e. The main goal is to obtain a simple structure containing the similarity between each col-

umn j ∈ {1, ...,m} in A (which refers to the resources spent by component j ) and vector e (the

total amount of resources that were spent). This similarity can be interpreted as how much

component j is responsible for each execution information of the total vector.

Assuming that A( j ) projects column j from matrix A, the similarity between component

j and e is defined as φ j , where:

φ j = (α1(A( j ),e),α2(A( j ),e),α3(A( j ),e)) (4.9)

Finally, assuming that for x ∈ {1,2,3}3, A( j , x) and e(x) project the x-th element from all

the triples of A( j ) and e, respectively, we define:

2We use superscript T as the transpose of a matrix.
3Here, indexes 1, 2 and 3 represent E, N and T respectively.
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αx (A( j ),e) =

n∑
i=1

A( j , x)i

n∑
i=1

e(x)i

(4.10)

To calculate the Ochiai coefficient similarity, we need to now be able to distinguish be-

tween a passed and a failed test. As previously stated, we cannot binarily define excess energy

consumption. Thus, for this formula, we inspired ourselves in the Jaccard similarity coeffi-

cient (Real and Vargas, 1996). This coefficient is well-known and widely used to calculate the

similarity coefficient between two vectors and has been used for a long period of time in the

biology domain (Dombek et al., 2000; Rousseau, 1998). Using this definition, we calculate the

similarity coefficient for each of the component’s constituents E , N and T .

Applying this similarity function to all components j ∈ {1, ...,m} will result in a row vector

which represents, for each component and each test execution, their influence in the overall

context for a given perspective (E , N or T ). The higher the similarity (the closer it is to 1) the

more responsible it is in that category.

Global Similarity. Using the similarity of each component category, we can have a

parametrized analysis. However, it is also useful to have a value encoding the global simi-

larity, allowing a numerical and global comparison between the different components.

The energy category E of a software component j can contain information on different

hardware components such as CPU, DRAM, GPU, fans, and disk. These hardware compo-

nents have different power consumption patterns that are known in advance. So, this infor-

mation should be standardized according to the spontaneity of those hardware components.

Let us assume the following scenario:

• For a concrete test suite, software components 1 and 2 showed the same total energy

consumption;

• However, they rely differently on hardware components A and B, wherein A on average

consumes more power than B;

• The energy of component 1 only accounts for the use of component A;
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• The energy of component 2 only accounts for the use of component B;

In spite of having the same consumption value, software components 1 and 2 should

have their global similarity value influenced in different ways. As hardware component A has

a higher average power consumption, component 1 is likely to contribute more to energy

consumption than component 2 in scenarios that are not captured by the test suite in use.

A multiplicative factor can be defined for each hardware component and applied to allow

standardization. Table 4.1 details the average power consumption for each component4.

Table 4.1: Average W consumption for hardware components

Component name Average power consumption (W)

CPU 102.5
DRAM 3.75
Fans 3.3
Hard Drive 7.5
GPU 187.5

Observing, e.g., that C PU is responsible for 34% of the total power consumption on aver-

age, for each test i ∈ {1, ...,n} and component j ∈ {1, ...,m} we propose the formula:

EFi , j = 0.34×ECPUi , j +0.01×EDRAMi , j +0.01×Efansi , j +

0.02×Ediski , j +0.62×EGPUi , j

(4.11)

Note this formula can be rewritten to account for any other combination of hardware

parts (e.g., include a screen of a smartphone).

Now we can calculate the global value for each component:

globalc ( j ) = [gc (1, j ) gc (2, j ) . . . gc (n, j )]T (4.12)

where

gc (i , j ) = EFi , j ×Ni , j ×Ti , j (4.13)

This global value takes into consideration not only the energetic consumption of a com-

4http://www.buildcomputers.net/power-consumption-of-pc-components.html

http://www.buildcomputers.net/power-consumption-of-pc-components.html
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ponent, but the cardinality and execution time all as one value. This allows us to have a better

understanding of what are the most important components to look at and try to optimize.

For example, a component A may consume twice the amount of energy of component B, but

component B is used five times as often which might make it a good candidate to prioritize

the attention on. This would give a weight to component B as it would seem to be a core part

of the analyzed program.

Once we have the global values for each component, we can proceed to calculate the

global error vector as:

globale = [ge (1) ge (2) . . . ge (n)]T (4.14)

where

ge (i ) =
m∑

j=1
gc (i , j ) (4.15)

Finally, we apply the similarity function α to each component j to obtain the global sim-

ilarity with the error vector, defined as ψ,

ψ( j ) =α(globalc ( j ),globale ) (4.16)

where

α(c,e) =

n∑
i=1

ci

n∑
i=1

ei

(4.17)

Once again, the higher the similarity value, and closer it is to 1, the more responsible it is.

We can rank the components by this global similarity and have initial indicators of where in

the program we should prioritize our attention on, and which are the most important com-

ponents to optimize.



4.2. SPECTRUM-BASED ENERGY LEAK LOCALIZATION 61

4.2.4 An Example

To understand how the SPELL analysis works and see how it handles the execution data, we

present in the following a concrete example.

Imagine a program written in any programming language, which has four different com-

ponents (say, methods in Java), and is stressed with a test suite of five different inputs. This

program has its energy consumption, usage frequency, and execution time identified for each

component in each of the tests. Therefore, we can use the information of this program’s exe-

cution and start the analysis.

Table 4.2: SPELL matrix built for the example program

c1 c2 c3 c4 e g l obale

t1

{37,6}
1

75

 {61,11}
2

102

 0
0
0

 {42,18}
1

34

 {140,35}
4

211

 5693.04

t2

{38,7}
3

77

 {50,7}
1

103

 {34,5}
2

42

 {44,21}
1

37

 {166,40}
7

259

 6295.43

t3

{36,6}
1

73

 {58,10}
1

102

 {35,5}
1

43

 0
0
0

 {129,21}
3

218

 3433.39

t4

{37,7}
3

74

 {66,18}
2

105

 0
0
0

 {61,20}
2

43

 {164,45}
7

222

 9359.34

t5

{39,9}
2

75

 {54,9}
3

100

 {51,15}
4

60

 {65,20}
2

60

 {209,53}
11

295

 14411.1

φ

{0.2314,0.1804}
0.3125
0.3104

{0.3577,0.2835}
0.2813
0.4249

{0.1485,0.1289}
0.2188
0.1203

{0.2624,0.4072}
0.1875
0.1444


ψ 0.2464 0.4674 0.1451 0.1411

We can see the entire model of the SPELL analysis defined in Table 4.2, but let us construct

it step by step. The input data can be seen in the top left 5∗4 matrix shown in Table 4.2 where

each component and each test has a triple of three categories.
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This triple contains the CPU energy consumption value, the number of times that soft-

ware component was used, and the execution time:
EC PU

N

T


In this case, the only hardware component shown is the CPU for the sake of simplicity of

presenting our technique, but it still straightforwardly applies if energy consumption infor-

mation of more hardware components is available.

Similarity by Component’s Category. Having these inputs defined in SPELL, we will first

calculate the software component similarities. We begin by building the error (e vector). To

do so, for each test, we sum all the values of each category of the component data. This is

shown on the right hand side of our example matrix under the e column. Next, we calculate

each of the component’s category similarity. For example, for the energy category of compo-

nent c1 we will have the following:

α1(A(c1),e) = 37+38+36+37+39
140+166+129+164+209 = 0.2314

This would be applied for the other two categories, and for each of the other components,

producing the results seen in the similarity by component’s category row φ in Table 4.2.

Global Similarity. For the global similarity, we begin by calculating the global values

of each component, and afterwards our new total global value vector. We obtain values

g l obalc (1) and g l obale :

globalc (1) = [948.0 2991.45 894.25 2799.42 1992.00]T

globale = [5693.04 6295.43 3433.39 9359.34 14411.1]T

Finally, we use the coefficient similarityψ(1), to obtain the global similarity value for com-

ponent c1 of 0.246642. Applying this to each component, we obtain the results under the

global similarity ψ.

Analysis. Having all the needed information to analyze this program we begin extracting

useful information. Reading the global similarity values (ψ), we can see which component
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has the highest probability of having an energy leak with the order of c2 (with similarity of

0.4678), c1 (with 0.2466), c3 (with 0.1450), and finally c4 (with 0.1406). This indicates to the

developer that he should first consider looking into component c2 to try to improve the en-

ergy consumption of this program.

An advantage of this technique, which highlights the complementary perspectives of the

two types of similarities that we consider, is that it can tell, besides having a global view of the

component, indicators of why the component is faulty. For example, c2 is given the highest

global similarity value. If we now look into its category similarity values (φ), we can see that

this component has the highest energy and time execution similarities (0.3577 and 0.4249,

respectively), and the second highest cardinality similarity (0.2813).

4.3 SPELL Toolkit

As previously stated, this technique is language independent, where the only required input

is a matrix representing the tests, components, and categories. As a proof of concept we have

implemented SPELL toolkit in Java and for Java systems.

To use SPELL in detecting energy leaks in software applications we have developed two

language dependent support tools in our SPELL toolkit. The first one consists of an en-

ergy monitoring instrumentation tool: it automatically instruments the source code of each

method in a class with calls to the API of a Java energy estimation framework during the be-

ginning and end of each method (including before any nested returns), and writes the execu-

tion trace and energy consumption in a file at the end of the execution.

This tool uses Intel’s Runtime Average Power Limit (RAPL) (Dimitrov et al., 2015), and

jRAPL (Liu et al., 2015). This allowed us to record precise energy consumption measurements

from the CPU, since RAPL is a very reliable tool (as shown in (Hähnel et al., 2012) and (Rotem

et al., 2012)). Note the technique is not limited to only using RAPL to measure energy, but any

energy measurement framework or tool can be used allowing the analysis of other languages,

or even other domains such as Android applications when using Trepn (Hoque et al., 2015)

or Monsoon (Monsoon, 2018) for example.
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The second tool uses the output execution trace of our instrumentation tool as input to

construct the SPELL matrix. This automatically looks at the method calls, and aggregates the

energy consumption, execution time, and frequency of methods into our matrix representa-

tion.

As our technique is language independent, one may easily develop front-end tools for

other languages to measure the consumption and generate the SPELL matrix to run the anal-

ysis. Our core tool, and its two supporting tools are open source5. The toolkit contains more

information on how to run the tools, and the representation of the input and output data of

each.

4.4 Empirical Evaluation

One of our goals is to help provide programmers ways to become more energy-aware. Addi-

tionally, our SPELL technique is to be used by developers to help them detect energy leaks

(or energy inefficiencies) on a source code level. Thus, we designed an empirical study to

understand and answer the following research questions:

• RQ1 Can the energy leaks identified by SPELL help developers improve the overall energy

efficiency of their programs? Answering this question allows us to understand if in fact

SPELL can detect areas in the source code where there is a probability of an energy

hotspot occurring. If SPELL were to consistently point to areas in the code, where in

turn the developer would go ahead and alter, and the energy efficiency improves, we

can assume it is indeed identifying energy leaks. If it were to indicate areas where by the

developer’s changes actually brought about a deterioration in the energy consumption,

then SPELL is not able to identify energy leaks.

• RQ2 Are the programs improved by developers assisted by SPELL significantly more en-

ergy efficient than the programs improved by developers without tool-assistance? If a

developer using SPELL is not significantly producing more energy efficient programs,

5GitHub: https://github.com/greensoftwarelab/SPELL

https://github.com/greensoftwarelab/SPELL
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then it would mean there is no need to use such a tool as a developer’s own knowledge

is enough for such a task.

• RQ3 Are the programs improved by developers assisted by SPELL significantly more en-

ergy efficient than the programs improved by developers with an off the shelf profiler?

This question is very important, as one might assume that SPELL is nothing more than

another profiler, or that using an off the shelf profiler is enough to improve the energy

efficiency of a program. Additionally, answering this question will allow us to under-

stand if looking at a program’s execution performance, and optimizing based off that

information is enough to optimize for energy.

The following sections will describe in detail the design, execution, results and discussion

of our empirical study.

4.4.1 Experimental Setup

In order to evaluate our technique with programmers, and to answer the previous research

questions, we have designed and conducted an empirical study.

Participants in this study were selected from a candidate group that replied to an invi-

tation that we publicized among our departments and two software houses. The selection

process consisted of a self assessment step, in which to be eligible, candidates had to con-

sider themselves experienced Java programmers. Ultimately, 15 programmers were selected:

12 male and 3 female; all with computer science background and/or professional experience:

6 postdoc researchers, 6 PhD students, and 3 professional programmers.

For this study, we asked programmers to try to optimize the energy consumption of a

program in three different scenarios: a control group, with our SPELL technique, and with a

profiler.

The participants were then arranged into groups of threes (one for each scenario) accord-

ing to their professional status. Essentially, the outcome was 5 different groups of 3: 2 groups

of postdoc, 2 groups of PhD students, and 1 group of professional programmers.
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In order to support the study, we initially considered 63 Java projects from an object-

oriented course for computer science students, where students were asked to build a jour-

nalism support platform, where users (Collaborators, Journalists, Readers, and Editors) can

write chronicles and reports, give likes and comments, and perform other tasks.

We filtered these projects to obtain the ones which passed a set of system tests designed

by the course instructors, and all 16 unique operations and functional requirements were

implemented (posting chronicles/reports, registering users, writing comments, viewing top

commented, etc). By doing so, we ended up with 42 comparable and differently implemented

projects6.

Due to allowing certain operations such as Listing Comments, and to provide an initial

“warm-up”, for each of the 42 projects we populated the system with an initial set-up with:

3000 Chronicles, 3000 Reports, 7655 Likes, 8586 Comments, 60 Collaborators, 60 Journalists,

406 Readers, and 15 Editors.

To execute the projects, we defined 7 test scenarios (i.e., 7 scenarios replicating real pro-

gram usage), simulating 7 days of interaction with the platform. Each test scenario was made

up of a random number (varying between the hundreds and the thousands) of the 16 unique

operations. While each test scenario contained each of the 16 unique operations, the ran-

domness allowed certain days to have more of a certain type of operation than others. For

example Tests 5 and 6 contain more write operations, while the others contain more read

and lookup operations.

For selecting which projects would actually be explored in our study, we have resorted

to SPELL itself. Indeed, we have used the test scenarios described previously to calculate

the global similarity value for each of the 42 software projects (each component was defined

as one project, so 42 components were analyzed in total). Project 1 (P1) obtained a global

similarities of 0.4259, P47 of 0.4093, P49 of 0.1439, P6 of 0.0042, P59 of 0.0042, P36 of 0.0029,

P17 of 0.0015, etc.

The reason for using SPELL here is that a higher global similarity represents a more prob-

able scenario where an energy leak may be occurring as it is more responsible for the overall

6http://www.di.uminho.pt/~jas/Research/spellStudies.rar

http://www.di.uminho.pt/~jas/Research/spellStudies.rar
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consumption, and means developers should focus their attention on that specific compo-

nent as it is the most energetically problematic one.

This gives us a ranking of the most problematic projects according to SPELL. However,

still we do not know where to look at to try to optimize. Thus, applying SPELL to each program

but considering components as methods would allow us to obtain a ranking of methods that

are the most/least responsible for energy consumption. So, we ran the SPELL analysis on the

5 worst ranking projects, so that 1 project is considered by each of our participant groups, to

localize where energy leaks are present on a method level.

The global similarity for each of the projects’ methods where ψ> 0.08 or to show at least

2 methods per project is shown in Table 4.3. The first column indicates the project, while

the second column states the problematic Class.method according to SPELL, and the third

column states the global similarity value. The higher it is, the more responsible it is for the

global inefficiency, and where a problem is most probable to be found.

Table 4.3: SPELL and Profiler ranking of methods from Projects P1, P47, P49, P6, and P59

Proj. Method (SPELL) ψ % Method (Profiler)

P1
voteInReport 0.97 95.3 voteInReport
getUserLoggedInType 0.02 2.7 listArticlesByTheme

P47

listAllChronicles 0.57 51.1 addComment
listAllReports 0.15 15.8 listAllChronicles
chronicleExist 0.12 7.8 chronicleExist

P49

Like 0.27 29.3 ListTheme
ListComments 0.19 27.5 ListTopic
AddComment 0.10 6.5 ListComments
ListTopic 0.08 5.5 Like

P6

printNoticiaTopicoTema 0.40 32.8 listChronicles
printCronicaTopicoTema 0.20 24.9 listReports
isLogged 0.15 13.2 topChronicles

P59
getArticle 0.94 81.9 getArticle
vote 0.04 12.4 getComments

As a profiling tool, we turned to the NetBeans (8.2) Profiler7, a Java profiler integrated into

the NetBeans IDE. By using the profiling methods mode, and more specifically the Hot spots

7https://profiler.netbeans.org/

https://profiler.netbeans.org/
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tool8, we were able to see what methods the tool was uncovering as performance bottlenecks.

Presented in Table 4.3 are the methods pointed by the profiler, under the Method (Profiler)

column, and under the % column is the total time (CPU) of the method as stated by the Hot

spots tools. Just as with SPELL, the higher the value, the more problematic the method is.

To further characterize the projects that we used, we show in Table 4.4 concrete metrics

about them. Each line represents the metrics for a single project, with the last 3 being the

minimum, average, and maximum values. Columns 2–4 are the number of classes, methods,

and lines of code (LOC), respectively. Column 5 represents the max cyclomatic complexity

present in that project from a single method. Finally, column 6 represents the average cyclo-

matic complexity for that class, excluding methods with a complexity of 0 or 1.

Table 4.4: Software Metrics for Projects P1, P47, P49, P6, and P59

Classes Methods LOC Max Comp. Avg Comp.

P1 38 181 1037 26 5.05
P47 32 155 923 25 2.38
P49 27 131 811 17 3.37
P6 15 122 691 37 5.04
P59 32 151 905 11 3.45

Min 15 122 691 11 2.38
Avg 28.8 148 873.4 23.2 3.86
Max 38 181 1037 37 5.05

In order to analyze the energy consumption of all projects, we have instrumented their

code using the SPELL toolkit. The instrumentation code is realized with calls to RAPL, which

allows us to measure and monitor the energy that is being consumed.

Our measurements were made on a system with the following specifications: Linux 3.13.0-

53-generic operating system, with 8GB of RAM, and a Sandy Bridge Intel(R) Core(TM) i3-3240

CPU @ 3.40GHz. In the architecture of our machine, RAPL is only able to provide informa-

tion regarding the energy consumption of the CPU. Each test was executed 30 times (Hogg

and Tanis, 1977), and we extracted the cardinality and average values for both the time and

CPU energy consumption (of the specific test and not the initial population as to only analyze

the tests).

8https://profiler.netbeans.org/docs/help/5.5/snap_cpu.html

https://profiler.netbeans.org/docs/help/5.5/snap_cpu.html
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4.4.2 Energy Optimization with Developers

In the previous subsection, we applied SPELL within a program to localize what methods are

possibly causing energy leaks, and used a profiler to identify possible performance bottle-

necks. But is the SPELL information reliable and useful for developers when trying to opti-

mize their program to become greener? And how does SPELL compare to a pure performance

analysis?

To answer this, we asked our 5 groups of participants to analyze one of the 5 projects and,

to the best of their knowledge, optimize its energetic performance. Each group was randomly

assigned one of the 5 projects. They were also given the project’s description and input ex-

amples to familiarize themselves with the software requirements and structure, and allowed

them to navigate the program looking at whatever they felt they needed to understand. We

asked them to dedicate approximately 30 minutes to first understand the project. Each par-

ticipant was given a series of test cases and their expected outputs. This allowed them to

verify if they changed the business logic when refactoring and optimizing the project.

Finally, we randomly chose one of the participants in each group to have access to infor-

mation produced by our SPELL technique for the given project, and one to have access to

information produced by the NetBeans profiler. Both were asked to closely follow the recom-

mendations of the tools. Thus, for each group/project, one participant used SPELL, one used

a profiler, and one used no tool (control-group). The only imposed restriction was to try to

dedicate no more than 2 hours to optimize the project.

We instructed them to take note of the time they began and, when they were satisfied

with their work and felt they did indeed made an impact to the performance, to take note of

the end time. They were also asked to describe what changes they made (or, if due to time

restrictions, what changes they would make), and if they (non control-group participants)

found it beneficial to have the data produced by the tools when optimizing for energy, or if

they (control-group participants) would have found it impactful.

Afterwards, we collected all the refactored programs (3 different variations for each), made

sure everything produced the expected output, and measured the energy consumption and

execution time from these refactorings.
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4.4.3 Results

Table 4.5 presents the results for Projects P1, P47, P49 P6, and P59, respectively. Each row un-

der Test represents the data for one of the 7 tests scenarios, with the final row being the totals

and global values. The first block of 2 columns represents the data for the original project,

showing Joules (J) and execution time in milliseconds (ms). The second, third, and fourth

block (with 4 columns each) represent the measured energy, execution time, and energetic

gain percentage (relative to the original project) for the control group, SPELL group, and pro-

filer group, respectively. The time taken to optimize is shown in parentheses above each block

next to the group name. A graphical representation of the global percentage of gains for each

project can be seen in Figure 4.1, where the blue dotted bars represents the energy improve-

ment (Joules) and the orange bars represent the execution time improvement (ms).

Figure 4.1: Global percentage of gains for all projects

The energy metrics (Abdulsalam et al., 2015) shown in Table 4.6, and the GPS-UP soft-

ware energy efficiency quadrant graphs shown in Figure 4.2, represent the ratios between the

original and optimized projects. Greenup (GU) is the ratio of the total energy consumption,

Speedup (SU) is the ratio of the execution time, and Powerup (PU) is the average power con-

sumption ratio. The higher the Greenup and Speedup, the more energy and performance ef-

ficient the optimization is. Powerup represents the power effects of the optimization, where

less than 1 implies average power savings, while a greater than 1 implies more power con-

sumed. Category (Cat) represents where the optimization falls under, with 1–4 being green
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Table 4.5: Study results from all projects

P1

Original Control - (2h05) SPELL - (1h13) Profiler - (1h33)
Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms
1 93.1 8621 17.8 1289 80.9 85 13.9 913 85.0 89 13.8 888 85.2 90
2 20.3 1645 11.3 1796 44.2 -9 8.8 537 56.4 67 9.3 567 54.0 66
3 87.4 7982 15.7 1146 82.0 86 13.8 869 84.2 89 13.8 869 84.2 89
4 32.0 2666 15.0 1005 53.0 62 13.4 859 58.0 68 14.0 905 56.2 66
5 58.5 5322 14.9 985 74.5 81 11.8 784 79.8 85 11.9 785 79.6 85
6 17.9 1343 15.0 753 16.1 44 11.7 725 34.6 46 12.1 753 32.2 44
7 14.0 928 13.6 850 2.9 8 11.9 725 14.8 22 12.6 780 10.1 16

Total 323.1 28507 103.3 7824 68.0 73 85.5 5413 73.5 81 87.6 5547 72.9 81

P47

Original Control - (2h02) SPELL - (1h16) Profiler - (0h44)
Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms
1 51.4 4487 19.3 1216 62.3 73 13.3 1160 74.1 74 21.5 1417 58.2 68
2 18.2 1235 10.3 641 43.2 48 7.6 798 58.4 35 10.1 643 44.2 48
3 36.7 2972 14.4 899 60.8 70 11.1 1018 69.8 65 16.1 1022 56.2 66
4 44.3 3683 18.1 1197 59.2 68 11.2 1024 74.7 72 19.1 1268 56.8 66
5 39.3 3323 18.3 1266 53.5 62 14.1 1267 64.1 61 18.8 1270 52.3 62
6 26.9 2024 15.6 991 42.1 51 13.0 1166 51.7 42 16.0 1008 40.4 50
7 30.0 2311 13.3 836 55.5 64 8.9 882 70.3 61 13.9 881 53.5 62

Total 246.7 20034 109.3 7045 55.7 65 79.1 7316 67.9 63 115.5 7510 53.2 63

P49

Original Control - (1h49) SPELL - (0h47) Profiler - (0h36)
Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms
1 40.2 2508 39.8 2458 1.1 2 23.4 2085 41.9 17 33.5 2056 16.8 18
2 19.9 1392 17.1 1210 14.2 13 9.0 972 54.8 30 15.9 943 20.0 32
3 34.1 2094 33.4 2042 2.1 2 15.8 1539 53.7 27 29.8 1728 12.6 17
4 36.0 2202 36.0 2200 0.1 0 17.0 1701 52.7 23 31.7 1865 12.0 15
5 24.5 1572 22.0 1380 10.1 12 20.2 1280 17.5 19 22.9 1341 6.4 15
6 19.9 1240 19.1 1182 4.0 5 17.1 1092 13.9 12 19.1 1063 3.9 14
7 29.3 1813 26.8 1644 8.5 9 18.8 1289 36.0 29 26.8 1501 8.7 17

Total 203.9 12821 194.1 12115 4.8 6 121.3 9958 40.5 22 179.7 10497 11.9 18

P6

Original Control - (2h13) SPELL - (1h22) Profiler - (2h00)
Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms
1 18.5 1351 19.0 1460 -2.6 -8 12.9 966 30.2 28 79.7 7781 -330.9 -476
2 9.4 600 10.3 668 -9.8 -11 7.8 487 17.0 19 13.9 1072 -47.9 -79
3 13.0 878 14.2 969 -9.8 -10 9.8 663 24.2 24 33.7 3010 -160.6 -243
4 21.2 1519 21.7 1571 -2.1 -3 17.1 1215 19.5 20 72.4 6953 -240.9 -358
5 13.1 939 14.8 1061 -13.0 -13 10.7 732 18.2 22 18.1 1453 -37.8 -55
6 12.0 804 13.2 902 -10.3 -12 10.3 673 14.3 16 14.0 1010 -16.3 -26
7 18.7 1254 19.1 1306 -2.2 -4 14.3 986 23.6 21 69.4 6759 -270.5 -439

Total 106.0 7345 112.4 7937 -6.1 -8 83.0 5723 21.7 22 301.2 28038 -184.2 -282

P59

Original Control - (1h58) SPELL - (1h04) Profiler - (1h21)
Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms
1 13.2 989 13.3 992 -0.6 0 11.0 803 16.5 19 11.3 797 14.9 19
2 8.0 453 7.1 436 11.5 4 5.5 391 31.1 14 6.6 395 18.0 13
3 10.2 722 10.4 730 -1.8 -1 8.5 643 16.6 11 9.4 630 8.3 13
4 10.5 763 10.4 758 1.1 1 9.8 679 6.8 11 9.5 648 10.0 15
5 11.5 840 11.5 846 -0.5 -1 9.8 681 14.9 19 10.0 687 12.5 18
6 10.0 633 9.3 611 7.0 3 8.6 548 14.1 13 8.4 539 16.5 15
7 7.8 529 8.0 535 -2.5 -1 7.3 472 7.0 11 7.3 472 7.0 11

Total 71.3 4929 70.1 4908 1.7 0 60.5 4215 15.1 14 62.4 4168 12.5 15

categories (a 1 represents better performance and energy efficiency, while a 3 represents bet-

ter performance at the cost of energy efficiency), and 5–8 being red categories. A fully detailed

description of these metrics, categories, and how to interpret these values can be found in the

original work (Abdulsalam et al., 2015).
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Table 4.6: GPS-UP Software Energy Efficiency metrics

P1

Control SPELL Profiler
Test GU SU PU CAT GU SU PU CAT GU SU PU CAT

1 5.24 6.69 1.28 3 6.68 9.44 1.41 3 6.76 9.71 1.43 3
2 1.79 0.92 0.51 4 2.29 3.06 1.34 3 2.18 2.90 1.33 3
3 5.57 6.97 1.25 3 6.32 9.18 1.45 3 6.32 9.18 1.45 3
4 2.13 2.65 1.25 3 2.38 3.10 1.30 3 2.28 2.95 1.29 3
5 3.92 5.40 1.38 3 4.96 6.79 1.37 3 4.91 6.78 1.38 3
6 1.19 1.78 1.50 3 1.53 1.85 1.21 3 1.47 1.78 1.21 3
7 1.03 1.09 1.06 3 1.17 1.28 1.09 3 1.11 1.19 1.07 3

Total 3.13 3.64 1.16 3 3.78 5.27 1.39 3 3.69 5.14 1.39 3

P47

Control SPELL Profiler
Test GU SU PU CAT GU SU PU CAT GU SU PU CAT

1 2.66 3.69 1.39 3 3.87 3.87 1.00 1 2.39 3.17 1.32 3
2 1.76 1.92 1.09 3 2.40 1.55 0.64 1 1.79 1.92 1.07 3
3 2.55 3.30 1.30 3 3.31 2.92 0.88 1 2.28 2.91 1.27 3
4 2.45 3.08 1.26 3 3.96 3.60 0.91 1 2.31 2.90 1.26 3
5 2.15 2.63 1.22 3 2.79 2.62 0.94 1 2.10 2.62 1.25 3
6 1.73 2.04 1.18 3 2.07 1.74 0.84 1 1.68 2.01 1.20 3
7 2.25 2.77 1.23 3 3.37 2.62 0.78 1 2.15 2.62 1.22 3

Total 2.26 2.84 1.26 3 3.12 2.74 0.88 1 2.14 2.67 1.25 3

P49

Control SPELL Profiler
Test GU SU PU CAT GU SU PU CAT GU SU PU CAT

1 1.01 1.02 1.01 3 1.72 1.20 0.70 1 1.20 1.22 1.01 3
2 1.17 1.15 0.99 1 2.21 1.43 0.65 1 1.25 1.48 1.18 3
3 1.02 1.03 1.00 3 2.16 1.36 0.63 1 1.14 1.21 1.06 3
4 1.00 1.00 1.00 3 2.11 1.29 0.61 1 1.14 1.18 1.04 3
5 1.11 1.14 1.02 3 1.21 1.23 1.01 3 1.07 1.17 1.10 3
6 1.04 1.05 1.01 3 1.16 1.14 0.98 1 1.04 1.17 1.12 3
7 1.09 1.10 1.01 3 1.56 1.41 0.90 1 1.10 1.21 1.10 3

Total 1.05 1.06 1.01 3 1.68 1.29 0.77 1 1.13 1.22 1.08 3

P6

Control SPELL Profiler
Test GU SU PU CAT GU SU PU CAT GU SU PU CAT

1 0.97 0.93 0.95 6 1.43 1.40 0.98 1 0.23 0.17 0.75 6
2 0.91 0.90 0.99 6 1.21 1.23 1.02 3 0.68 0.56 0.83 6
3 0.91 0.91 0.99 6 1.32 1.32 1.00 3 0.38 0.29 0.76 6
4 0.98 0.97 0.99 6 1.24 1.25 1.01 3 0.29 0.22 0.74 6
5 0.89 0.88 1.00 6 1.22 1.28 1.05 3 0.73 0.65 0.89 6
6 0.91 0.89 0.98 6 1.17 1.20 1.02 3 0.86 0.80 0.93 6
7 0.98 0.96 0.98 6 1.31 1.27 0.97 1 0.27 0.19 0.69 6

Total 0.94 0.93 0.98 6 1.28 1.28 1.01 3 0.35 0.26 0.74 6

P59

Control SPELL Profiler
Test GU SU PU CAT GU SU PU CAT GU SU PU CAT

1 0.99 1.00 1.00 8 1.20 1.23 1.03 3 1.18 1.24 1.06 3
2 1.13 1.04 0.92 1 1.45 1.16 0.80 1 1.22 1.15 0.94 1
3 0.98 0.99 1.01 8 1.20 1.12 0.94 1 1.09 1.15 1.05 3
4 1.01 1.01 1.00 1 1.07 1.12 1.05 3 1.11 1.18 1.06 3
5 0.99 0.99 1.00 6 1.17 1.23 1.05 3 1.14 1.22 1.07 3
6 1.08 1.04 0.96 1 1.16 1.16 0.99 1 1.20 1.17 0.98 1
7 0.98 0.99 1.01 8 1.08 1.12 1.04 3 1.07 1.12 1.04 3

Total 1.02 1.00 0.99 1 1.18 1.17 0.99 1 1.14 1.18 1.03 3

4.4.4 Discussion

To validate improvements and changes in energy consumption, we tested the following hy-

pothesis:
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Figure 4.2: GPS-UP Software Energy Efficiency Quadrant Graph

H0 : P (A > B) = 0.5

H1 : P (A > B) 6= 0.5

where P (A > B) represents, when we randomly draw from both A and B, that the probabil-

ity of a draw from A is larger than the one from B is 50% in the case of our null hypothesis, and
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different than 50% in our alternative hypothesis. To understand if there is an overall signifi-

cant relevance between the (A,B) distributions, and not only per test scenario or per project,

the data from all 30 measured samples, 7 tests, and 5 projects were grouped per distribu-

tion (Original, Control, SPELL, and Profiler). The distributions were defined in the following

(A, B) pairs: (Original, Control), (Original, SPELL), (Original, Profiler), (Control, SPELL), and

(Profiler, SPELL). We consider the samples as independent, non-normal distributed, and ran

the Wilcoxon signed-rank test with a two-tail P value with α=0.01. The improvements were

indeed very significant, producing significant relevance in all 5 cases, with p-values < 0.0001.

To calculate a nonparametric effect size, Field (Field, 2009) suggests using Rosenthal’s

formula (Rosenthal, 1991; Rosenthal et al., 1994) to compute a correlation, and compare

the correlation values against Cohen’s (Cohen, 1988) suggested thresholds of 0.1, 0.3, and

0.5 for small, medium, and large magnitudes respectively. Thus we obtained the values of:

0.4 (medium), 0.6 (large), 0.3 (medium), 0.6 (large), and 0.5 (large) for the respective 5 (A,B)

pairs. Thus, we can see that SPELL outperforms the profiler when compared to both the orig-

inal versions, where SPELL achieved a large effect size and the profiler a medium effects size,

and to each other with also a large effect size.

Returning to our research questions, we have shown that there is both significant rele-

vance and a large effect size when using our SPELL technique to improve the energy effi-

ciency of programs, with an average energy gain of 44% (RQ1). While both the control-group

(no tool assistance) and the profiler group did also produce significant relevance with their

energy optimizations when compared to the original versions, SPELL outperformed both.

Whereas the control group achieved a medium effect size, SPELL achieved a large effect size

and when comparing SPELL to the control group, the former once again achieved a large ef-

fect size (RQ2). Finally, the same applies to the profiler group where it achieved a medium

effect size when comparing the optimizations to the original version (versus the large effect

size of SPELL), and again SPELL achieved a large effect size when comparing to the profiler

group (RQ3).

Observations From this study, we can see several interesting observations. In the case

of Project P1 and P59, the rankings from both using SPELL and the profiler pointed to the
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same principal method (as shown in Table 4.3). Both were given a very high responsibility

percentage (by SPELL) and high CPU time (by the profiler). This meant that if this method

was optimized, a great impact in the performance would occur as this was, without a doubt,

a very problematic method due to a bottleneck. Consequently for these two projects, the

participants achieved very similar energy optimizations as one would expect. The slight dif-

ference can be attributed to what methods SPELL and the profiler pointed to afterwards, with

the SPELL recommendations producing slightly better results.

We can also see how programmers with access to the SPELL recommendations were more

efficient spending between 38%–57% less time, compared to the control-group, to detect and

correct the problem, while also producing more efficient programs in both cases of energy

and execution time. While those with the profile recommendations did also spend less time,

they did not achieve results as good as those with the SPELL recommendation as we have

seen. The participants also felt that having the ranking of responsibility percentage was very

useful in identifying the energy leaks in the code, while the participants without this infor-

mation expressed how they did not know where to start looking, or if certain parts were in

fact problematic. All this is actually what we expected (for both SPELL and the profiler) as

there is a substantial impact on having tools for energy-aware programming, as also sug-

gested by (Pinto et al., 2014a; Pang et al., 2016).

Another interesting case is in Project P6, where the results indicate a clear efficiency loss

(both time and energy) for the case study using the profiler information. By comparing the

original and transformed versions of the code, we discovered that the programmer responsi-

ble for this study decided to optimize the code by improving the efficiency of all listings and

lookups on data structures, hence worsening insertions. The fact is that the feature tests that

we provided contained more insertions than listings or lookups, leading to a decrease in the

refactored version’s performance. To understand if this outlier skewed our previous statistical

analysis, we re-ran the analysis without considering Project P6. The results maintained the

same, with the only difference being the profiler obtained a slightly larger effect size when

compared to the original projects. Thus, this does not change the conclusions of the study.

Looking at both the energy metrics and GPS-UP quadrant graphs, we can see how the
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optimizations following SPELL recommendations achieved on average lower Powerup values

(implying average power savings). They also fell under (Cat)egory 1 more often (represent-

ing better performance and energy efficiency), while the optimizations performed with the

profiler recommendations fell under (Cat)egory 3 (better performance at the cost of energy

efficiency).

As the study only focused on giving participants one “round” or iteration of both the

SPELL and profiler analysis, the participants using SPELL and the profiler tended to be “sat-

isfied” with their optimizations much quicker, with time to spare in their maximum 2 hours

scenario. In a real-world scenario, they would then run through another analysis, looking for

new (if any) energy leaks and continue to further optimize if possible.

Finally, none of the participants had any knowledge of what techniques or optimizations

could be done to specifically reduce energy consumption before going into the study. Nev-

ertheless, with the knowledge on basic performance issues, algorithms, program complexity,

and generally aiming for standard execution time optimization, they were able to achieve

good results.

4.4.5 Looking back with DRAM

Initially, while SPELL allows various sources of energy measurements, our study only consid-

ered energy measurements from the CPU. This was due to the limitation in hardware which

was available at the time. Since then, a new desktop system has been obtained which allows

the energy consumption from both CPU and DRAM to be measured. As to both understand

what impact the DRAM energy consumption would have had on our study, and also to val-

idate the consistency of SPELL’s analysis across different systems, we re-executed the initial

stages of the study to calculate the global similarity.

The steps, and methodology are identical. The measurements were made on a new sys-

tem, allowing RAPL measurements of the DRAM, with the following specifications: Linux

Ubuntu Server 16.10 operating system, kernel version 4.8.0-22-generic, with 16GB of RAM, a

Haswell Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz.

The global similarity results are shown in Table 4.7. The left-hand side are the results from
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Table 4.7: SPELL with and without DRAM ranking of methods from Projects P1, P47, P49, P6,
and P59

Proj. Method (SPELL) ψ ψ Method (SPELL w/ DRAM)

P1
voteInReport 0.97 0.99 voteInReport
getUserLoggedInType 0.02 0.00 getUserLoggedInType

P47

listAllChronicles 0.57 0.52 listAllChronicles
listAllReports 0.15 0.16 listAllReports
chronicleExist 0.12 0.1130 Like
Like 0.078 0.1125 chronicleExist

P49

Like 0.27 0.35 Like
ListComments 0.19 0.13 ListComments
AddComment 0.10 0.09 AddComment
ListTopic 0.08 0.07 ListTopic

P6

printNoticiaTopicoTema 0.40 0.40 printNoticiaTopicoTema
printCronicaTopicoTema 0.20 0.22 printCronicaTopicoTema
isLogged 0.15 0.17 isLogged

P59
getArticle 0.94 0.93 getArticle
vote 0.04 0.05 vote

the original analysis (also shown in Table 4.3), and the right-hand side are the results from the

SPELL analysis including DRAM energy consumption. In almost all cases, the rankings be-

tween both analyses maintained the same, with slight differences in the global similarity (ψ)

value. The single exception can be observed in Project P47. Here, the Like method came in

fourth with a ψ value of 0.078, while it came in third with a ψ value of 0.1130 just slightly sur-

passing the chronicleExist method when DRAM energy consumption was also analyzed.

The initial hypothesis was that the results from the first analysis would not suffer any

major changes in this case, as DRAM does not tend to have a high impact in overall energy

consumption, as shown in Chapter 3 and other research (Melfe et al., 2018). Even so, this

post-analysis shows how having more available information on the energy consumption of

different hardware components (for example, DRAM) can bring about a deeper analysis, and

such as in the case of Project P47, can reveal more information on the problematic spots

within one’s application. The more components considered, the more accurate of an analysis

can be performed by SPELL.
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4.5 Threats to Validity

We present now some threats to validity of our study, divided in four categories as defined

in (Cook and Campbell, 1979).

Conclusion Validity From our experiment it is clear that we can effectively find energy hot

spots in source code, both on a project level, and on a method level. Moreover, through the

empirical study we have shown that these results are useful for programmers. Nevertheless,

by energy consumption we only considered energy consumption that can be related to CPU

usage due to our machine limitations. While we have shown that energy and performance

are sometimes related in non-predictable ways, the impacts of other hardware components

on energy consumption deserve further elaboration. Thus, we intend to explore this in the

future by running a similar study on a machine with a more recent architecture.

Internal Validity In this case we are concerned with other factors that may interfere with

our experiment results. The energy consumption measurements we have for the different

projects could have other factors than not just the source code itself. To avoid this we ran all

the tests in the same way. For every test we added a “warm-up”, and we ran every test 30 times,

taking the average values for these runs so we could minimize particular states of the machine

used and its other software. Also, the results from participants may have been influenced by

other factors other than the SPELL and profiler recommendations we gave them. However,

the results achieved through the five projects are quite consistent.

Construct Validity The purpose of our study was to evaluate our SPELL technique along-

side programmers, to both properly understand the benefits of our technique with program-

mers, and to validate the efficiency of our technique in detecting energy leaks. Thus, we con-

structed an empirical study based off the suggestions of Ko et al. (Ko et al., 2015). For example,

for the task duration, they suggest that the tasks should not be so easy as to have almost every

participant complete them before the time expires (leading to ceiling effects (Rosenthal and

Rosnow, 1984)), nor making it so difficult that no one can complete them in the allotted time

no matter which tool is used (leading to floor effects (Rosenthal and Rosnow, 1984)). Both

of these cases would make it difficult to statistically discriminate and show the differences
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between tools.

Due to this, and in addition to another suggestion that such studies should not be more

than 2 hours long (Ko et al., 2015), we decided to use the academic Java projects we presented.

This allowed us to have projects which were neither too difficult nor too easy to both under-

stand and optimize within our established time limit. Using larger real-world applications

would introduce a risk of participants not completing or understanding (possible floor ef-

fects) due to the complexity and possible lack of domain documentation. Nevertheless, there

is no basis to suspect that these projects are better or worse than any other kind we could

have used.

External Validity In this case we are concerned about the generalization of the results.

The used source code has no particular characteristics that could influence our findings. Its

only particularity is that it is written in Java, and maybe different results could be found for

other PLs. However, our technique is independent of the language and thus we do not antic-

ipate that. Thus, we believe that these results can be further generalized for other programs.

4.6 Conclusions

This chapter introduced SPELL — a spectrum-based energy leak localization technique to

identify inefficient energy consumption in the source code of software systems. This tech-

nique uses a statistical method to associate different percentage of responsibility for the en-

ergy consumed to the different source code components of a software system, thus pinpoint-

ing the developer’s attention on the most critical red spots in his code. Such software compo-

nents may not only be source code fragments, but also a set of equivalent software systems

from which we need to select the greenest one.

The chapter also presented the implementation of this technique as a language inde-

pendent tool to locate energy leaks in a program’s source code. A front-end for the Java lan-

guage was constructed to monitor energy consumption at runtime, which uses the developed

SPELL tool to locate leaks in Java.

To evaluate both our technique and tool, we executed an empirical study where we asked
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five groups of three developers to optimize the energy efficiency of a software system. One

developer had no tool assistance, while the other two used our SPELL technique and a pro-

filer, respectively. We showed that developers using our technique were able to improve the

energy efficiency of their programs by 43% on average, while also showing statistical evidence

that the difference between a profiler and our technique is significant, in favor of the former:

the performance is between 2% and 72% better.

Thus, we have also shown that optimizing for energy efficiency is not directly the same as

optimizing for performance. We also showed that using our technique, the performed opti-

mizations achieved on average a lower Powerup (implying average power savings, with better

performance and energy efficiency), while optimizations following a profiler’s recommenda-

tions achieved better performance at the cost of energy efficiency.



Chapter 5

Energy Efficiency Across Java

Collections

This chapter presents a detailed study of the energy consumption of the different Java

Collection Framework (JFC) implementations. For each method of an implementation

in this framework, we present its energy consumption when handling different amounts

of data. Knowing the greenest methods for each implementation, we present an energy

optimization approach for Java programs: based on calls to JFC methods in the source

code of a program, we select the greenest implementation. We present preliminary re-

sults of optimizing a set of Java programs where we obtained 6.2% energy savings.

Finally, we present jStanley, a tool which automatically finds collections in Java

programs which can be replaced by others with a positive impact on the energy con-

sumption. In seconds, developers obtain information about energy-eager collection us-

age. jStanley will further suggest alternative collections to improve the code, making it

use less time, energy, or a combination of both. A second preliminary evaluation us-

ing jStanley shows energy gains between 2% - 17%, and a reduction in execution time

between 2% - 13%.

81
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5.1 Introduction

In addition to the chosen programming language influencing a program’s energy consump-

tion, other factors also play part, such as the used algorithms or libraries. Programming lan-

guages often times include extensive and wildly used libraries, some of which are very popu-

lar and almost core to the system, such as Java’s Collections Framework (JCF).

To properly and fully understand the energy impact of Java collections and their methods,

this chapter focuses on answering TRQ3. For this, we conduct a detailed study in terms of

energy consumption of the widely used JCF library 1. We consider three different groups of

data structures, namely Sets, Lists, and Maps, and for each of these groups, we study the

energy consumption of each of its different implementations and methods. We exercise and

monitor the energy consumed by each of the API methods when handling low, medium and

big data sets.

A first result of our study is a quantification of the energy spent by each method of each

implementation, for each of the data structures we consider. This energy-awareness can not

only be used to steer software developers in writing greener software, but also in optimiz-

ing legacy code. In fact, we have used/validated this quantification by semi-automatically

optimizing the energy consumption of a set of similar software systems.

As a second result, we statically compute which implementations and methods are used

in the source code of such projects, and then look up the energy consumption data to find

which equivalent implementation has the lowest energy consumption for those specific meth-

ods. Finally, we manually transform the source code to use the “greenest” implementation.

Our preliminary results show that energy consumption decreased in all the optimized soft-

ware systems that we tested, with an average energy saving of 6.2%.

With our work we are answering the following research questions:

• RQ1 - Can we define an energy consumption quantification of Java data structures and

their methods? This research question focuses on answering if one is actually able to

quantify the energy consumption of data structures and their methods. Being able

1docs.oracle.com/javase/7/docs/technotes/guides/collections/index.html

docs.oracle.com/javase/7/docs/technotes/guides/collections/index.html
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to precisely measure the energy consumption on such a small level (for example a

Map.put() method) is many times restricted to how well the measurement tool can

reach, or in other words the granularity of the energy measurement. To perform such

a task, not only do we need a good measuring tool, but also a benchmarking system

ready to tackle such a problem.

• RQ2 - Can we use such quantification to decrease the energy consumption of software

systems? After obtaining a quantification of the energy consumption, understanding

how to actually use that information to improve the energy consumption of a software

program can be very tricky. There are many differences between each data structure

and the energy spent by each method (even if they are similar), due to the nature of the

actual data structure. Such structural differences, and all the various possible scenarios

one may implement a program can affect which is the best alternative data structure

depending on what to be executed.

Finally, we detail jStanley, a static analysis tool which suggests a more energy efficient

(and/or performance efficient) Java collection, by statically detecting collections used in a

Java project, and which methods are used for each collection. Using this information, it not

only suggests a better alternative, but can automatically change the code with the new col-

lections if the programmer chooses so. However, it is not possible to always guarantee the

change to best collection is a refactoring as some collections for instance change the order of

the elements.

This chapter is organized as follows: Section 5.2 contains our analysis of the energy con-

sumption of the different Java Collection Framework implementations. In Section 5.3 we

describe our methodology to optimize Java programs and its application to five Java pro-

grams. Section 5.4 presents the jStanely tool based on the research in the prior sections. Sec-

tion 5.5 presents the validity threats for our analysis. Finally, we present our conclusions in

Section 5.6.
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5.2 Ranking of Java Implementation’s Methods

One of our goals is to compare the energy consumption of different Java implementations

of the same abstract data structures. To do this, we designed an experiment that simulates

different kinds of uses of such structures. In this section we present the design, execution,

and results of that simulation.

5.2.1 Design

Our experiment design is inspired by the one used in (Manotas et al., 2014), since our anal-

ysis also considers a simple scenario of storing, retrieving, and deleting String values in the

various collections.

JCF Data structures The most classical way to separate Java data structures is into groups

which implement the interfaces Set2, List3, or Map4, respectively. This separation indeed

makes sense as each interface has its own distinct properties and purposes (for example,

there is no ordering notion under Sets).

In our study, a few implementations were not evaluated as they are quite particular in

their usage and could not be populated with strings. In particular, JobStateReasons (Set) only

accepts JobStateReason objects, IdentityHashMap (Map) accepts strings but compares its el-

ements with the identity function, and not with the equals method.

Given these considerations, we evaluated the following implementations:

Sets ConcurrentSkipListSet, CopyOnWriteArraySet, HashSet,

LinkedHashSet, TreeSet

Lists ArrayList, AttributeList, CopyOnWriteArrayList, LinkedList, RoleList, RoleUnresolvedList, Stack,

Vector

Maps ConcurrentHashMap, ConcurrentSkipListMap, HashMap, Hashtable, IdentityHashMap, Linked-

HashMap, Properties, SimpleBindings, TreeMap, UIDefaults, WeakHashMap

2docs.oracle.com/javase/7/docs/api/java/util/Set.html
3docs.oracle.com/javase/7/docs/api/java/util/List.html
4docs.oracle.com/javase/7/docs/api/java/util/Map.html

docs.oracle.com/javase/7/docs/api/java/util/Set.html
docs.oracle.com/javase/7/docs/api/java/util/List.html
docs.oracle.com/javase/7/docs/api/java/util/Map.html
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Methods To choose the methods to measure for each abstraction, we looked at the generic

API list for the corresponding interface.

From this list, we chose the methods which performed insertion, removal, or searching

operations on the data structures, along with a method to iterate and consult all the values in

the structure. In some methods (e.g. containsAll or addAll), a second data structure is needed.

Sets add, addAll, clear, contains, containsAll, iterateAll, iterator, remove, removeAll, retainAll, toArray

Lists add, addAll, add (at an index), addAll (at an index), clear, contains, containsAll, get, indexOf, it-

erator, lastIndexOf, listIterator, listIterator (at an index), remove, removeAll, remove (at an index),

retainAll, set, sublist, and toArray

Maps clear, containsKey, containsValue, entrySet, get, iterateAll, keySet, put, putAll, remove, and val-

ues

Benchmark To evaluate the different implementations on each of the described methods,

we started by creating and populating objects with different sizes for each implementation. 5

We considered initial objects with 25.000, 250.000, and 1.000.000 elements, providing our

analysis with multiple orders of magnitude of measurement. This will allow us to better un-

derstand how the energy consumption scales in regards to population size.

When a second data structure is required, we have adopted for it a size6 of 10% the popsize

of the tested structure, containing half existing values from the tested structure and half new

values, all shuffled.

Table 5.1 briefly summarizes how each method is tested for the Set collection, with the

tests for the other collections being similar.

5.2.2 Execution

To analyze the energy consumption, we first implemented our data structure analysis design

as an energy benchmark framework. This is one of our contributions, and can be found at

github.com/greensoftwarelab/Collections-Energy-Benchmark. This implementation

5We will refer to the population size of an object as popsize.
6We will refer to the size of each such structure as secondaryCol.
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Table 5.1: Test description of Set methods

Method Description of the test for the method
add add popsize/10 elements. half existing, half new
addAll addAll of secondaryCol 5 times
clear clear 5 times
contains contains popsize/10 elements. half existing, half new
containsAll containsAll of secondaryCol 5 times
iterateAll iterate and consult popsize values
iterator iterator popsize times
remove remove popsize/10 elements. half existing, half new
removeAll removeAll of secondaryCol 5 times
retainAll retainAll of secondaryCol 5 times
toArray toArray 5 times

is based on a publicly available micro-benchmark7 which evaluates the runtime performance

of different implementations of the Collections API, and has been used in a previous study to

obtain energy measurements (Manotas et al., 2014).

To allow us to record precise energy consumption measurements from the CPU, we used

Intel’s Runtime Average Power Limit (RAPL) (David et al., 2010). RAPL is an interface which

allows access to energy and power readings via a model-specific register. Its precision and

reliability has been extensively studied (Hähnel et al., 2012; Rotem et al., 2012). More specifi-

cally, we used jRAPL (Liu et al., 2015) which is a framework for profiling Java programs using

RAPL. Using these tools permitted us to obtain energy measurements on a method level, al-

lowing us a fine grained measurement.

We ran this study on a server with the following specifications: Linux 3.13.0-74-generic

operating system, 8GB of RAM, and Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz. This system

has no other software installed or running other than necessary to run this study, and the

operating system daemons. Both the Java compiler and interpreter were versions 1.8.0_66.

Prior to executing a test, we ran an initial “warm-up” where we instantiated, populated

(with the designated popsize), and performed simple actions on the data structures. Each

test was executed 10 times, and the average values for both the time and energetic consump-

tion were extracted (of the specific test, and not the initial “warm-up” as to only measure the

tested methods) after removing the lowest and highest 20% as to limit outliers.

7dzone.com/articles/java-collection-performance
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5.2.3 Results

This section presents the results we gathered from the experiment. We highly recommend

and assume the images are being viewed in color. Figures 5.1, 5.2, and 5.3 represent the data

for our analyzed Sets, Lists, and Maps respectively, for a population size of 25k elements. Each

row in the tables represents the measured methods, and for each analyzed implementation,

we have two columns representing the consumption in Joules (J) and execution time in mil-

liseconds(ms). Each row has a color highlight (under the J columns) varying between a Red

to Yellow to Green. The most energetically inefficient implementation for that row’s method

(the one with the highest consumed Joules) is highlighted Red. The implementation with the

lowest consumed Joules (most energetically efficient) is highlighted Green. The rest are high-

lighted depending on their consumption values when compared to the most inefficient and

efficient implementation, and colored accordingly in the color scale.

Figure 5.1: Set results for population of 25k

Figures 5.4 is a graphical representation of the data for our analyzed Sets. The Y-Axis rep-

resents the consumption in Joules, and the X-Axis represents the various measured methods.

Each column represents a specific analyzed implementation.

The CopyOnWriteArraySet implementation was discarded during the experiment execu-
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Figure 5.2: List results for population of 25k

Figure 5.3: Map results for population of 25k

tion as the tests did not finish in a reasonable amount of time. For the full representation

of the data/graphs of the other two population sizes and omitted data, please consult the

online appendix8, the online interactive data tables9 or this document’s Chapter 5 appendix

(Appendix B). From our data, we can draw interesting observations:

• Looking at the Set results for population of 25k data (shown in Fig 5.1) we can see

that LinkedHashSet includes most of the energetically efficient methods. Nevertheless,

one can easily notice that it is also the most inefficient with the addAll and containsAll

methods.

8Online Appendix for Chapter 5:
http://greenlab.di.uminho.pt/wp-content/uploads/2016/06/appendixGreens.pdf

9Interactive Data Tables:
http://greenlab.di.uminho.pt/collections/

http://greenlab.di.uminho.pt/wp-content/uploads/2016/06/appendixGreens.pdf
http://greenlab.di.uminho.pt/collections/


5.2. RANKING OF JAVA IMPLEMENTATION’S METHODS 89

Figure 5.4: Set results graph for population of 25k

• Figure 5.2 presents the List results for population of 25k. Both RoleUnresolvedList and

AttributeList contain the most efficient methods. Interesting to point out that both of

these extend ArrayList, which contains less efficient methods, and very different con-

sumption values in comparison with these two. We can also clearly see that LinkedList

is by far the most inefficient List implementation.

• In Figure 5.3, we can see that Hashtable, LinkedHashMap, and Properties contain the

most efficient methods, and with no red methods. Interesting to note is that while the

Properties data structure is generally used to store project configuration data/settings,

it produced very good results for our scenario of storing string values.

• The concurrent data structure implementations (ConcurrentSkipListSet, CopyOnWriteAr-

rayList, ConcurrentHashMap, ConcurrentSkipListMap, and the removed CopyOnWriteAr-

raySet) perform very poorly. As such, these should probably be avoided if a require-

ment is a low consuming application.

• One can see cases where a decrease in execution time translates into a decrease in
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the energy consumed as suggested by (Yuki and Rajopadhye, 2014). For instance in

Figure 5.3, when comparing Hashtable and TreeSet for the get method, we see that

Hashtable has both a lower execution time and energy consumption. As observed

by (Trefethen and Thiyagalingam, 2013b; Pinto et al., 2014b), cases where an increase

in execution time brings about a decrease in the energy consumed can also be seen, for

example in Figure 5.3 when comparing HashMap and Hashtable for the keySet method.

As such, we cannot draw any conclusion of the correlation between execution time and

energy being consumed.

• Different conclusions can be drawn for the 250k and 1m population sizes (which can be

seen in our appendices). This also shows that the energy consumption of different data

structure implementations scale differently in regards to size. What may be the most

efficient implementation for one population size, may not be the best for another.

5.3 Optimizing Energy Consumption of Java Programs

The results presented in the previous section may allow software developers to develop more

energy efficient software. In this section we present a methodology to optimize, at compila-

tion time, existing Java programs. This methodology consists of the following steps:

1. Computing which implementation/methods are used in the programs

2. Looking up the appropriate energy tables for the used implementation/methods

3. Choosing the most efficient implementation based on total energy

In the next subsection, we describe in detail how we applied this approach and how it was

used to optimize a set of equivalent Java programs.

5.3.1 Data Acquisition

First, we obtained several Java projects from an object-oriented course for undergraduate

computer science students. For this course, students were asked to build a journalism sup-

port platform, where users (Collaborators, Journalists, Readers, and Editors) can write articles
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(chronicles and reports), and give likes and comments. Along with these different platform

implementations, we obtained seven test cases which simulated using the system (register-

ing, logging in, writing articles, commenting, etc.). The size of users, articles, and comments

varied between approximately 2.000 and 10.000 each for each different test case and each

entity. These projects had an average of 36 classes, 104 methods, and 2.000 lines of code.

Next we discuss the optimization of five of those projects, where we semi-automatically

detected the use of any JCF implementation (both efficient and inefficient implementations),

and which were the used methods for each implementation.

5.3.2 Choosing an energy efficient alternative

To try to optimize these projects based on the data structures and their used methods, we

looked at our data for the 25k population. We chose this one, as it is the one which is closest to

the population used in the test cases (which was between 2.000 and 10.000 for each different

entity).

For each detected data structure implementation, we selected the used methods, and

chose our optimized data structure based on the implementation which consumed the least

amount of energy for this specific case.

Figure 5.5 shows the data used to make our decision for the Maps of Project 1, where

Hashtable was used in place of TreeMap (as Hashtable was the most efficient implementation

in this scenario with 6.8J). Table 5.2 details the 5 Projects, their originally used data structure

implementations, new implementation, and used methods for the implementations.

Figure 5.5: Choosing optimized Map for Project 1
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Table 5.2: Original and optimized data structures, and used methods for each project

Data Structures
Projects Original Optimized Methods

1
TreeMap Hashtable {containsKey, get, put, values}

LinkedList ArrayList {add, listIterator}
2 HashMap Hashtable {containsKey, get, put, values}
3 LinkedList ArrayList {add, addAll, iterator, listIterator, remove}

4
LinkedList AttributeList {add (at an index), iterator}
HashMap Hashtable {containsKey, get, put}

5
HashMap Hashtable {containsKey, get, put}

TreeSet LinkedHastSet {add, iterator}

5.3.3 Pre-energy measurement setup

Now that we have chosen our energy efficient alternative, we need to change the projects to

reflect this. The source code was manually altered to use the chosen implementations. Fi-

nally, we verified that the program maintained the original consistency and state by verifying

if the outputs and operations produced by these two versions did not change.

5.3.4 Energy measurements

To measure the original, and optimized projects, we followed the same methodology detailed

in Section: 5.2.2 Execution. We executed the seven test cases in the same server, and us-

ing jRAPL obtained the energy consumption measurements. Each test was also executed 10

times, and the average values (after removing the 20% highest and lowest values) were calcu-

lated.

5.3.5 Results

Table 5.3 presents, for each project, the energy consumption in Joules (J), and execution time

in milliseconds (ms) for both the original and optimized implementations. The last column

shows the improvement gained after having performed the optimized implementations for

both the consumption and execution time.

As we can see, all five programs improve their energy efficiency. Our optimization im-

proves their energy consumption between 4.37% and 11.05%, with an average of 6.2%.
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Table 5.3: Results of pre and post optimization

Data Structures
Projects Original Optimized Improvement

J ms J ms J ms
1 23.744583 1549 22.7071302 1523 4.37% 1.68%
2 24.6787895 1823 23.525123 1741 4.67% 4.50%
3 25.0243507 1720 22.259355 1508 11.05% 12.33%
4 17.1994425 1258 16.2014997 1217 5.80% 3.26%
5 19.314512 1372 18.3067573 1245 5.22% 9.26%

5.4 jStanely

jStanley10 is a static analyzer developed as an Eclipse plug-in since this is the most used IDE

for Java. The tool we propose is capable of statically detecting the usage of energy inefficient

collections and suggest better alternatives. It can do the same, but considering the execution

time or both energy and time at the same time. To this end, it uses information on the energy

consumption and execution time for Java collections shown in the prior section. This infor-

mation can be provided to the tool through a set of CSV files, one per type of collection (map,

list and set). Each file must contain information about the energy and time usage for each

method of the collection.

jStanley constructs the abstract syntax tree (AST) of the program being analyzed, travers-

ing it to compute the number of method calls of a given collection variable. As a result, the

tool knows how many method calls for each variable of a collection the program has. For

instance, for a given program, the tool can tell variable a of type ArrayList has 3 calls to the

method add and 9 to get, and variable b of type HashMap has 20 calls to put, throughout the

whole program.

Our tool provides a drop down menu within Eclipse, as shown in Figure 5.6, allowing pro-

grammers to select their preferences. This menu displays options to choose if they wish to

focus on energy, execution time, or both, by choosing Joules, Milliseconds, or both, respec-

tively. Additionally, as we have seen in our previous study, different population sizes bring

about different energy profiles for collections. Thus, there is also an option to allow the pro-

10jStanley, and other resources for this section, can be found at: https://greensoftwarelab.github.io/
jStanley

https://greensoftwarelab.github.io/jStanley
https://greensoftwarelab.github.io/jStanley
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grammer to choose which of the three options are closest to what they believe would best

represent the program.

Figure 5.6: jStanley Eclipse menu

Before analyzing a program, the tool loads the data tables (from CSV files) corresponding

to the settings chosen by the programmer. This information is first normalized by sorting

each method from each collection and attributing a value of 1 to the lowest. Afterwards, each

other value is divided by the lowest, obtaining a value greater than 1 indirectly encoding the

percentage of how worse that collection’s method is to the lowest one. This is done for both

energy and time values, allowing the tool to combine these values to obtain an overall ranking

if both options are chosen to optimize.

The calculated suggestions can be shown visually through source code flagging, as shown

in Figure 5.7. Here a small flag appears next to an identified collection which may be changed

to a more optimized one, and shows the programmer the best two alternatives. If the pro-

grammer wishes, they may select the option to change the collections to the suggested one.

It is to note that pure refactoring properties may not be guaranteed when changing collec-

tions, for example natural sorting in Tree collections, or the non-acceptance of null values

in HashTable collections.

5.4.1 Implementation

Four tasks divide the tool’s analysis. The first task, Source Code Analysis, detects existing

collections within the program, and all the invocations on these collections. Using the con-

structed AST, and the ASTVisitor offered by the Eclipse JDT API, we can easily visit each vari-
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Figure 5.7: Suggestion flagging and quick-fix

able and method invocation. Using the ASTVisitor, we collect all the AST nodes which are

FieldDeclarations, VariableDeclarationStatements, and Assignments. These nodes allow us to

determine the data type of a variable and focus on those which are collections.

Afterwards, we analyze all the MethodDeclaration nodes. Often times, collections are

passed to methods as parameters. Thus, we also collect all these method references along

with the type of collections passed through, allowing us to match declarations and method

invocations.

Finally, all MethodInvocation nodes are analyzed to determine which are JCF API meth-

ods which may be invoked during the program’s execution. In these cases, we divide them in

two types: direct and indirect invocations. Direct invocations would be for example a line of

code with students.add();. An indirect invocation represents methods declared through-

out the program, in which a direct invocation may occur. For example, method m1 contains

a line with students.add(); students.add(); (two direct invocations), thus m1 would be

an indirect invocation. The result of this analysis is a list of all the existing collections within

the program, all direct invocations of each collection (and their source code location), all

indirect invocations, and the collections which are passed as parameters of these indirect

invocations.

In the second task, Resolve Invocations, using the information we now have on all the

direct and indirect invocations, we calculate the amount of times each method may be used.
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For example, LinkedList.add(); is within method m1. So we know the add() method on

LinkedList will be executed once. But method m1 is invoked twice within another method,

so we may assume the add() method may be invoked at least twice, and not only once. Addi-

tionally, during an indirect invocation where a collection is passed as a parameter, a match is

also made with our existing list of collections. This way, every possible path a collection may

go through and all possible method invocations upon the collection are traced.

Afterwards in the Calculate Cost task, the cost of each collection, considering all the ex-

isting invocations and data tables, is calculated. jStanley calculates a matrix with all the in-

vocation costs of each collection and method by multiplying the total number of invocations

of each method by its normalized value.

Finally, in Calculate Suggestions, the sum of all the method costs are calculated for each

collection (representing either the total cost of energy, time, or both based on selection).

5.4.2 Evaluation

To evaluate our tool regarding the energy savings it promotes, we selected 7 Java projects

which use JCF collections and have either a test suite or simulated example of the program’s

execution. We obtained these projects from SourceForge (Media, 2018), a repository for open-

source applications, and from the SF110 corpus of classes (Fraser and Arcuri, 2014), a statis-

tically representative sample of 110 Java projects.

The selected projects and some of their metrics are listed in Table 5.4. The projects vary

from games to time libraries. The size and complexity also varies between 3.000 and 70.000

lines of code (LOC) or between 76 and 5.000 branches in the flow graph control.

We ran jStanley, according to a 25k population size (since we are using only unit tests

which tend to not stress collections as much), on each project and obtained the list of sug-

gested energy optimizations, which were automatically applied. For each new project ver-

sion, we re-ran the test suite, obtaining exactly the same results as the original ones. This

means that, considering the available tests, the changes acted as refactorings. The amount of

time spent by our tool to analyze, and the number of suggested changes are found in Table 5.5

under the Analysis (ms) and #Changes column.
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Table 5.4: Metrics of the evaluated evaluated. These metrics were calculated using Open-
Clover (Atlassian, 2018)

Project Branches Statements Methods Classes Files Packages LOC
Barbecue (for bar codes) 536 2,536 369 59 59 13 8,838
Battlecry (game) 534 1,800 125 12 11 1 3,343
Jodatime (time library) 5,162 13,318 3,909 242 166 7 70,872
Lagoon (web site maintenance) 1,746 4,211 646 96 81 10 16,922
Templateit (template file generator) 408 1,067 177 22 19 3 3,317
Twfbplayer (game) 684 3,307 777 135 104 12 14,682
Xisemele (XML library) 76 522 250 57 56 3 5,770

Table 5.5: Evaluation data for the projects

Test Suite Analysis Improvement
Project #Tests %Coverage Analysis (ms) #Changes %PKG (J) %CPU (J) %ms
Barbecue 152 62 2735 14 5.10 5.81 1.70
Battlecry 1* 69.4 514 4 16.79 11.49 12.76
Jodatime 4221 88.5 10490 5 7.21 7.29 7.75
Lagoon 18 4 1513 7 1.55 1.77 2.05
Templateit 3 14 1019 14 6.07 6.05 3.14
Twfbplayer 57 91 3437 51 6.04 6.30 4.36
Xisemele 167 20 588 1 4.25 4.38 3.18

* Instead of unit tests, this project has a simulated execution example

To measure the energy consumed by each project, before and after the changes, we used

Intel’s Runtime Average Power Limit (RAPL) (Dimitrov et al., 2015). RAPL is an interface pro-

vided by (modern) Intel processors to allow the access to energy and power readings. RAPL is

capable of providing very fine-grained level measurements as it has already proven (Hähnel

et al., 2012; Rotem et al., 2012). For our study, we measured 2 RAPL domains: PKG energy con-

sumed by an entire socket (including the core and uncore domains); PP0 energy consumed

by the CPU core.

This study was executed on a laptop with Ubuntu 14.04.5 LTS, 6GB of RAM, and Intel(R)

Core(TM) i5-2430 CPU @ 2.40GHz. Both the Java compiler and interpreter were versions

1.8.0_101.

We ran each project’s test suite 25 times (Hogg and Tanis, 1977), and for each execution,

we extracted the energy consumed in Joules (J) for both RAPL domains, and the execution

time in milliseconds (ms). The number of tests and test coverage percentage are listed in

Table 5.5 under the #Tests and %Coverage column respectively.

The energy consumption improvements are shown in Table 5.5. Column %PKG (J) and
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%CPU (J) show the energy improvement percentage relative to the original project measured

by the package and CPU respectively. Column %ms shows the time improvement percent-

age. Each value is calculated as the average of the 25 executions, excluding outliers, that is,

values outside of the range [Q1−1.5× IQ,Q3+1.5× IQ], where Q1 and Q3 are the first and the

third quartiles, respectively, and IQ = Q3−Q1 (Tukey, 1977). Indeed it is common to remove

outliers for energy measurements (Cruz and Abreu, 2017). For instance, we know, from expe-

rience, that the first few runs of Java programs tend to spent more energy than the remaining

runs (Pereira et al., 2017b, 2016; Couto et al., 2014).

Using jStanley, we were able to achieve between 2%-17% with an average of 6.7% energy

savings for PKG, and between 2%-11% with an average of 6.2% energy savings for CPU. Addi-

tionally, the performance was also improved upon with an average of 5%. jStanley spent on

average 3 seconds to analyze our projects, with the fastest and slowest spending 0.5 and 10

seconds respectively.

These values are positive, especially when compared to the little work required by the

developer. Moreover, in some cases the tests’ coverage was small, maybe too small to actually

stress the collections enough to make the gains more evident. Also, the fact that we used unit

tests instead of actual software runs may impact the results, but most likely in a negative

way. A real usage of the applications would make more use of the collections thus most likely

making the gains higher. In any case, building on these positive results, we will run an in

depth evaluation to fully understand the potential of jStanley.

5.5 Threats to Validity

The goal of our experiments was to define the energy consumption profile of JCF implemen-

tations and validate such results. As in any experiment, there are a few threats to its validity.

We start by presenting the validity threats for the first experiment, that is, the evaluation of

the energy consumption of several Java data structure methods. We divide these threats in

four categories as defined in (Cook and Campbell, 1979), namely: conclusion validity, inter-

nal validity, construct validity, and external validity.
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5.5.1 JCF Implementations Profile

We start by discussing the threats to validity of the first experiment.

Conclusion Validity We used the energy consumption measurements to establish a sim-

plistic order between the different implementations. To do so, we have based ourselves on an

existing benchmark (although developed to measure different things). To perform the actual

measurements, we used RAPL which is known to be a quite reliable tool (Hähnel et al., 2012;

Rotem et al., 2012). Thus, we believe the finding are quite reliable.

Internal Validity The energy consumption measurements we have for the different imple-

mentations/methods could have been influenced by other factors other than just their source

code execution. To mitigate this issue, for every test we added a “warm-up” run, and ran ev-

ery test 10 times, taking the average values for these runs so we could minimize particular

states of the machine and other software (e.g. operating system daemons). Moreover, we ran

the tests in a Linux server with no other software running except for the operating system and

its services in order to isolate the energy consumption values for the code we were running.

Construct Validity We have designed a set of tests to evaluate the energy consumption of

the methods of the different JCF implementations. As software engineers ourselves, we have

done the best we can and know to make them as real and interesting as possible. However,

these experiments could have been done in many other different ways. In particular, we have

only used strings to perform our evaluation. We have also fixed the size of the collections in

25K, 250K, and 1M. Nevertheless, we believe that since all the tests are the same for all the

implementations (of a particular interface), different tests would probably produce the same

relationship between the consumption of the different implementations and their methods.

Still, we make all our material publicly available for better analysis of our peers.

External Validity The experiment we performed can easily be extended to include other

collections. The method can also be easily adapted to other programming languages. How-

ever, until such execution are done, nothing can be said about such results.
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5.5.2 Validating the Measurements

Next we present the threats to validity, again divided in four categories, for the experiment

we performed to evaluate the impact of the finding of the first study when changing the im-

plementations in a complete program.

Conclusion Validity Our validation assumed that each method is on the same level of im-

portance or weight, and does not distinguish between possible gain of optimizing for one

method or another (for instance, there might be more gain in optimizing for a commonly

used add method over a retainAll method). Thus, the method of choosing the best alterna-

tive implementation would need fine tuning. Nevertheless, it is consistent that changing an

implementation by another influences the energy consumption of the code in the same line

with the results found for the implementations/methods in the first experiment.

Internal Validity The energy consumptions measures we have for the different projects (be-

fore and after changing the used implementations) could have influence from other factors.

However, the most important thing is the relationship between the value before and after

changing the implementations. Nevertheless, we have executed each project 10 times and

calculated the average so particular states of the machine could be mitigated as much as

possible in the final results.

Construct Validity We used 5 different (project) implementation of a single problem de-

veloped by students in the second semester of an under-graduation in Computer Science.

This gave us different solutions for the same problem that can be directly compared as they

all passed a set of functional tests defined in the corresponding course. However, different

kinds of projects could have different results. Nevertheless, there is no basis to suspect that

these projects are best or worst than any other kind. Thus, we expect to continue to see gain-

s/losses when changing implementations in any other kinds of software projects according

to our findings.
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External Validity The used source code has no particular characteristics which could in-

fluence our findings. The main characteristic is possibly the fact that it was developed by

novice programmers. Nevertheless, we could see the impact of changing data structure im-

plementations in both the good and bad (project) implementations. Thus, we believe that

these results can be further generalized for other projects. Nevertheless, we intend to further

study this issue and perform a wider evaluation.

5.6 Conclusions

This chapter presented a detailed study of the energy consumption of the Sets, Lists, and

Maps data structures included in the Java collections framework. We presented a quantifica-

tion of the energy spent by each API method of each of those data structures.

Moreover, we introduced a very simple methodology to optimize Java programs. Based

on their JCF data structures and methods, and our energy quantifications, a transformation

to decrease the energy consumption is suggested. We have presented our first experimental

results that show a decrease of 6.2% in energy consumption.

We also presented jStanley, a tool capable of quickly discovering the usage of energy-

inefficient Java collections. It can also suggest and automatically evolve the code with better

alternatives. The initial evaluation we performed shows promising results with savings be-

tween 2% and 17%.

As future work, we will extend the available collections, consider their memory usage,

and make suggestions of collections of different kinds (e.g. list to map), performing the cor-

responding evolution, leading to even greater savings.
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Chapter 6

Towards a Catalog of Energy Smells

This chapter briefly looks at an overview of simple and quick changes in the Java pro-

gramming language which help improve the energy consumption. These findings were

observed throughout various stages during this thesis, in particular during the empirical

studies performed in Chapter 4.

We look at the energy consumption of Java primitives in different scenarios. The

work here is to further understand these scenarios, even if in most cases the results are

not too surprising, thus helping Java developers if energy is a concern. Here we look at

different numerical primitives, array initialization examples, and String concatenation

alternatives.

These alternatives originated from gathering observations when working on

other works. Preliminary tests show us very promising energy efficient alternatives. Nev-

ertheless, the next step would be a thorough and large validation.
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6.1 Java Primitives

We have seen in Chapter 5 how data structures have a large impact on the energy efficiency of

Java programs. Another very common way to store data in a Java program is to use primitive

types for numerical variables, Arrays, and Strings. These too behave different in terms of

energy consumption, sometimes slightly while other times very drastically.

In this section, we will look at the energy efficiency of different numerical primitive types,

different array initializations, and alternative ways to concatenate Strings.

For these, we once again used RAPL to perform the energy measurements for our tests.

The following used system allowed us to measure the Package (PKG), CPU, and DRAM energy

consumption: Linux Ubuntu Server 16.10 operating system, kernel version 4.8.0-22-generic,

with 16GB of RAM, a Haswell Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz.

For each of the numerical primitives, arrays, and String tests, a specific usage scenario

was defined (defined further on). These scenarios were repeated 20 times on our measuring

system.

As in Section 5.4.2, each final measurement value is calculated as the average of the 20

executions, excluding outliers, that is, values outside of the range [Q1−1.5×IQ,Q3+1.5×IQ],

where Q1 and Q3 are the first and the third quartiles, respectively, and IQ = Q3−Q1 (Tukey,

1977). Additionally, the time spent was also measured.

For the numerical primitive types, each usage scenario consisted of a summation of 1

to the previous value (starting with the value 1). This was repeated 2,147,483,6471 times.

Additionally, as the Integer data type is also very widely used in Java, it too was added in

the analysis to better understand how different it performs when compared to an int. After

viewing the results, we added a scenario using a static int to understand the impact of a

static value in terms of energy consumption.

As we will see further on, the int primitive was the best performing one. Thus, we chose

int to be the array type for our second set of tests. In Java, there are two possible ways of

initializing an array. One can declare a variable with an array of a certain type (for example,

1This is the max value an int may have
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int[] x), or one can declare an array variable of a certain type (for example, int x[]). While these

two possibilities do not tend to have much of a difference in the performance (in fact there

should be almost no difference), we wanted to explore the different in terms of energy con-

sumption. The defined usage scenario consisted of storing the array’s index as its held value.

The only difference between the two is how the array was declared (int[] x or int x[]). Finally,

two versions were tested: one with 1,000,000 elements and one with 5,000,000 elements.

The common form of storing textual values in Java is by using the String data type.

While there are no real alternatives to this, there are many forms of string concatenation.

The most basic and common form is by using the (+) operator. Unfortunately, this form is

not very efficient in terms of performance and programmers tend to use StringBuilder or

StringBuffer for their concatenation needs. Another alternative to these is by using the

String.concat() method from the String API. The usage scenario consisted of the con-

catenation of "this is a string". Finally, two versions were tested: one with 20,000 repetitions

and one with 100,000 repetitions.

6.1.1 Results

The tabled results for our tests can be seen in Tables 6.1-6.3, and also visually in Figures 6.1-

6.7. The measured values for the PKG, CPU, and DRAM are shown in Joules while the execu-

tion time is presented in milliseconds (MS). The last two columns on each table respectively

represent the normalized values anchored to the most energy and performance efficient so-

lution. Thus for example, in Table 6.1, the double Java primitive is 498.20x more energy inef-

ficient, and 713.56x slower than the int primitive.

Looking at Table 6.1 and Figure 6.1, we quickly see that there is no competition for the

int type, with an energy consumption of 0.060J and 0.047J for the Package and CPU respec-

tively. Following behind is the Long type with 0.963J and 0.492, respectively for the Package

and CPU energy consumption. The worst performing is the Integer data type, as was ex-

pected. Defining static int increased the energy consumption by 35.75x in comparison to

a standard int declaration. This increase is expected to be replicated on the other primitives.

Looking at the normalized results, we see that the alternatives tend to be more perfor-
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mance inefficient than energy inefficient, with the exception of the Integer data type where

the opposite is true.

Table 6.1: Energy consumption and Time for different numerical primitives

Name PKG J CPU J DRAM J MS Norm. PKG Norm. MS
Double 29.698 12.733 4.597 1902.833 498.20 713.56

Float 29.701 12.746 4.597 1902.500 498.24 713.44
Int 0.060 0.047 0.007 2.667 1.00 1.00

Integer 112.214 57.839 23.985 4844.667 1882.44 1816.75
Long 0.963 0.492 0.134 55.500 16.15 20.81
Short 19.428 8.230 3.068 1270.000 325.90 476.25

StaticInt 2.145 1.069 0.297 122.667 36.99 46.00

Figure 6.1: Energy consumption and Time for different numerical primitives

The results for the different Array initialization alternatives (Table 6.2 and Figures 6.2-6.3),

show that there is small, yet existent, difference between the two. Interestingly, in the two dif-

ferently sized scenarios, we see that the execution time is in favor of the second declaration

(int x[]), yet the energy consumption is less in the first declaration (int[] x). These two ap-

proaches should be converted to the same byte code, but they seem to have different results.

The normalized results show how the second declaration (int x[]) is 1.06x more energy costly,

while the first (int[] x) is 1.08x slower. These differences are small, they should be considered
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if these are operations which are repeated quite often and energy is a concern. Finally, the

larger the array size, the more similar the results become.

Table 6.2: Energy consumption and Time for different Array initializations

Size Initialization PKG J CPU J DRAM J MS Norm. PKG Norm. MS

1M
int[size] x 0.096 0.081 0.013 4.667 1.00 1.08
int x[size] 0.102 0.081 0.014 4.333 1.06 1.00

5M
int[size] x 0.193 0.132 0.031 8.000 1.00 1.02
int x[size] 0.196 0.133 0.031 7.833 1.01 1.00

Figure 6.2: Energy consumption and Time for different Array initializations (1M)

Table 6.3 and Figures 6.4-6.7 show the results for the different String concatenation al-

ternatives. Looking at the results, we quickly notice how much more energy and time costly is

a String concatenation using the (+) operator when compared to the other alternatives. The

String.concat() method, developed to be a more efficient alternative to using the (+) op-

erator, still does not compete with using the StringBuilder and StringBuffer API. These

latter two compete very closely, with StringBuilder being the more energy efficient one.

With the smaller repetition size of 20,000, we see that StringBuffer is slightly faster, but

consumes slightly more energy. While with a larger repetition size of 100,000, these two have

the same execution time, while StringBuilder is still the more energy efficient one.
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Figure 6.3: Energy consumption and Time for different Array initializations (5M)

Table 6.3: Energy consumption and Time for different String concatenations

Size Name PKG J CPU J DRAM J MS Norm. PKG Norm. MS

20k

String.concat() 16.859 9.018 3.908 748.333 333.53 320.71
StringConcat (+) 54.901 29.525 12.927 2436.833 1086.13 1044.36

StringBuffer 0.073 0.061 0.008 2.333 1.45 1.00
StringBuilder 0.051 0.050 0.006 2.500 1.00 1.07

100k

String.concat() 461.053 237.611 114.082 20039.000 2434.68 3206.24
StringConcat (+) 1526.655 797.131 372.493 67398.000 8061.78 10783.68

StringBuffer 0.227 0.171 0.024 7.250 1.20 1.16
StringBuilder 0.189 0.148 0.020 7.250 1.00 1.00

Finally, the normalized values show us just how much worse (1086.13x energy inefficient)

is using the concatenation operator (+) compared to using a StringBuilder. We also see

that while with 20k repetitions StringBuilder is slower (1.07x) than StringBuffer, at 100k

repetitions StringBuilder is both the fastest and most energy efficient alternative.

Looking at these simple preliminary tests, we see several alternative approaches, for the

presented problems, with promising energy efficient results. While in some cases there may

be small differences between two approaches, if one is concerned with energy, it is important

to know which has the edge. The next step would be to apply these changes and test them in

real programs, and observe if the behaviors are replicated.
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Figure 6.4: Energy consumption and Time for different String concatenations (20k)

Figure 6.5: Energy consumption and Time for different StringBuilder and StringBuffer (20k)
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Figure 6.6: Energy consumption and Time for different String concatenations (100k)

Figure 6.7: Energy consumption and Time for different String concatenations (100k)



Chapter 7

Conclusions and Future Work

This chapter shares the final thoughts and conclusions on the work presented in this

document. The research work presented in the previous chapters is revisited and sum-

marized, with a look back at each of this thesis’s research questions.

Finally, a view on several possible research paths of which both ourselves and

other researchers may explore is also presented.
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We have seen throughout this thesis how simple changes can have great impacts on the

energy consumption in software. Unfortunately, software developers do not usually have the

knowledge and tools needed for energy-aware software development, an argument shared

by almost all within the community. Additionally, there are many misconceptions as to what

can be done to reduce the energy consumption, how to interpret their energy measurements,

and how optimizing for time is enough to make software more energy efficient. This thesis

makes a new dent in the bubble of knowledge in the research area of green software.

In Chapter 3, we began looking at the first step a developer takes, choosing a program-

ming language. We saw how different languages perform in terms of energy consumption,

time, and peak memory usage from our executed study. Indeed, there are many differences

between various languages’ energy efficiency (and performance). Currently, there seems to

be no clear winner in terms of energy efficiency, a spot which is shared between three. Ad-

ditionally, we looked at if a faster language is always the most energy efficient, how peak

memory usage relates to energy consumption, and offered a way to help developers choose

a language depending on what their main objectives are. This chapter dealt with the lack

of knowledge, and shows how different programming languages have very different energy

consumption profiles, thus answering TRQ1: What influence do different programming lan-

guages have on energy consumption?

Chapter 4 looks at a language and context independent technique and tool called SPELL.

This technique aims at helping developers identify energy leaks, or energy hotspots, within a

program’s source code. This technique is based on Spectrum-based Fault Localization, a state

of the art technique to identify code bugs or faults. The technique was developed into a pro-

totype, along with a tool-kit for Java developers, to help find energy inefficient code blocks. A

study was performed where we saw how using SPELL can drastically help improve the overall

energy efficiency of programs. Additionally, we also showed how programs improved using

SPELL are significantly more energy efficient than those using a profiler, once again show-

ing how looking at performance efficiency is not enough to tackle the energy consumption

problem. This chapter dealt with the lack of tools, and answers our second research question:

TRQ2: Can fault localization techniques be adapted to detect energy hotspots in source code?
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Chapter 5 looks at a more specific problem, the energy efficiency of Java collections. A

detailed study was performed on the energy consumption of the full Java Collection Frame-

work implementation. The energy consumptions of each method were extracted throughout

different population sizes. By collecting this data, we were able to produce different data ta-

bles, divided into the different interfaces of Sets, Lists, and Maps of varying population sizes.

A methodology based on method usage was presented to use this information to choose the

most appropriate collection if energy consumption is a concern. Additionally, a tool named

jStanley was developed to automatically find JCF collections and methods in a Java program,

and suggest alternatives to improve the code based on energy usage, time, or a balance of

both. Finally, we were able to show how doing such changes allowed us to reduce the energy

consumption considerably. This chapter dealt with both the lack of knowledge and the lack of

tools, and answers our final research question: TRQ3: What influence do different Java data

structures and their methods have on energy consumption?

Chapter 6 discusses some of the interesting observations found during work on this the-

sis. The analyses and tests presented in this chapter are preliminary in nature, yet show very

promising energy efficient approaches to certain issues. Nevertheless, a more thorough vali-

dation is needed to certify the consistency across other scenarios.

7.1 Future Work

This thesis focused on two main problems in regards to energy efficient software develop-

ment: the lack of knowledge and the lack of tools. While the presented contributions have

furthered the advancement of Energyware Engineering, there is still more which can be done

on the lack of knowledge and tools.

Chapter 5 looked at data structures in one specific programming language (Java) for desk-

top programs. It would be very interesting to explore the implications of these same data

structures in an Android setting (which is also based off of Java). Additionally, we only looked

at the data structures from the Java Collection Framework, but there are other popular data
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structures in other libraries such as the Apache Commons Collections1. Finally, researching

the energy efficiency of data structures in other languages (for example in the C language)

would also bring about a better understanding of this topic.

The tool presented in Chapter 4, SPELL - SPectrum-based Energy Leak Localization, cur-

rently only indicates what code fragments are most probably to have an energy leak. Cur-

rently, we are looking at ways to incorporate jStanely within the SPELL analysis. The idea is

to have the jStanely analysis performed if SPELL detects a code fragment containing a JCF

data structure, and thus quickly suggesting an alternative one. We are also looking at having

SPELL suggest alternatives based on the observations in Chapter 6.

This thesis looked at many misconceptions on the energy problem, and tackled the lack

of knowledge by answering many questions on what contributes to high energy consumption

and by offering guidelines for programmers to follow. While out of the scope of this thesis, an

interesting research path based on the presented work would be to answer why such things

occur as they do. A low-level analysis on programming languages and data structures would

be complementary to this thesis. Additionally, the application of the produced knowledge

and tools within concepts such as wearable devices, harvesting devices, and the Internet of

Things (IoT), would bring about compelling and impactful contributions.

1Apache Commons Collections:
https://commons.apache.org/proper/commons-collections/

https://commons.apache.org/proper/commons-collections/


Appendix A

Chapter 3 Appendix

A.1 Compiler versions

Table A.1: Compilers for languages in the Chapter 3 studies

Version
Ada GNAT 6.2.0
C gcc 6.2.0
C# dotnet 1.0.1
C++ g++ 6.2.0
Chapel chpl 1.15.0
Dart Dart VM 1.24.0-dev.0.0
Erlang Erlang 7.3.1.2
F# dotnet 1.0.1
Fortran ifort 17.0.3
Go go go1.6.3
Hack HipHop VM 3.19.2
Haskell ghc 8.0.2
Java jdk 1.8.0_121
JavaScript node 7.9.0

Version
Jruby jruby 9.1.7.0
Lisp SBCL 1.3.3.debian
Lua Lua 5.3.3
Ocaml ocamlopt 4.05.0
Pascal fpc 3.0.2
Perl perl 5.24.0
PHP php 7.1.4
Python python 3.5.2
Racket raco 6.8
Ruby ruby 2.4.1
Rust rustc 1.16.0
Swift swift 4.0-dev
TypeScript node 7.9.0

A.2 Data tables
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Table A.2: Results for binary-trees, fannkuch-redux, and fasta
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Table A.3: Results for k-nucleotide, mandelbrot, and n-body
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Table A.4: Results for pidigits, regex-redux, and spectral-norm
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Table A.5: Results for reverse-complement

reverse-complement
Energy Time Ratio Mb

(c) C++ ⇓9 6.16 224 0.028 243
(c) C ⇓9 6.52 228 0.029 245
(c) Rust ⇓9 6.96 284 0.024 260
(c) Ada ↓2 ⇓4 8.31 367 0.023 196
(c) Ocaml ↑1 ⇑4 8.77 287 0.031 2
(c) Go ↑1 ⇑1 9.17 366 0.025 133
(c) Swift ⇓11 9.40 410 0.023 407
(c) Fortran ↓5 ⇓1 12.62 938 0.013 243
(v) C# ↑1 ⇑7 12.66 581 0.022 60
(c) Haskell ⇑7 13.76 808 0.017 129
(c) Pascal ⇑7 15.05 913 0.016 129
(c) Chapel ⇓2 15.73 915 0.017 299
(v) Java ↑4 ⇓6 16.97 629 0.027 476
(v) Lisp ⇑1 16.99 1135 0.015 294
(i) Perl 21.04 1187 0.018 369
(i) PHP ⇑10 26.09 1214 0.021 140
(v) Racket ↓3 ⇑10 30.52 2112 0.014 177
(i) JavaScript ⇑2 31.73 1930 0.016 380
(i) Python ↑2 ⇓1 32.31 1498 0.022 620
(i) Ruby ↑1 ⇓3 42.77 1978 0.022 999
(v) F# ↓1 ⇑4 74.89 5627 0.013 405
(i) Jruby ↑1 ⇓3 131.45 4533 0.029 2182
(v) Erlang ⇑1 137.09 6508 0.021 916
(i) Lua ⇑3 142.96 9305 0.015 719
(i) Dart ⇑1 173.60 10634 0.016 1679
(i) Hack n.a.
(i) TypeScript n.e.

Table A.6: Normalized global results for Energy, Time, and Memory

Total

Energy Time Mb
(c) C 1.00 (c) C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(c) C++ 1.34 (c) C++ 1.56 (c) C 1.17
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45
(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 (c) Swift 4.20 (c) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52
(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84
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A.3 Energy and Time Graphs

Figure A.1: Energy and time graphical data for binary-trees
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Figure A.2: Energy and time graphical data for fannkuch-redux
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Figure A.3: Energy and time graphical data for fasta
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Figure A.4: Energy and time graphical data for k-nucleotide
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Figure A.5: Energy and time graphical data for mandelbrot
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Figure A.6: Energy and time graphical data for n-body
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Figure A.7: Energy and time graphical data for pidigits
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Figure A.8: Energy and time graphical data for regex-redux
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Figure A.9: Energy and time graphical data for reverse-complement
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Figure A.10: Energy and time graphical data for spectral-norm
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A.4 Energy and Memory Graphs

Figure A.11: Graphical DRAM energy and memory data for binary-trees
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Figure A.12: Graphical DRAM energy and memory data for fannkuch-redux
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Figure A.13: Graphical DRAM energy and memory data for fasta
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Figure A.14: Graphical DRAM energy and memory data for nbody
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Figure A.15: Graphical DRAM energy and memory data for pidigits
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Figure A.16: Graphical DRAM energy and memory data for regex-redux
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Figure A.17: Graphical DRAM energy and memory data for reverse-complement



A.4. ENERGY AND MEMORY GRAPHS 137

Figure A.18: Graphical DRAM energy and memory data for spectral-norm
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Chapter 5 Appendix

B.1 Set data for 25k population

139
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B.2 Set data for 250k population
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B.3 Set data for 1m population



B.4. LIST DATA FOR 25K POPULATION 143

B.4 List data for 25k population

B.5 List data for 250k population

B.6 List data for 1m population
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B.7 Map data for 25k population

B.8 Map data for 250k population
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B.9 Map data for 1m population
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