
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Marco António Rodrigues Oliveira Silva

Improving the Resilience
of Microservices-based Applications

March 2021

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Marco António Rodrigues Oliveira Silva

Improving the Resilience
of Microservices-based Applications

Master dissertation
Intregated Master’s in Informatics Engineering

Dissertation supervised by
Prof. André Ferreira
Prof. Jácome Cunha

March 2021

C O P Y R I G H T A N D T E R M S O F U S E F O R T H I R D PA RT Y W O R K

This dissertation reports on academic work that can be used by third parties as long as the
internationally accepted standards and good practices are respected concerning copyright
and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should
contact the author through the RepositóriUM of the University of Minho.

license granted to users of this work :

CC BY

https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

A C K N O W L E D G E M E N T S

I would like to express my thanks to everyone who made all the work developed in this
thesis possible. To my mentor Jácome Cunha, who has always been available to clarify any
doubt, whether within his domain of knowledge, or in the mobilization of means within
the institution to solve any problem. I would also like to thank you for all your support
regarding the management and planning of all the work. To my other mentor, André
Ferreira, who made it possible to get a case study that was adequate and vast enough for the
study of the theme to be viable, only in this way it would be possible to achieve the objectives
initially established for this dissertation. In addition, I thank you for all the contribution
in this work with all your experience in the software industry. Also to my two mentors
mentioned above, for all the knowledge transmitted in the most diverse aspects, whether or
not human, for the confidence and effort in the proposal of such a rich and vogue theme
today.

Finally, special thanks to all those who affected the work developed in this dissertation,
whether or not directly. In a special way, I could not fail to mention my parents, for all the
effort made so that the conclusion of this Masters was possible, for all the support in the
least happy moments, encouragement and guidance in all the decisions taken during my
academic career.

ii

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or
falsification of results along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University
of Minho.

iii

R E S U M O

Atualmente, escalabilidade, manutenibilidade e disponibilidade são algumas das medidas
mais utilizadas na avaliação qualitativa de software. Com uma presença cada vez maior de
produtos de software no nosso dia a dia, há consequentemente a necessidade de torná-los
melhores aos olhos do utilizador, surgindo novos desafios a serem explorados e superados
na hora de projetar e desenvolver produtos de software.

Mais focado neste tema de dissertação de mestrado, a resiliência é de facto um ponto
chave para o sucesso de um qualquer produto de software. Cada vez mais as pessoas se
encontram diretamente ligadas a produtos de software no seu dia a dia, o que torna o
bom funcionamento destes essencial. Assim sendo, o estudo de metodologias que permi-
tam aumentar a resiliência e consequentemente a disponibilidade destes serviços ganha
relevância.

O principal objetivo desta dissertação é desenvolver uma metodologia para aumentar
a resiliência de soluções orientadas aos microsserviços. Assim, é fundamental primeiro
entender quais soluções já desenvolvidas para esse fim. Após reunir um conjunto de
técnicas para aumentar a resiliência, analisamos um caso de estudo procurando possı́veis
problemas de resiliência. Para além desta procura de vulnerabilidades, foram apresentadas
propostas para a sua resolução, tendo em conta o conjunto de soluções já levantado. Por
fim, e avançando para a construção da metodologia alvo da dissertação, procedeu-se à
análise de todas as propostas apresentadas, bem como à caracterização das interações
problemáticas. Desta forma, foi possı́vel extrair a informação necessária do estudo para a
construção da metodologia. Como resultado deste estudo, também foi possı́vel identificar
uma nova proposta para aumentar a resiliência diante das necessidades do estudo de caso e
da recorrência em que esta se tornou útil.

Keywords– microservices, resilience, patterns, service degradation, distributed systems

iv

A B S T R A C T

Currently, scalability, maintainability, and availability are some of the most used measures
in the qualitative evaluation of software among developers. With an increasing presence
of software products in our daily lives, there is, the need to make these products better in
the eyes of the user, therefore raising new challenges to be explored and overcome when
designing and developing software products.

This work focuses on this master’s thesis theme, resilience is in fact a key point for the
success of any software product. More and more people are directly connected to software
products in their daily lives, which makes their smooth functioning essential. Therefore, the
study of methodologies that allow the increasing availability of these services undoubtedly
gains relevance.

The major objective of this dissertation is to develop a methodology for increasing the
resilience of microservices-based solutions. Thus, it was essential to first understand what
solutions had already been developed for this purpose. After assembling a set of techniques
for increasing resilience, we analyzed a case study and searched for possible resilience
problems. Besides this search for vulnerabilities, proposals were made for their resolution,
taking into account the set of solutions already raised. Finally, and moving towards the
construction of the dissertation’s target methodology, an analysis was performed of all the
proposals made as well as the characterization of problematic interactions, making it possible
to generalize the study and reach the objective of the dissertation. As a result of this study,
it was also possible to identify a new proposal to increase resilience given the needs of the
case study and the recurrence in which it has become useful.

Keywords- microservices, resilience, patterns, service degradation, distributed systems

v

C O N T E N T S

1 introduction 1

1.1 Problem 1

1.2 Objectives 2

1.3 Thesis Methodology 3

2 state of the art 4

2.1 Concepts 4

2.2 Proposed solutions for resilience in Microservices 6

3 people transportation system - a case study 12

3.1 Tracker 13

3.2 Backoffice (web application) 25

3.3 Mobile App 35

3.4 Architectural Analysis 43

3.5 Implementation decisions 44

4 methodology 46

4.1 Results analysis 46

4.2 Methodology 49

4.3 The backup Pattern 56

4.4 Threats to Validity 57

5 conclusion 60

a support material 65

vi

L I S T O F F I G U R E S

Figure 1 Circuit Breaker State Diagram. (Montesi and Weber, 2016) 8

Figure 2 Retry Diagram. Rosner and Potukar 9

Figure 3 Diagram of representation of error handling using the Fallback pattern.
Finnigan (2018) 10

Figure 4 Representative diagram of the organization of the processing and
cache components. Finnigan (2018) 11

Figure 5 Solution architecture to be analyzed. 13

Figure 6 Getting schedule sequence diagram. 14

Figure 7 Schedule candidate sequence diagram. 15

Figure 8 Tracker component checking if it is no longer in range of a stop. 16

Figure 9 Tracker component in search of a stop within his range. 17

Figure 10 Publication of bus locations in real time. 18

Figure 11 Sequence diagram for the Arrivals service and Tracker component. 22

Figure 12 Sequence diagram for the Real Time service and Tracker component. 24

Figure 13 Sequence diagram for the Routes service and Tracker component. 25

Figure 14 Representation of buses live monitoring as well as the stops arrival
time estimates. 26

Figure 15 Real-time buses location representation. 27

Figure 16 Representation of the history of bus stops. 27

Figure 17 Backoffice sequence diagram. 28

Figure 18 Diagram showing the new behavior in obtaining the general arrival
status of buses. 31

Figure 19 Representative diagram of the new behavior in obtaining information
about a given line. 31

Figure 20 Diagram representing the new behavior in obtaining routes informa-
tion. 33

Figure 21 Representation of the new behavior in obtaining information regard-
ing the location of buses. 35

Figure 22 Mobile App landing page. 36

Figure 23 Mobile App lines list. 36

Figure 24 Mobile App map. 37

Figure 25 Representation of the new behavior in obtaining route information
by the mobile application. 40

vii

list of figures viii

Figure 26 Representation of the new behavior in obtaining route information
by the mobile application. 41

Figure 27 Diagram of installation of resilience solutions. 45

Figure 28 The Backup pattern. 58

Figure 29 Tracker sequence diagram before patterns application. 66

Figure 30 Tracker sequence diagram after patterns application. 67

L I S T O F TA B L E S

Table 1 Representation of the patterns addressed in the analyzed articles. 7

Table 2 Characterizers used in the analysis of the case study interactions. 46

Table 3 Solution proposals for the interactions present in the case study. 47

Table 4 First type interaction identified in the case study. 51

Table 5 Second type interaction identified in the case study. 51

Table 6 Third type interaction identified in the case study. 52

Table 7 Fourth type interaction identified in the case study. 53

Table 8 Fifth type interaction identified in the case study. 53

Table 9 Sixth type interaction identified in the case study. 54

Table 10 Seventh type interaction identified in the case study. 55

Table 11 Eighth type interaction identified in the case study. 55

Table 12 Ninth type interaction identified in the case study. 55

ix

1

I N T R O D U C T I O N

Users are increasingly demanding more when it comes to the resilience of the software
products they use in their daily lives. Consequently, developers need new solutions capable
of meeting with this increase of the user’s demands. Increasing the resilience of any solution
affects the system’s quality perceived, considering its greater availability. When solution
components are unavailable, the service availability as a whole can only be maintained
through service degradation.

Microservices success comes mainly from allowing the development of very complex
solutions that with a monolithic paradigm were almost impossible to achieve. Moreover, its
ability to scale horizontally is also determinant due to the higher computational load, owing
to more complex tasks implemented in software and a higher number of users.

To better understand what a microservice-oriented solution actually comprises, start by
defining the opposite, a monolithic solution. An application is monolothic if it contains the
entire application code in a single codebase and shares the execution environments. Typically
the process space is shared at runtime for the entire application. These types of solutions are
simple to build, test and deploy when compared to a microservices architecture.

On the other hand, microservices provides an architectural style that promotes the solution
division into simpler and smaller components. This division process must be carried out
according to certain guidelines so that the resulting components are as independent and as
stateless as possible. Ideally, this division should be oriented towards functional cohesion,
making it easier to establish the responsibilities of each of the constituent components of the
solution.

1.1 problem

The increase in performance of solutions that follow this architectural style is mainly due to
its ability to scale. When a system is overloaded, not all of its components are homogeneously
affected. In a microservice oriented solution, each component can in most cases be replicated
as many times as necessary until the desired performance levels are reached. Deploy the
overloaded component in a more powerful machine is also an option, satisfying the higher

1

1.2. Objectives 2

computational power demand by adding more CPUs, memory and I/O capability to the
machine. This is called vertical scaling.

One other key point for any software product today is its availability. By current standards,
the fact that a product is not functional when necessary is a reason why it is no longer used
or even replaced by other that offers the same or similar service. These service interruptions
can be caused by several reasons, such as network or the constituent components failures.
By that, we can see that availability and resilience are strongly related. More specifically,
resilience is defined as the ability to deal with possible errors that occur in the solution
components, preserving the product’s functionality as much as possible.

On the other hand, resilience can also be seen as preparing a system for possible failures;
more specifically, the ability to detect and prevent the occurrence and spread of failures. Also,
it should be noted that such detection and treatment of system failures should disturb the
system as little as possible, while witholding as much as possible from the user any problems
that have occurred. Another of the great advantages of isolating functional components in
a system is a greater ability to isolate possible errors. The failure of one of the functional
components of the solution will not necessarily imply the non-operation of the remaining
components, as long as they are not interdependent. Therefore, it is possible to degrade the
service instead of its total failure, favoring availability.

Bearing in mind that microservices define the solution through small, simple, and ori-
ented to functionality components, communication between them will always be needed to
ensure their smooth operation. Even in an ideal scenario, without dependencies between
components, the traffic routing process needs to be carried out through the infrastructure
network. As a result, when any communication is made using the network, it becomes a
potential source of failures.

As Rotem-Gal-Oz (2008) explains, when development is carried out in a distributed
environment, preventive measures must be taken so that the system is prepared to deal with
possible failures. As a consequence of the solution components distribution, the solution
resilience becomes a problem. Therefore, this study focuses on ways to increase this resilience
in microservices oriented solutions.

1.2 objectives

This thesis aims to answer the following questions.

• What are the available patterns to make a resilient microservices-based application?

The objective is to document and describe in detail the existent strategies to introduce
resilience in a microservices oriented product.

• How should each of the existent solutions be applied?

1.3. Thesis Methodology 3

The objective is to understand in which context each of the existing solutions is best
suited. In addition, it is also essential to understand whether implementing the solution
has any counterpart or any essential requirement for its correct implementation.

• What is the benefit in terms of resilience?

Different solutions can be applied in different scenarios, resulting in different final re-
sults. It is necessary to comprehend whether the solution brings advantages effectively
to the final solution as well as checking that the combinations of different solutions
does not cancel out the effect.

1.3 thesis methodology

Naturally, before starting any study, it is necessary to understand the current scenario
regarding the theme (Section 2). Bearing in mind that it is intended to build a methodology
for applying solutions to increase resilience, the first step was the investigation and survey
of the techniques already proposed for this purpose. With this study, it was possible to
perceive the existence of a wide range of techniques and solutions that promise to increase
the microservices oriented solutions resilience. In addition, we also perceive the existence
of large amounts of information on the topic spread through blogs, non-scientific articles
or forums, as this architectural style can be considered emergent and is mainly driven by
industry. Since these means are not scientifically verified at all, we started an exhaustive
analysis of these sources, thus enabling the collection of the most referenced set of solutions
in the literature.

After meeting the set of proposals, an analysis of interactions between components of a
case study was carried out, to find possible points of failure and propose solutions for their
mitigation (Section 3). Still, in this case study, it should be noted that during its development
process, no techniques were applied to increase the solution’s resilience.

After completing the survey of possible error scenarios and proposing the respective
solutions, each of these solution proposals was characterized using a set of key factors
extracted from the analysis of each the solution components (Section 4). This set of factors
characterizing interactions and the respective resilience solutions proposals compose the
final objective of this study, the production of a methodology to increase the resilience of
microservices based solutions.

2

S TAT E O F T H E A RT

In this chapter, we introduce in more detail the concepts necessary to understand this work
(Section 2.1) and present the state of the art in creating resilient microservices oriented
solutions (Sections 2.1.2 and 2.2).

2.1 concepts

2.1.1 Microservices

According to Newman (2015), as additional features are implemented for a product, the
codebase also increases, which can cause problems. As this codebase increases in size,
consequently, find the code that implements each feature will also become more complex.
Although there are already methodologies that aim to make these large code bases modular
and easy to consult, if they are not applied correctly, the good maintenance of these code
bases can be called into question. As a result, the implementation of error correction or the
changing of features becomes increasingly difficult due to the dispersion of the code.

In a microservices based architecture, the services division is oriented to features, thus
avoiding the problems associated with large teams and large code bases (Newman, 2015).
Furthermore, this focus on features counteracts the tendency of excessive growth of compo-
nents in size, avoiding maintenance issues.

The benefits of an architecture based on microservices are numerous and varied, many of
which are common to a distributed system. However, this architectural style tends to obtain
better results than a distributed system, since it takes more detail into all the principles
initially established in a distributed system.

One of the major benefits of this architectural style is the technological heterogeneity,
allowing the choice of the most appropriate technology for implementing each of the services.
In addition, the components that make up the solution are independent, they have a low
complexity level and when possible are stateless. This allow new instances of a service to
be more easily deployed if necessary, making the solution more scalable. Furthermore, this
independence facilitates the deployment of the solution since only components that undergo

4

2.1. Concepts 5

changes need to be deployed. In addition, this independence also facilitates the organization
of developers in teams dedicated to each of the services, thus enabling the parallelization of
the development of each of these components. Finally, this feature promotes the reuse of the
components already developed, since different combinations of these give rise to different
solutions.

2.1.2 Resilience

The microservices’ architectural style is not entirely new, but nowadays, the number of
applications that follow it is increasing. Since a microservice-based architecture is made
up of innumerable small components, naturally the complexity and the probability of the
occurrence of system failures increase accordingly. Moreover, nowadays more and more
software products are part of the daily life of ordinary people in the most diverse areas
(personal telephone, commercial establishments, etc.) (res, 2019). In this way, the guarantee
of the correct functioning of these services proves to be an increasing concern regarding the
availability of these services for the longest possible time.

In this way, an application’s resilience is its ability to deal with errors that may occur,
while still maintaining its functionality as much as possible. The higher the level of resilience,
the greater the solution’s ability to make the user unaware of the error (res, 2019).

Based on the articles (Clay) and (pag), we can observe that the Amazon services’ unavail-
ability for just one minute represents a potential loss of 234,000 USD, which shows, in fact,
the importance of availability nowadays. In addition, it will not be difficult to imagine
the consequences of a failure in products that support very delicate institutions, such as
hospitals, police forces, emergency services, or even air or rail traffic control.

In order to quantify this ability to deal with the occurrence of failures, there are already
some metrics used for this purpose. These are MTTR (Mean Time to Recovery), MTTI (Mean
Time to Identify) (mtt) and the number of failures and errors detected in the system.

Considering the aforementioned definition of resilience, in order to make the user unaware
of the error as much as possible, it is first necessary to be able to detect this same failure.
In a monolithic solution, the monitoring process is already a challenging task, let alone in
a solution consisting of several instances to be monitored. In addition, if the solution is
divided into several components, the means for establishing communication between these
components will also have to be monitored since this component can fail, as mentioned in
the seven fallacies of distributed systems (Rotem-Gal-Oz, 2008). All these efforts to monitor
the constituent components of the solution allow not only to have an overview of the health
status of the infrastructure as a whole but also to detect possible problems in the constituent
components of the solution.

2.2. Proposed solutions for resilience in Microservices 6

2.1.3 Grey Literature

During the process of gathering information on the resilience theme in a microservices-
oriented architecture, we realize that the information found on the topic is mostly present
on blogs, forums, or websites. Thus, since all this information is present in these less
conventional media, naturally it will not be subject to any scientific verification necessary
for the consideration of a credible reference. (Kamei et al., 2019) reinforce the fact that more
and more non-scientific articles appear that address content related to Software Engineering.
Furthermore, the authors reinforce that more and more researchers are showing interest in
the content of non-scientific articles with the major objective of filling this gap.

Furthermore, having this theme of microservices aroused interest among the development
community only around 2014/2015, when (Newman, 2015) was published, it is understand-
able that the verification and documentation process of information dispersed by unofficial
documents has not yet been completed in full.

2.2 proposed solutions for resilience in microservices

During the research of contents on the theme of this dissertation, a strong gap was observed
between the scientific aspect and the practical component. In particular, the presence of
large amounts of information on this topic was observed but mostly scientifically unverified.
This happens since this architectural style is still quite recent but mainly because the main
drivers for its evolution are directly linked to development and not so much to scientific
research.

Mostly, the proposed solutions to the problem arise in a format of architectural patterns
to be applied. But, once again, the study (Taibi et al., 2018b), reveals the non-systematization
of solutions that aim at increasing the resilience of a software product, among the patterns
identified by the systematic study. However, only one was referred to as effective to increase
the resilience of applications.

Furthermore, despite the observed gap, this theme has been gaining relevance not only
among the development community but also among the research community, which causes
the appearance of scientific articles dedicated to this topic.

As mentioned above, the problem to which we intend to respond is not yet fully established
concerning documentation and scientific verification. In this way, the proposals to be
presented have mainly two sources: i) scientific documents or books and ii) blogs, posts on
proprietary websites, forums, informal articles, etc..

Table 1 presents the content covered for each of the articles, making it possible to have an
overview of which solutions are most addressed in the literature.

2.2. Proposed solutions for resilience in Microservices 7

So
ur

ce
Li

vo
ra

(2
0
1
6
)

H
am

ee
d

A
d-

de
en

(2
0

1
9
)

Ta
ib

i
et

al
.

(2
0

1
8

a)

Ba
la

la
ie

et
al

.
(2

0
1
8
)

Bu
ss

Be
nh

al
lo

uk
G

ök
al

p
R

os
ne

r
an

d
Po

tu
ka

r

G
er

ar
d

R
oc

el
a

Sc
hu

tt
a

M
ár

to
n

Fi
nn

ig
an

(2
0

1
8
)

In
dr

as
ir

i
Be

ha
ra

Pattern

C
ir

cu
it

B
re

ak
er

"
"

"
"

"
"

"
"

"
"

"
"

"
"

R
et

ry
"

"
"

"
"

"
"

"

Ti
m

eo
ut

"
"

"
"

"
"

"

B
ul

kh
ea

ds
"

"
"

"
"

Fa
ll

ba
ck

"
"

"
"

C
ac

he
"

"
"

"
Fa

il
Fa

st
"

"

R
at

e
Li

m
it

in
g

"
"

Lo
gg

in
g

"
C

li
en

t-
si

de
D

is
co

ve
ry

(S
er

vi
ce

R
eg

is
tr

y)

"

H
ea

lt
h

En
dp

oi
nt

M
on

it
or

in
g

"

Q
ue

ue
-b

as
ed

Lo
ad

Le
ve

ll
in

g
"

T
hr

ot
tl

in
g

"
Ex

te
rn

al
C

on
fig

ur
at

io
n

Sy
st

em
"

C
om

pe
ns

at
in

g
Tr

an
sa

ct
io

n
"

Ta
bl

e
1
:R

ep
re

se
nt

at
io

n
of

th
e

pa
tt

er
ns

ad
dr

es
se

d
in

th
e

an
al

yz
ed

ar
ti

cl
es

.

2.2. Proposed solutions for resilience in Microservices 8

It is still possible to observe that all six patterns mentioned most frequently are found
in at least in one scientifically verified document, reinforcing the results obtained from the
study of the literature.

Regarding the set of standards to be considered in the study, in a first selection, only those
that were mentioned in at least one of the scientifically verified articles found on the theme
were considered. Finally, among the solutions selected in the first selection, the six most
mentioned standards were selected in both verified and unverified literature.

In the following paragraphs we describe each one of these patterns.

2.2.1 Circuit Breaker

Besides the component failure itself, another major concern in a microservice-based system
are the components that depend on the component that has failed. This architectural pattern
is intended precisely to prevent the failure from spreading to the rest. This pattern is called
Circuit Breaker (Montesi and Weber, 2016).

This propagation is avoided by forwarding the requests destined to a specific service
primarily to a component dedicated to the monitoring and analysis of its traffic, making it
possible to detect symptoms of possible anomalies in the component.

More specifically, this pattern can be seen as a state machine, thus explaining the different
possible states to follow. When this monitoring component is in the closed state (see Figure
1), requests are passed to the service, and any errors that eventually occur are recorded. The
open state consists of blocking any request made to the service, and an error message is
immediately returned. When in this state, it must be checked periodically so that this case
regains its operational state and changes to a half-open state. Finally, the state half-open
consists of passing only part of the requests to the service. If successive responses are
returned, it will change to closed but, in the event of any error, the status will change to
open.

Figure 1: Circuit Breaker State Diagram. (Montesi and Weber, 2016)

2.2. Proposed solutions for resilience in Microservices 9

2.2.2 Retry

As explained in Rosner and Potukar, this is a very simple pattern consisting of re-sending
the request when it fails (represented in Figure 2). This resend can be configured according
to the maximum number of attempts, as well as the time intervals between the various
attempts. Thus, this pattern is suitable for resolving, for example, temporary network
problems, occasional internal errors in the service, non-existent or too long response due to
large amounts of traffic, etc.

Figure 2: Retry Diagram. Rosner and Potukar

2.2.3 Timeout

This is an architectural pattern that allows you to interrupt a request to a service when an
error is suspected. This suspicion usually translates into setting a maximum waiting time
for an answer. It should also be noted that this waiting time must be adjusted, taking into
account the context in which the pattern is applied. Indrasiri

2.2.4 Bulkhead

This is an architectural strategy very similar to that used in the construction of ships. A vessel
consists of sections completely isolated from each other, thus preventing the propagation of
any anomaly that occurs in that module to the adjacent ones.

In a microservice-oriented architecture, the concept is the same, thus allowing this pattern
to limit the resources used by each of the components of the solution Wasson et al.. More
specifically, the resources to be limited may be the number of competing requests for a
component, thus preventing saturation of the network that interconnects it and consequently
slowing down the rest of the infrastructure network as well. Also, the limitation of the
resources used can be proved useful considering the overload of a particular component
or module that shares physical resources will not affect the neighboring components or
modules.

2.2. Proposed solutions for resilience in Microservices 10

2.2.5 Fallback

This is a standard that implements the establishment of a pre-defined response to be sent
in case an error occurs in the communication with the external service. This pre-defined
message will replace the sending of the requested information, announcing the occurrence
of some type of error that made impossible to get the desired information. In this way, the
customer will always receive a timely response, even if pre-defined, thus avoiding longer
waits that may occur because of an error in communication. Since this pre-defined message
is informative of any communication anomaly, it facilitates service degradation. On the
other hand, this mechanism performs a filtering of messages to be forwarded to the client.
If the response returned by the service contains error messages or unexpected structures,
the pre-defined message will also be sent to the customer. Here, the replacement of the
message received from the external service promotes the isolation of the error from the
external component, since it prevents the customer from processing messages for which he
is not prepared.

Figure 3 illustrates a possible application of this Fallback Finnigan (2018) pattern, together
with Circuit Breaker and Bulkhead.

Figure 3: Diagram of representation of error handling using the Fallback pattern. Finnigan (2018)

2.2.6 Cache

Not being directly related to resilience but representing a determining factor for the occur-
rence of errors in the constituent components of a microservices-oriented solution will be
the volume of traffic.

For this, as the service responds to requests, these responses can be saved so that in
the future if the same information is requested again, it is possible to return the response
without requiring the service. Thus, the load on the service is reduced, and therefore the
probability of errors occurring Finnigan (2018).

2.2. Proposed solutions for resilience in Microservices 11

A diagram representing the interconnection between the processing and cache components
is shown in Figure 4.

Figure 4: Representative diagram of the organization of the processing and cache components. Finni-
gan (2018)

3

P E O P L E T R A N S P O RTAT I O N S Y S T E M - A C A S E S T U D Y

In order to enable the validation of the surveyed methodologies, it is essential to find a case
study large enough, so that there are sufficient error scenarios that allow the application and
corroboration of all the surveyed techniques.

This case study follows a microservices architectural pattern and its main objective is to
monitor and forecast the arrival times of TUB buses (Transportes Urbanos de Braga and Bosch
Braga) for each of the stops on the respective line. Users are also provided with the real-time
location of buses in circulation by consulting a mobile application available for Android and
iOS.

This solution is divided into two major groups, components of presentation (in italics) and
backend (in bold).

• Mobile App

• Tracker

• Backoffice

• API Gateway

• Routes

• Location history

• Real time location

• Arrival times

• Authentication

• Alerts

• Route Deviation

• Update Manager

12

3.1. Tracker 13

To make the resilience analysis more efficient and objective, only the components respon-
sible for supporting the monitoring service (Tracker, Routes, Location History and Real Time
Location) and forecasting arrival times (Arrivals) at the bus stops were target of analysis.
In addition to the components directly related to the monitoring task, all the presentation
components (Mobile App and Backoffice) were also analysed. This way, only the interactions
directly related to functionalities available to the users were analysed. The diagram present
in the Figure 5 represents all components targeted for resilience analysis, except for API
Gateway, taking into account that this is only responsible for forwarding requests to the
respective microservice.

Figure 5: Solution architecture to be analyzed.

Naturally, the components of the presentation layer will be responsible for communication
with the backend components. Therefore, for the solution resilience study, it is crucial to
have a complete and detailed notion about the information sent by each of the presentation
components as well as the communication flow of sending these requests. Finally, the content
was also analyzed in terms of its importance for the correct functioning of the solution.

3.1 tracker

The Tracker component, is present in each of the monitored buses and is responsible for
sending all the data relating to the buses in operation to the different backend components.

3.1. Tracker 14

Within this Tracker component, there are several modules with different functionalities.
The main module is called geofencing and it is where the event communication algorithm
triggered by the movements of the buses is precisely defined.

As a result of the analysis made to this geofencing algorithm, we can find it in three
different states of operation.

1. getting schedule

2. schedule candidate

3. in schedule

When this device is started, the status [1 - getting schedule], defined in the Figure 6, is
immediately assumed, sending a request of the type GET to the service Routes, being
requested the candidate schedules for the bus. When this same information is received, the
operating state is immediately changed to the state [2 - schedule candidate].

Figure 6: Getting schedule sequence diagram.

Once in the state [2 - schedule candidate], the component will periodically check if the bus
is within the radius of action of any stop that belongs to the route to be taken. When the
bus position is within the radius of one of the programmed stops, a GET request to the
Routes (schedules) service is sent, with data being requested regarding the route to be taken
by the bus (line id, schedule id, direction and list of stops). Next, POST requests are sent to
both the Arrivals and History service, thus informing the arrival of the bus at a stop on its

3.1. Tracker 15

schedule through the isArrive: TRUE attribute. Finally, after detecting this first stop, the
Tracker state is changed to the state [3 - in schedule].

Figure 7: Schedule candidate sequence diagram.

This state [3 - in schedule] is where the Tracker is expected to remain most of the time.
The execution time in this state can be divided into two major moments, whether the bus
is within the range of action of a stop or not. When within a bus stop range of action, it
periodically checks to see if it is still close enough or no. At that moment, if it is not the last
stop on its route, the departure will be communicated to the Arrivals and History services,
sending the isArrive attribute marked as false.

3.1. Tracker 16

Figure 8: Tracker component checking if it is no longer in range of a stop.

When the bus is outside the stop range of action, it periodically check to see if it is close
enough to one of the stops planned on its route. If this happens, the Arrivals and History
services are notified through POST requests. It should be noted that this bus stop arrivals
events requests sent have the isArrive attribute set to true. In addition, if the bus reaches the
end of its route, the Tracker state is reset to the state [1], getting scheedule. Finally, regardless
of whether the bus is within the range of one of its stops or not, in each iteration, a POST

request is sent to the History service to record the bus position at all times.
Besides the execution of this geofencing algorithm, there is also a constant registration of

the current location of each bus for the non-persistent location service specified in Figure 10

sequence diagram.

3.1. Tracker 17

Figure 9: Tracker component in search of a stop within his range.

3.1.1 Requests analysis

Having already made the detailed analysis of the entire communication workflow for the
geofencing implementation algorithm, it is necessary to reflect on how and if it is possible
to effectively increase the resilience of the solution by applying the previously studied
patterns. For this, we made a more detailed analysis regarding not only the relevance of the
information that is exchanged between the client and backend layers, but also the context in
which the request is sent as well as possible problems caused by the lack of the requested
information.

As a result of this analysis, we found two different types of requests along the geofencing
algorithm. The first group identified comprises GET requests triggered at the time of
requesting a timetable for a bus either before it enters any of the stops or at the moment
of entering the first stop of the route to be carried out. The information requested in these

3.1. Tracker 18

Figure 10: Publication of bus locations in real time.

requests is essential for the correct execution of the algorithm since the transitions of the 3

states previously mentioned are based on the information from these requests. Therefore,
this information is vital for the functional correctness of the service. Possible faults in this
communication have a high impact on service correctness.

Still, in this geofencing algorithm implementation, another requests group was identified,
but now of the type POST. Furthermore, the sending of these requests is done following an
asynchronous communication, using a pool of requests responsible for sending them when
possible. In this case study, effectively an acknowledgment message is currently implemented,
but this information is only saved in a logger, having no effect in the error handling. Thus,
to increase the resilience of the solution in this scenario, it is necessary to prepare the
backend components so that they can receive the maximum of information sent by the
various Tracker components successfully. Information losses can be cause by the backend
service unavailability or any fault in the communications process, as the events are not saved
internally by the Tracker.

Figures 29 and 29 present in the appendix show the complete sequence diagrams for the
Tracker interaction before and after patterns application.

3.1.2 Error Analysis

Firstly, it is necessary to understand which points of failure are present in the solution in
order that the pattern’s application can be effective.

For this, we made an analysis of the possible error scenarios and points of fault for each
of the components that are involved in the execution of the geofencing algorithm.

3.1. Tracker 19

In an initial phase, we identify which components were involved in the execution of the
geofencing algorithm. Thus, the Tracker, Arrivals, History and finally Routes components were
identified. After this work, we proceeded to the analysis of each of the execution contexts
and, consequently, the identification of the error scenarios associated with each of them.

Facing a solution oriented to microservices, network problems can originate faults, con-
sidering that after all it is still a distributed system ((Dis, 2019)). Furthermore, taking into
account that the Tracker component is distributed among the various buses operating in
the city, this need for total mobility by this component implies the establishment of a con-
nection to the support servers of the bus monitoring service through broadband solutions.
This makes the connection even more unstable when compared to a connection on a local
network.

Regarding the other components, they are all located in a common infrastructure where
communication is expected to be established with a much higher level of reliability. We
should also note that, since the solution does not require communication between these
components to support the monitoring service, the probability of occurrence of network-
related failures decreases considering that there is no need for communication between
them.

Thus, the following error scenarios were identified:

• Lack of connectivity between the Tracker and the backend

• Errors processing messages of the component receiving the requests (backend)

Then, we will analyse the error scenarios previously identified and we will also propose
solutions, considering factors such as the need for persistent information in circulation, its
validity over time or even the performance/availability commitment of the service.

3.1.3 Improving the resilience of components interacting with Tracker

Arrivals component

The Arrivals component computes the arrival time estimates for each bus at the following
stops. To enable the estimates calculations, it is also necessary to record all the bus stop
entry and exit events. Only after this, it is possible to analyse the events data and produce
the desired estimates. Naturally, it is intended that the accuracy of these estimates produced
by the component are as high as possible, which implies the collection and recording of the
largest amount of information possible.

In a scenario which the Tracker is unable to communicate with the Arrivals service support
component, the only option to buffer the collected bus stops and exit events is use of the
device’s internal memory for storage. This way, even if communication is not possible, the

3.1. Tracker 20

information will not be lost, which will allow its use in the calculation of future estimates.
Regarding the recovery of information saved locally on the device, there are two different
recovery strategies. The first consists of an attempt to forward information over the network
when connectivity is restored. However, it will be necessary to consider the possible overload
of the network when recovering connectivity and the problems that can be caused by this
overload. In addition, if any problem occurs with the acknowledgment response that
confirms the information reception, there is the possibility of resending an event that is
already registered, so it is necessary to proceed with its disposal. The second option is the
Tracker notify the monitoring support team that could not communicate and has information
that need to be recovered. This strategy has the advantage of not overloading the network
with the information previously collected, but it requires manual treatment, more specifically,
the recovery and introduction of the events information saved by the Tracker locally. As in
the previous mechanism, it is necessary to confirm that none of the events stored locally are
not already registered to preserve data consistency.

Since in the interaction between these two components the information flow is mostly in
the direction Tracker - Arrivals, the impossibility of communication or malfunction of the
intervening components produces practically the same result, the non-registration of the bus
stops entry and exit events. Thus, the whole analysis made for the first error scenario also
applies to this one, with only a small behavioral difference. In a malfunction scenario of the
component responsible for the events registration, the Tracker component is not protected
against unexpected messages returned by the backend component. These messages outside
the established standards can cause problems in the component’s operation. In order to
avoid this, this messages must be intercepted and replaced by a default one previously
configured that the system can certainly interpret without errors. In this way, it is possible
to avoid the error propagation from the service provider component to the client component.
This functionality is supported by the Fallback pattern.

In this way, the proposed solution for this interaction results from integrating the following
solutions.

• Retry - resubmission of requests against occasional failures in either the backend
services or the network

• Timeout - establishment of the maximum waiting time for the acknowledgement
message.

• Circuit Breaker - as a preventive measure against traffic spikes than can lead to crashes
or inconsistent component operation

• Fallback - to prepare the component against processing messages with unexpected
structures or error messages.

3.1. Tracker 21

Finally, given the nature of the Bulkhead solution, it requires an analysis not at the level of
the interaction between components, but at the level of functionalities distribution among
the different solution components. This analysis is present in 3.4.

The diagram present in the figure 11 represents the new behavior of the Tracker - Arrivals
interaction.

History

The History component is another essential component in the execution of the geofencing
algorithm. Being responsible for the persistent registration not only of the entrance and exit
events of the buses being monitored but also of the respective locations at each moment, this
component needs to handle high volumes of data. Furthermore, taking into account that
the information stored by this component may be useful for studies on the performance of
buses, the more information that is recorded, the clearer and more accurate the vision of the
operation of the buses will be.

Considering the execution scenario, the similarities are clear with the interaction previously
analyzed. The data to be recorded is practically the same, except that this component is
additionally responsible for recording the locations at each moment of the buses. This
additional registration of the locations only reinforces the need to implement the Circuit
Breaker pattern as a measure to preserve the component’s good functioning, given the
enormous amount of information to be registered. Given the relevance of the information to
be recorded, the same backup mechanism composed of the Cache, Fallback, Timeout and Retry
(optional) patterns, proposed in the interaction with the Arrivals component should also be
applied in this scenario.

Real Time Location

Bearing in mind that one of the solution’s features will be the availability of locations at all
times for bus users, for performance reasons, one of the components was developed specially
for this same feature. In this context, the component register the current buses locations and
make them available later to users. Since another component is already responsible for the
persistence of these data, the locations are only kept in memory for a short period of time.
This is due to the fact that locations are constantly being updated and only the most recent
ones should be ready to be returned to the users.

Taking into account that the information processed by this component is considerably
volatile, it is acceptable to sacrifice the information delivery guarantee in favour of perfor-
mance. Regarding the Circuit Breaker pattern application, it is undoubtedly helpful when
considering that promotes the proper functioning of the component by deviating requests if
the component shows signs of malfunction. The application of a Fallback mechanism will
undoubtedly be an asset, taking into account that it allows the configuration of predefined

3.1. Tracker 22

Figure 11: Sequence diagram for the Arrivals service and Tracker component.

3.1. Tracker 23

messages in the event of an error occurring. In this way, not only is the task of logging facili-
tated, but it also prevents the occurrence of errors caused by the failure to send information.
Regarding the Timeout pattern, this does not apply in this context, since the information is
considerably volatile there is no point in implementing an acknowledgement mechanism.
Also, due to the fact that in this interaction there is only information registration and not
information request, the Cache pattern does not apply. Looking now at the rate of updates in
the location information produced by the Tracker component, the application of the Retry
pattern makes little sense. Implementing a mechanism of this kind becomes unnecessary
when the rate of the information update to be sent is very high, meaning that by the time
the information was resent, there would probably already exists more updated information
for registration.

In this way, the proposed solution for this interaction results from integrating the following
solutions.

• Circuit Breaker - as a preventive measure against the high volumes of data processed
by this component

• Fallback - as a preventive measure against possible unexpected messages, helping to
contain errors.

Observe the sequence diagram in Figure 12 that represents the new interaction behavior.

Routes component

Finally, the Routes component is consulted to get routes information, which are essential
for the geofencing algorithm evolution. Given the importance of this information, it is
expected to propose the Retry pattern application. In practice, the geofencing algorithm
typology itself already implements it. This is due to the fact that it is based on a state
system and an infinite cycle. If the information is not correctly obtained, the status does
not change, so in each iteration a new information request attempt is made. Regarding
the Circuit Breaker pattern, it once again presents advantages, considering that its major
function is to preserve the component’s accurate functioning and the importance of obtaining
this information for the algorithm evolution. Cache mechanisms can also be useful since
they can ease the computational load of a component by reusing previously requested
information. Timeout mechanisms can also be useful in this information request, since they
avoid any excessive waiting for a service response. More specifically, this parameter must be
adjusted according to the execution rhythm of the geofencing algorithm interactions. This
way, resources consumption in waiting for outdated request can be avoided. Finally, once
again, a Fallback mechanism proves to be useful in most cases, bearing in mind that it filters
possible responses for which the system is not prepared, avoiding new errors. In this way,
the error tends to stay contained to the original component.

3.1. Tracker 24

Figure 12: Sequence diagram for the Real Time service and Tracker component.

So, the proposed solution for this interaction results from integrating the following
solutions.

• Circuit Breaker - to preserve the component’s good functioning due to the information
relevance served for the geofencing algorithm

• Cache - to reuse previously requested information, relieving the component computa-
tional load

• Retry (already implemented by default) - to try to obtain the necessary information as
soon as possible for the algorithm evolution.

• Fallback - as a preventive measure against possible unexpected messages, helping to
contain errors.

The new behavior of the interaction is represented by the sequence diagram in Figure 13.

3.2. Backoffice (web application) 25

Figure 13: Sequence diagram for the Routes service and Tracker component.

3.2 backoffice (web application)

As a complement to the Tracker component described in 3.1, a web application is used to
make all the necessary configurations and have access to the data collected during the buses
routes. Among the data collected is the in operation buses stop entry and exit events history
as well as past buses location data and the stops arrival time estimates.

This locations monitoring task can be done according to two levels of detail, one based on
a spine of stops 1 and one based on a map. Besides this monitoring task, it is also possible
to consult the passage history of the buses being monitored within a certain time interval.
Thus, in general, this web application is divided into three major areas, buses stop entry

1 representation of the bus route as shown in Figure 14

3.2. Backoffice (web application) 26

and exit events history (Figure 16), live buses location (Figure 15) and stops arrival time
estimates (Figure 14). In addition to these three large areas of the platform, there is also an
area at the top of the page common to these where some real-time information about the
status of the buses being monitored is presented (highlighted in red).

This common area has as main objective to always show some basic information about
the buses operation. Buses can be marked as On time, Delayed, In advance and finally Empty.
In order to always keep this information up to date in the monitoring areas, a recurrent
GET request is made to the Arrivals service which requests the information about the buses
(Figure 17, (I)), more specifically which of them are meeting the schedule (state In time),
delayed (state Delayed) or if arrived or left earlier than were supposed to (state Advanced).

In the first of the three main monitoring areas, a spine based representation of the buses
locations is presented. This is also the default area when the users authenticates in the
monitoring platform. The buses location is represented by the intervals between stops on
this spine so, for a real-time representation of the location, it will only be necessary to have
access to the events of arrival and departure from each of the buses stops. When a new line
is added for monitoring, new requests start to be sent for buses that are in operation in this
newly added line. The information is available in the Arrivals component, being requested
through GET requests. As a complement, it is still possible to consult the complete history
in and out events practised by the bus in the current route. To be able to show this data, two
additional requests are sent for the services Routes and Arrivals. The first one requests the
information regarding the route that the bus is taking (designation of stops, order of stops,
etc.) and finally the second one requests the registration of the current round trip.

Figure 14: Representation of buses live monitoring as well as the stops arrival time estimates.

Another real-time monitoring zone is also available, but now based on a map. Now, it
will be necessary to regularly obtain the positions of the buses so it is possible to keep the
representation of the locations on the map updated. These locations are obtained through
GET requests made in a loop to the Real Time Location service.

Finally, there is an area for consulting the history of timetables practised by buses. After
filling in all the fields required for the search, the requested route information from the

3.2. Backoffice (web application) 27

Figure 15: Real-time buses location representation.

Routes service and the times recorded in the selected time interval from the Arrivals service
are requested. It should also be noted that all these requests are of the type GET.

Figure 16: Representation of the history of bus stops.

3.2.1 Requests analysis

After the detailed analysis of the operation of this monitoring web application described in
Figure 17, so that it is possible to choose the most efficient solution for increasing resilience
in this area, it is necessary not only to consider the typology of requests triggered by this
component but also the number of possible simultaneous users or not.

3.2. Backoffice (web application) 28

Figure 17: Backoffice sequence diagram.

Bearing in mind that the main areas of this web application have as their exclusive
function the consultation of information regarding the practised schedules, current location
and estimated arrival times of the buses under monitoring, the requests that support this
component will be mostly of the GET type. In addition, the requests’ typology also indicates
that the information flow will be entirely from the backend components to the frontend
component, which will be an important factor in choosing the solutions to be applied to
increase resilience of the solution.

3.2. Backoffice (web application) 29

Contrary to what happened in the component analyzed in 3.1, where GET requests
required essential information for the continuity of the operation of the geofencing algorithm
and the information returned was calculated at runtime, now we found a different scenario.

This being a component associated with the consultation of bus monitoring data, there is
now greater freedom to use a service degradation philosophy since the monitoring activity
will not be affected in any way by the applied solution.

In this way, we only have a large group of requests of the type GET on analysis and of a
lower priority level than those that were previously analyzed taking into account that the
response to these is not decisive for the proper functioning of the monitoring component
and it only affects the visualization of the information already collected.

3.2.2 Error analysis

Analogous to the geofencing component, in order to be able to increase the solution resilience
level, it is essential to understand where failures can effectively occur so it is possible to
implement mechanisms to solve them if they occur.

Regarding the solution typology to be oriented towards microservices, there is no differ-
ence in error scenarios from the 3.1 analysis, given the need for communication over the
network which is not at all totally reliable.

In this way, the error scenarios identified above for the interaction between Tracker and the
components supporting the service are the same:

• Lack of connectivity by the Backoffice component

• Errors processing messages of the components receiving requests (backend)

As it was possible to verify earlier, this monitoring component is supported by the backend
Arrivals, Routes and Real Time Location services, so we will make the analysis of the two error
scenarios for each of these support components.

3.2.3 Improving the resilience of components interacting with Backoffice

Arrivals

Regarding the Arrivals component, the interaction with it is based on consulting the buses
general status information or specifically from one of the buses in operation (bus status and
buses stop arrivals estimates).

When requesting general information about the buses’ status (Figure 17, highlighted
in red), considering that the information is constantly updated, any attempt to cache
information would be a waste of resources. The only proposal for this interaction is the

3.2. Backoffice (web application) 30

application of the Circuit Breaker pattern. As this interaction consists of requesting the buses’
global status at every second, it is necessary to prepare the component against traffic spikes.

When requesting the stops arrival times estimates (Figure 17, (II)), we propose the Cache
pattern application. Although the information only remains valid until there is a new
estimate calculation, any saved resource is important considering the computational load
exercised in this component by the Tracker. Even following the large computational load
to which this component is subjected, it would not make sense to apply a Retry solution,
considering that the web application itself already deals with refreshing the information
to be presented. Such a solution would only unnecessarily overload the service support
component.

Since one of the players in this interaction is a presentation component, the performance
factor is no longer the single highest priority. We also need to consider the platform usability.
For this, the application of the Fallback pattern implements a protection mechanism against
possible responses for which the system is not prepared. In this way, errors are avoided due
to unexpected responses, and it is also possible to present an informational message to the
user when it is necessary to resort to service degradation. We also propose the application
of the Timeout pattern in situations where information is updated periodically. Setting the
maximum waiting time to the information update time interval avoids waiting for requests
for information that will not be used. Finally, it is also proposed to implement the Circuit
Breaker pattern, taking into account not only the importance of the services provided by
this component for the system as a whole but also as a preventive measure of overloads,
considering that more up-to-date information is necessary to constantly send requests in
search of new updates.

Therefore, the final solution consists of the following proposals.

• Cache - to reuse previously requested information, relieving the component computa-
tional load

• Fallback - as a preventive measure against possible unexpected messages, helping to
contain errors.

• Timeout - establishment of the maximum waiting time for the acknowledgement
message.

• Circuit Breaker - to preserve the components good functioning due to the information
relevance served for the geofencing algorithm

The new interaction behavior resulting from resilience patterns application is represented
in Figures 18 and 19.

3.2. Backoffice (web application) 31

Figure 18: Diagram showing the new behavior in obtaining the general arrival status of buses.

Figure 19: Representative diagram of the new behavior in obtaining information about a given line.

3.2. Backoffice (web application) 32

Routes

Moving now to the analysis of the Routes component (Figure 17, (II)), it is associated with
the availability of all information related to the routes to be taken by the buses. Thus, it
follows that this information will not be constantly updated, which represents a potential
point of improvement. This low rate of information updates thus enhances the advantages
of applying the Cache pattern, taking advantage of the information previously requested to
be served again without having to reconsult the component. Additionally, in the event of
component unavailability, if the requested information has already been requested recently,
the failure will not affect the operation of the solution in any way.

Considering that this component is requested to get information, the Timeout pattern
should be applied so that it is not possible to wait long periods of time for answers that
maybe are already outdated. This way, it is possible to invalidate the request after a certain
period, releasing resources earlier. On the other hand, this pattern also helps contain the
fault to the original component by replacing any unexpected messages by predefined ones.

In the event of component failure, the solution should be protected against unexpected
error messages. So, we propose the application of the Fallback pattern, in favour of containing
the errors spread.

Considering that in this interaction the client is an information-presentation-component,
it will not make sense to implement a Retry mechanism, taking into account that the request
for information is not decisive for the smooth functioning of the solution but also because it
could generate amounts of traffic unnecessarily.

Finally, considering that there will not be numerous users with access to this monitoring
platform, and it is usually only necessary to request the route information for presentation
on the page once, the complexity added by the Circuit Breaker pattern is not justified to the
solution since this interaction does not prove to be heavy.

Therefore, the final solution consists of the following proposals.

• Cache - to reuse previously requested information, relieving the component computa-
tional load

• Fallback - as a preventive measure against possible unexpected messages, helping to
contain errors.

• Timeout - establishment of the maximum waiting time for the acknowledgement
message.

• Circuit Breaker - to preserve the components good functioning due to the information
relevance served for the geofencing algorithm

The diagram in the Figure 20 represents the new component behaviour.

3.2. Backoffice (web application) 33

Figure 20: Diagram representing the new behavior in obtaining routes information.

History

This History component is similar in everything to the previously analyzed component. It
also provides data on past bus entry and exit events. Thus, for the same reasons, it is also
proposed to apply the Cache, Fallback and Timeout patterns.

As most of the information becomes static when registered (Figure 17, (IV)), the Circuit
Breaker pattern is not proposed, considering that increases the interaction complexity level,
when only a very small number of users will request information through the Backoffice web
app.

It should be noted that, unlike the previous component, the information provided will
always increase over time, which will require greater storage capacity of the cache mechanism
to obtain satisfactory results. Another difference with the previous component is the fact
that the information provided is never modified. This is due to the fact that it is information

3.2. Backoffice (web application) 34

related to events in the past which should not be changed under any circumstances. This
non-change of data favors the effectiveness of the Cache solution.

This way, the final solution consists of the following proposals.

• Cache - to reuse previously requested information, relieving the component computa-
tional load

• Fallback - as a preventive measure against possible unexpected messages, helping to
contain errors.

• Timeout - establishment of the maximum waiting time for the acknowledgement
message.

Taking into account the similarity with the scenario described in 3.2.3, the diagram present
in Figure 20 representing the new behavior is also referred to.

Real Time Location

Finally, the web application also interacts with the Real Time Location component (Figure
17, (III)). Once again, the type of information handled by this component is decisive for
determining a strategy for increasing the resilience of the solution or not. Considering the
volatility of the information that this component handles, it is not proposed to apply any
solution to this context. This web application will only request the current locations of
buses that are in operation. Considering that these locations are constantly updated, any
temporary data storage effort would be in vain, thus invalidating the application of the
Cache solution.

Once again, the combination of the Fallback and Timeout solutions promises better error
handling capabilities.The Fallback pattern implements the protection against unexpected
messages while the Timeout pattern excessive waiting times in case of no response is returned.

Any Retry mechanism will also be of little use in this interaction considering that the
request for information is already made in a relatively short period of time, thus not justifying
not only the complexity added to the solution but also the additional traffic generated. Once
again, taking into account that only a few users will have access to this monitoring platform,
the application of a Circuit Breaker solution for this interaction is also not justified.

Therefore, the final solution consists of the following proposals.

• Fallback - as a preventive measure against possible unexpected messages, helping to
contain errors.

• Timeout - establishment of the maximum waiting time for the acknowledgement
message.

3.3. Mobile App 35

The diagram in Figure 21 is representative of the new behavior when obtaining buses
locations.

Figure 21: Representation of the new behavior in obtaining information regarding the location of
buses.

3.3 mobile app

Finally, the last major component of this solution is a mobile application. Through this, users
have access to the defined timetables, the location of the buses that are in circulation and
also an estimate of the time of arrival at the stops based on previous tickets.

For the presentation of all this information to the user, three large navigation areas are
used. The application landing page, shown in Figure 22, presents information such as the
lines and stops marked as favorite by the user and the estimate times for buses arrivals
for the favorites lines and stops. It also allows access to more detailed information when
selecting one of the displayed lines. This information consists of the schedules visualization
defined by the company, a representation of all scheduled stops in spine format and finally
an area where the stops locations are placed in a map as well as the real-time location of the
buses that are currently in operation.

The second navigation area, shown in Figure 23, consists of the presentation of all the
lines that the company has in operation. When selecting a line presented in this list, the

3.3. Mobile App 36

Figure 22: Mobile App landing page.

same information is shown when selecting a line in the landing page represented in Figure
22.

Figure 23: Mobile App lines list.

Finally, the third navigation zone, shown in Figure 24, consists of a map. Through this,
the user has the option to search for places and get information about them, consult the
stops and buses that are around him or the place searched within a radius of one kilometer.

3.3. Mobile App 37

The user can also get information about bus stops, such as the buses that are approaching it
and the arriving remaining times expected.

Figure 24: Mobile App map.

Considering that except for the bus stops history and the global status of the buses in
operation, the remaining information consumed by this component is the same as the one
consumed by the Backoffice component. In this way, refer to the sequence diagram in Figure
17 to specify the component’s information flow.

3.3.1 Requests analysis

Now having a better understanding of the mobile application scope, it is possible to study
in detail its interactions with the support components. Like the component analyzed in
3.2, this mobile application has as main purpose making the information about buses in
circulation available to users. Consequently, the requests generated will mostly be of the
GET type, with the information flow predominating towards the supporting components for
the mobile application.

This being a component of exclusive information consultation, some similarities are
expected regarding the solutions proposed for the component previously analyzed. However,
there are some determinant details in this component that may result in changes in the
proposal for the final solution.

One of the factors that distinguishes this component from the one previously analyzed is
the potential high number of users. If in the solution proposed previously, the implementa-

3.3. Mobile App 38

tion of cache mechanisms was proposed in order to avoid unnecessary accesses, this scenario
further enhances its advantages considering that the probability of having requests for the
same information is substantially higher. Despite the great promises of this type of solution,
it is necessary to pay attention to some scenarios in which the results may not be as expected.
See the case of the navigation area for displaying the map. Here, only information relating
to buses and stops that are within a radius of one kilometer from the user’s current location
or the location searched for is displayed. This invalidates almost any result that may have
been saved previously taking into account that data locations are usually quite dynamic.

3.3.2 Error analysis

Bearing in mind that this component of the solution is a mobile application with access to
the storage resources of the device in which it is installed, there is the possibility of using
these to improve the application’s resilience.

In this way, the error scenarios initially identified during the analysis of the interaction of
the Tracker component and backend services that support it are maintained. The following
error scenarios then exist:

• Lack of connectivity of the Mobile App or failure to locate DNS services, errors in the
packet forwarding by the ISP

• Errors processing messages of the components receiving requests (backend)

In this way, we will analyze the error scenarios taking into account the interactions between
the Mobile App component and the support components of the Routes, Real Time Location
service and finally Arrivals.

3.3.3 Improving the resilience of components interacting with Mobile App

Routes

Once again, given that the Routes component has the main function of providing information
regarding the routes to be followed by buses, we propose the application of the Cache pattern
since this information is not updated frequently. We can apply this caching mechanism
not only at the Routes service level but also in the mobile application itself. The first case
make it possible to reuse previously requested information for future requests, relieving the
component load and speeding up the response time. As for the second case, once again the
low update rate of this information makes it possible to reuse the most recent information
that was obtained on a device, possibly omitting service failures and improving the user

3.3. Mobile App 39

experience. This reuse can not only be done in the event of a service failure but also adds a
level of offline functionality to the application.

Another solution applicable in this scenario will be the Fallback pattern. This pattern
implementation avoids the processing of unexpected or not well structured messages,
allowing the fault to be contained in the original service.

As a complement to this last pattern, the Timeout pattern appears. The establishment of
a maximum waiting time for the response of a given request prevents the occupation of
resources with potentially invalidated requests, considering them as failed. We also propose
this pattern as a mechanism for improving error handling in the mobile application.

Now, looking at the universe of users of this mobile application, there will be many users.
Thus, it makes sense to protect the component against potential traffic spikes. For this
protection, the application of the Circuit Breaker pattern is suggested.

Finally, and considering the potential high number of users, the application of the Retry
pattern is not recommended. This is due to the fact there is not application scenario in which
this mechanism clearly improves the operation of the application, but also by the fact that
this is a solution that increases the number of requests by itself.

Therefore, the final solution consists of the following proposals.

• Cache - to reuse previously requested information, relieving the component computa-
tional load

• Fallback - as a preventive measure against possible unexpected messages, helping to
contain errors.

• Timeout - establishment of the maximum waiting time for the acknowledgement
message.

• Circuit Breaker - to preserve the components good functioning due to the information
relevance served for the geofencing algorithm

The sequence diagram shown in Figure 25 represents the new mobile application interac-
tion behaviour when interacting with the Routes component.

Real Time Location

Considering that the information present in this service is constantly being updated, it makes
sense to apply the Timeout pattern with the timeout parameter established in accordance
with the data update rate. This way, it prevents long waits for information that probably are
already out of date.

Still due to the constant updating of the data, implementing a Retry mechanism is not
worth it given that new requests are constantly being triggered to always present the most
updated location to the user.

3.3. Mobile App 40

Figure 25: Representation of the new behavior in obtaining route information by the mobile applica-
tion.

The Fallback pattern application brings once again a new dimension regarding the ability
to handle errors that may occur, so we propose its application.

Still within the error handling, one other way to improve the user experience is to store
the last location got, making it possible to at least present some result, even if out of date to
the user. This functionality is implemented by the Cache pattern.

Finally, given the high number of possible users, we propose to implement the Circuit
Breaker pattern, considering that its principal purpose is the preservation of the components’
proper functioning.

Therefore, the final solution consists of the following proposals:

3.3. Mobile App 41

• Cache - to reuse previously requested information, relieving the component computa-
tional load

• Fallback - as a preventive measure against possible unexpected messages, helping to
contain errors.

• Timeout - establishment of the maximum waiting time for the acknowledgement
message.

• Circuit Breaker - to preserve the components good functioning due to the information
relevance served for the geofencing algorithm

The diagram present in the Figure 26 represents the new behavior in obtaining location
information from the mobile application.

Figure 26: Representation of the new behavior in obtaining route information by the mobile applica-
tion.

3.3. Mobile App 42

Arrivals

Finally, this mobile application only requests the stops of a route that is running and the
estimates for the next arrivals of the buses to the stops, which is data that is constantly
updated. When the mobile app does not have connectivity, the Cache pattern application
could be proposed, but this would only have an effect in the time period between bus stops,
considering that at each stop or departure event, the data is updated.

For requesting the next stop time estimates, the update rate is the same, considering that
for each new incoming or outgoing event the forecasts are updated. Therefore, we propose
the application of the Cache pattern, although aware that the scenario is not ideal to take
advantage of 100% of the solution.

Furthermore, the implementation of an error message in case of service failure will be
decisive considering that in this way the error handling in the presentation component
becomes much more direct (Fallback).

As a complement to the error handling mechanism previously mentioned, we propose
the implementation of the Timeout pattern, adjusted at most to the refreshing time of the
information, thus avoiding waiting for responses to potentially outdated requests.

Bearing in mind that in any of the areas of this mobile application it is always essential to
present the most recent information possible, consequently requests are constantly triggered
for the most diverse information presented. Thus, Retry mechanisms will not be useful
considering that the information is already being naturally refreshed, whether or not there
is a failure, and also because this mechanism increases the traffic generated for the normal
functioning of the application. Moreover, given the large number of possible users, the
consequences are even worse.

Precisely due to this high number of possible users, we propose the application of the
Circuit Breaker pattern, which combats possible traffic spikes and aims to preserve the
components’ proper functioning.

Therefore, the final solution consists of the following proposals:

• Cache - to reuse previously requested information, relieving the component computa-
tional load

• Fallback - as a preventive measure against possible unexpected messages, helping to
contain errors.

• Timeout - establishment of the maximum waiting time for the acknowledgement
message.

• Circuit Breaker - to preserve the components good functioning due to the information
relevance served for the geofencing algorithm

3.4. Architectural Analysis 43

Given the similarity of this mobile application to the backoffice component, despite the
reasons why the resilience solutions proposed are different, the final proposal remains,
referring to the diagram in Figure 19 for the representation of the new interaction behaviour.

3.4 architectural analysis

As previously identified, one of the solutions raised as a proposal for increasing resilience
requires analysis at a different level from the other resilience solutions. More specifically,
the Bulkhead strategy requires an analysis at the solution architectural level, considering
that it promotes the allocation of resource usage limits to certain features provided by the
component. Excessive consumption of these computational resources can happen for the
overload of a certain functionality provided by the microservice, and also because of the
occurrence of some type of error that causes the consumption of resources excessively. It
is essential to have a clear idea of what features of what features are available for each of
the constituent solution components is essential. Also it should be noted that the two major
tasks to be performed by this component are the registration of all bus entry and exit events
at the respective stops and the calculation of estimated arrival times to the following stops.
Additionally, given the strong relationship between the data involved in these two major
tasks, they are supported by the same solution component (Arrivals), which may reveal
a problem due to the computational load of each of them. Although at the moment, the
calculation of arrival time estimates is made using an average of the arrival times of the last
thirty days, this is still a demanding task given the amount of information to process. This
proposal also appears as a preventive measure for a future change of this calculation method
to one that presents a higher degree of precision and will also probably be heavier to the
hardware. This way, any interferences due to scarcity of resources in any of the services are
prevented, whether this is caused at a time when the calculation of arrival time estimates is
in progress, or by peak traffic in the registration of buses entering and leaving events in the
stops. Finally, the amount of resources allocated to each of the features will depend very
much on the resources made available as well as on the desired prioritization regarding the
features in question.

This technique is usually implemented using pools of requests dedicated to each of the
functionalities provided by the component. In this way, it is possible to limit the requests
number that are accepted simultaineously. If a lower level control is needed (closer to the
hardware), the resources of service orchestration frameworks, such as Kubernetes (kub), can
be used.

To conclude, considering not only the importance of the good functioning of the Arrivals
component for the general functioning of the solution but also the computational load of the

3.5. Implementation decisions 44

features supported by this component, we propose the application of the Bulkhead pattern in
the Arrivals component.

3.5 implementation decisions

Since microservice-oriented systems are very similar to distributed systems, which means
that the solution consists of several components implemented in different locations, it is
necessary to understand where to implement the resilience solutions so that they achieve
the highest level of effectiveness.

We then proceeded to research this topic on scientifically verified platforms. Once again,
due to the fact that this topic is not yet properly established scientifically, we found no
relevant information on the issue. In this way, we carried out a study of potential advantages
and disadvantages, either from a client-side or server-side approach.

During the more detailed research on these two strategies, we concluded that with the
application of a server-side resilience solution, the point of failure would only pass from the
component providing the service to the resilience solution itself, considering that it would
now be responsible for component traffic. However optimized this component may be, it
still represents a single point of failure, which is not at all beneficial to any software solution.

Regarding a client-side application strategy, this will no longer just move the point of
failure point considering that in this way, the techniques for increasing the resilience of the
solution are applied at the level of the component originating the orders. In addition, the
information necessary for the operation of the resilience solutions is stored directly in the
client, thus not being dependent on any other means of communication. While carrying
out this study of advantages and disadvantages, we found a library developed by Netflix
dedicated to increasing the resilience of distributed systems called Netflix (2018). This library
has the major function of involving the call of any external service to the component in
an hystrix object. Furthermore, the entire implementation of the resilience enhancement
mechanism is implemented within this same hystrix object. This promotes code modularity
and makes the implementation of the resilience solution not imply any change in the business
layer. However, considering the resilience solutions that were raised in the study described
in the section 2.2, all of these agree with this methodology except for two, Bulkhead and
Cache. For the first, considering that it is not a solution that acts at the level of interaction
between components but at the architectural level, it does not integrate into any of these
strategies. Regarding the second resilience solution, it will not follow the same strategy
as the other solutions. The primary function of Cache mechanisms is to reuse previously
requested information. Through this information reuse, accesses to the support component
of the service are saved while also reducing the response time where the information has
already been previously calculated. If this mechanism follows a client-side strategy, it will be

3.5. Implementation decisions 45

extremely difficult to manage all these small data sets, from their update to their disposal.
In addition, we do not expect that a single user will make a general and recurring use of
all the functionalities of the service. This means that at the time of requesting information,
the information stored would practically never be up to date. Thus, the application of the
Cache solution proposal should follow a server-side strategy, therefore taking advantage of
the interactions of multiple users and also facilitating the actions of discarding and updating
the information stored by this resilience solution.

In this way, we propose the implementation of the resilience solutions according to the
strategies client-side and server-side as seen in the following installation diagram.

Figure 27: Diagram of installation of resilience solutions.

4

M E T H O D O L O G Y

Since the final objective of this study is to create a methodology applicable to any microser-
vices oriented solution, it is essential to understand why and when each of the resilience
patterns should be applied.

In order to better understand the execution scenarios in which we propose each of
the resilience solutions, it is necessary to consider all analyzes of each of the case study
interactions. In this way, it is possible to understand the interaction characteristics that
motivate each of the proposed resilience solutions.

From the analysis of all the case study interactions, it is possible to extract the key factors
from Table 2 to be integrated in the methodology specification.

Key point
Description

Presentation Compo-
nent

If one of the intervenient components is in the interactions
is of the presentation type.

Request type If the interaction consists of getting or posting information
to the backend services.

Information validity How often the information involved in the interaction is
updated.

Importance of safe-
guarding information
in circulation

How important is the information to the system. Defines
whether the priority is that no information is lost or perfor-
mance.

Number of interactions The number of communications in a certain period of time.
Computational load
versus potential num-
ber of clients

The computational load considering the task complexity
and the number of potential clients.

Table 2: Characterizers used in the analysis of the case study interactions.

4.1 results analysis

Table 3 represents all the case study interactions defined according to the Table 2 characteriz-
ers.

46

4.1. Results analysis 47

Presentation
component

Information
flow

direction

Information
validity

Importance
of safeguarding

information
in circulation

Number of
interactions

Computational load
versus potential

number of clients

Solution
Proposal

Tracker - Routes No Get High Not important Low
Low /Considerable

number of users

Retry, Timeout,
Cache, Fallback,
Circuit Breaker

Tracker - Arrivals No Post High Important High
High /Considerable

number of users

Retry (opcional), Timeout,
Circuit Breaker, Fallback,

Backup

Tracker - RTL 1 No Post Instant No Important Very high
High /Considerable

number of users
Circuit Breaker,

Fallback

Tracker - History No Post High Important High
High / Considerable

number of users

Retry (opcional), Timeout,
Circuit Breaker, Fallback,

Backup

BO 2 - Routes Yes Get High Not important Low
Low / few

users
Cache, Timeout, Fallback

BO - Arrivals Yes Get Intermediate Not important High
High / few

users
Cache, Fallback,

Timeout, Circuit Breaker

BO - RTL Yes Get Instant Not important Very high
Low / few

users
Timeout, Fallback

BO - History Yes Get High Not important High
Low / few

users
Cache, Timeout,

Fallback

APP 3 - Routes Yes Get High Not important Low
Low / many

users
Cache, Timeout,

Fallback, Circuit Breaker

APP - Arrivals Yes Get Intermediate Not important High
High / many

users
Cache, Fallback,

Timeout, Circuit Breaker

APP - RTL Yes Get Instant Not important Very high
Low / many

users
Timeout, Fallback,

Cache, Circuit Breaker

Table 3: Solution proposals for the interactions present in the case study.

Based on this new characterization method for the interactions identified in the case study,
it is possible to identify that the interaction pair Tracker - Arrivals, Tracker - History and
Backoffice - Routes, Backoffice - History have similar characteristics. As a result, one of each of
these interactions pairs will be excluded, as it does not add any additional information to
the study.

Regarding the involvement or not of a presentation component in the interaction, preparing
the interaction components to handle the error can be divided into two major groups - those
that involve presentation components and those that do not. This division happens because
a presentation component does not have a well-defined line of execution of actions, but
rather depends on user inputs. The type of request sent is also a determining factor when
preparing a component to deal with faults. Bearing in mind that when dealing with both
publishing and getting operations, naturally the resilience techniques will differ.

Another of the decisive factors for choosing the best solution to increase resilience is
the information validity over time. Through this factor, it is possible to understand if
the reuse of previously requested information is a viable option or not to deliver correct
functionality. We should also note that only operations that update existing information
affect the information’s validity. New information registration operations typically do not
affect the validity of the information.

1 Real Time Location
2 Backoffice
3 Mobile Application

4.1. Results analysis 48

The importance of information in circulation is another factor to consider, as it requires
the implementation of mechanisms to safeguard the information in case of error. The proper
functioning of these mechanisms directly affects the effectiveness of the solution as a whole,
since they deal with information essential for the proper functioning of the solution.

Finally, the relationship between the computational load required by the actions and the
number of requests that need to be processed is also decisive for the application or not of
protection measures against system overloads. In addition, the potential number of users
will also be a factor to consider considering that the higher the number of potential users,
the greater the requests processing capacity required.

Through the characterizing factors identified in table X and the analysis of each of the
interactions in the case study, it is now possible to associate each type of interaction found
with a set of proposed solutions for the case study.

4.1.1 Analysis of the case study generalizability

The interactions identified in the case study were also analyzed to verify if they represent
most of the interaction types present in software products. This generalization of capabilities
is essential to produce a real and effective methodology.

The first point analyzed was the requests type sent. The case study presents both
information registration operations (typically identified as POST or UPDATE requests) and
information request operations (GET requests).

In addition, we found interactions with different types of validity (high, intermediate and
instantaneous) regarding information in circulation. This allows better understanding of
when and why the resilience patterns should be applied.

In any software product considered distributed, there is still a need for constant commu-
nication between the components, so information is constantly in circulation. Considering
the possible failures that may occur during communication, it is necessary to determine the
consequences of their loss. In this case study, we can find interactions where the information
in very important for the solution operation as well as interactions where the information is
constantly being updated. This constant updates make this information of low importance.
This diversity of interactions reveals the wide scope of the case study in terms of information
validity.

Finally, the computational load of the interactions in the components was also analyzed,
considering the potential number of users. Once again, the case study revealed interactions
of both high and low complexity for sets of users in both large and limited numbers.

4.2. Methodology 49

4.2 methodology

As a result of the analysis of the interactions present in the case study and respective
resilience solutions proposals, next we present the conclusions obtained about each of the
resilience solutions. We characterize each of these according to its intention, problem that it
solves and which solution it implements.

• Circuit Breaker

Problem: When a component is up and running but overloaded, there is a greater
probability of errors occurring.

Solution: This pattern implements a mechanism to evaluate the component’s function-
ing. If successive errors occur, traffic will be diverted in an attempt to recover the
component’s normal functioning.

Compromises: The application of this pattern requires an additional complexity of
the mechanism for evaluating the functionality of the component. This mechanism
involves the analysis of all incoming and outgoing traffic of the component to be
monitored.

• Retry

Problem: When some information of high importance cannot be obtained. The appli-
cation of this pattern tries to solve occasional failures of the external service.

Solution: This pattern implements the successive sending of requests in an attempt to
obtain the desired information.

Compromises: The application of this pattern implies a slight increase in the number of
requests sent. In a situation where the failure of the external service is not momentary,
these additional attempts to obtain information can contribute even more to the total
failure of this external service, if the time intervals between successive attempts are
poorly configured.

• Timeout

Problem: Failure to obtain a timely response from an external service.

Solution: This pattern implements the definition of maximum waiting time for a
request. If this time is exceeded, the request is considered unsuccessful.

Compromises: The defined waiting time must be adjusted taking into account the
complexity of the task to be performed. If this time is too short, most requests will be
considered as failed and when it is too long, the promised effects of the pattern will be
compromised.

4.2. Methodology 50

• Bulkhead

Problem: When a component of the solution houses one or more different complex
functionalities.

Solution: This solution consists of implementing resource usage limits for each of the
features.

Compromises: This division of resources is complex to implement and manage.

• Fallback

Problem: Errors in any of the components of a solution are inevitable. Thus, it is
necessary to contain this error and prevent it from affecting the operation of the other
components.

Solution: So that the error does not spread, this pattern implements a mechanism
to replace any unexpected message with a predefined one, thus avoiding errors
originating in the processing of unexpected messages.

Compromises: The implementation of this pattern requires all traffic to pass through
this check.

• Cache

Problem: When the component that provides some information is not in operation at
the moment.

Solution: This pattern implements the reuse of previously obtained information that is
still valid. In this way, it is possible to omit a service failure as well as to relieve the
component load.

Compromises: The entire management of this cache mechanism is highly complex.
The invalidation of the entries in memory or the registration of new entries at the
right times is crucial for the smooth functioning of the solution. Furthermore, the
implementation of this pattern still requires extra hardware for caching records.

• Backup

Problem: The information present in the requests is of high importance and must be
preserved to the maximum.

Solution: This pattern implements a mechanism for safeguarding request information
based on receiving feedback from the recipient. Until the confirmation of receipt is
received, the information is saved in memory.

Compromises: It is necessary to consider the additional requests generated for the
implementation of the feedback mechanism as well as the availability of the memory

4.2. Methodology 51

to be used. This whole mechanism and chain of events is complex, so it should only
be applied to important interactions.

Then, the interactions extracted from the case study are presented, as well as a detailed
justification analysis of the application of each of the resilience solutions.

Presentation
component

Request
type

Information
validity

Importance of
safeguarding
information

in criculation

Number
of

interactions

Computacional
load versus
potencial no

of users

Solution
proposals

No Get High
Not

important
Low

Low /
considerable

number of users

Retry, Timeout,
Cache, Fallback,
Circuit Breaker

Table 4: First type interaction identified in the case study.

Considering the type of interaction characterized by Table 4, we begin by proposing
the application of the Retry pattern. Since none of the components involved is a presen-
tation component, in the event of any failure occurring, the recovery needs to be made
programmatically. This Retry mechanism implements a strategy of new attempts to access
the service. We also note that this mechanism inevitably increases the number of requests
originated by the component, and may even be harmful in the event of a malfunction of
the external service due to overload. Precisely as a way of combating possible external
component overloads given the considerable number of users and characterizing its possible
unavailability, the Circuit Breaker pattern appears. Along with this mechanism, the Fallback
and Timeout solutions are also integrated as being very useful for collecting information
on determining the failure of an request. Finally, considering a high information validity,
the Cache pattern appears, in order to make the most requested information available. This
relieves the computational load on the component while accelerating the response time.
Consequently, not only does the load relief on the component further reduce the likelihood
of failure, but also in a scenario of component unavailability, the information found in this
mechanism may continue to be served normally. Finally, maintaining this Cache mechanism
requires some attention and effort to make the most of it.

Presentation
component

Request
type

Information
validity

Importance of
safeguarding
information

in criculation

Number
of

interactions

Computacional
load versus
potencial no

of users

Solution
proposals

No Post High Important High
High /

considerable
number of users

Retry (optional),
Timeout,

Fallback, Circuit
Breaker, Backup

Table 5: Second type interaction identified in the case study.

Still within the interactions of the Tracker component, apparently the proposed resilience
solutions have not undergone major changes in relation to the previously described interac-

4.2. Methodology 52

tion but in fact, considering the characterizing factors of the Table 5, it is clear that these are
actually quite different.

As in the previous interaction, presentation components are not involved in the commu-
nication, which will cause any failure to require programmatic treatment. Furthermore,
it should be noted that the information is not obtained but registered, which means that
one of the intervening components produces some information that needs to be received
and registered by the other components. Looking further at the fact that we consider the
information in circulation to be important, it will be essential to implement a mechanism
to safeguard the information in the event of any failure in the information’s delivery. For
this, implementing an additional mechanism for sending feedback at the time of receiving
the information will be crucial. In the event of not receiving this confirmation, the infor-
mation must be stored with the component originating the data and not getting lost. This
information storage can only be done if the information is considered valid and useful for a
long period. This safeguard mechanism is guaranteed by the patterns Timeout, Cache (on
the client side) and Fallback, which establish the maximum waiting time for considering the
sending of information as failed, the safeguard of the information to be sent and finally the
implementation of the mechanism for sending feedback and configuration of pre-defined
error messages.

Given that this is an action of recording information and with a considerable number of
clients, we expect a high load on the receiving component. To this end, the proposal for the
application of the Circuit Breaker pattern appears, whose major function is to monitor and
improve the quality of the service, protecting it against possible overloads. Still considering
the high amount of traffic, we propose the application of the Retry mechanism as an option
to recover the possible safeguarded information in the local memory of the information-
emitting component. We should always do the implementation or not of this mechanism
taking into account that it will naturally originate at the moment of recovery the additional
sending of requests besides the normal functioning of the interaction.

Presentation
component

Request
type

Information
validity

Importance of
safeguarding
information

in criculation

Number
of

interactions

Computacional
load versus
potencial no

of users

Solution
proposals

No Post Instant
Not

important
Very
high

High /
considerable

number of users

Fallback,
Circuit Breaker

Table 6: Third type interaction identified in the case study.

Continuing with interactions that do not involve presentation components (Table 6), the
following differs from those already presented regarding the validity of the information.
Here, its validity is practically instantaneous, which makes any attempt to recover lost
information totally in vain. Thus, given the number of users and the high number of

4.2. Methodology 53

interactions between the components, we propose the application of the Circuit Breaker
pattern, aiming at the component’s protection against possible peak loads. The Fallback
resilience solution appears with the purpose of preventing the propagation of possible errors
that may occur through the pre-configuration of error messages. For interactions of this
type, we do not recommend the application of mechanisms to guarantee delivery or to
safeguard information, since the information is short-lived and the major picture should be
the continuous operation of the component with the best possible performance.

Presentation
component

Request
type

Information
validity

Importance of
safeguarding
information

in criculation

Number
of

interactions

Computacional
load versus
potencial no

of users

Solution
proposals

Yes Get High
Not

important
Low

Low /
few users

Cache, Fallback,
Timeout

Table 7: Fourth type interaction identified in the case study.

Faced with interactions that now involve direct user interaction (Table 7), there is no
longer a need to programmatically resolve all possible errors in communication. In this way,
the application of Retry mechanisms is no longer strictly necessary for solving problems,
even though these can be useful to improve the user experience. Thus, to the Cache, Timeout
and Fallback resilience solutions we propose the addition of the Circuit Breaker pattern as a
preventive measure against possible overloads of the service support component, though
this leads to a higher level of complexity for the interaction. For this case, we found
that the application of this mechanism was not helpful given the small number of users
and the low computational load associated with it. Regarding the remaining proposals,
the application of the Cache solution becomes obvious considering the long validity of
the information. It will also be necessary to consider the cost of maintaining this Cache
mechanism, which varies with the need or not to invalidate and update the information
present in this memory. Regarding the Timeout and Fallback solutions, they respectively
intend to invalidate a request for information in a timely manner and to protect against the
occurrence of errors for unexpected responses through the pre-definition of messages from
previous errors previously.

Presentation
component

Request
type

Information
validity

Importance of
safeguarding
information

in criculation

Number
of

interactions

Computacional
load versus
potencial no

of users

Solution
proposals

Yes Get Intermediate
Not

important
High

High /
few users

Cache, Fallback,
Timeout, Circuit

Breaker

Table 8: Fifth type interaction identified in the case study.

4.2. Methodology 54

Moving on to the next type of interaction (Table 8), apparently there are few differences
in relation to the immediately previous interaction, but the same cannot be said for the
proposed solution. Keeping with the fact that this is for obtaining information, we are
present now in an interaction where the validity of the information is not as long as before,
but it is also not short enough for the immediate disposal of a Cache solution. We propose
the application of a Cache mechanism, always considering the maintenance effort to maintain
the resilience solution and the probable number of accesses while the information is not
updated. The solutions Fallback and Timeout appear in this scenario with exactly the same
purpose as the previous interaction - the invalidation of an request in which some error
may have occurred in due time. Finally, even though the interaction presents few users, we
consider the computational load of the service provision high, which is why we propose the
application of the Circuit Breaker solution. Now in this interaction, protection against possible
spikes in requests to the component is even more important because of the computational
load of each request.

Presentation
component

Request
type

Information
validity

Importance of
safeguarding
information

in criculation

Number
of

interactions

Computacional
load versus
potencial no

of users

Solution
proposals

Yes Get Instant
Not

important
Very
high

Low /
few users

Timeout,
Fallback

Table 9: Sixth type interaction identified in the case study.

Contrary to the previous scenario, we now find an interaction (Table 9) that has a low
computational load but with a much higher rate of requests. Typically, these types of
interactions arise in situations where it is necessary to keep the information as up to date
as possible. Therefore, any guarantee of safeguarding information in transit is discarded.
Another of the discarded techniques will be the reuse of information, considering that it
has very short validity. Finally, we do not recommend the application of a Circuit Breaker
mechanism since the complexity of the interaction is low, the number of users is also reduced,
and the focus of this is the flow of information as quick as possible. Any mechanism that
adds complexity to the communication is not indicated. Thus, there remains the application
of the solutions Timeout and Fallback, with the purpose respectively of discarding requests for
information that are too long and requesting information that is probably already obsolete
as well as the treatment in the simplest way possible of errors that may occur.

This is an interaction that in all resembles the interaction Table 7, only distinguishing
itself by the number of potential users (Table 10). Naturally, this high number of users will
create an additional load on the service support component. Thus, besides the proposals
previously made, we propose also to apply the Circuit Breaker pattern, aiming the component
protection against possible peak loads.

4.2. Methodology 55

Presentation
component

Request
type

Information
validity

Importance of
safeguarding
information

in circulation

Number
of

interactions

Computacional
load versus
potencial no

of users

Solution
proposals

Yes Get High
Not

important
Low

Low /
many users

Cache, Timeout,
Fallback, Circuit

Breaker

Table 10: Seventh type interaction identified in the case study.

Presentation
component

Request
type

Information
validity

Importance of
safeguarding
information

in criculation

Number
of

interactions

Computacional
load versus
potencial no

of users

Solution
proposals

Yes Get Intermediate
Not

important
High

High /
many users

Cache, Timeout,
Fallback, Circuit

Breaker

Table 11: Eighth type interaction identified in the case study.

Again, only the potential number of users differentiates this interaction from the one
previously presented (Table 11). Regarding the proposal for resilience solutions to be
applied, this also remains for this case, considering that in the previous scenario it was the
computacional load of an individual request which motivated its application. Now, this
pattern makes even more sense considering that a high number of users will request this
service already considered heavy.

It should also be noted that we included this interaction in the methodology description
to represent the versatility of this resilience solution because, as can be seen, it promises
improvements both in a scenario with a low and high number of users. If the computational
load of each request is considered high, it will make more sense given that this mechanism
has properties that intend to preserve the component’s good functioning and with the least
possible errors.

Presentation
component

Request
type

Information
validity

Importance of
safeguarding
information

in criculation

Number
of

interactions

Computacional
load versus
potencial no

of users

Solution
proposals

Yes Get Instant
Not

important
Very
high

Low /
many users

Cache, Timeout,
Fallback, Circuit

Breaker

Table 12: Ninth type interaction identified in the case study.

This last interaction (Table 12) is also similar to the interaction represented in Table 9 and
again differing only by the highest number of users. Therefore, similarly to the situations
previously described, we propose the application of the Circuit Breaker solution. We also
propose the application of the Cache mechanism in situations where it is not possible to get
the most up-to-date information, thus making it possible to present the last information

4.3. The backup Pattern 56

obtained successfully that is saved in the device memory. This mechanism will improve the
user experience and, in the first phase, it may even hide a possible failure from the user. We
should also note that the information from the moment when it was obtained must always
accompany the presentation of the cached data, so it does not mislead the user.

4.2.1 Bulkhead pattern analysis

Unlike the other resilience solutions raised, the Bulkhead pattern requires an analysis at the
architectural level, taking into account that it consists of establishing resource usage limits
for each of the functionality support components.

In microservices-oriented solutions, it would be natural to propose the division of a
problematic component into different components. This division already implements by
itself the non-interference in the functioning of two features that are hosted in the same
component, but we can not make decisions always in such a linear way. If two functionalities
work on the same data set, additional efforts would be necessary to ensure the information
consistency and synchronization between the two new components. The information
replication by the new components would clearly bring an enormous additional effort
regarding the data consistency and without guarantees of perfect operation. Also, the
isolation of this information in an independent component can create a stress point when
accessing it. Furthermore, the management of the components of a microservices based
solution is challenging, so the creation of additional components only adds complexity,
which is not desired. So, the application of this Bulkhead principle allows to prevent more
extreme interference between functionalities that are hosted by the same component, since
it promotes the implementation of limits for the use of hardware resources in each of the
functionalities.

Therefore, we propose the application of this pattern only in situations where it is not pos-
sible to easily divide the components that support the features considered problematic. This
impossibility of division may be due to the high level of data coupling or interdependencies
between the components that support the functionalities.

4.3 the backup pattern

During the analysis of the case study, we found an interaction type in a recurring way,
which none of the resilience proposals raised previously had solved completely. For the
need of safeguarding high priority information when in circulation, we developed a pattern
dedicated to this specific scenario, considering the importance of this kind of interaction for
the solution funcionality. Since, through the case study analysis, we verified that any of the

4.4. Threats to Validity 57

resilience patterns gathered previously had proved to be promising in mitigating this error,
we propose this newly developed strategy as a resilience pattern.

Taking into consideration that one of the major problems for the resilience of a microservices-
oriented solution is the fact that this is a distributed system and consequently network
dependent, for the establishment of the necessary communication between components in
any solution of this genre. Therefore, it is necessary to apply a mechanism that addresses
the network unreliability. Our solution safeguards the information in circulation on the
network, taking advantage of the internal memory of the component originating the request.
For any request in which it is necessary to safeguard information in transit, we must register
this information in the internal memory at the time of shipment. In addition, we must also
prepare the receiving component to send an acknowledgement message confirming receipt
of the request. When this acknowledgement is received by the component originating the
request, it may discard the information saved at the time of sending. If this message is not
received, using the Timeout technique, the wait for this confirmation message should only be
for a limited period. If the time is exceeded, we must persist with the information in the
equipment until recovery is possible.

The retrieval of this information may also be based on two major strategies, one performed
automatically and the another manually. For the first one, actions such as checking the
existence of connectivity with the target component or even with the Internet will be
essential for determining whether or not automatic recovery can take place. For the second
strategy, an alert can be raised for any monitoring system normally present in this kind
of microservices-oriented solution. However, the retrieving and information migration
processes become dependent on human intervention. This strategy has the advantage of not
generating additional traffic to solve the problem, while the first one will not depend on
human intervention and eventually will be solved by itself. Depending on the application
situation, this additional traffic generated can become dangerous for the functioning of the
information receiving component, and it can originate traffic spikes. Still regarding data
recovery, another precaution we need to take is the development of a data entry mechanism
that guarantees the non-repetition of records, thus ensuring data integrity after the data
recovery process.

4.4 threats to validity

Throughout this study, some obstacles were found that can be identified as vulnerabilities to
the veracity of the results produced. This being a study integrated in a master’s dissertation,
it is natural that my individual experience is not very large and is based mainly on theoretical
concepts. Even so, attendance in the web engineering course comes to fill this lack of
experience and knowledge initially mentioned, since this course addresses topics related

4.4. Threats to Validity 58

Figure 28: The Backup pattern.

to the correct design of web applications. As a way to counterbalance this gap, concepts
and decisions have always been validated by this thesis supervisors, who have extensive
experience in the area. In addition, the supervisor André Ferreira was responsible for
this solution design, which implies a thorough knowledge of its operation. Furthermore,
supervisors Jácome Cunha and André Ferreira, in addition to the large experience in the
area, are currently teaching the specialization course of a Minho University master’s degree,
which addresses precisely the principles of architecture and design of solutions oriented to
microservices.

Another essential point for the validation of the case study would be the implementation of
strategies to increase resilience and practical validation but, given the complexity of the study
and shortage of time, it was not possible. Still, we proceeded to validate each of the solutions
theoretically, based on UML diagrams to specify all the relevant details implementation and
new behavior to be implemented in the interactions between components.

4.4. Threats to Validity 59

All the proposals made in this study are based on a set of solutions previously selected
in an initial state-of-the-art study phase. Thus, this selection process may not include all
the solutions for certain interactions. As a form of mitigation, and taking into account the
establishment of the theme among the scientific community, which leads to the practically
null existence of scientifically verified information, we carried out an analysis of grey
literature on the Internet on the subject. As a result of this study, the most mentioned set of
resilience solutions in the analyzed sources was brought together.

Now, considering the case study itself and its creators, the fact that it was produced
in an academic environment does not diminish it in relation to other software products
produced in the business context. This is due to the fact that the entire process of idealization
and construction of the set of product requirements was first done by a company already
well established in the production of software, Bosch in Braga, but also because the entire
production process was monitored and guided by experienced professionals in the field.
Still, as a proof of the quality of this case study, it is in operation in the city of Braga and
offering very relevant results regarding the operation of buses in the city.

Finally, the construction of a methodology based on the analysis of only one case study
can be considered insufficient but, after a more detailed analysis of it, we noticed that it
presents a wide variety of interaction types, being thus considered representative of the
majority of interactions present in any software product.

5

C O N C L U S I O N

In this dissertation, we made a study of the techniques for increasing the resilience of a
microservices-oriented solution. Initially, we searched in scientific databases for information
on the subject, where we could not get relevant information. This lack of information is due
to the fact that the development of this theme is strongly driven by the software industry,
which means that many of the techniques used are not yet present in scientifically verified
documents. Thus, we concluded that the scientific literature is not yet mature enough
regarding resilience in microservices-oriented architectures. Unlike scientifically verified
sources, we found large amounts of information related to the topic in unverified media
such as blogs, forums, own posts, company websites, among others. In general, all the
information found on the subject on the Internet that we found is what is characterized as
grey literature (Kamei et al., 2019).

Given that the elaboration of a dissertation always requires some type of verification on
the information to refer to, it was necessary to carry out a study of this same gray literature,
with the final objective being the assembly of the set of techniques most pointed out as
effective for increasing resilience in architectures oriented to microservices.

Having already assembled the set of techniques for increasing resilience in architecture
oriented to microservices resulting from the study carried out on the gray literature, we
analyzed a case study that is currently implemented in urban buses in the city of Braga.
This study focused on the possible error scenarios and points of failure in the solution that
is currently in operation. Still in the study carried out, given the complexity of the solution
to be analyzed, we considered only the components directly related to the functional part.

After identifying all possible error scenarios, we made the proposal for applying the
resilience solutions previously raised in the study.

We should also note that we identified an error scenario in which the solutions raised
above did not offer a solid and consistent solution. In addition, this identified point of failure
represented the loss of highly relevant information for the solution, which is essential for a
significant increase in the level of resilience. Given the importance of this new resilience-
enhancing technique for the resilience of the case study, we added it to the set of solutions
initially proposed.

60

61

Having carried out all the analysis of the case study, it was possible to generalize about
the interactions analyzed and which solution proposals we presented. As a result of the
analysis of the process of choosing resilience solutions, it was possible to derive a set of
factors that characterize the interactions that identify the context in which the interaction is
carried out in various categories.

To conclude, having already raised the interactions characterized according to the decision
factors used previously, and the proposals presented for each one of them, we carried with
the description of each of the interactions and the purpose of application of each of the
proposals.

In this way, this entire process of analysis and proposal of solutions on these generic
interactions makes up the target methodology presented as an objective to achieve with this
dissertation.

This complete study also raises some questions and future work on this theme:

• the realization of these proposed solutions in a practical way both in several case
studies and their application in production contexts;

• mostly, we designed the resilience solutions in such a way that the interference in the
solutions business layer is minimal, which opens a space for a possible development
of mechanisms for automatic application of these proposals;

• the relevance of languages that follow the Aspect-Oriented Programming paradigm
(Lafferty and Cahill, 2003) in the automation processes of applying these solutions;

• the study of the performance-level resilience commitments that these solution proposals
impose.

B I B L I O G R A P H Y

Configure default memory requests and limits for a namespace. URL https://kubernetes.io/

docs/tasks/administer-cluster/manage-resources/memory-default-namespace/.

What are MTTR and MTTI? — Sumo Logic. URL https://www.sumologic.com/mttr-mtti/.

How Does Page Load Time Affect Your Site Revenue? - MachMetrics Speed Blog. URL https:

//www.machmetrics.com/speed-blog/how-does-page-load-time-affect-your-site-revenue/.

Fallacies of distributed computing, 2019. URL https://en.wikipedia.org/wiki/Fallacies of

distributed computing#The fallacies.

Resilience in distributed systems. Technical report, Infosys, 2019. URL infosys.com.

Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian Tamburri, and Theodore
Lynn. Microservices migration patterns. Software: Practice and Experience, 48, 07 2018. doi:
10.1002/spe.2608.

Samir Behara. Making your Microservices Resilient and Fault Tol-
erant - dotnetvibes. URL https://samirbehara.com/2018/08/06/

making-your-microservices-resilient-and-fault-tolerant/.

Amine Benhallouk. Improve availability and resilience of your Microservices using these
seven cloud design patterns. URL https://bit.ly/2RKXY95.

Silvio Buss. Resilience pattern for Java microservices. The Cir-
cuit Breaker. - DEV Community. URL https://dev.to/silviobuss/

resilience-pattern-for-java-microservices-the-circuit-breaker-b2g.

Kelly Clay. Amazon.com Goes Down, Loses $66,240 Per Minute. URL https://www.

forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/

#78b7fcc8495c.

K. Finnigan. Enterprise Java Microservices. Manning Publications, 2018. ISBN 9781617294242.
URL https://books.google.pt/books?id=KaSNswEACAAJ.

Mario Gerard. Building Resilient Microservices - Technical Program Management. URL
https://www.mariogerard.com/building-resilient-microservices/.

62

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/memory-default-namespace/
https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/memory-default-namespace/
https://www.sumologic.com/mttr-mtti/
https://www.machmetrics.com/speed-blog/how-does-page-load-time-affect-your-site-revenue/
https://www.machmetrics.com/speed-blog/how-does-page-load-time-affect-your-site-revenue/
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing#The_fallacies
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing#The_fallacies
infosys.com
https://samirbehara.com/2018/08/06/making-your-microservices-resilient-and-fault-tolerant/
https://samirbehara.com/2018/08/06/making-your-microservices-resilient-and-fault-tolerant/
https://bit.ly/2RKXY95
https://dev.to/silviobuss/resilience-pattern-for-java-microservices-the-circuit-breaker-b2g
https://dev.to/silviobuss/resilience-pattern-for-java-microservices-the-circuit-breaker-b2g
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#78b7fcc8495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#78b7fcc8495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#78b7fcc8495c
https://books.google.pt/books?id=KaSNswEACAAJ
https://www.mariogerard.com/building-resilient-microservices/

bibliography 63

Gökhan Gökalp. Resiliency Patterns in Microservice Architecture — Gökhan Gökalp. URL
https://www.gokhan-gokalp.com/en/resiliency-patterns-in-microservice-architecture/.

Hajar Hameed Addeen. A Dynamic Fault Tolerance Model for Microservices Architecture.
Master’s thesis, South Dakota State University, 2019.

Kasun Indrasiri. Microservices in Practice: From Architecture to Deployment - DZone
Microservices. URL https://dzone.com/articles/microservices-in-practice-1.

Fernando K. Kamei, Sergio Soares, and Gustavo Pinto. The use of grey literature review
as evidence for software engineering. In Anais Estendidos do X Congresso Brasileiro de
Software: Teoria e Prática, pages 56–63, Porto Alegre, RS, Brasil, 2019. SBC. doi: 10.
5753/cbsoft estendido.2019.7656. URL https://sol.sbc.org.br/index.php/cbsoft estendido/

article/view/7656.

Donal Lafferty and Vinny Cahill. Language-independent aspect-oriented programming.
SIGPLAN Not., 38(11):1–12, October 2003. ISSN 0362-1340. doi: 10.1145/949343.949307.
URL https://doi.org/10.1145/949343.949307.

Tomas Livora. Fault Tolerance in Microservices. Master’s thesis, Universitas Masarykiana,
2016. URL https://is.muni.cz/th/ubkja/masters-thesis.pdf .

Fabrizio Montesi and Janine Weber. Circuit Breakers, Discovery, and API Gateways in
Microservices. Technical report, 2016.

Péter Márton. Designing a Microservices Architecture for Failure — @RisingStack. URL
https://blog.risingstack.com/designing-microservices-architecture-for-failure/.

Netflix. Hystrix: Latency and Fault Tolerance for Distributed Systems, November 2018. URL
https://github.com/Netflix/Hystrix.

S. Newman. Building Microservices. O’Reilly Media, 2015. ISBN 9781491950357. URL
https://books.google.pt/books?id=1uUDoQEACAAJ.

John Rocela. Let’s talk about Resilience - By. URL https://hackernoon.com/

lets-talk-about-resilience-97051e14761f .

Frank Rosner and Alexander Potukar. Resilience design patterns: retry, fallback, time-
out, circuit breaker - codecentric AG Blog. URL https://blog.codecentric.de/en/2019/06/

resilience-design-patterns-retry-fallback-timeout-circuit-breaker/.

Arnon Rotem-Gal-Oz. Fallacies of distributed computing explained. Doctor Dobbs Journal, 01

2008.

https://www.gokhan-gokalp.com/en/resiliency-patterns-in-microservice-architecture/
https://dzone.com/articles/microservices-in-practice-1
https://sol.sbc.org.br/index.php/cbsoft_estendido/article/view/7656
https://sol.sbc.org.br/index.php/cbsoft_estendido/article/view/7656
https://doi.org/10.1145/949343.949307
https://is.muni.cz/th/ubkja/masters-thesis.pdf
https://blog.risingstack.com/designing-microservices-architecture-for-failure/
https://github.com/Netflix/Hystrix
https://books.google.pt/books?id=1uUDoQEACAAJ
https://hackernoon.com/lets-talk-about-resilience-97051e14761f
https://hackernoon.com/lets-talk-about-resilience-97051e14761f
https://blog.codecentric.de/en/2019/06/resilience-design-patterns-retry-fallback-timeout-circuit-breaker/
https://blog.codecentric.de/en/2019/06/resilience-design-patterns-retry-fallback-timeout-circuit-breaker/

bibliography 64

Nathaniel Schutta. Should that be a Microservice? Part 5: Failure Isolation. URL https:

//content.pivotal.io/blog/should-that-be-a-microservice-part-5-failure-isolation.

Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Architectural patterns for microservices:
A systematic mapping study. 03 2018a. doi: 10.5220/0006798302210232.

Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Architectural patterns for microservices:
A systematic mapping study. 03 2018b. doi: 10.5220/0006798302210232.

Mike Wasson, Alex Buck, Sam Ferree, David Stanford, Adam Boeglin, and Marc Wilson.
Bulkhead pattern - Cloud Design Patterns — Microsoft Docs. URL https://docs.microsoft.

com/en-us/azure/architecture/patterns/bulkhead.

https://content.pivotal.io/blog/should-that-be-a-microservice-part-5-failure-isolation
https://content.pivotal.io/blog/should-that-be-a-microservice-part-5-failure-isolation
https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead

A
S U P P O RT M AT E R I A L

65

66

Figure 29: Tracker sequence diagram before patterns application.

67

Figure 30: Tracker sequence diagram after patterns application.

	1 Introduction
	1.1 Problem
	1.2 Objectives
	1.3 Thesis Methodology

	2 State of the art
	2.1 Concepts
	2.2 Proposed solutions for resilience in Microservices

	3 People Transportation System - A Case Study
	3.1 Tracker
	3.2 Backoffice (web application)
	3.3 Mobile App
	3.4 Architectural Analysis
	3.5 Implementation decisions

	4 Methodology
	4.1 Results analysis
	4.2 Methodology
	4.3 The backup Pattern
	4.4 Threats to Validity

	5 Conclusion
	A Support material

