
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

A generic scalable web platform for
XAI algorithms

Luís Pedro Viana Ramos

Mestrado em Engenharia Informática e Computação

Supervisors: Jácome Cunha and Gonçalo Reis Figueira

July 25, 2022

A generic scalable web platform for XAI algorithms

Luís Pedro Viana Ramos

Mestrado em Engenharia Informática e Computação

July 25, 2022

Abstract

Over the years, Artificial Intelligence (AI) has played an ever more significant role in society,
from medical applications to video games. It is becoming an essential part of society, whether it
is predicting outcomes or making decisions for humans. AI is becoming a central field, and its
explainability is often a critical barrier to its wide adoption. The topic of eXplainable AI (XAI) is
being explored from different perspectives, and several tools are emerging. However, most of the
focus has been on post-hoc explanation models and tools, and explainable-by-design approaches
have been overlooked.

This project aims to design and develop the infrastructure and backend of a web platform that
allows researchers and algorithm developers to run algorithms to solve predictive and prescrip-
tive problems. The platform allows the parameterization of these algorithms removing the need
to change the code whenever a new run is required. It also aims to do this in a scalable way,
allowing multiple users to concurrently run their algorithms and search for solutions to their prob-
lems, which requires thoughtful planning and implementation of the infrastructure. For this web
platform to achieve the flexibility required, a few key factors must be present: efficient use of
backend resources when managing the different users’ algorithms, a modular design of the XAI
algorithms, as well as a modular design of the communication between the different components
of the platform. Therefore, domain and requirement analysis is performed to ensure this project
meets its goals.

The final platform provides a framework for researchers and practitioners to develop solutions
based on symbolic XAI algorithms, whether developing new algorithms or fine-tuning hyperpa-
rameters of the models. The platform allows users to create XAI projects, select, customize and
train XAI models with a dataset and custom parameterization. Furthermore, it obtains the output
of this training process, whether this is a predicted dataset or performance statistics.

The platform is validated by the completion of most of its requirements, as well as for its
ability to run different algorithms and the performance of these runs, for which performance tests
were conducted. We conclude that there is a cost in both resource usage and time associated with
the platform’s usage, but it is within acceptable values. The platform was also tested in a live
demo with several AI researchers that provided some important feedback for the next steps of the
platform.

Keywords: Explainable Artificial Intelligence, Web Platform, Symbolic Learning, Backend, In-
frastructure, Scalability

i

Resumo

Ao longo dos anos a Inteligência Artificial (IA) tem desempenhado um papel cada vez mais im-
portante na sociedade, tornando-se parte essencial da mesma, quer seja a prever resultados, quer
seja a tomar decisões pelos humanos. Como tal, a IA está a tornar-se um domínio central e a sua
explicabilidade é, normalmente, uma barreira à sua adoção generalizada. O tópico de Inteligência
Artificial eXplicável (IAX) está a ser explorado em diversas perspetivas, e várias ferramentas estão
a surgir nesta área. Apesar disto, grande parte dos esforços têm sido em modelos e ferramentas de
explicabilidade post-hoc, e a explicabilidade por conceção tem sido negligenciada.

Este projeto procura desenhar e desenvolver a infraestrutura e o backend de uma plataforma
web que permite a investigadores e programadores de algoritmos correr os mesmo com o intu-
ito de resolver problemas preditivos e prescritivos. A plataforma permite a parameterização de
algoritmos, removendo a necessidade de alterar o código, sempre que uma nova execução seja
necessária. Estas execuções são feitas de forma escalável, permitindo que vários utilizadores cor-
ram os seus algoritmos e pesquisem soluções para os seus problemas concurrentemente, o que
requer um cuidado planeamento e implementação da infraestrutura. Para que a plataforma con-
siga alcançar a flexibilidade desejada, alguns fatores-chave devem estar presentes: o uso eficiente
dos recursos, aquando da gestão dos algoritmos dos diferentes utilizadores; um desenho modular
dos algoritmos de IAX e da comunicação entre os diferentes componentes desta. Para tal, é real-
izada uma análise do domínio do problema e dos requisitos necessários para garantir que o projeto
alcança os seus objetivos.

A plataforma final providencia uma framework onde investigadores e peritos podem desen-
volver soluções baseadas em algoritmos de IAX simbólicos, quer estes estejam a desenvolver
novos algoritmos ou a aprimorar os hyperparameters de modelos já existentes. Esta permite tam-
bém criar projetos, selecionar, adequar e treinar um modelo de IAX com dados providenciados
pelos utilizadores e com parâmetros customizados. A plataforma obtém também os resultados do
processo de treino, quer estes sejam uma tabela de dados ou estatisticas de desempenho.

A plataforma é validada através do cumprimento de grande parte dos requisitos, pela sua
habilidade de executar diferentes algoritmos, e pelo desempenho destes mesmos, para os quais
testes de desempenho foram realizados. Com estes, concluimos que existe um custo tanto a nível
de recursos como de tempo de execução associados à utilização da plataforma, mas este encontra-
se dentro de valores aceitáveis. A plataforma foi também testada numa demonstração ao vivo com
vários investigadores de IA, providenciando feedback importante para os seus desenvolvimentos
futuros.

Keywords: Inteligência Artificial Explicável, Plataforma Web, Aprendizagem Simbólica, Back-
end, Infraestrutura, Escalabilidade

ii

“You should be glad that bridge fell down.
I was planning to build thirteen more to that same design”

Isambard Kingdom Brunel

iii

Contents

1 Introduction 1
1.1 The TRUST-AI Project . 1
1.2 Research Objectives . 2
1.3 Structure . 4

2 State of the art 5
2.1 Explainable Artificial Intelligence . 5

2.1.1 Transparent Machine Learning Models 5
2.1.2 Post-hoc Explainability Techniques . 6

2.2 AI Algorithm Development Process . 6
2.3 Existing Frameworks and Tools . 8

2.3.1 General Purpose Platform Solutions . 9
2.3.2 Gap Analysis . 9

2.4 Scalability . 9
2.4.1 The X Axis . 10
2.4.2 The Y Axis . 10
2.4.3 The Z Axis . 11

3 Specification 12
3.1 Requirements . 12
3.2 Actors . 14
3.3 User Stories . 14
3.4 Workflow . 17

4 Technologies 19
4.1 Component Abstraction . 19
4.2 Server Management . 20
4.3 Algorithm Abstraction . 21
4.4 Backend . 22

4.4.1 Server . 22
4.4.2 Libraries . 23

4.5 Data Storage . 24

5 Platform Implementation 25
5.1 Architecture . 26
5.2 Kubernetes . 27

5.2.1 Algorithm Run . 29
5.2.2 Algorithm State Control . 31

iv

CONTENTS v

5.2.3 Data Acquisition . 31
5.3 Algorithm Acquisition . 32

5.3.1 Configuration . 33
5.4 Algorithm Requirements . 34

5.4.1 Algorithm Parameters and Dataset . 34
5.4.2 Algorithm Results . 35

5.5 REST API . 36
5.5.1 Authentication . 40
5.5.2 Frontend Integration . 41
5.5.3 Private API . 41

5.6 Database . 42
5.7 Cognitive Models . 42

6 Platform Evaluation 45
6.1 Non-Functional Requirements . 45
6.2 Functional Requirements . 46
6.3 Algorithm abstraction . 46
6.4 Performance Tests . 47

6.4.1 Results . 48
6.4.2 Analysis . 50

6.5 Live Demo . 50
6.5.1 Feedback . 51
6.5.2 Discussion . 51

7 Conclusions 53
7.1 Final Considerations . 53
7.2 Future Work . 54

A Server Specifications 60

B Performance Test Results 61

List of Figures

1.1 Overview of TRUST-AI platform components. 3

3.1 Use cases of each different actor and their relationships. 15
3.2 Simplified workflow of the TRUST-AI platform. 18

5.1 Architecture of the TRUST-AI platform. 27
5.2 Diagram of data structures saved in the database and their relationships. 44

vi

List of Tables

2.1 Features of tools and platforms including TRUST-AI. 10

3.1 Functional requirements of the TRUST-AI platform. 13
3.2 TRUST-AI platform user stories. 15

5.1 Generations file structure (generations.csv) . 35
5.2 Population file structure (population_X.csv) . 35
5.3 Metrics file structure (metrics.csv) . 36
5.4 Routes defined in the REST API of the TRUST-AI platform. Endpoints that con-

tain a word that starts with ‘:’ represents a variable whose value can only be known
in run-time. 38

5.5 Data stored in a JWT sent to the User upon authentication 41
5.6 Data stored in a JWT used in the private API . 41
5.7 Routes defined for the private API, only accessible by algorithms. 41

6.1 Final functional requirements of the TRUST-AI platform and the work done. . . . 47
6.2 Algorithms tested in the TRUST-AI platform. 48
6.3 Algorithms used to obtain results and their configurations. 48
6.4 Times of algorithm runs in the platform with percentage comparison between the

methods used for each configuration. 49
6.5 Resource usage of algorithms during algorithm runs with absolute value compari-

son between the methods used for each configuration. 49

B.1 Time results of algorithm runs in performance tests. 61
B.2 Resource usage of algorithms in performance tests. 62

vii

Listings

5.1 Ingress rules defining the distribution of the HTTP requests received. 28
5.2 Kubernetes Job specification of a algorithm run. 30
5.3 JSON data structure required to add algorithms to the TRUST-AI platform. . . . 33
5.4 Example of an error response message for the creation of a project. 37
5.5 The response message sent whenever an internal error occurred in the platform. . 37

viii

Abreviaturas e Símbolos

TRUST-AI Transparent, Reliable and Unbiased Smart Tool for Artificial Intelligence
AI Artificial Intelligence
XAI eXplainable Artificial Intelligence
GP Genetic Programming
API Application Programming Interface
CLI Command-Line Interface
SSL Secure Sockets Layer
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
TLS Transport Layer Security
OS Operating System
JWT Json Web Token
INESC TEC Institute for Systems and Computer Engineering, Technology and Science

ix

Chapter 1

Introduction

Throughout the years, there have been many developments in Artificial Intelligence (AI) [17].

These developments have come to introduce AI into our everyday lives. However, many of these

algorithms leave much to be desired in terms of explainability of the outcome [25]. For this

reason, a new research field has emerged which focuses on this problem: eXplainable Artificial

Intelligence (XAI). This new field came with a new set of problems, mainly a need to specify

how the explainability of these algorithms work [5, 23]. These explanations are often achieved

by providing the user with certain parameters that can be specified and help the algorithm obtain

an explainable solution. Along with this, the fact that the algorithm must give an output and an

explanation for it means that these XAI algorithms require more resources to run.

As such, with a need for ever more explainable solutions, companies and researchers alike

are using more and more XAI algorithms [10, 25]. However, these algorithms use different pro-

gramming languages and frameworks and have different requirements [23], making the process of

using a new algorithm to solve a specific problem very time-consuming. Furthermore, with new

algorithms appearing frequently, the analysis and comparison of new solutions only add more and

more time to an already complicated project.

Another aspect that is often disregarded, but is very present in AI-based solutions, is the train-

ing time of AI models. This time might be impacted by the complexity and extra processing power

required by XAI algorithms, meaning that a single training session might take more than a week

to complete [4].

1.1 The TRUST-AI Project

To tackle the challenges posed by the development process of XAI algorithms, a new platform

called Transparent Reliable and Unbiased Smart Tool for Artificial Intelligence (TRUST-AI) is

being designed and developed. This tool will allow researchers to efficiently develop XAI al-

gorithms and solutions in a standardized way by providing a common platform on which to test

1

Introduction 2

new algorithms, optimize their hyper-parameters and receive insights on the models output by the

algorithms.

TRUST-AI is a part of the European project with the same name [45], which is funded by

the European Union’s Horizon 2020 research and innovation program. This project, led by the

Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), aims to

“bridge the gap between the analytical expressions derived from theory and the numerical models

obtained with Machine Learning. A novel paradigm will be developed whereby humans and

machines can collaborate and discover new solutions” [45]. In order to do this, the project is split

into the following main goals:

• Use explainable AI algorithms to solve problems to obtain explainable solutions that can be

used with traceability only provided by XAI algorithms.

• Provide deep and meaningful explanations for all solutions provided by the algorithms.

• Allow users to delve deep into the proposed solution and customize it while always knowing

its effect on the final solution.

The TRUST-AI project has three different use cases: discovery and treatment of paragan-

glioma cancer (healthcare sector), pricing of grocery deliveries (online retail sector), and predic-

tion of energy consumption (energy sector).

With a focus on explainable AI, the TRUST-AI platform is divided into four different compo-

nents, as seen in Figure 1.1, which are described as follows:

• AI Engine - Component in which the different algorithms of the platform run.

• Cognitive Models - Provide explanations and insights of received models.

• Interfaces - Provide an interface for the management of algorithms, models and their ex-

planations.

• Application Server - Responsible for the communication between all other components, as

well as, the storage and management of data from each component.

1.2 Research Objectives

With the division of the platform into the four different components, this dissertation focuses not

only on the Application Server component but also on the management of the AI Engine and, with

this, the infrastructure that supports all other components.

TRUST-AI aims to provide a platform that gives users a standardized environment to run their

XAI algorithms and research solutions to their problems. As such, the main objectives of the thesis

are:

1.2 Research Objectives 3

Figure 1.1: Overview of TRUST-AI platform components.

• Design a scalable infrastructure - XAI algorithms require more resources than the usual

AI algorithms. For this reason, it is essential to have a scalable infrastructure capable of

handling multiple algorithms simultaneously while taking full advantage of the available

resources.

• Control the XAI algorithms in the platform - The TRUST-AI platform should control the

algorithms’ execution and acquisition since these algorithms can either come from the user

or be specific to the platform.

• Abstract the different paradigms of AI - TRUST-AI should handle both predictive algo-

rithms, where the objective is to predict a certain value or values and prescriptive algorithms,

whose objective is to optimize a given function.

• Manage communication between components - Since the backend communicates with

all other components, as seen in Figure 1.1, it is crucial to develop a communication base

capable of evolving and changing with the different algorithms and cognitive models used.

The platform focuses on abstracting the different paradigms of AI, their algorithms, and frame-

works so that the users can create and run their algorithms without changing the TRUST-AI tool

regardless of their implementation. As such, allowing the users to compare models for an opti-

mized solution since a model is only one of the outputs of the algorithm, which can be optimized

by changing the algorithm’s parameters or by hand. TRUST-AI also focuses on scalability, al-

lowing different users to run their models concurrently, utilizing the available resources in an

optimized way.

Introduction 4

This dissertation’s work is focused on designing the infrastructure that houses the different

components of TRUST-AI, developing the Application Server component, and managing the scal-

ability of the AI Engine by controlling the entire AI Engine component, including the introduction

of the user algorithms.

The implementation of this tool also allows the study of current scalability methods and tech-

nologies, as well as methods of abstracting and generalizing the different paradigms of AI. It also

analyses and uses technologies that allow for a dynamic introduction of new algorithms without

recompiling and deploying the platform.

The development of this work follows an agile methodology, dividing the development period

into sprints that categorize and mark each step in the development of the TRUST-AI tool. The

Interfaces component for this tool was designed alongside the infrastructure and backend design

in a separate dissertation project entitled Interfaces for human-guided AI [22]. As such, this work

focuses on the backend and infrastructure while developing the communication with the frontend,

but it does not tackle the platform’s user interfaces.

1.3 Structure

This dissertation is divided into the following chapters:

Chapter 1, "Introduction" - A definition of the problem, why it is relevant and how we

intend to solve it.

Chapter 2, "State of the Art" - A review of literature regarding AI and XAI solutions, as

well as implemented tools and frameworks with similar purposes to the TRUST-AI platform.

Chapter 3, "Specification" - Detailed discussion of the problem along with the proposed

solution given in the form of requirements imposed on the platform, types of users and its

use cases.

Chapter 4, "Technologies" - A review of possible technologies that can be used in the

platform development.

Chapter 5, "Platform Implementation" - Detailed discussion of the implementation pro-

cess and presentation of the developed platform functionalities.

Chapter 6, "Platform Evaluation" - Presentation of the resulting platform and of aspects

that were achieved.

Chapter 7, "Conclusions" - Conclusion of work done, with brief discussion of major

points and of future work.

Chapter 2

State of the art

This chapter discusses key concepts that must be understood before developing a platform for XAI

algorithms. We start by analyzing the XAI domain, reviewing the literature on the current XAI

algorithms in Section 2.1 and their development process in Section 2.2. In Section 2.3 we discuss

some of the tools and frameworks already developed to solve similar problems, including their

similarities and differences to the TRUST-AI platform. Finally, in Section 2.4 we analyze existing

types of scalability and how their concepts can be applied to the platform.

2.1 Explainable Artificial Intelligence

Before starting to analyze and discuss existing frameworks, a study of how XAI algorithms work,

what they require to run, what they output, and how they are developed. More specifically, we

studied algorithms that generate numerical models and expressions, such as Genetic Programming

(GP) algorithms, as these are the ones for which the TRUST-AI platform is mainly developed.

This study allows us to better understand the researcher’s point of view when introducing new

algorithms, so we can better design the platform to accommodate the standard algorithm design

principles.

As the name suggests, the key requirement of an XAI solution is explainability. “Explainabil-

ity is a means to enhance user trust in the models” [2]. As such, there are two possible approaches

to XAI as referred by [5]: transparent machine learning models; and post-hoc explainability tech-

niques.

2.1.1 Transparent Machine Learning Models

“A model is considered to be transparent if by itself it is understandable” [5]. The explainability

is typically obtained via a rule set or mathematical formula that the models generate to obtain the

solution or a small set of values that are always used in the same manner and, as such, can be

5

State of the art 6

easily calculated and understood by a human. Many algorithms fall within this category, as are the

cases of:

• Genetic Programming (GP) is an evolutionary computing technique developed using the

principles of genetics and natural selection [19]. Each model output by this algorithm is rep-

resented as combinations of user-defined operators and terminals [13]. Which are then com-

bined using mutation processes repeated for a certain number of user-defined generations

and individuals in the population. The final model is a series of operators and terminals,

which can be displayed in either a formula or code format, that can be studied by humans.

• Decision Trees are sequential models, that combine a sequence of logical tests on the avail-

able variables [14, 20], such as equals and less then operations. These models are classified

as explainable since logical tests can be easily understood by humans.

• K-Nearest Neighbour algorithm is an effective algorithm that does not make presumptions

on the provided dataset [21]. Instead, it categorizes the data points into classes using a

labeled training dataset, which is the basis of its explainability.

This type of explainability can be expected in the TRUST-AI framework. However, it should

come from machine learning models like the ones described above. It is not an inherent feature of

the TRUST-AI platform. Furthermore, it is not a concern of the platform but of the algorithm used

to obtain a solution.

2.1.2 Post-hoc Explainability Techniques

Post-hoc explainability techniques resolve around obtaining a rule set or importance value for

each feature [24] that is used in the machine learning model. These techniques add explainability

to an already existing solution that might not be explainable by itself. Some of the most known

techniques, that mentioned in [16, 12], are: feature importance based explanations; rule-based

explanations; saliency maps; counterfactual explanations; summaries of counterfactuals.

The TRUST-AI framework plans to deliver explainability through post-hoc explainability tech-

niques, having a specific component already planned for this purpose, the Cognitive Models com-

ponent illustrated in Figure 1.1. However, the development of this component is beyond the scope

of this thesis.

2.2 AI Algorithm Development Process

There have been many studies into the development of AI projects, these have created methodolo-

gies such as CRISP-DM, SEMMA and KDD [3]. However, all these different methodologies have

some common steps.

In An Artificial Intelligence Life Cycle: From Conception to Production, De Silva and Ala-

hakoon [8] describe the AI development process in 17 different steps. These start from the in-

ception of the problem all the way to the usage of the model obtained from the machine learning

2.2 AI Algorithm Development Process 7

algorithm. However, since the TRUST-AI platform is designed for the researcher and, as described

in the paper, the AI/ML Scientist, we will only be looking at the processes that occur or affect the

development of the algorithm:

• Data augmentation - In this step the researcher’s goal is to enhance the data in a way

that will produce better results. This phase is crucial and can be done in many different

ways, whether it is done just before the data is used by the algorithms or, in a more static

approach, to the initial data file. The difference being that in the first method the data

is only changed temporarily and in the second it is done permanently. In the TRUST-AI

platform this step should be done by using the static approach, while having the possibility

of reverting changes. This allows users to experiment and change the dataset according to

the results obtained.

• Build initial AI model and develop benchmark - These steps were put together because

in the TRUST-AI platform these are the same step, since building and launching a model

produces a benchmark that is always available and comparable. Here the objective of the

researcher is to run a model that already solves the problem in a simple but effective way

and use it to compare with future models.

• Build multiple AI models - Having a benchmark, the next step is to create more complex

AI models that better suit the problem. Focusing on features that the other models failed to

capture. This step is iterative and, as such, should be supported by TRUST-AI in an iterative

way, by allowing training sessions to be started from a previously configured session.

• Evaluate primary metrics - When building and using an AI model the first steps taken

to evaluate it are usually error and accuracy/recall measures. These allow the researcher

to know how successful the model was at predicting a certain known outcome. For this to

be able to be done, the data must be divided into two parts: train data and test data. With

this, the resulting model from the training session with the train data is tested against the

test data and the measures are obtained. This step is crucial for the researcher as it is here

that the performance of the model is tested. For the platform, this step must be done by

processing some of the metrics that the algorithm outputs, along with obtaining the logs of

the algorithm run, which might contain this information.

• AI Model Explainability - In this step the main focus is on the explainability of the obtained

solution. In terms of rule sets and mathematical expressions it is important to note that the

magnitude of the solution might get too big and not be explainable anymore. In this step

the model might also be analysed using a post-hoc technique. As such, TRUST-AI should

allow for the researcher to either visualize the mathematical solution or rule set and apply

post-hoc techniques with the cognitive models component.

State of the art 8

• Evaluate secondary metrics - Having validated the model and its explainability the next

step is to evaluate another set of metrics that accompany any software: CPU usage and mem-

ory usage. With this, the researcher is able to understand how efficient the utilized algorithm

is. In TRUST-AI these metrics should be automatically calculated since the resources used

by an algorithm are an important factor to the scalability of the platform.

2.3 Existing Frameworks and Tools

Throughout the years, some tools have been developed and brought to the public for researching

and obtaining solutions via the utilization of XAI algorithms. There have been many approaches

to developing these tools. Some focus more on the model [43, 31, 34], while others focus on

providing a complete development tool for both the model and the algorithm [28, 35, 38].

Many of these tools rely on simply providing a standard algorithm that can solve most prob-

lems. We will be looking at a few examples of this approach that are more closely related to our

work, such as TuringBot [43] and Eureqa [31], which is no longer commercially available. Both of

these examples allow for the specification of the problem, but in a limited way, as these problems

can only be about predicting values, limiting the types of problems that can be solved. It is also

important to note that these tools are not research tools since they focus on the model instead of

on how the model is obtained via the algorithm. This is an important factor since it is something

that TRUST-AI will focus on, giving the researcher complete control over the algorithm.

Another approach is to fully design and develop modular algorithms from the start and inte-

grate them with the interface. This approach was the one used in the development of the Heuris-

ticLab [35] framework and tool. Despite the existence of other tools [26, 28, 38], HeuristicLab

is the one that presents most of the features that we want and that deals with the same problems

as TRUST-AI. HeuristicLab allows the user to customize every aspect of the algorithms used and

the problems they are trying to solve. This tool takes a step further and allows the user to fully

implement an algorithm that can be used to solve the problems, which gives the researcher the

ability to try different algorithms and approaches to the same problem. However, it provides this

functionality by allowing the user to program the algorithm in C#, which can be seen as a signif-

icant downside since it requires the researcher to be familiar with the language and paradigm it

works in. With all these functionalities, the HeuristicLab framework becomes quite complex and

challenging to use for anyone new to the framework.

Even though Eureqa, TuringBot and HeuristicLab provide some if not most of the functionali-

ties we are looking to implement with the TRUST-AI platform, one key aspect that the TRUST-AI

tool is looking to provide is that it is an online tool. Its algorithms do not run on the user side,

keeping the user’s computer fully operational during training and testing sessions. Since a sin-

gle run of an algorithm can take weeks to finish, this is an essential requirement for researchers

dependent on their personal computers.

2.4 Scalability 9

2.3.1 General Purpose Platform Solutions

One possible solution for researchers is the use of general purpose platforms to run their algo-

rithms, for instance, Google Cloud1, AWS2 or Azure3 could be used. These platforms can run any

application, and also provide additional services that might complement it, for instance, storage

services. Despite this, it can be very difficult to setup a single algorithm in their infrastructure,

manage it and obtain its outputs. For this reason, general platform tools are not very used by

researchers due to having to learn how to take advantage of the platforms. The TRUST-AI plat-

form distinguishes itself from these by providing a way of running XAI algorithms and obtain

their outputs in a standard and easily implemented way, removing the overhead of having to learn

every aspect of a general purpose platform. Another important aspect is that TRUST-AI provides

additional benefits besides just running the algorithms. It allows users to visualize algorithm out-

puts and receive insights and explanations on the models, which would have to be done by the

researcher on their own if they chose to use a general purpose platform to run their algorithm.

2.3.2 Gap Analysis

To better understand the platforms’ and tools’ strengths and weaknesses, we present Table 2.1. In

it, we can see that none of the platforms match TRUST-AI’s features. This is because the TRUST-

AI platform is being developed to solve the problem of having multiple algorithms implemented

in multiple languages while also visualizing specific types of results that algorithms output. Along

with this, TRUST-AI also aims to be an online platform, requiring no resources from the user,

which in a research context, allows researchers to continue working even when running algorithms.

2.4 Scalability

With an ever increasing user base in most technologies around the world, there have been many

developments in the scalability of products and the infrastructure itself. To better understand

the scalability concepts they were abstracted to a cube called the scale cube, first introduced in

the book The Art of Scalability [1]. In this cube the types of scalability are defined in the three

different axes:

• X Axis (Section 2.4.1) - Replication of instances/services onto which the work will be di-

vided.

• Y Axis (Section 2.4.2) - Division of tasks into services by knowing what type of operation

and resources are needed, dividing work into steps to be done at each different service.

• Z Axis (Section 2.4.3) - Division of data across the available services to do parallel work.
1Found at https://cloud.google.com/
2Found at https://aws.amazon.com/
3Found at https://azure.microsoft.com/

https://cloud.google.com/
https://aws.amazon.com/
https://azure.microsoft.com/

State of the art 10

Table 2.1: Features of tools and platforms including TRUST-AI.

Name Algorithm Processed
Data

Resource
Usage ExplanationsAdding Coding

Language
Type

Turing Bot No Python Predictive Yes Personal Yes
Eureqa No #N/A Predictive Yes Personal Yes
H20 No #N/A Predictive Yes Server Yes
Heuristic
Lab

Yes C# Any Algorithm
Defined

Personal Yes

Google
Cloud

Yes Any Any No Server No

AWS Yes Any Any No Server No
Azure Yes Any Any No Server No
Cloud Au-
toML

No #N/A Predictive Yes Server Yes

KubeFlow Yes Any Any No Server No
TRUST-AI Yes Any Any Framework Server Yes

2.4.1 The X Axis

The X axis scalability is achieved by having multiple clones of a service and having a load balancer

that controls to which service goes what request. This type of scalability is easily achieved and

implemented with current state of the art technologies, and is called elastic scalability in cloud

platforms as it will increase the number of resources available to the application according to their

usage.

Some of the main cloud platforms that offer elastic scalability are AWS Elastic4 service and

Google Cloud through the commonly utilized tool called Kubernetes5.

This type of scalability is easy to implement with the right technologies, since it only impli-

cates that the existing services are cloned. It allows for transactions to scale because it sends each

transaction to one of the services running. However, this type of approach is often costly because

it relies on adding more services whenever it is required.

This scalability type is the one we are looking for when managing the different algorithms

that will be available in the TRUST-AI platform, as such, Kubernetes will be used along with a

mechanism to control how elastic the algorithm management can be.

2.4.2 The Y Axis

The Y axis scalability is identified by the services in which an application is divided, whether it is

just one that controls the whole application, or many different services that control different aspects

of the application. This type of scalability is harder to achieve than the X axis type simply because

it requires that the functionality of the application is divided into different steps to be executed by

4Found at https://aws.amazon.com/elasticbeanstalk/
5Found at https://kubernetes.io/

https://aws.amazon.com/elasticbeanstalk/
https://kubernetes.io/

2.4 Scalability 11

different services. As such, Y axis scalability requires that the system design is modular enough

to be split into different services, thus putting a lot of emphasis on the design of the system itself.

It also might take additional time to implement when compared to the other types since it requires

that parts of the system become isolated and have their own defined resources, something that can

be very difficulty for complicated functionalities.

This type of scalability is an inherent property of the Microservice Architecture [40], since

this architecture focuses on dividing the application as a whole in different services that provide

different functionalities.

2.4.3 The Z Axis

The Z axis scalability is represented by dividing the data received so that each service clone only

handles part of the data. This is the same concept as parallel optimizations where the data pro-

cessing is divided according to the number of CPUs present in the system. However, since we are

talking about servers and server clouds there is likely more benefit from taking advantage of mul-

tiple servers instead of a single one. This scalability type has some benefits which are: improved

cache utilization and reduced memory usage and I/O traffic; improved transaction scalability; and

reduced utilization of each server per request. Despite this, the drawbacks to this type of scalability

outweigh the benefits since to implement Z axis scalability the application’s complexity increases

a lot, due to having to create a partitioning scheme for the data. This type of scalability will likely

not be used in TRUST, however it is still important to allow algorithms to scale by allowing par-

allel optimizations, taking full advantage of the resources available to the server in which they are

running.

Chapter 3

Specification

The TRUST-AI platform is being developed as an assisting tool to study and solve problems that

require not only a solution but also an explanation. For this reason, the platform is being devel-

oped with a heavier focus on XAI algorithms. These algorithms, much like AI algorithms, can

be divided into four different steps, which help us understand the underlying processes that an

algorithm run is comprised of:

1. Data acquisition - this step usually involves a dataset that has been studied and prepared for

the algorithm execution. Which is then passed to the algorithm.

2. Algorithm configuration - the configuration of the algorithm is set to optimally run the algo-

rithm according to the dataset, the problem that is being studied and the resources available

in the system.

3. Algorithm execution - the algorithm code is executed using the dataset and configuration

provided, producing results which are placed in a known location.

4. Results gathering and study - the algorithm execution results are obtained and processed,

first by the algorithm and then by the user to more easily compare the solutions found.

In order to incorporate these steps into the TRUST-AI platform, we start by defining the plat-

form’s requirements in Section 3.1. Next, we identify the different actors that perform these steps

in Section 3.2, and distill both the requirements and actors into the different use cases of the

TRUST-AI platform through user stories in Section 3.3. Finally, we present a simplified workflow

of the TRUST-AI platform in Section 3.4 to better understand the functionalities required.

3.1 Requirements

The TRUST-AI platform must also comply with specific requirements to fulfill the intended goals.

These requirements come first in the form of functional requirements that the application should

12

3.1 Requirements 13

support and then are distilled down to system requirements that should be taken into consideration

when designing the platform. The functional requirements can be seen in the following table 3.1.

Table 3.1: Functional requirements of the TRUST-AI platform.

RID Name Description
R1 Add algorithm Add a new algorithm to the platform, whether before the

platform is launched or while it is running.
R2 Define possible pa-

rameters of the al-
gorithm

Define the possible parameters that the algorithm can receive
to avoid errors and wrong parameters

R3 Parameterize algo-
rithm

Parameterize an algorithm according to the specification
provided by it

R4 Upload files Upload files that the algorithm requires to successfully run
(usually a dataset)

R5 Run algorithm Run an algorithm with the files and parameters chosen
R6 Save algorithm data Save the data generated by an algorithm run, includes logs

and files
R7 Process algorithm

data
Process known algorithm result files into data structures that
can be used in the frontend and in the Cognitive Models

R8 Track algorithm run Keep track of the status of the algorithm run and any inter-
mediary results

R9 Save specific results Save specific models that were produced by the models or
that the users defined themselves

R10 Run model in algo-
rithm

Run a specific model in an algorithm to obtain its metrics

R11 Model explanations Provide model explanations by interfacing with the Cogni-
tive Models

Despite the amount of functional requirements, the TRUST-AI platform must ensure a quality

service to be useful for researchers. Therefore, the system must be designed with the following

non-functional requirements:

• Performance - One important distinction that TRUST is trying to bring to researchers is that

they do not need to run their algorithms in their own computers. However, this functionality

is only useful if the algorithm runs do not have an extreme overhead in their execution times.

As such, the platform should optimize its resource usage while running the algorithms as

fast as possible.

• Scalability - Even though performance is an important requirement for the TRUST-AI plat-

form, it is important to have this performance not only for one execution of a single algo-

rithm, but for multiple algorithms. For this to happen and to not have to wait for other users’

algorithms, TRUST should implement a scalable infrastructure were algorithms can run in

separate instances.

• Usability - Introducing algorithms to the TRUST-AI platform should be a simple process.

The development of XAI algorithms for personal use and for use in the platform should

Specification 14

be as similar as possible. Without this requirement the whole purpose of the TRUST-AI

platform is defeated as its main mission is to provide a web platform to run researchers’

algorithms. In order to comply with this requirement a well designed framework should be

built so that the environment created by the platform is as close as possible to standard.

• Security - As this platform is to be used by researchers with sensitive data, it is important

to design a platform that handles each user’s data in a secure way. This requirement is

especially important for use cases such as the health-care sector as the data being introduced

into the platform is extremely sensitive and if leaked could have severe consequences.

• Maintainability - With different components being developed by different partners and at

different times our infrastructure and application server component will need to be main-

tained with the evolution of the platform. For this reason it is important to develop a mod-

ular infrastructure with as little dependencies as possible to specific components. It is also

important to develop the Application Server with a degree of abstraction big enough to ac-

commodate changes in other components without big changes being required in the code.

3.2 Actors

From the requirements and the platform specification the different actors that will perform actions

in the platform can be specified as:

• The Algorithm Developer is the one responsible for introducing algorithms into the plat-

form. This actor has the most knowledge of AI methods and techniques.

• The Model Developer understands the problem and the algorithms that are present in the

platform, they customize and configure the algorithms to the problem and produce results.

This actor will likely be the one that interacts the most with the platform.

• The Domain Expert has expertise in the domain of the problem that is being solved. As

such, he will interface with the results of the algorithms and their explanations while com-

paring them with current practises and ideas.

These actors interact in different stages of a project, as can be seen in Figure 3.1.

3.3 User Stories

Having defined the platform’s requirements, the platform’s use cases were detailed in the form

of user stories. A user story is a brief description of a software feature detailed from the user’s

perspective. Each of these user stories is related to at least one requirement, making it easier to

track the completion of each platform requirement. Table 3.3 defines the TRUST-AI platform’s

user stories and the requirements that they relate to.

3.3 User Stories 15

Figure 3.1: Use cases of each different actor and their relationships.

Table 3.2: TRUST-AI platform user stories.

UID RIDs Done As a I want to So that

US1 R1 Yes Algorithm

Developer

Add an algorithm to a run-

ning platform

I can use it to solve a

problem

US2 R1 Yes Algorithm

Developer

Add an algorithm to the

platform’s files

When I launch the plat-

form the algorithm is al-

ready compiled

Continued on next page

Specification 16

Table 3.2 – continued from previous page
UID RIDs Done As a I want to So that

US3 R1 Yes Algorithm

Developer

See if the algorithm was

added successfully

I can correct any errors

US4 R2 Yes Algorithm

Developer

Define the parameters that

my algorithm may receive

Users can customize it to

their problems

US5 R5 Yes Model De-

veloper

See the algorithms that are

available in the platform

I can choose one that fits

my problem

US6 R4 Yes Model De-

veloper

Upload a file It can be used in an algo-

rithm run

US7 R3 Yes Model De-

veloper

Set the parameters that the

algorithm will receive

I can customize the algo-

rithm to my problem

US8 R5 Yes Model De-

veloper

Run an algorithm with a

file and parameters of my

choosing

I can obtain results spe-

cific to my problem

US9 R5 Yes Model De-

veloper

Stop an algorithm run I can terminate a

wrongly configured run

US10 R8 Yes Model De-

veloper

See the status of my algo-

rithm runs

I can keep track of their

progress

US11 R8,

R6

Yes Model De-

veloper

See the logs of my algo-

rithm runs

I can keep track of their

progress

US12 R6 Yes Model De-

veloper

See and download the re-

sults that the algorithm is

outputting while it is still

running

I can keep track of how

the run is going

US13 R6 Yes Model De-

veloper

See and download the final

results of my algorithm run

I can process them in my

own way

US14 R7 Yes Domain

Expert

Get the processed results

from an algorithm run

I can compare them with

other runs

US15 R7,

R9

Yes Domain

Expert

Save processed results that

I find of value

I can compare them with

other algorithm runs

US16 R11 No Domain

Expert

Receive explanations about

the results of an algorithm

run

I can better understand

the results

US17 R10 No Domain

Expert

Change a processed result

and test it in the algorithm

I can validate the

changes

3.4 Workflow 17

3.4 Workflow

The expected workflow of the TRUST-AI platform is very much modeled after the workflow of the

development of an XAI project, as seen in Figure 3.2. The user starts by creating a User account,

giving the user access to the platform and the information regarding the algorithms. He can then

create a project where his different algorithms runs will be stored. Here he can also upload files

that the algorithms need, such as a dataset. After that, he can create a session by choosing one of

the algorithms and a file to send to the algorithm. In this session, the algorithm run data will be

stored and visible. After setting the algorithm’s parameters, he can begin the algorithm run, whose

progress can be tracked using the session’s state, logs, and output files. During the algorithm run

and after it is finished, the user can view and save the algorithm’s results, allowing him to compare

the results from different sessions.

Specification 18

Figure 3.2: Simplified workflow of the TRUST-AI platform.

Chapter 4

Technologies

The TRUST-AI platform requires plenty of technologies to incorporate the different components in

a maintainable way and implement the functionalities needed. For this reason, in this chapter, we

review and discuss technologies that allow us to abstract the different components of the TRUST-

AI platform in Section 4.1, along with server management technologies in Section 4.2, that can be

used to configure the environment and infrastructure required by the platform. We also discuss the

technologies that are used for the abstraction of the different algorithms that the platform uses in

Section 4.3. Finally, the technologies used to implement the backend of the TRUST-AI platform

are discussed in Section 4.4, as well as the database that we chose to store the platform’s data in

Section 4.5.

4.1 Component Abstraction

In the development of TRUST-AI, we try to abstract as much as possible the different components

so that the tool becomes highly adaptable to any algorithm and utilization. To do this, we develop

each component separately to reduce the dependencies on other specific services, which is done

by relying on the functionalities available in the platform as a whole. For this, we use two tools

with different purposes.

The first tool used is Kubernetes1, “an open-source system capable of automating deploy-

ment, scaling, and management of containerized applications” [39]. This tool is being used with

Docker2, an application that uses OS-level virtualization to deliver software in containers [30].

With these technologies, each service has its environment and is free to use its allocated resources

since Kubernetes provides the developer with some tools to manage each service. It also provides

“out of the box” scalability with replicas that can be set for specific services, making it a very use-

ful tool in terms of scalability. It also automatically handles inter-service communication through

1Found at https://kubernetes.io/
2Found at https://www.docker.com/

19

https://kubernetes.io/
https://www.docker.com/

Technologies 20

the HyperText Transfer Protocol (HTTP). Kubernetes also provides a development environment

that mimics the production environment, making it easier to verify and test before sending it to

production. Along with this technology, we are also using NGINX Ingress3 which provides a se-

curity layer through the use of the Transport Layer Security (TLS) protocol, and serves as a load

balancer, distributing the different requests to the respective services and their replicas. This tool

has direct integration with Kubernetes allowing for faster development of the TRUST-AI platform.

The second tool is NATS4, as it is important to have a communication tool that standardizes

most if not all communications between the TRUST-AI components, abstracting the different ser-

vices and their functionalities. NATS provides communication between services as events that

trigger certain functions, which allows each service to define the intended functionality indepen-

dently. It is possible to abstract the different services by communicating with components that

provide the required functionality and without knowing what specific service we need to commu-

nicate with. This tool is developed for distributed systems, precisely the system proposed with

TRUST-AI. This tool requires an additional service to be run, more specifically NATS JetStream5,

which is the NATS persistence engine that provides streaming, message, and worker queues with

At-Least-Once semantics [37].

4.2 Server Management

In order to configure servers and manage their state, a management tool is needed. In addition, we

are looking for a tool that is not only configurable for one single deployment but flexible enough

to be used easily by others when deploying TRUST-AI in their own environment/servers. As such,

the following tools are analyzed, as they provide infrastructure as code:

• Terraform6 allows developers to write infrastructure as code for cloud deployments using

declarative configuration files. It does this through a specific language: HashiCorp Config-

uration Language. This means that in order to start developing the infrastructure code we

need to learn a new language which can take its time and comes with its own set of prob-

lems. This tool divides the work into 3 different steps: write, where the developer writes the

declarative configuration file; plan, which allows the developer to view the execution plan

before changing the infrastructure; and apply the configuration to the servers. With this,

it is clear that some problems might arise with an agile methodology as the tool does not

handle a continuously changing structure very well. However, this tool provides a free to

use version which allows the management of self-own servers which is what we are looking

for.
3Found at https://kubernetes.github.io/ingress-nginx/
4Found at https://nats.io/
5Found at https://docs.nats.io/nats-concepts/jetstream
6Found at https://www.terraform.io/

https://kubernetes.github.io/ingress-nginx/
https://nats.io/
https://docs.nats.io/nats-concepts/jetstream
https://www.terraform.io/

4.3 Algorithm Abstraction 21

• Pulumi7 is a similar tool to Terraform as it also is developed for cloud deployments. This

tool allows us to write the infrastructure in one of the following commonly used program-

ming languages: TypeScript in Node.Js; Javascript; Python; Go; or C#. For this reason this

tool can be very easy to pick up and start using if the developer already knows these lan-

guages, without having too much downtime learning the syntax. This tool also provides a

self-hosted service, which is desired since the health care use case requires that TRUST-AI

is deployed and used solely on private servers of the health care institute due to data security

reasons. Having said this, Pulumi provides this service as a premium, meaning it requires a

constant upkeep in order to be used.

• Ansible8 provides infrastructure management through declarative files, the same way Ter-

raform does. It does this while knowing the full state of the current deployment, meaning the

developer only writes the intended state and Ansible will automatically change the required

servers to comply. This tool manages all kinds of infrastructures, from cloud servers to con-

tainers, meaning it can manage a private server as well. With this tool the infrastructure is

declared using YAML9 files which can be seen as an advantage, as we are using Kubernetes

which also uses YAML files to declare the services in use, making it easier to use once we

know the syntax used.

These technologies allow server configuration, but in terms of simplicity for the development

period, we will be using Skaffold10 which provides an easy setup of Kubernetes for development.

This tool allows us to describe what services we want to initialize and how to do it via a YAML

file, which is important since there is a need to persist data within the server. At the same time, the

Skaffold configuration can be made with a similar setup with the same results, but without having

to worry about many of the problems that come with a production server.

4.3 Algorithm Abstraction

The abstraction of the different algorithms will be done using Docker images. Docker allows

code to be portable from one machine to another without worrying about differences in operating

systems or even packages installed in the machines. An algorithm can be inserted into the platform

via a Docker image. However, an algorithm requires more than just running its code. For this

reason, in order to have multiple different algorithms with different configurations, the JSON

Schema11 library will be used. This library allows users to create a schema and validate a JSON

object according to it. It provides this functionality for multiple languages, making it ideal for

dealing with parameterization across different algorithms and their implementations. This type of

schema means that parameters can be easily validated against the JSON Schema file provided by

7Found at https://www.pulumi.com/
8Found at https://www.ansible.com/
9Found at https://yaml.org/

10Found at https://skaffold.dev/
11Found at https://json-schema.org/

https://www.pulumi.com/
https://www.ansible.com/
https://yaml.org/
https://skaffold.dev/
https://json-schema.org/

Technologies 22

each algorithm. Along with the parameters, it is also possible to know the output of each algorithm

using this library, making it very useful in these two different scenarios.

One of the possibilities of handling the different algorithms is the use of Serverless com-

puting [42], more specifically Functions-as-a-Service (FaaS). This service allocates machine re-

sources according to the demand, allowing inherent scalability. Despite its name, Serverless com-

puting still works with servers but abstracts the idea by providing the user with a way to add func-

tionalities and then resolving the server allocation in its backend [11]. With this type of service,

it is possible to receive the algorithms and make them available to be run by the users. However,

with this approach, the Serverless module is responsible for assigning and allocating the servers,

which can lead to the overuse of resources if not used carefully. Another problem with this type

of service is that the functions provided must be distinguishable from one another, meaning each

function should have its own identity, enabling it to be called.

4.4 Backend

The development of the backend of the TRUST-AI platform can be done using many different

languages, such as Java12, JavaScript13 / Typescript14, PHP15, and Python16. However, due to the

time constraints of this thesis’s work the TypeScript language was chosen. The TypeScript coding

language “is a strongly typed programming language that builds on JavaScript” [46]. Where as,

“JavaScript is a lightweight, interpreted programming language with first-class functions” [36],

mostly used in Web Pages. This means that TypeScript possesses the same functionalities of

JavaScript, while also providing a strongly typed environment that is less prone to developer errors,

which speeds up the development time of the backend service.

To use TypeScript for backend development we use Node.js17, an asynchronous event-driven

runtime for JavaScript, that is designed for scalability. With Node.js, we also use a package

manager called npm18, a software registry used to share and borrow JavaScript and TypeScript

packages. This allows us to install the “typescript” package and compile our TypeScript code into

runnable JavaScript code.

4.4.1 Server

For the backend to receive HTTP requests, it must have an open port for them. However, this is

insufficient to have a fully functional server capable of receiving multiple requests simultaneously.

If only one port is available, only one connection can be established for these requests, which is

not a scalable approach to the backend of a platform. For this reason, we must use a framework

12Found at https://www.java.com/
13Found at https://www.javascript.com/
14Found at https://www.typescriptlang.org/
15Found at https://www.php.net/
16Found at https://www.python.org/
17Found at https://nodejs.org/en/
18Found at https://www.npmjs.com/

https://www.java.com/
https://www.javascript.com/
https://www.typescriptlang.org/
https://www.php.net/
https://www.python.org/
https://nodejs.org/en/
https://www.npmjs.com/

4.4 Backend 23

that already solves this issue since solving it ourselves would take away resources from the main

objective of this thesis. Among the available frameworks, the following were considered:

• Express.js19 - Express.js does not have a steep learning curve, instead, it requires a basic

understanding of Node.js and knowledge of the JavaScript language. It is fast, robust, and

asynchronous which allows multiple operations to be executed independently of each other.

It also possesses HTTP helpers, which make programs more intelligible. Express.js uses

a Model-View-Controller architectural pattern, which allows for multiple types of applica-

tions to be designed with it.

• Koa.js20 - Koa.js allows the creation of different web services, by efficiently handling HTTP

middleware functions in a stack-like method. This framework is similar to Express.js in

terms of flexibility while also giving the developer more freedom. Despite this, the Koa.js

framework is still being developed and has a small growing community.

• Meteor.js21 - Meteor.js is an open-source, JavaScript web framework. It is also cross-

platform and allows for rapid prototyping with CLI commands. It is written in modern

JavaScript code, making it very efficient. This framework is full-stack, meaning it also

sends data to be rendered by the user.

Of the frameworks mentioned above, we chose Express.js due to its strong community, which

helps support the development whenever an error appears, and because it is a lightweight, backend-

focused framework. This framework allows us to configure multiple endpoints using the Express.js

Router object. These endpoints use middleware functions that provide a service or capability, for

instance, parsing the request’s data or validating it.

4.4.2 Libraries

As we are using Express.js we need to use some external libraries to provide some added security

and functionality to the backend. The following libraries were installed using npm:

• body-parser22 - The communication with the frontend service is done exclusively through

JSON data structures. As such, to process and quickly obtain this data into a TypeScript

object, in the backend Application Programming Interface (API) endpoints we use the json

middleware function present in the library.

• cookie-session23 - As is the case with many platforms there is a need to store information

about the client, to guarantee that we can provide some functionalities, for instance, authen-

tication. To do this we use the cookie-session library which provides a middleware function

that stores session data not server-side, but client-side within a cookie.
19Found at https://expressjs.com/
20Found at https://koajs.com/
21Found at https://www.meteor.com/
22Found at https://www.npmjs.com/package/body-parser
23Found at https://www.npmjs.com/package/cookie-session

https://expressjs.com/
https://koajs.com/
https://www.meteor.com/
https://www.npmjs.com/package/body-parser
https://www.npmjs.com/package/cookie-session

Technologies 24

• cors24 - By using the cors npm library we can use Cross-Origin Resource Sharing (CORS) to

allow resources to be requested from another domain, allowing our backend to be integrated

with any application that should choose to do so.

• Express Validator25 - The Express.js framework does not provide methods of verifying a

request’s data. Instead it allows us to define middleware functions that can validate them.

However, the validation process can be difficult and time-consuming to implement. As

such we use the Express Validator library which provides the necessary tools to define these

middleware functions with pre-built and highly configurable validation functions.

• ExpressJS Async Errors26 - The Exppress.js framework has a flaw when using asyn-

chronous middleware functions, which happens whenever there is an error that is not lo-

cally caught in the middleware function, stopping the entire server, instead of being sent to

a middleware. Because of this, we need to use the ExpressJs Async Errors in order to have

a dedicated middleware function for error catching, avoiding unnecessary backend crashes.

• Multer27 - Since we are expecting to receive files from users we need a way of handling

file uploads. To do this we use the Multer library, that provides a middleware for handling

multipart/form-data, which is the protocol used by HTML for uploading files. It also

gives us the option of processing and validating the files received, which allow us to have

an extra security layer for file uploads.

4.5 Data Storage

Since we use JSON data structures not only in the backend for the algorithms’ configuration but

also for communicating with the interface, in order to not have to parse this information into

another data structure, we use the MongoDB28 database to store TRUST-AI’s data. MongoDB

is a non-relational database that uses JSON documents to store information. For this reason,

MongoDB reduces development time by allowing straightforward storage of the data structures

used. This database also allows the storage of the datasets and any other file with the GridFS29

specification, therefore, storing all the information that TRUST-AI manages. Since this database

is open-source, we can deploy it in our own environment/server, which is a key requirement for

the database of the TRUST-AI platform since the data stored in the platform can be sensitive. This

is the case of the paraganglioma cancer detection use case. For security reasons, this data may be

required to be stored in a privately owned server, which can be done with the MongoDB database.

24Found at https://www.npmjs.com/package/cors
25Found at https://www.npmjs.com/package/express-validator
26Found at https://www.npmjs.com/package/express-async-errors
27Found at https://www.npmjs.com/package/multer
28Found at https://www.mongodb.com/
29Found at https://www.mongodb.com/docs/manual/core/gridfs/

https://www.npmjs.com/package/cors
https://www.npmjs.com/package/express-validator
https://www.npmjs.com/package/express-async-errors
https://www.npmjs.com/package/multer
https://www.mongodb.com/
https://www.mongodb.com/docs/manual/core/gridfs/

Chapter 5

Platform Implementation

The development of the TRUST-AI platform followed an Agile methodology [7] allowing us to

follow and track both functional and non-functional requirements. This way, we can better define

breaking points in the development of TRUST. It also allows us to continuously design and im-

prove the system, focusing on having a functional prototype throughout the development instead

of a collection of functionalities. The development phase was divided into five steps:

1. Implementation with single predictive algorithm

2. Generalization of platform for predictive algorithms

3. Dynamic predictive algorithms and scalability

4. Introduction of prescriptive algorithms

5. Generalization and dynamic prescriptive algorithms

For this effect, the development cycle was divided into sprints, each lasting seven days. At the

end of these, there was a meeting to discuss the week’s development progress and the next steps

in the TRUST-AI implementation.

With this distribution of work, we planned to have a working prototype at the end of the first

sprints. From this point, the development of the TRUST-AI platform should always be functional,

making it easier to keep track of the development and new features. The sprints start with the

implementation of the TRUST-AI platform with a single algorithm making it easier to understand

and develop the backend for the frontend functionalities. From this point onward, the goal is to

generalize the platform so that different algorithms can run, first, with a static approach where the

platform gets its algorithms from the project’s source, meaning static algorithms. Then, with an

understanding of how these algorithms are set up in the infrastructure, we move the focus to a

more dynamic approach of asking the user for a new algorithm to run, changing the infrastructure

on demand. These first algorithms implemented in the TRUST-AI platform were suited to solve

25

Platform Implementation 26

predictive problems, as they are more straightforward in terms of functionality and results when

compared to prescriptive algorithms (which often include a simulation engine that is problem spe-

cific). In the next sprints, we add a simple prescriptive algorithm and implement the prescriptive

functionalities that come with it. After this point, and with the knowledge of the predictive imple-

mentation, we implement both the static and dynamic acquisition of these algorithms.

In this chapter, we start by defining the architecture of the TRUST-AI platform in Section 5.1.

Next, we discuss the use of Kubernetes in the platform and how the backend manages it in Section

5.2. We then detail the algorithm acquisition process and the steps required to add an algorithm

to the platform in Section 5.3, along with the limitations and definitions imposed by the platform

on the algorithms Section 5.4. We also detail the REST API created in the backend in Section

5.5, as well as the database used and the data there stored in Section 5.6. Finally, we describe the

proposed communication method with the Cognitive Models component, which is planned for the

TRUST-AI platform, and its implementation in the backend in Section 5.7.

5.1 Architecture

The platform was designed by taking advantage of containers. The diagram 5.1 shows the full

architecture of the platform, which is divided into six components, namely: Load Balancer; Web

Interface (out of the scope of this thesis); TRUST Backend; Database; Job Queue; and Algorithm

Runs.

Since TRUST-AI is an online platform, requests are the primary communication method.

These originate in the user’s browser and arrive at the Load Balancer component of the TRUST-

AI. This component is responsible for redirecting the request to the correct service, which is either

the Web Interface or TRUST-AI Backend.

The TRUST-AI Backend component has two different responsibilities. The first is the storage

and retrieval of data in the Database, which is done by the API module. The second is tracking the

algorithm runs through the Job Manager module to obtain their results. An algorithm-run Job can

be requested using the API module, which is passed to the Job Manager module for processing.

This module then creates a new Job in the Job Queue component that, by tracking the resources

available in the platform, either starts the algorithm run or puts it on hold until these resources are

free.

The Algorithms component does not actively communicate with any of the other modules.

Instead, it must be queried for data, which should not be the Algorithms’ responsibility.

As we have algorithms that produce data along with users that wish to store and query data,

we must have a Database component. This component should only interface with the TRUST-AI

Backend, as it is responsible for communication with the user and the algorithms.

5.2 Kubernetes 27

Figure 5.1: Architecture of the TRUST-AI platform.

5.2 Kubernetes

The architecture, as seen in Figure 5.1 was implemented in Kubernetes, specifically inside a Ku-

bernetes cluster. A Kubernetes cluster is a grouping of nodes that runs containerized applications,

which allows the platform to scale horizontally as long as there is a Load Balancer. The Load Bal-

ancer class in Kubernetes is responsible for receiving requests and transmitting them to a service

with the resources to respond. The apps that run in a Kubernetes cluster use Docker containers.

Each app runs in a Kubernetes Pod, which can have multiple containers, each running a different

Docker image. However, suppose a Pod needs to be accessible without using the Kubernetes API,

which needs special permissions. In that case, a Kubernetes Service needs to be created for this

specific Pod, which describes a port to which requests can be sent to.

The TRUST-AI platform uses a Load Balancer called Ingress NGINX, which can be used to set

up rules for the requests received so that the API requests can be sent to the backend service while

Platform Implementation 28

1 - host: user.trust.dev
2 http:
3 paths:
4 - path: /api/?(.*)
5 pathType: Prefix
6 backend:
7 service:
8 name: trust-srv
9 port:

10 number: 3500
11 - path: /?(.*)
12 pathType: Prefix
13 backend:
14 service:
15 name: users-web-srv
16 port:
17 number: 3000

Listing 5.1: Ingress rules defining the distribution of the HTTP requests received.

having the frontend service under the same domain. This is done via rules, which can be seen in

detail in Listing 5.1. These define that all requests to the “user.trust.dev” domain whose path starts

with “/api/” will be sent to the “trust-srv” service, which is the backend service of the TRUST-AI

platform. It also defines another rule for the same domain that accepts any request, meaning that

if the request is not for the backend, it will be directed to the frontend service called “users-web-

srv”. Without Ingress, the communication with the backend service would have to be done using

the URL “http://trust-srv:3500/api/...”, since the way to access a Kubernetes Service is to use its

service name, in this case “trust-srv” and then the port where the Node.js server is running. This

is extremely precise and should be avoided since it requires users to know the exact service name

and port. Also, with this configuration, the frontend and backend would have different URLs,

which is undesirable. The Ingress also stores a Secure Sockets Layer (SSL) certificate to allow for

HyperText Transfer Protocol Secure (HTTPS) requests, providing secure communication with the

services. Even if a certificate is not provided, an unsigned SSL certificate is generated, which can

be used in development environments for HTTPS communication with the server.

The Kubernetes is designed to be secure by default. This is achieved by authenticating and

authorizing requests to its API according to Role Based Access Control (RBAC) policies. As such,

access to the Kubernetes API in the backend of TRUST-AI requires some permissions, which is

done by creating a Kubernetes Role and assigning it to the backend. These include access to pods

and jobs, with execution and logs acquisition permissions. This allows the backend service to

start new jobs and copy files from the pods to obtain results from algorithm runs. With this, the

platform can fully control the execution of the algorithms, including checking the status of the

algorithm, starting the run, getting the results and logs, and terminating runs.

5.2 Kubernetes 29

5.2.1 Algorithm Run

For the platform to run an algorithm, it uses Kubernetes Jobs. These require two specifications,

one for the Job itself and another for the container that will run the actual algorithm. These

specifications are detailed in Listing 5.2, where the YAML file representing the Kubernetes Job is

listed.

The Job specification requires a unique name, described in the configuration above in its meta-

data as <unique-name>, for which we use the session ID. We also define metadata that allows

the platform to know the session for which the Job is running. In this specification, we also set

the backoffLimit to “0” and restartPolicy to “Never” so that if the algorithm fails, a new

container is not created to try to rerun it.

The container specification, found after line 12 in Listings 5.2, requires an image, which is ob-

tained from the algorithm specification. It also requires the specification of the minimum amount

of resources the algorithm needs via the resources object. The specification then configures the

Job’s command in the Docker image. It is in this command that several aspects of the algorithm

execution are controlled. These are divided into the following four stages:

1. Create the results directory to which the results will be saved using a simple mkdir com-

mand. The directory is also sent via an environment variable called RES_DIR so that the

algorithm can know to which directory to send the results.

2. Download the dataset and configuration files, which were chosen by the user, can only

be downloaded through a private API only available from within the platform’s Kubernetes

cluster. This is done by using the curl command.

3. Run the algorithm, where the command to run the algorithm is called, just as it is specified

in the algorithm configuration database entry.

4. Notify backend of algorithm termination, when the algorithm run has finished, meaning

we should acquire the latest results and logs. For the platform to do this without the Kuber-

netes Job reaching the “Succeeded” status, triggering the deletion of the Kubernetes Pod’s

containers which has the algorithm results. A job termination route is called, which forces

the container to wait for the route’s response before termination, ensuring that the container

is not deleted, along with the results. The route calls the Kubernetes Module acquiring the

results, logs and, afterwards, terminating the Kubernetes Job.

This setup is sufficient for the successful execution of the algorithm and the acquisition of its

data. However, an algorithm execution can fail, whether through an error in the algorithm’s code,

a wrong dataset being used, or an invalid configuration being passed.

Platform Implementation 30

1 apiVersion: batch/v1
2 kind: Job
3 metadata:
4 name: <unique-name>
5 labels:
6 session: <sessionID>
7 spec:
8 backoffLimit: 0
9 template:

10 spec:
11 restartPolicy: Never
12 containers:
13 - name: trust-ai-algorithm
14 image: <algorithm-image>
15 env:
16 - name: RES_DIR
17 value: '/results'
18 imagePullPolicy: IfNotPresent
19 resources:
20 requests:
21 cpu: <value>
22 memory: <value>
23 command:
24 - '/bin/sh'
25 - '-c'
26 - 'mkdir \$RES_DIR &&
27 curl -s -o ./dataset
28 http://trust-srv:3500/api/
29 algorithm-run/dataset?token=<JWT> &&
30 curl -s -o ./config.json
31 http://trust-srv:3500/api/
32 algorithm-run/configuration?token=<JWT> &&
33 <entrypoint> &&
34 curl -s --keepalive-time 300
35 http://trust-srv:3500/api/
36 algorithm-run/finish?token=<JWT>'

Listing 5.2: Kubernetes Job specification of a algorithm run.

5.2 Kubernetes 31

5.2.2 Algorithm State Control

In order to control the state of the algorithm run, an asynchronous task is launched every minute

using the toad-scheduler1 library. This task acquires the current running Jobs in the Kubernetes

cluster, checks their status, and executes actions accordingly. Each one of these Jobs can be in one

of the following statuses:

• Succeeded - The Job has terminated with a status code of 0, as such, the final logs can be

saved and the Job can be deleted.

• Failed - The Job has terminated with an error status code, as such, the logs can be saved and

the Job can be deleted.

• Running - The Job is still running. With status we retrieve the current results and logs to

allow users to track the progress of the algorithm run.

• Pending - The Job is in queue to be launched.

• Terminating - The Job is terminating after being tagged for deletion by the platform.

• ErrImageNeverPull - Kubernetes did not find the image that was requested by the algorithm.

This status code is similar to the Failed status but there are no logs to be obtained.

• ContainerCreating, Unknown - The Job is at a stage where nothing should be done.

The platform ignores any status that is not present in the list above. Also, since this module

is event-based, there is a possibility of having race conditions between the algorithm state control

module and the algorithm termination stage. Therefore we introduced a mechanism to control

the access to the database’s documents, specifically to the document that stores the information

regarding an algorithm run. This mechanism is based on the principle of semaphores that allow or

stall access to a resource. To develop such a mechanism, we used an npm library called mongo-

locks2 to simulate semaphores with the help of the MongoDB database.

5.2.3 Data Acquisition

As the algorithm runs, it starts producing data that needs to be passed on to the platform for storage

and processing. This process, which is done only at certain stages as described in section 5.2.2,

relies on the Kubernetes API. More specifically, it uses the logs command to retrieve the logs of

the algorithm and an altered version of the cp command to obtain the results files.

However, since cp calls the tar command internally, it is a requirement that the algorithms’

docker image have the tar program installed, which collects several files into one archived file.

Should they not have it, the algorithm run will always terminate with an error code as the last

command will call the cp command from the platform’s backend service.

1Found at https://www.npmjs.com/package/toad-scheduler
2Found at https://www.npmjs.com/package/mongo-locks

https://www.npmjs.com/package/toad-scheduler
https://www.npmjs.com/package/mongo-locks

Platform Implementation 32

After the files are copied into the platform, each file is stored individually in the database. It

also processes the files should they be defined by the framework of the TRUST-AI platform. These

files are be discussed in Section 5.4, more specifically in Section 5.4.2.

5.3 Algorithm Acquisition

In order to run an algorithm, it first needs to be available to the platform. However, since we are

using Kubernetes and want to isolate each component as much as possible, the algorithms must

run in a Kubernetes Job. As such, all algorithms in the platform are received and used in the

form of Docker images during the platform run-time. These images are then stored in a private

Docker repository, accessible to the Kubernetes cluster. To send these algorithms to the platform,

the algorithm developer must use one of the two possible ways:

• Through project files (static configuration) - the algorithm code is inserted into a specific

project folder for algorithms. It is then configured to be compiled using the Skaffold con-

figuration file when launching the platform. Moreover, its configuration schema and other

properties such as image name and description are introduced via JSON file in a specific

folder of the TRUST backend service.

• Importing Docker image (dynamic configuration) - this option allows the user of the plat-

form to introduce a new algorithm while the platform is running. This is done via uploading

a zip/tarball file containing the algorithm code, along with a Dockerfile responsible for the

compilation of the algorithm into a docker image. This compressed file is then used to

build a docker image using the dockerode3 npm library, which interfaces with the docker

socket present in the backend service. For this effect, we are not running a Docker service

in the backend. Instead, we are using a Docker-out-of-Docker (DoD) approach where the

host’s Docker socket is being sent to the backend service, giving it full permissions to ac-

cess Docker. Along with the compressed file, the user must also give additional information

regarding the algorithm, including a brief description and the configuration schema for the

parameters the algorithm can receive.

The static configuration of the algorithms allows the developer to have the algorithms available

on platform startup. This also means that any change in the algorithm parameters requires either a

reboot of the backend so that the algorithm configuration JSON file is sent to the database or that

the developer accesses the MongoDB database manually and alters the algorithm document. The

reason is that these algorithms do not have an owner during runtime. Furthermore, a change in the

algorithm configuration JSON file likely means that the algorithm was also changed, requiring it

to be recompiled by the platform, which is only done on platform launch. However, due to the

use of Skaffold for the development environment, this issue is not very relevant since it detects

differences in the files and automatically sends them to the backend service, which is running in

3Found at https://www.npmjs.com/package/dockerode

https://www.npmjs.com/package/dockerode

5.3 Algorithm Acquisition 33

1 {
2 "name": "Name of the algorithm",
3 "description": "Description of algorithm",
4 "type": "predictive/prescriptive",
5 "entrypoint": "command",
6 "secret": {
7 "cpu": 1,
8 "memory": 1
9 },

10 "configuration": {
11 (JSON_Schema)
12 }
13 }

Listing 5.3: JSON data structure required to add algorithms to the TRUST-AI platform.

dev mode, meaning it recompiles and restarts the server whenever there are code changes. In a

production environment, this option should be only used for algorithms that are not subject to

change since it would require a restart of the backend service.

The dynamic configuration feature allows users to run their specific algorithms on the platform.

This feature has a security issue since we are using Docker-out-of-Docker (DoD), which has many

security issues since it gives root permission to the host’s Docker.

5.3.1 Configuration

Independently of the method used to introduce the algorithm in the platform, the Algorithm De-

veloper must always provide some specifications using a JSON data structure, regarding not only

the parameters that the algorithm receives but also the minimum resources needed to run the algo-

rithm. The full extension of the data passed is presented in Listing 5.3.

This configuration allows the Algorithm developer to describe the algorithm using the name,

description, and type of algorithm. This type can only be either predictive or prescriptive, as this

will allow Model Developers to better understand the algorithm. The entrypoint parameter

in the JSON structure is the command that will start the execution of the algorithm. Along with

this, cpu is the number of CPUs required by the algorithm, and memory is the number of GB of

memory required.

The parameters received by an algorithm can be as trivial as the definition of the number of

individuals in each population to the definition of the terminals and operators to use in the run.

For this reason, we decided to use JSON files to convey these configurations to the algorithms.

Working with JSON data structures is also trivial in Javascript and Typescript and is already used

to pass data from the frontend to the backend of the platform. Furthermore, JSON is a commonly

used data-interchange format, meaning most, if not all, coding languages support JSON data.

Platform Implementation 34

However, with JSON files as configurations, we still need to have a way of defining the struc-

ture of the data passed to the algorithm. To solve this problem, we used the JSON Schema4

specification. More specifically, we used the AJV5 library, which implements the JSON Schema

concepts and functionalities and adds some extra features which are useful for the definition of

the parameters, for instance, the default value of a parameter. When adding the algorithm to the

platform, the algorithm developer only needs to introduce the JSON Schema of the parameters.

The platform will validate the parameters input by the users when setting up their algorithm run.

This way, the parameters received by the algorithm always have the correct data format.

As such, the "configuration" parameter in the JSON file received along with the algorithm is

reserved for the JSON Schema that will validate the parameters. This schema is shown to Model

Developers along with the algorithm’s name, description, and type, allowing them to know the full

extent of parameters available in the algorithm.

The configuration shown in Listing 5.3 is enough for the dynamic insertion of the algorithm.

However, a unique ID must also be given for the static approach. This ID is used to ensure the

same algorithm configuration is not added twice to the database and is updated when the platform

restarts.

5.4 Algorithm Requirements

In this section, we discuss the implications of the platform’s implementation on the algorithms and

the requirements that these must obey to correctly receive the users’ files and parameters, as well

as output the generated data to the platform.

Since these algorithms can have different configurations, ways of representing data, and out-

putting the said data, a framework had to be developed to have some common ground between

these algorithms. This framework does not impose a language of development. Instead, it defines

how to pass different parameters and files to the algorithms, how to output results and some addi-

tional programs that must be installed in the algorithm’s Docker image. This information is also

detailed in the project’s folder, as it should be readily available to algorithm developers.

5.4.1 Algorithm Parameters and Dataset

The parameters defined by the user and validated with the JSON Schema file provided by the

algorithm are sent to the algorithm via an HTTP request to the platform and placed in the main

directory of the algorithm’s container under the name of config.json. The process for the dataset

is the same, and it is saved under the name of dataset in the same folder. However, there is no

validation of the file being sent by the user. This can be both a positive and negative aspect, as

on the one hand, the algorithm can receive any file, even zipped folders, while on the other hand,

the type of file and its contents might cause an error in the algorithm. Moreover, even though an

4Found at https://json-schema.org/
5Found at https://ajv.js.org/

https://json-schema.org/
https://ajv.js.org/

5.4 Algorithm Requirements 35

error should be avoided, in this case, it can be seen as a cause of the level of abstraction that the

platform provides, as we do not limit the algorithms to any type of dataset files.

The HTTP request to download the parameters and dataset requires the usage of the curl pro-

gram, which should be installed in the docker image. If the program is not present, the algorithm

will always produce an error when it is attempted to run.

5.4.2 Algorithm Results

The resulting files of an algorithm run can follow different formats and be saved in different di-

rectories. For this reason, we decided to introduce a standard that all algorithms of the platform

must comply with, should algorithms output data besides logs. The standard defined is that for an

algorithm file to be saved, it should be stored under the directory listed in an environment vari-

able called RES_DIR. This variable is specified through Kubernetes in the algorithm’s container

specification.

Furthermore, the TRUST-AI platform was developed with the main focus on GP algorithms

meaning that the output of the majority of the algorithms is in the form of symbolic expressions.

As such, if some files have the name and structure that is expected of a GP algorithm, they should

be parsed and processed by the platform into usable data by the frontend. This process happens

when the platform acquires data from the algorithm run, and the expected formats are as follows:

• Generations - a file named generations.csv (Table 5.1) that has the information regarding

the best expression found in each generation of the GP run.

Table 5.1: Generations file structure (generations.csv)

Generation Model Fitness Size <extra-1> ... <extra-n>
1 <model-1> <fitness-1> <size-1> <extra-1-1> ... <extra-n-1>
...

...
...

...
...

...
...

k <model-k> <fitness-k> <size-k> <extra-1-k> ... <extra-n-k>

• Populations - a group of files named population_X.csv (Table 5.2), where the X is the num-

ber of the generation to which the population belongs to. Thus, each file contains the list of

expressions of the generation and their data.

Table 5.2: Population file structure (population_X.csv)

Individual Model Fitness Size <extra-1> ... <extra-n>
1 <model-1> <fitness-1> <size-1> <extra-1-1> ... <extra-n-1>
...

...
...

...
...

...
...

k <model-k> <fitness-k> <size-k> <extra-1-k> ... <extra-n-k>

• Metrics - a file named metrics.csv (Table 5.3) that has any metric that the algorithm might

export that is not related to a single expression but to the run itself.

Platform Implementation 36

Table 5.3: Metrics file structure (metrics.csv)

<metric-header-1> ... <metric-header-n>
<metric-1> ... metric-n

With these formats, we can obtain any data the algorithms might output relative to GP ex-

pressions and use it in the frontend. This also means that it is the responsibility of the algorithm

developer to adapt his algorithm to the platform. However, since the outputs specified are very

common in GP algorithms, the effort to do so is expected to be minimal. The formats for these

results are also modular, ensuring that any changes in framework formats can be quickly imple-

mented in the platform, which can be done both for new files or the existing ones.

5.5 REST API

A REST API was developed for the TRUST-AI platform in the backend service as a means of

communication between the backend and frontend. The API was created not only as an interface

between the frontend and the database but also to launch algorithm runs by communicating with

the Kubernetes Module. Each API endpoint validates its inputs via the validation middleware

created using the library “express-validator”. Along with input validation, we also developed

other middleware functions that enforce authorization rules, for instance, ensuring that the user

is authenticated and that the project they are accessing is their own. All endpoints use the same

final middleware to capture any Typescript errors that might have occurred in the processing of

the request. Whether the error was purposely created by enforcing rules, in which case an error

response such as in Listing 5.4 is sent, or generated by a bug in some part of the code. Should

the latter occur, the error is logged in the console while generating a response with a formatted

message as shown in Listing 5.5. The error response message format is always the same, allowing

easier processing of the error by the frontend application.

The endpoints available in the REST API are shown in Table 5.5. Each endpoint is configured

to use at least one of four HTTP methods: GET, POST, PUT, and DELETE. Three of the methods

used are idempotent, meaning that multiple calls with the same information will result in the

same response from the API. These methods are: GET, PUT, and DELETE. The definitions of the

methods are as follows:

• GET - Requests the information of the specified resource.

• POST - Submits new data to the specified resource.

• PUT - Changes the data of the specified resource.

• DELETE - Deletes the specified resource.

5.5 REST API 37

1 {
2 "errors": [
3 {
4 "message": "Invalid value",
5 "field": "name"
6 },
7 {
8 "message": "name must not be empty",
9 "field": "name"

10 },
11 {
12 "message": "type must be one of : predictive,
13 prescriptive, any",
14 "field": "type"
15 }
16]
17 }

Listing 5.4: Example of an error response message for the creation of a project.

1 {
2 "errors": [
3 {
4 "message": "Something went wrong"
5 }
6]
7 }

Listing 5.5: The response message sent whenever an internal error occurred in the platform.

Platform Implementation 38

Table 5.4: Routes defined in the REST API of the TRUST-AI platform. Endpoints that contain a
word that starts with ‘:’ represents a variable whose value can only be known in run-time.

Name Method Endpoint Description

Current User GET /api/users/currentuser Provides information regarding

whether the user is logged in or not

Sign In POST /api/users/signin Allows the user to authenticate him-

self in the platform

Sign Up POST /api/users/signup Allows the user to create an account

in the platform

Sign Out POST /api/users/signout Signs out the user, removing access

to platform until new sign in

Get Algo-

rithms

GET /api/algorithms Shows the list of algorithms available

in the platform

Add Algo-

rithm

POST /api/algorithms Adds a new algorithm to the list of

available algorithms

Get Algorithm

By ID

GET /api/algorithms/ :algo-

rithmId

Shows the information of the algo-

rithm whose ID is “algorithmId”

Edit Algo-

rithm

POST /api/algorithms/ :algo-

rithmId

Changes the stored information re-

garding the algorithm whose ID is

“algorithmId”

Get Projects GET /api/projects Shows the list of projects created by

the user

Get Project By

ID

GET /api/projects/:projectId Shows the information of the project

whose ID is “algorithmId” if it be-

longs to the user

Create Project POST /api/projects Creates a new project with the data

provided

Get Datasets GET /api/projects/:projectId/

datasets

Shows the list of datasets that were

uploaded to the project

Send Dataset POST /api/projects/:projectId/

datasets

Stores the file received in the plat-

form

Get Dataset By

ID

GET /api/projects/:projectId/

datasets/:datasetId

Shows the information of the dataset

whose ID is “datasetId”

Delete Dataset DELETE /api/projects/:projectId/

datasets/:datasetId

Removes the specified dataset from

the platform

Get Dataset

Data

GET /api/projects/:projectId/

datasets/:datasetId/data

Show the data present in the dataset

file sent

Continued on next page

5.5 REST API 39

Table 5.4 – continued from previous page
Name Method Endpoint Description

Download

Dataset

GET /api/projects/:projectId/

datasets/:datasetId/

download

Downloads the data present in the

dataset file sent

Get Sessions GET /api/projects/:projectId/

sessions

Shows the list of sessions that belong

to the project specified

Create Session POST /api/projects/:projectId/

sessions

Creates a new session that belongs to

the project specified

Get Session

By ID

GET /api/sessions/:sessionId Shows the information of the session

whose ID is “sessionId”

Update Ses-

sion

PUT /api/sessions/:sessionId Changes the stored information of

the session whose ID is “sessionId”

Get Algorithm

Schema

PUT /api/sessions/:sessionId/

schema

Shows the schema of the algorithm

chosen in the session

Get Configura-

tion

GET /api/sessions/:sessionId/

configuration

Shows the current configuration set

in the session

Set Configura-

tion

POST /api/sessions/:sessionId/

configuration

Adds or updates the configuration for

the algorithm chosen in the session

Run Algo-

rithm

POST /api/sessions/:sessionId/

run

Launches an algorithm run for the

session

Get Logs GET /api/session/:sessionId/

logs/data

Shows the logs generated by the al-

gorithm run for the specified session

Download

Logs

GET /api/session/:sessionId/

logs/download

Downloads the logs generated by the

algorithm run for the specified ses-

sion

Get File Data GET /api/session/:sessionId/

files/:fileId/data

Shows the contents of the results file

whose ID is “fileId’

Download File GET /api/session/:sessionId/

files/:fileId/download

Downloads the results file whose ID

is “fileId’

Get Genera-

tions

GET /api/session/:sessionId/

results/generations

Retrieves the generations data that

was processed from the algorithm

run’s output

Get Metrics GET /api/session/:sessionId/

results/metrics

Retrieves the metrics data that was

processed from the algorithm run’s

output

Continued on next page

Platform Implementation 40

Table 5.4 – continued from previous page
Name Method Endpoint Description

Get Popula-

tions

GET /api/session/:sessionId/

results/populations

Retrieves the all the populations data

that was processed from the algo-

rithm run’s output

Get Population GET /api/session/:sessionId/

results/popula-

tions/:generation

Retrieves population whose genera-

tion is “generation” from the data

that was processed from the algo-

rithm run’s output

Save Result POST /api/session/:sessionId/

results

Saves the specified result in the ses-

sion’s results

Get Saved Re-

sults

GET /api/session/:sessionId/

results

Retrieves the results saved by the

user

Delete Saved

Result

DELETE /api/session/:sessionId/

results/:resultId

Delete the result whose ID is “resul-

tId” from the saved results

5.5.1 Authentication

The authentication process in the TRUST-AI begins with account creation, where the user defines

his email, first and last name, and password. The email and password are then required every

time the user wishes to access the platform, therefore, requiring the user’s password to not be

easily discoverable by enforcing a few rules and also be stored securely. The rules enforced in

the password are a minimum of 6 characters, one uppercase, one lowercase, and one digit, without

spaces, while also filtering some of the more common passwords, as is the case of “Password123”.

The password is then encrypted before its storage in the database. The encryption method used

for this effect is called scrypt6, and along with it, we use a random string, commonly designated

as salt, of 64 characters. This way, even if two users have the same password, they will be stored

with a different value, making it harder for an attacker to know a user’s password.

The authentication and identification of users in the API after logging in is made using JSON

Web Tokens7 (JWT). A JWT is created during user authentication and sent to the user’s browser,

where it is stored in the session. This JWT contains some information that identifies the user in the

platform, as seen in Table 5.5. The information is placed in a JSON object and is then encrypted

using a key that we define as a secret in the Kubernetes Cluster and pass to the backend in its

Kubernetes definition. The JWT should always be sent to the endpoints the user is accessing,

which is automatically done by most browsers. It is then verified in every route via a middleware

that attempts to decode the JWT. This process is secure because if there has been any tampering

with the JWT, the decoding process will fail, giving an error code of 401.
6Found at https://www.rfc-editor.org/info/rfc7914
7Found at https://jwt.io/

https://www.rfc-editor.org/info/rfc7914
https://jwt.io/

5.5 REST API 41

Table 5.5: Data stored in a JWT sent to the User upon authentication

Name Type Description
ID MongoDB ID The id of the user in the database
Email String The email of the user
Language String The language that the user chose for the platform

5.5.2 Frontend Integration

During the platform’s development, the frontend was also being developed in [22], which required

constant communication with the frontend developer to make sure features requested in the inter-

faces could be implemented with the help of the REST API. This communication was primarily

done via meetings. However, the API implemented in the backend had to be visible to the out-

side for faster development. For this, we used Postman8 which not only publishes the API but

also allows users to call it, speeding up the development of both backend and frontend. The final

Postman collection can be seen in Postman by accessing the TRUST-AI public workspace9.

5.5.3 Private API

The private API that was developed to control the algorithm also uses JWTs to validate the re-

quests. However, the data stored in the JWT is different as the algorithm run does not belong to a

user but to a session. In Table 5.6 the information stored in the algorithm JWT can be seen. With

this information, even if an algorithm had malicious code that would attempt to access another

route, it would not be able to do so, as the user authentication middleware would not accept the

information. The routes created for the Private API can be seen in Table 5.7.

Table 5.6: Data stored in a JWT used in the private API

Name Type Description
Session MongoDB ID The id of session that controls the algorithm run

Table 5.7: Routes defined for the private API, only accessible by algorithms.

Name Method Endpoint Description
Get Configura-
tion

GET /algorithm-
run/configuration

Downloads the configuration for the
algorithm

Get Dataset GET /algorithm-run/dataset Downloads the dataset file that was
uploaded to the platform

Finish Run POST /algorithm-run/finish Signals to the platform that the algo-
rithm has finished its execution

8Found at https://www.postman.com/
9Found at https://www.postman.com/trust-ai/workspace/trust-ai

https://www.postman.com/
https://www.postman.com/trust-ai/workspace/trust-ai

Platform Implementation 42

5.6 Database

The database used by the TRUST-AI platform stores information generated by the user, and the

data output by the algorithm runs. As such, the database stores both regular documents and files.

The database chosen to store this information was MongoDB, as it saves documents in JSON

format, a format compatible with Typescript. MongoDB is a non-relational database, meaning

it does not save data in a tabular way, which allows for any JSON data structure to be saved in

it, as long as it does not take more than 16MB of space, a limitation imposed by MongoDB. The

MongoDB database also has a specification named GridFS that allows storing files via partitioning

the data into chunks that are stored separately. The communication with the database was done

using an npm library called mongoose10, which models MongoDB documents into objects in

Node.js. With it, we can define a Schema for each type of document and some definitions of

the type of variables in Typescript, providing an extra level of input validation. Despite this,

mongoose does not provide out-of-the-box integration with GridFS. As such, another library had to

be installed, called mongoose-gridfs11, which integrates the GridFS specification with mongoose.

However, this library was not developed for TypeScript but for JavaScript, making development

with the library only possible with the help of a reference page. The different documents being

saved in the database and their relationships can be found in Figure 5.2.

The usage of mongoose was later found to have an optimization problem. This problem ap-

pears when we add an array with thousands of values to a document whose specification of the

array is defined, as in the “Session Population” document. Mongoose will validate the input

received for each array element, which for four thousand “Individual” objects took about sixty

seconds to complete. Since each algorithm run outputs multiple populations, this is a big issue.

The solution to the problem is not to define the type of objects received by the array, using “pop-

ulation: Array<Object>” instead of “population: Array<Individual>” while keeping its definition

in TypeScript unchanged. This way, the validation process is loosened, allowing for developer

mistakes that can occur by casting objects but reducing the strict validation process imposed by

mongoose.

5.7 Cognitive Models

The Cognitive Models component was not developed in time to be integrated with the TRUST-AI

platform. For this reason, the connection with it was not created, and the component itself was not

added to the platform. However, the backend is implemented with tools that allow communication

with the Cognitive Models to be developed, more specifically, a framework for communication

with any number of services. This framework uses NATS as its core by having a NATS JetStream

service running in the Kubernetes cluster, which allows any service to push a message to any other

service that is listening to the specific topic of the message [41].

10Found at https://mongoosejs.com/
11Found at https://www.npmjs.com/package/mongoose-gridfs

https://mongoosejs.com/
https://www.npmjs.com/package/mongoose-gridfs

5.7 Cognitive Models 43

TRUST-AI’s communication was implemented in the backend using the NATS.js12 npm li-

brary, developed by the creators of NATS. With it, we can connect to the NATS service, listen

to topics of a message and publish any message to any topic. Communication was developed

this way because it allows the backend to connect to any other service by abstracting the services

into message receivers handled by NATS. This way, changes and additions to these services do

not directly affect the backend of the TRUST-AI platform. Instead, when a service is updated or

replaced by another, it must conform to the messages and topics already present in the system,

reducing the number of changes required in the platform.

12Found at https://www.npmjs.com/package/nats

https://www.npmjs.com/package/nats

Platform Implementation 44

Figure 5.2: Diagram of data structures saved in the database and their relationships.

Chapter 6

Platform Evaluation

After the development of a platform, it must be evaluated to validate the implemented features. For

the TRUST-AI platform, performance tests were conducted to verify that the platform conforms

to its non-functional requirements while also implementing its functional requirements.

The results presented in this chapter were conducted in a server whose specifications can be

seen in Appendix A, inside a VMWare1 container with MATE Ubuntu2 running. In this Ubuntu

OS, we created a Kubernetes cluster using kind3 to run the TRUST-AI platform and also execute

some performance tests.

In this chapter we first discuss the non-functional and functional requirements proposed for

the platform in Sections 6.1 and 6.2, respectively. We then evaluate the platform’s ability to use

different algorithms in 6.3. Performance tests are also presented and discussed in 6.4. Finally, in

Section 6.5 we detail a live demo that was done with the TRUST-AI platform, which includes the

feedback related to the overall platform and the backend.

6.1 Non-Functional Requirements

As one of the key factors of the TRUST-AI platform is compliance with its non-functional re-

quirements, these must now be reviewed to validate that they are indeed implemented. The non-

functional requirements defined are the following:

• Performance - The platform was tested for its performance while running algorithms to

validate this requirement. The results of this test can be seen in Section 6.4.

• Usability - The platform’s usability can be verified by the fact that we were able to introduce

five different algorithms to the platform, which can be seen in Section 6.3, as well as the

results of the live demo that was done with TRUST-AI partners. The results of this demo

1Found at https://www.vmware.com/
2Found at https://ubuntu-mate.org/
3Found at https://ubuntu-mate.org/

45

https://www.vmware.com/
https://ubuntu-mate.org/
https://ubuntu-mate.org/

Platform Evaluation 46

related to the backend can be seen in Section 6.5, while the results related to the interfaces

can be seen in [22].

• Security - The developed platform possesses features and protocols that enforce security

across the whole platform. For user data storage, a secure password encryption algorithm

is used, along with an authentication system based on JWTs, which are considered secure.

Along with this, the platform also enforces authorization via middleware functions, ensuring

that only the right users can access the information.

• Maintainability - Since the platform’s backend was developed alongside the frontend,

maintainability had to be ensured from the beginning of the development cycle. This was

done by developing the platform using a micro-service architecture in Kubernetes, where

the backend and frontend were developed as separate applications. We also created docu-

mentation of the backend in both Postman and the project’s GitLab repository. As such, new

platform developers have enough information to maintain and further develop the platform.

6.2 Functional Requirements

After the implementation of the platform, we can now review the functional requirements of the

TRUST-AI platform, which were proposed in Section 3.1, more specifically in Table 3.1. The

following Table 6.1 shows these exact functional requirements, but with the work done on each

requirement to either implement it or prepare for the implementation, which is the case of the

requirement Model Explanations (R11).

6.3 Algorithm abstraction

As one of the TRUST-AI platform’s goals is to be able to run any algorithm, this requirement must

be tested. To do so, we tested five different algorithms in the platform, which are described in Table

6.2. The procedure followed to add these algorithms to the platform was the static configuration as

described in Section 5.3. A Dockerfile was added to each of these algorithms’ source code, which

was added to the folder /algorithms of the project’s files. The algorithms were then added

to the skaffold.yaml file for compilation on platform start. A JSON configuration file was

created for each algorithm with its name, description, and image name as in skaffold.yaml,

type, algorithm start command, the minimum amount of memory and CPU requirements, and their

configuration schema. After these steps were done, the algorithms were run by passing the correct

datasets via the platform.

As different algorithms were run in the platform, as shown in Table 6.2, it is possible to con-

clude that the platform allows algorithms written in different coding languages to be run. The

process of adding these algorithms to the platform is also agnostic to the programming language

of the algorithm. The Algorithm Developer is expected to write a Dockerfile for each algorithm,

6.4 Performance Tests 47

Table 6.1: Final functional requirements of the TRUST-AI platform and the work done.

RID Name Done Work done
R1 Add algorithm Yes Receiving algorithm code and compiling it into a

Docker image.
R2 Define possible pa-

rameters of the al-
gorithm

Yes Passing the parameters JSON Schema along with the
algorithm code.

R3 Parameterize algo-
rithm

Yes Validating the parameters against the algorithm’s JSON
Schema.

R4 Upload files Yes Having a route dedicated to the upload of files and stor-
ing them in the database.

R5 Run algorithm Yes Using Kubernetes Jobs to execute algorithm runs, and
overriding the algorithm’s Docker image command by
adding commands to download the configuration and
files into the algorithm’s code.

R6 Save algorithm data Yes Using the Kubernetes API to transfer results and obtain
the logs of the algorithm run’s Kubernetes Job.

R7 Process algorithm
data

Yes Creating a framework for the algorithms’ results and
processing only the known files.

R8 Track algorithm run Yes Scheduling a task that periodically scrapes the Kuber-
netes API for Jobs and obtains their data.

R9 Save specific results Yes Having a dedicated route and database structure for sav-
ing both new results as well as results from an algorithm
run.

R10 Run model in algo-
rithm

No None

R11 Model explanations No Designed and implemented the methods of communi-
cation with the Cognitive Models component, however
this component is not yet implemented.

which can be seen as a cost since, from experience, Docker is not a very common tool for devel-

oping these algorithms. Of the five algorithms used, only one (GPG [33]) had an already present

Dockerfile. Despite this, Docker is a prominent and well-documented technology in software de-

velopment, allowing even inexperienced developers to create Docker images. The platform also

collected all the results output by the algorithms to the specified results folder and processed them.

Hence, we can conclude that the platform can indeed run any algorithm should it be configured

correctly. It is important to note that the algorithms used were not developed specifically for the

TRUST-AI platform and were the property of researchers at INESC TEC. As such, the results files

had to be adapted to the TRUST-AI requirements, laid out in Section 5.4.2.

6.4 Performance Tests

Performance tests measure the amount of resources consumed by a system during the execution

of a task. In terms of the performance tests done for the TRUST-AI platform, the task measured

Platform Evaluation 48

Table 6.2: Algorithms tested in the TRUST-AI platform.

Name Framework Language Type Problem
TSP ECJ [29] Java Prescriptive Travelling salesman problem [15]
JSSP ECJ [29] Java Prescriptive Job shop scheduling problem [9]
GPG GP-Gomea [33] Python / C++ Predictive Breast cancer diagnostic [27]
CP tensorflow [44] Python Prescriptive Cart pole balancing problem [6]
MD tensorflow [44] Python Prescriptive Meal delivery problem [18]

was the execution of an algorithm, which is the platform’s primary focus since it was developed to

run any XAI algorithm. For this effect, the results measured were in the form of time, CPU usage,

and memory usage since these are directly attributed to the performance of an algorithm run.

The results were obtained with the usage of the command: kubectl top pods, which

retrieves the CPU usage in permille (‰) and memory usage in mebibytes (MiB). For this command

to be available, we need to have the kube-state-metrics4 (KSM) Pod running in our cluster. KSM

is a simple service that listens to the Kubernetes API and generates metrics about the state of the

objects present in the cluster [32]. The command is called every minute, and its output, along with

the current date and time, was appended to a file for later data processing.

Two different algorithms were chosen from Table 6.2 used in these tests: the JSSP algorithm,

developed in Java with the ECJ framework, and the GPG algorithm, developed in Python. These

algorithms were chosen because they are used to solve real-world problems and use different

languages. The JSSP algorithm was tested with two different configurations, one that took a short

amount of time and another that took much longer, allowing us to compare the platform overhead’s

effect on the algorithm execution time. On the other hand, the GP-Gomea algorithm was tested

only with a short execution time configuration since the resources needed to run this algorithm for

more extended periods are much higher than the ones we had available. The configurations used

to obtain the results can be seen in Table 6.3.

Table 6.3: Algorithms used to obtain results and their configurations.

Algorithm Configuration name Population Size Generations Seed
JSSP JSSP 1 20 10 -2111287466
JSSP JSSP 2 200 50 -2111287466
GPG GPG 1 4096 200 15682681

6.4.1 Results

In order to have a benchmark for the execution times and resource usage of the algorithms, we ran

the algorithms in both the TRUST-AI platform and in a separate Kubernetes cluster as a Kubernetes

Job. The latter differs from running the algorithm in the TRUST-AI platform by not having to

download both the configuration and the dataset files, call the platform when it finishes, and also

4Found at https://github.com/kubernetes/kube-state-metrics

https://github.com/kubernetes/kube-state-metrics

6.4 Performance Tests 49

having its intermediate results downloaded while it is still running. This way, we can measure the

full extent of the overhead introduced by the platform. The following results tables describe these

methods of executing the algorithm runs as “Platform” and “Isolation”, respectively.

Each algorithm was run five times with the same configuration and seed. Their results were

compiled into Tables 6.4 and 6.5 and their full extent can be seen in Appendix B. These tables show

the average execution times and CPU and memory usage of the algorithm runs. The execution

times are split into “Platform Time” and “Algorithm Time”, where the first is the time it took from

Kubernetes Job creation to deletion, and the second is the time between algorithm start and finish

as calculated by the algorithm code. This way, we can calculate the overhead introduced by both

Kubernetes and the platform, which can be seen in “Overhead Time”. Each configuration was run

twice, one in “Isolation” and another in “Platform”. These results were compared with each other

for the same configuration, which can be seen in the “Platform” table rows as the increase in the

percentage of the times registered in Table 6.4, and as the absolute value difference in Table 6.5.

Table 6.4: Times of algorithm runs in the platform with percentage comparison between the meth-
ods used for each configuration.

Configuration Method Platform
Time (s)

Algorithm
Time (s)

Overhead
Time (s)

JSSP 1 Isolation 608.200 596.542 11.658
Platform 664.598

(+9.27%)
643.531
(+7.88%)

21.068
(+80.71%)

JSSP 2 Isolation 33405.250 32988.277 416.973
Platform 37419.596

(+12.02%)
36810.019
(+11.59%)

609.577
(+46.19%)

GPG 1 Isolation 149.400 143.608 5.792
Platform 172.231

(+15.28%)
138.463
(-3.58%)

33.768
(+382.03%)

Table 6.5: Resource usage of algorithms during algorithm runs with absolute value comparison
between the methods used for each configuration.

Configuration Method CPU ‰ Memory (MiB)
JSSP 1 Isolation 1982.058±140.872 576.176±48.704

Platform 2093.290±128.528
(+111.232)

1666.675±180.270
(+1090.499)

JSSP 2 Isolation 1987.749±13.054 568.772±5.438
Platform 2043.912 ± 6.999

(+56.163)
1755.438±114.878
(+1186.666)

GPG 1 Isolation 4080.000±561.726 2675.300±301.355
Platform 4139.600±914.969

(+59.600)
2755.100±435.214
(+79.800)

Platform Evaluation 50

6.4.2 Analysis

Analyzing the results presented in Section 6.4.1 we must now verify if the platform performs

as expected. From a first look at the Table 6.4 it is possible to see that there is an increase of

10% in the time it takes to run the algorithm in the platform, which can be seen in the column

“Platform Time”, which also leads to an increase in the “Overhead Time” of the algorithm runs.

This is an expected overhead of the platform since it introduces some steps to the algorithm run

that are not present when the algorithm is run in Isolation. Namely, the download of the dataset

and configuration, as well as the notification to the backend when the algorithm is finished, which

are described in Section 5.2.1,

A slight increase in both memory and CPU consumptions, seen in Table 6.5 was also expected,

not only for the same reason as for the increase in run time but also because of the intermediate

result collection process that is done every five minutes. This effect is more noticeable in the JSSP

algorithm runs since the run times of the GPG algorithm are shorter than the intermediate result

collection cycle, meaning that there is a possibility that this process did not occur in any of the

algorithm runs. In order to verify that the increase stems from this cycle, further tests must be

conducted that include the number of times the data-acquisition process was executed. However,

if we exclude the data obtained from the GPG 1 runs, the data gathered for the JSSP 1 and JSSP 2

runs allow us to conclude that the expected increase is about 1000 MiB of memory and 5% of the

total CPU usage. This increment is in an acceptable range in terms of memory consumption since

this platform is developed for cloud servers with up to 64 GB of memory.

6.5 Live Demo

The TRUST-AI platform was tested during a meeting with the TRUST-AI partners. In this meet-

ing, a total of 24 attending people were assigned to a group, dividing the attendees into eight

groups with various ranges of expertise in XAI algorithms. This was done so that each group has

an Algorithm Expert, a Model Developer, and a Domain Expert, allowing for feedback collection

from each platform actor. The platform was set up the same way the performance tests (described

in Section 6.4) were conducted. Each group accessed the virtual machine using Chrome Remote

Desktop5, where the platform was running with the interfaces developed in [22] in a production

environment. However, for simplicity and time reasons, only the JSSP algorithm was available on

the platform during the demo. This way, the groups’ attention was focused on using the platform

and processing the results using the interface. The live demo consisted of executing three tasks:

running the JSSP algorithm with the provided dataset, filtering and comparing the population re-

sults, and editing and evaluating the filtered results. The overall result of the live demo was a

success, with all groups being able to complete their tasks during the assigned slot time of the

meeting and without any crashes of the TRUST-AI platform.

5Found at https://remotedesktop.google.com/

https://remotedesktop.google.com/

6.5 Live Demo 51

6.5.1 Feedback

The live demo ended with filling out a feedback form designed for frontend evaluation. The

results of this form can be seen in [22]. Despite the form being designed for the frontend, the last

question was open, allowing additional feedback to be collected about any aspect of the platform.

This question’s answers were scanned through for any feedback that might apply to the backend

of the platform, which is the following:

1. “Update metrics after changing formula.”

2. “When we extend or edit the expression you should be able to simulate again.”

3. “More information about the expression is required. How do we write the expression?”

4. “The learning process should have a progress bar (20 of 50 generations).”

6.5.2 Discussion

From the feedback received in Section 6.5.1 three different functionalities were requested to be

implemented in the backend to help research/developers easily develop XAI models:

1. Update of the metrics of a formula or model output by an algorithm (feedback 1 and 2) - This

feature was planned, and the requirement R11 was written for it in Section 3.1. However,

due to time constraints and prioritization of the tasks, this requirement was not implemented

in the platform.

2. Definition of the expressions’ grammar (feedback 3) - This feature is highly specialized for

XAI algorithms that output an expression, which is the case for the algorithm used in the

live demo and the algorithms used for testing the platform. For this to be developed in the

platform, we would have to specify the type of algorithm running as one of the available

types, such as GP, decision tree, neural network, and many more. Along with this, we

would need to develop a data structure that supports these types, where information such

as the expression’s grammar could be explicitly stored for GP algorithms. This feature is

significant for the future development of the TRUST-AI platform. However, the initial focus

was on having a generic platform capable of running any algorithm.

3. Progress tracking through statistics (feedback 4) - Tracking the progress of an algorithm

run through statistics can be easily implemented in the platform. However, each algorithm

type has different statistics. For instance, GP can use generations to track training progress,

where reaching a certain number of generations terminates it. In contrast, neural networks

use runs for tracking, where each run is a passage through the dataset. This would require

implementing a system similar to the previous functionality requested. The difference is

that this functionality requires that values usually defined in the algorithm’s parameters be

saved in a specific data structure and not in the JSON Schema of the algorithm, making

Platform Evaluation 52

these statistics a requirement of the algorithm type. As such, adding this feature would

make introducing an algorithm more complex, which is undesirable.

Having discussed the possible implementations and drawbacks of the said implementations,

we can conclude that this feedback is helpful for the further development of the platform. As such,

this feedback should guide the next steps of the implementation of the TRUST-AI platform.

Chapter 7

Conclusions

The last chapter presents our concluding remarks on the work done in this thesis in Section 7.1,

and an overview of future work is presented in Section 7.2.

7.1 Final Considerations

For the TRUST-AI platform, we established four different research objectives in Section 1.2, these

were: the design of a scalable infrastructure to house the TRUST-AI platform; the control of the

XAI algorithms present in the platform; the abstraction of the different paradigms of AI; and

management of the communication between the different components of TRUST-AI.

The first research objective tackled was the design of TRUST-AI’s scalable infrastructure, as

the platform cannot be developed without it. To achieve the referred scalability, we took advantage

of the containerization of applications. Even though its scalability was not empirically tested in

Chapter 6, it was incorporated as a design principle while also being ensured by the technologies

used to develop the platform.

Once the infrastructure was designed, we moved on to implementing the platform and its

communication with the Interfaces component of TRUST-AI, allowing visible progress throughout

the development cycle. Once the basis of this communication was done, the second research

objective was implemented by managing the XAI algorithms using a periodic process that tracks

the algorithm runs and a method of controlling the end of these runs. As such, the platform has

complete control of both the algorithm run status and its outputted data, described in Section 5.2.

The third research object, the abstraction of the different paradigms of AI, was done as a

byproduct of the architecture design and the processing of the output of algorithms, as the frame-

work designed for the algorithm data allows for the abstraction of the algorithm’s paradigm. This

objective is validated in Section 6.3, where we show that we can run algorithms of different

paradigms in our platform.

53

Conclusions 54

The final research objective of handling communication with the other TRUST-AI components

was only implemented for the Interfaces, AI Engine, and Database components, as the Cognitive

Models component was not yet developed. Despite this, we still developed a communication

method capable of handling these communications with a future implementation of the Cognitive

Models component and any other that may be added to TRUST-AI, as discussed in Section 5.7.

In Chapter 6, a discussion of the work done in this thesis was performed, along with perfor-

mance tests and the collection of user feedback obtained after a live demo of the platform. With

it, we can conclude that the work implemented in this thesis does indeed achieve the established

research objectives.

7.2 Future Work

In terms of future work for the TRUST-AI platform, there is still the need to implement the require-

ments R10 and R11 of Table 3.1, which describe the communication with the Cognitive Models

and the run of specific models in the algorithm, respectively. Furthermore, the developed platform

is a prototype and can be improved and optimized like any software developed. One of the ways

it can be improved is by developing the features requested by the live demo users, detailed in

Section 6.5.2. These features would add a great deal of specification to the TRUST-AI platform’s

algorithms, resulting in a trade-off in the platform’s usability between Algorithm Developers and

Model Developers. As such, these features need to be studied to evaluate the resulting trade-off

and its impact.

Another possible path for the future work of the TRUST-AI platform is the reduction of the

requirements imposed on the algorithms, whether it is the programs required by TRUST-AI or

the output definition, detailed in section 5.4. As a result, the usability of TRUST-AI would in-

crease, leading to higher adoption of the platform by Algorithm Developers. Possibly cascading

into a higher adoption of TRUST-AI by Model Developers due to a higher number of algorithms

available, and also Domain Experts, which follow the Model Developers.

Bibliography

[1] Martin L. Abbot and Michael T. Fisher. The Art of Scalability: Scalable Web Architecture,

Processes, and Organizations for the Modern Enterprise (2nd Edition). Vol. 2. Addison-

Wesley Professional, 2014, pp. 1–2. ISBN: 978-0134032801. URL: http://www.amazon.

com/Art-Scalability-Architecture-Organizations-Enterprise/dp/

0134032802/.

[2] I. Ahmed, G. Jeon, and F. Piccialli. “From Artificial Intelligence to Explainable Artifi-

cial Intelligence in Industry 4.0: A Survey on What, How, and Where”. English. In: IEEE

Transactions on Industrial Informatics 18.8 (2022). Cited By :2, pp. 5031–5042. URL:

www.scopus.com.

[3] Ana Azevedo and Manuel Filipe Santos. “KDD, SEMMA and CRISP-DM: a parallel overview”.

In: IADIS European Conference on Data Mining 2008, Amsterdam, The Netherlands, July

24-26, 2008. Proceedings. Ed. by Ajith Abraham. IADIS, 2008, pp. 182–185.

[4] Francisco Baeta et al. “Speed benchmarking of genetic programming frameworks”. In: Pro-

ceedings of the Genetic and Evolutionary Computation Conference. ACM, June 2021. DOI:

10.1145/3449639.3459335. URL: https://doi.org/10.1145%2F3449639.

3459335.

[5] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI): Concepts, tax-

onomies, opportunities and challenges toward responsible AI”. In: Information Fusion 58

(2020), pp. 82–115. ISSN: 1566-2535. DOI: https://doi.org/10.1016/j.inffus.

2019.12.012. URL: https://www.sciencedirect.com/science/article/

pii/S1566253519308103.

[6] Jason Brownlee. THE POLE BALANCING PROBLEM A Benchmark Control Theory Prob-

lem. https://researchbank.swinburne.edu.au/items/62a8df69-4a2c-

407f-8040-5ac533fc2787/1/. 2005.

[7] Bernardo Carvalho, Carlos Henrique, and Carlos Mello. “Scrum agile product development

method -literature review, analysis and classification”. In: Product: Management & Devel-

opment 9 (Jan. 2011), pp. 39–49. DOI: 10.4322/pmd.2011.005.

[8] Daswin De Silva and Damminda Alahakoon. An Artificial Intelligence Life Cycle: From

Conception to Production. 2021. DOI: 10.48550/ARXIV.2108.13861. URL: https:

//arxiv.org/abs/2108.13861.

55

http://www.amazon.com/Art-Scalability-Architecture-Organizations-Enterprise/dp/0134032802/
http://www.amazon.com/Art-Scalability-Architecture-Organizations-Enterprise/dp/0134032802/
http://www.amazon.com/Art-Scalability-Architecture-Organizations-Enterprise/dp/0134032802/
www.scopus.com
https://doi.org/10.1145/3449639.3459335
https://doi.org/10.1145%2F3449639.3459335
https://doi.org/10.1145%2F3449639.3459335
https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://researchbank.swinburne.edu.au/items/62a8df69-4a2c-407f-8040-5ac533fc2787/1/
https://researchbank.swinburne.edu.au/items/62a8df69-4a2c-407f-8040-5ac533fc2787/1/
https://doi.org/10.4322/pmd.2011.005
https://doi.org/10.48550/ARXIV.2108.13861
https://arxiv.org/abs/2108.13861
https://arxiv.org/abs/2108.13861

BIBLIOGRAPHY 56

[9] Cristiane Ferreira, Gonçalo Figueira, and Pedro Amorim. “Optimizing Dispatching Rules

for Stochastic Job Shop Scheduling”. In: Advances in Intelligent Systems and Computing

923 (2020), pp. 321–330. ISSN: 21945365. DOI: 10.1007/978-3-030-14347-3_31/

FIGURES/3. URL: https://link.springer.com/chapter/10.1007/978-3-

030-14347-3_31.

[10] Julie Gerlings, Arisa Shollo, and Ioanna Constantiou. “Reviewing the Need for Explainable

Artificial Intelligence (xAI)”. In: Proceedings of the Annual Hawaii International Confer-

ence on System Sciences 2020-January (Dec. 2020), pp. 1284–1293. ISSN: 15301605. DOI:

10.24251/hicss.2021.156. URL: https://arxiv.org/abs/2012.01007v2.

[11] Hassan B. Hassan, Saman A. Barakat, and Qusay I. Sarhan. “Survey on serverless comput-

ing”. In: Journal of Cloud Computing 2021 10:1 10 (1 July 2021), pp. 1–29. ISSN: 2192-

113X. DOI: 10.1186/S13677-021-00253-7. URL: https://link.springer.

com/articles/10.1186/s13677-021-00253-7%20https://link.springer.

com/article/10.1186/s13677-021-00253-7.

[12] Mir Riyanul Islam et al. “A Systematic Review of Explainable Artificial Intelligence in

Terms of Different Application Domains and Tasks”. In: Applied Sciences 12.3 (2022).

ISSN: 2076-3417. DOI: 10.3390/app12031353. URL: https://www.mdpi.com/

2076-3417/12/3/1353.

[13] N. Javed, F. Gobet, and P. Lane. “Simplification of genetic programs: a literature survey”.

English. In: Data Mining and Knowledge Discovery (2022). URL: www.scopus.com.

[14] S B Kotsiantis. “Decision trees: a recent overview”. In: Artif Intell Rev 39 (Apr. 2013),

pp. 261–283. DOI: 10.1007/s10462-011-9272-4.

[15] J. K. Lenstra and A. H.G. Rinnooy Kan. “Some Simple Applications of the Travelling Sales-

man Problem”. In: https://doi.org/10.1057/jors.1975.151 26 (4 i 2017), pp. 717–733. ISSN:

0160-5682. DOI: 10.1057/JORS.1975.151. URL: https://www.tandfonline.

com/doi/abs/10.1057/jors.1975.151.

[16] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. “Explainable AI: A

Review of Machine Learning Interpretability Methods”. In: Entropy 23.1 (2021). ISSN:

1099-4300. DOI: 10.3390/e23010018. URL: https://www.mdpi.com/1099-

4300/23/1/18.

[17] Dang Minh et al. “Explainable artificial intelligence: a comprehensive review”. In: Artificial

Intelligence Review 55 (2021), pp. 3503–3568. DOI: 10.1007/s10462-021-10088-y.

URL: https://doi.org/10.1007/s10462-021-10088-y.

[18] Damián Reyes et al. “The Meal Delivery Routing Problem”. In: Optimization Online. 2018.

[19] M. A. Shahin. “A review of artificial intelligence applications in shallow foundations”.

English. In: International Journal of Geotechnical Engineering 9.1 (2015). Cited By :26,

pp. 49–60. URL: www.scopus.com.

https://doi.org/10.1007/978-3-030-14347-3_31/FIGURES/3
https://doi.org/10.1007/978-3-030-14347-3_31/FIGURES/3
https://link.springer.com/chapter/10.1007/978-3-030-14347-3_31
https://link.springer.com/chapter/10.1007/978-3-030-14347-3_31
https://doi.org/10.24251/hicss.2021.156
https://arxiv.org/abs/2012.01007v2
https://doi.org/10.1186/S13677-021-00253-7
https://link.springer.com/articles/10.1186/s13677-021-00253-7%20https://link.springer.com/article/10.1186/s13677-021-00253-7
https://link.springer.com/articles/10.1186/s13677-021-00253-7%20https://link.springer.com/article/10.1186/s13677-021-00253-7
https://link.springer.com/articles/10.1186/s13677-021-00253-7%20https://link.springer.com/article/10.1186/s13677-021-00253-7
https://doi.org/10.3390/app12031353
https://www.mdpi.com/2076-3417/12/3/1353
https://www.mdpi.com/2076-3417/12/3/1353
www.scopus.com
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1057/JORS.1975.151
https://www.tandfonline.com/doi/abs/10.1057/jors.1975.151
https://www.tandfonline.com/doi/abs/10.1057/jors.1975.151
https://doi.org/10.3390/e23010018
https://www.mdpi.com/1099-4300/23/1/18
https://www.mdpi.com/1099-4300/23/1/18
https://doi.org/10.1007/s10462-021-10088-y
https://doi.org/10.1007/s10462-021-10088-y
www.scopus.com

BIBLIOGRAPHY 57

[20] Yan Yan Song and Ying Lu. “Decision tree methods: applications for classification and

prediction”. In: Shanghai Archives of Psychiatry 27 (2 Apr. 2015), p. 130. ISSN: 10020829.

DOI: 10.11919/J.ISSN.1002-0829.215044. URL: /pmc/articles/PMC4466856/

%20/pmc/articles/PMC4466856/?report=abstract%20https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC4466856/.

[21] Kashvi Taunk et al. “A Brief Review of Nearest Neighbor Algorithm for Learning and

Classification”. In: 2019 International Conference on Intelligent Computing and Control

Systems (ICCS). 2019, pp. 1255–1260. DOI: 10.1109/ICCS45141.2019.9065747.

[22] João Varela. “User Interfaces for human-guided Explainable AI”. In: (2022).

[23] Giulia Vilone and Luca Longo. Explainable Artificial Intelligence: a Systematic Review.

2020. DOI: 10.48550/ARXIV.2006.00093. URL: https://arxiv.org/abs/

2006.00093.

[24] Marco Virgolin, Tanja Alderliesten, and Peter A.N. Bosman. “On explaining machine learn-

ing models by evolving crucial and compact features”. In: Swarm and Evolutionary Com-

putation 53 (Mar. 2020), p. 100640. DOI: 10.1016/j.swevo.2019.100640. URL:

https://doi.org/10.1016%5C%2Fj.swevo.2019.100640.

[25] C. Zanni-Merk. “On the Need of an Explainable Artificial Intelligence”. In: Information

Systems Architecture and Technology: Proceedings of 40th Anniversary International Con-

ference on Information Systems Architecture and Technology - ISAT 2019. Advances in

Intelligent Systems and Computing (1050) (2020). DOI: 10.1007/978-3-030-30440-

9_1. URL: https://www.engineeringvillage.com/share/document.url?

mid=inspec_5190fbdf17372a3f548M35cb10178163190&database=ins.

https://doi.org/10.11919/J.ISSN.1002-0829.215044
/pmc/articles/PMC4466856/%20/pmc/articles/PMC4466856/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/
/pmc/articles/PMC4466856/%20/pmc/articles/PMC4466856/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/
/pmc/articles/PMC4466856/%20/pmc/articles/PMC4466856/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/
https://doi.org/10.1109/ICCS45141.2019.9065747
https://doi.org/10.48550/ARXIV.2006.00093
https://arxiv.org/abs/2006.00093
https://arxiv.org/abs/2006.00093
https://doi.org/10.1016/j.swevo.2019.100640
https://doi.org/10.1016%5C%2Fj.swevo.2019.100640
https://doi.org/10.1007/978-3-030-30440-9_1
https://doi.org/10.1007/978-3-030-30440-9_1
https://www.engineeringvillage.com/share/document.url?mid=inspec_5190fbdf17372a3f548M35cb10178163190&database=ins
https://www.engineeringvillage.com/share/document.url?mid=inspec_5190fbdf17372a3f548M35cb10178163190&database=ins

Web Bibliography

[26] Peter Bosman. EA Visualizer. http://www.cems.uwe.ac.uk/~apipe/Int%

20and%20Adapt%20Sys/Revision%20material%20CD%20image/evonet.

dcs.napier.ac.uk/demo7.html. Accessed: 2022-07-03.

[27] Breast Cancer Wisconsin (Diagnostic) Data Set | Kaggle. https://www.kaggle.com/

datasets/uciml/breast-cancer-wisconsin-data. Accessed: 2022-07-05.

[28] Cloud AutoML Custom Machine Learning Models | Google Cloud. https://cloud.

google.com/automl. Accessed: 2022-03-01.

[29] ECJ. https://cs.gmu.edu/~eclab/projects/ecj/. Accessed: 2022-07-02.

[30] Empowering App Development for Developers | Docker. https://www.docker.com/.

Accessed: 2022-03-01.

[31] Eureqa - Creative Machines Lab - Columbia University. https://www.creativemachineslab.

com/eureqa.html. Accessed: 2022-03-01.

[32] GitHub - kubernetes/kube-state-metrics: Add-on agent to generate and expose cluster-level

metrics. https://github.com/kubernetes/kube-state-metrics. Accessed:

2022-03-01.

[33] GitHub - marcovirgolin/GP-GOMEA: Genetic Programming version of GOMEA. Also in-

cludes standard tree-based GP, and Semantic Backpropagation-based GP. https : / /

github.com/marcovirgolin/GP-GOMEA. Accessed: 2022-07-02.

[34] H2O.ai | AI Cloud Platform. https://live-h2oai.pantheonsite.io/. Accessed:

2022-03-01.

[35] HeuristicLab. https://dev.heuristiclab.com/trac.fcgi/. Accessed: 2022-

03-01.

[36] JavaScript | MDN. https://developer.mozilla.org/en- US/docs/Web/

JavaScript. Accessed: 2022-07-03.

[37] JetStream - NATS Docs. https://docs.nats.io/nats-concepts/jetstream.

Accessed: 2022-07-02.

[38] Kubeflow. https://www.kubeflow.org/. Accessed: 2022-03-01.

[39] Kubernetes. https://kubernetes.io/. Accessed: 2022-03-01.

58

http://www.cems.uwe.ac.uk/~apipe/Int%20and%20Adapt%20Sys/Revision%20material%20CD%20image/evonet.dcs.napier.ac.uk/demo7.html
http://www.cems.uwe.ac.uk/~apipe/Int%20and%20Adapt%20Sys/Revision%20material%20CD%20image/evonet.dcs.napier.ac.uk/demo7.html
http://www.cems.uwe.ac.uk/~apipe/Int%20and%20Adapt%20Sys/Revision%20material%20CD%20image/evonet.dcs.napier.ac.uk/demo7.html
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://cloud.google.com/automl
https://cloud.google.com/automl
https://cs.gmu.edu/~eclab/projects/ecj/
https://www.docker.com/
https://www.creativemachineslab.com/eureqa.html
https://www.creativemachineslab.com/eureqa.html
https://github.com/kubernetes/kube-state-metrics
https://github.com/marcovirgolin/GP-GOMEA
https://github.com/marcovirgolin/GP-GOMEA
https://live-h2oai.pantheonsite.io/
https://dev.heuristiclab.com/trac.fcgi/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://docs.nats.io/nats-concepts/jetstream
https://www.kubeflow.org/
https://kubernetes.io/

WEB BIBLIOGRAPHY 59

[40] Microservice Architecture pattern. https://microservices.io/patterns/microservices.

html. Accessed: 2022-03-01.

[41] NATS.io – Cloud Native, Open Source, High-performance Messaging. https://nats.

io/. Accessed: 2022-03-01.

[42] Serverless: Develop & Monitor Apps On AWS Lambda. https://www.serverless.

com/. Accessed: 2022-03-01.

[43] Symbolic regression software - TuringBot. https://turingbotsoftware.com/. Ac-

cessed: 2022-03-01.

[44] TensorFlow. https://www.tensorflow.org/. Accessed: 2022-07-02.

[45] TRUST-AI | Home. http://trustai.eu/. Accessed: 2022-01-20.

[46] TypeScript: JavaScript With Syntax For Types. https://www.typescriptlang.org/.

Accessed: 2022-07-03.

https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://nats.io/
https://nats.io/
https://www.serverless.com/
https://www.serverless.com/
https://turingbotsoftware.com/
https://www.tensorflow.org/
http://trustai.eu/
https://www.typescriptlang.org/

Appendix A

Server Specifications

The server used for the platform evaluation in Chapter 6 has the following specifications:

CPU - AMD Ryzen Threadripper 3990WX, 64 cores, 2700 Mhz and 128 logical processors

Memory - 256 Gigabytes, 3200 Mhz

Operating System - Windows 11

However, in the evaluation process itself, via the VMWare software, we only allocated to the

virtual machine running the TRUST-AI platform 16 processors and 24 GB of RAM in an Ubuntu

MATE operating system.

60

Appendix B

Performance Test Results

Table B.1: Time results of algorithm runs in performance tests.

Configuration Method Run Platform
Time (s)

Algorithm
Time (s)

Overhead
Time (s)

JSSP 1 Platform 1 658.300 649.456 8.844

JSSP 1 Platform 2 669.844 647.137 22.707

JSSP 1 Platform 3 654.632 633.454 21.178

JSSP 1 Platform 4 659.790 635.573 24.217

JSSP 1 Platform 5 680.426 652.033 28.393

JSSP 1 Isolation 1 594.000 583.423 10.577

JSSP 1 Isolation 2 585.000 574.400 10.600

JSSP 1 Isolation 3 576.000 565.775 10.225

JSSP 1 Isolation 4 586.000 573.943 12.057

JSSP 1 Isolation 5 700.000 685.167 14.833

JSSP 2 Platform 1 37434.330 36726.754 707.576

JSSP 2 Platform 2 37603.709 37129.835 473.874

JSSP 2 Platform 3 37815.828 37405.899 409.929

JSSP 2 Platform 4 36847.776 36114.598 733.178

JSSP 2 Platform 5 37396.335 36673.007 723.328

JSSP 2 Isolation 1 31855.000 31237.135 617.865

JSSP 2 Isolation 2 33798.000 33793.137 4.863

JSSP 2 Isolation 3 33348.000 32761.447 586.553

JSSP 2 Isolation 4 34620.000 34161.390 458.610

JSSP 2 Isolation 5 34916.000 34329.701 586.299

GP-Gomea 1 Platform 1 169.694 137.527 32.167

Continued on next page

61

Performance Test Results 62

Table B.1 – continued from previous page
Configuration Method Run Platform

Time (s)
Algorithm
Time (s)

Overhead
Time (s)

GP-Gomea 1 Platform 2 169.996 137.452 32.544

GP-Gomea 1 Platform 3 177.259 138.604 38.655

GP-Gomea 1 Platform 4 170.377 138.594 31.783

GP-Gomea 1 Platform 5 173.829 140.137 33.692

GP-Gomea 1 Isolation 1 150.000 144.417 5.583

GP-Gomea 1 Isolation 2 149.000 143.060 5.940

GP-Gomea 1 Isolation 3 149.000 143.461 5.539

GP-Gomea 1 Isolation 4 150.000 144.543 5.457

GP-Gomea 1 Isolation 5 149.000 142.560 6.440

Table B.2: Resource usage of algorithms in performance tests.

Configuration Method Run Measu-
rements

CPU (m) Memory (MiB)

JSSP 1 Platform 1 9 2087.667±132.320 1610.444±744.879

JSSP 1 Platform 2 10 2001.800±355.335 1682.900±512.414

JSSP 1 Platform 3 8 2034.375±308.547 1691.000±694.810

JSSP 1 Platform 4 9 2026.333±352.031 1423.667±438.334

JSSP 1 Platform 5 11 2316.273±259.788 1925.364±665.820

JSSP 1 Isolation 1 9 1920.778±497.741 580.444±183.252

JSSP 1 Isolation 2 10 1813.800±308.893 510.600±85.250

JSSP 1 Isolation 3 8 2151.125±210.292 618.625±150.530

JSSP 1 Isolation 4 9 2104.222±166.335 545.667±21.662

JSSP 1 Isolation 5 11 1920.364±342.609 625.545±152.088

JSSP 2 Platform 1 623 2055.650±322.790 1948.332±933.760

JSSP 2 Platform 2 626 2041.000±320.833 1772.919±730.944

JSSP 2 Platform 3 629 2037.092±309.836 1694.154±660.391

JSSP 2 Platform 4 614 2042.138±309.455 1666.671±573.267

JSSP 2 Platform 5 622 2043.680±329.346 1695.116±649.217

JSSP 2 Isolation 1 530 1984.515±304.101 567.257±101.886

JSSP 2 Isolation 2 563 1982.941±308.093 561.811±99.528

JSSP 2 Isolation 3 555 1976.849±300.253 572.000±112.150

JSSP 2 Isolation 4 577 2006.692±304.081 574.021±92.840

JSSP 2 Isolation 5 581 1984.167±312.901 574.578±97.334

GP-Gomea 1 Platform 1 2 3747.000±1306.733 2734.500±620.133

Continued on next page

Performance Test Results 63

Table B.2 – continued from previous page
Configuration Method Run Measu-

rements
CPU (m) Memory (MiB)

GP-Gomea 1 Platform 2 2 3373.500±1395.122 2987.000±222.032

GP-Gomea 1 Platform 3 2 5239.500±1180.161 3253.500±372.645

GP-Gomea 1 Platform 4 2 5004.500±579.120 2719.000±653.367

GP-Gomea 1 Platform 5 2 3333.500±1711.906 2081.500±1477.146

GP-Gomea 1 Isolation 1 2 3569.000±1357.645 2668.000±595.384

GP-Gomea 1 Isolation 2 2 3488.500±2199.809 2549.500±740.341

GP-Gomea 1 Isolation 3 2 4107.500±2083.844 2632.500±697.914

GP-Gomea 1 Isolation 4 2 4808.000±1511.794 2357.000±1327.947

GP-Gomea 1 Isolation 5 2 4427.000±1306.733 3169.500±358.503

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 The TRUST-AI Project
	1.2 Research Objectives
	1.3 Structure

	2 State of the art
	2.1 Explainable Artificial Intelligence
	2.1.1 Transparent Machine Learning Models
	2.1.2 Post-hoc Explainability Techniques

	2.2 AI Algorithm Development Process
	2.3 Existing Frameworks and Tools
	2.3.1 General Purpose Platform Solutions
	2.3.2 Gap Analysis

	2.4 Scalability
	2.4.1 The X Axis
	2.4.2 The Y Axis
	2.4.3 The Z Axis

	3 Specification
	3.1 Requirements
	3.2 Actors
	3.3 User Stories
	3.4 Workflow

	4 Technologies
	4.1 Component Abstraction
	4.2 Server Management
	4.3 Algorithm Abstraction
	4.4 Backend
	4.4.1 Server
	4.4.2 Libraries

	4.5 Data Storage

	5 Platform Implementation
	5.1 Architecture
	5.2 Kubernetes
	5.2.1 Algorithm Run
	5.2.2 Algorithm State Control
	5.2.3 Data Acquisition

	5.3 Algorithm Acquisition
	5.3.1 Configuration

	5.4 Algorithm Requirements
	5.4.1 Algorithm Parameters and Dataset
	5.4.2 Algorithm Results

	5.5 REST API
	5.5.1 Authentication
	5.5.2 Frontend Integration
	5.5.3 Private API

	5.6 Database
	5.7 Cognitive Models

	6 Platform Evaluation
	6.1 Non-Functional Requirements
	6.2 Functional Requirements
	6.3 Algorithm abstraction
	6.4 Performance Tests
	6.4.1 Results
	6.4.2 Analysis

	6.5 Live Demo
	6.5.1 Feedback
	6.5.2 Discussion

	7 Conclusions
	7.1 Final Considerations
	7.2 Future Work

	A Server Specifications
	B Performance Test Results

