
Jorge Cunha Mendes

outubro de 2017

U
M

in
ho

|2
01

7

Design, Implementation and Evaluation of
Model-Driven Spreadsheets

D
e

si
g

n
,

Im
p

le
m

e
n

ta
ti

o
n

 a
n

d
 E

va
lu

a
ti

o
n

 o
f

M
o

d
e

l-D
ri

ve
n

 S
p

re
a

d
sh

e
e

ts
Jo

rg
e

C
un

ha
 M

en
de

s

Universidade do Minho

Escola de Engenharia

Programa de Doutoramento em Informática (MAP-i)
das Universidades do Minho, de Aveiro e do Porto

 Universidade do Minho

universidade de aveiro

outubro de 2017

Trabalho realizado sob a orientação do

Professor Doutor João Alexandre Saraiva

e do

Professor Doutor Jácome Cunha

Jorge Cunha Mendes

Design, Implementation and Evaluation
of Model-Driven Spreadsheets

Universidade do Minho

Escola de Engenharia

Programa de Doutoramento em Informática (MAP-i)
das Universidades do Minho, de Aveiro e do Porto

Universidade do Minho

universidade de aveiro

iv

Acknowledgements

This work was not possible without the help of people that taught me and directed by in the

right direction. In the first place, I would like to thank my supervisors João Saraiva and Jácome

Cunha for their support and guidance. Without them, this work would not have seen the light

of day.

Furthermore, I would like to thank my colleagues Nuno Macedo for his help with the

bounded model checking and Hugo Pacheco for his help with the bidirectional transforma-

tion properties. I would like to thank also Zhenjiang Hu, the supervisor of my internship at

the National Institute of Informatics (Japan), and his team that welcomed me into their group

to work on bidirectional transformations. Moreover, I thank Martin Erwig that I first met as I

started to work in this area and with whom I had interesting conversations about the topic of

my work. Gregor Engels and Stefan Sauer also agreed to participate in a bilateral FCT-DAAD

project, allowing to expand our work, and I am grateful to them for the opportunity. And a big

thank you to my co-authors, namely João Paulo Fernandes who gave me some precious help

at the beginning, Rui Pereira, and others already mentioned above.

Parts of this work required evaluation with people and I am thankful for their cooperation.

I also thank the people at Banco Alimentar de Braga, Primavera BSS, and Francisco Duarte

and João Roque from Bosch Car Multimedia, Portugal, for the discussion about problems they

have and for giving me case studies. This work also benefited from interactions with other

researchers that I crossed path with, namely in conferences and summer schools, but also

within my own institution.

v

Finally, this work is partially funded by the ERDF through the Programme COMPETE and

by the Portuguese Government through FCT - Foundation for Science and Technology, pro-

jects SSaaPP (ref. FCOMP-01-0124-FEDER-01004) and FATBIT (ref. FCOMP-01-0124-FEDER-

020532), scholarships ref. BI2-2012 PTDC/EIA-CCO/120838/2012 UMINHO, ref. BI3-2012

PTDC/EIA-CCO/108613/2008 UMINHO, ref. BI1-2013 PTDC/EIA-CCO/120838/2012 UMI-

NHO, ref. AE2015-0025 (INESC TEC) and ref. SFRH/BD/112651/2015.

vi

Abstract

Design, Implementation and Evaluation of Model-Driven Spreadsheets

Spreadsheets are omnipresent tools to solve problems of all sorts. Their usage is simple and

flexible, which attracts many of their users. The tabular format comes naturally to present

data in many situations. This format simplifies the exchange of data between systems, but

also provides simple visualizations of this data using some of the many features spreadsheet

software provide nowadays. Moreover, users have advanced features available that make spre-

adsheets a powerful programming environment with a low-entry barrier.

However, spreadsheet users are usually not professional developers and thus lack kno-

wledge and development methodologies to allow them to create error-free spreadsheets with

minimal effort. This is even more significant with the freedom spreadsheets provide, where

error-prevention and detection features are optional and lack emphasis.

A solution to improve spreadsheet development, both preventing errors and improving

development performance, is defended in this work. This solution consists in using common

software development methodologies and techniques to spreadsheet development, namely

using Model-Driven Engineering, a methodology to specify a solution through abstraction.

This work brings a new modelling language to specify spreadsheets at a high level, abs-

tracting the concrete data. It introduces an additional artefact in spreadsheet development

that is connected to the actual spreadsheet through a conformance relation. With these two

artefacts, spreadsheet development is divided into the definition of the layout and logic, and

the input of concrete data. The former part defines constraints on the latter, preventing errors

vii

by design. Moreover, taking advantage of model-driven techniques, the whole life cycle of the

spreadsheet is kept safe.

In addition to the theoretical definition of the modelling language, the conformance rela-

tion and other parts involved in the development of spreadsheets, an implementation of this

work is provided as an extension to LibreOffice Calc. This implementation demonstrates the

feasibility of the approach and allows to evaluate the work.

In order to evaluate this work, empirical studies were performed. These have shown the

benefits of this work are significant, reducing error rates and improving spreadsheet develop-

ment by end users.

viii

Resumo

Desenho, Implementação e Avaliação de Folhas de Cálculo Orientadas por

Modelos

Folhas de cálculo são ferramentas omnipresentes para resolver problemas de todos os tipos.

O seu uso é simples e flexível, atraindo muitos dos seus utilizadores. Em muitas situações,

o formato tabular é natural para a apresentação de dados. Este formato simplifica a troca

de dados entre sistemas, mas também fornece uma visualização simples dos dados usando

algumas das muitas funcionalidades que os programas de folhas de cálculo fornecem hoje

em dia. Mais, os utilizadores têm disponível funcionalidades avançadas que tornam as folhas

de cálculo um ambiente de programação poderoso e acessível.

Porém, os utilizadores de folhas de cálculo não são geralmente programadores profissi-

onais, pelo que carecem do conhecimento e das metodologias de desenvolvimento que lhes

permitiriam a criação de folhas de cálculo sem erros e com um esforço mínimo. Isto é ainda

mais relevante com a liberdade que as folhas de cálculo disponibilizam, onde as funcionali-

dades de prevenção e de detecção de erros são opcionais e têm pouca ênfase.

Uma solução para melhorar o desenvolvimento de folhas de cálculo, tanto prevenindo

erros como melhorando o desempenho no seu desenvolvimento, é defendida neste traba-

lho. Esta solução consiste no uso de metodologias e técnicas de desenvolvimento de software

comuns, nomeadamente usando Model-Driven Engineering (engenharia orientada por mo-

delos), uma metodologia para a especificação de uma solução através de abstracção.

Este trabalho traz uma nova linguagem de modelação para a especificação de folhas de

ix

cálculo a um alto nível, abstraindo os dados concretos. Ele introduz um artefacto adicional

no desenvolvimento de folhas de cálculo que está relacionado com a folha de cálculo através

de uma relação de conformidade. Este novo artefacto define restrições na folha de cálculo,

prevenindo erros por construção. Aliás, tirando partido de técnicas de Model-Driven Engine-

ering, todo o ciclo de vida da folha de cálculo é mantido correcto.

Em adição à definição teórica da linguagem, da relação de conformidade e de outra par-

tes envolvidas no desenvolvimento de folhas de cálculo, resulta também deste trabalho uma

implementação fornecida como uma extensão para o LibreOffice Calc. Esta implementação

demonstra a viabilidade deste trabalho e também permite que ele seja avaliado.

Para validar este trabalho ser avaliado, foram desenhados e realizados estudos empíricos.

Estes mostram que os benefícios deste trabalho são significativos, prevenindo erros e melho-

rando o desenvolvimento de folhas de cálculo pelos seus utilizadores.

x

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Background . 5

1.3 State of the Art . 7

1.4 Thesis . 16

1.5 Contributions . 17

1.6 Document Structure . 21

2 Spreadsheets 23

2.1 Foundational Features . 24

2.1.1 Spreadsheet Structure . 24

2.1.2 Cell References . 30

2.1.3 Named Ranges . 32

2.2 Data Validation . 33

2.3 Other Elements . 35

3 Tabula: Modeling Spreadsheet Tables 37

3.1 Tabula . 38

3.2 Tabula Instance . 48

3.3 Spreadsheet Recognition . 51

3.3.1 Two-Dimensional Languages . 52

3.3.2 A Two-Dimensional Language Recognizer 53

3.3.3 Tabula Instance Recognizer . 53

xi

xii CONTENTS

3.4 Embedded Tabula . 55

4 Spreadsheet Evolution 59

4.1 Tabula Evolution . 60

4.2 Instance Evolution . 63

4.3 Bidirectional Transformations . 65

4.4 Bidirectional Transformation Properties . 72

4.5 Directed Evolution . 73

4.5.1 Evolution Sequence . 74

4.5.2 Spreadsheet Differences . 75

4.5.3 Bounded Model Checking . 78

5 A Concrete Implementation 83

5.1 Core Library . 84

5.2 Directed Evolution . 85

5.2.1 Spreadsheet Differences . 86

5.2.2 Bounded Model Checking . 86

5.3 LibreOffice Calc Extension . 88

5.4 Google Sheets Add-On . 90

6 Empirical Evaluation 93

6.1 Model-Driven Spreadsheets . 93

6.1.1 Design . 94

6.1.2 Execution . 101

6.1.3 Analysis . 102

6.1.4 Interpretation . 106

6.1.5 Discussion . 108

6.2 Bidirectional Evolution Environment . 110

7 Conclusion 115

7.1 Model-Driven Spreadsheet Development . 115

CONTENTS xiii

7.2 Spreadsheet Engineering . 117

7.3 Future Work . 118

References 121

xiv CONTENTS

List of Figures

1.1 Overview of the model-driven engineering methodology 5

1.2 Synchronization of model and instance after an evolution step 6

1.3 Screenshot of the ViTSL editor . 9

1.4 ViTSL-based environment for spreadsheet development 10

1.5 Syntax of the textual representation of spreadsheet templates 10

1.6 Example of a template that expands vertically . 11

1.7 Example of a template that expands horizontally 11

1.8 Example of a template with two columns that expand horizontally 12

1.9 Template for budgeting purposes . 13

1.10 Syntax of the textual representation of ClassSheets 14

1.11 ClassSheet modelling a budget spreadsheet . 14

2.1 Spreadsheet holding a list of items with their respective value and their total . . . 27

2.2 Examples of warnings when overwriting existing data 29

2.3 Example of a Microsoft Excel structured table . 32

2.4 Example of input help defined by a validity rule in LibreOffice Calc. 34

2.5 Finding invalid values in LibreOffice Calc . 35

3.1 Overview of the artefacts in developing a spreadsheet table using Tabula 37

3.2 Tabula specifying a spreadsheet to hold a list of items 42

3.3 Example of the yearly stock and quantity sold of apples 43

3.4 Example with a relation between two classes . 44

xv

xvi LIST OF FIGURES

3.5 Example of class layers . 45

3.6 Example of a Tabula model and its corresponding embedding 57

4.1 Conformance after performing operations. 66

4.2 Directed evolution as the application of a sequence of operations 74

5.1 Overview of the LibreOffice extension model using components 88

5.2 Overview of the MDSheet architecture within the LibreOffice environment 89

5.3 MDSheet extension toolbar . 89

5.4 Architecture of the MDSheet-Google system. 91

6.1 Time used to perform the tasks on the budget spreadsheet 103

6.2 Time used to perform the tasks on the payments spreadsheet 103

6.3 Error rate in the budget spreadsheet . 104

6.4 Error rate in the payments spreadsheet . 105

List of Tables

1.1 Types of references in Gencel Templates . 12

1.2 Comparison of the different spreadsheet models 16

2.1 Results of operations varying their operand types 28

2.2 Absolute vs. relative references . 31

3.1 List of attributes, their class and fully-qualified name 47

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Over the years, many solutions were proposed to allow people solve their problems through

computer programs. One such solution, which appeared first in the late 1970s, is the elec-

tronic spreadsheet. Spreadsheets allow data to be arranged in a tabular fashion in columns

and rows, but also to perform computation with such data using formulas.

Spreadsheets can be used to solve problems in many domains, for one-time problems or

to be continuously used giving support to long processes. Spreadsheets can be developed by

people with almost no knowledge on spreadsheet development or by experienced software

developers. The solutions can be quite small, like a simple sum of a list of values, or they can

be quite large, connecting to different sources of data, performing complex computations on

that data and then providing an amplitude of views on the obtained results. These results can

be used to provide a simple overview of the data or they can be used to take critical decisions

with great potential of risk.

From their features, spreadsheets provide a way to create possibly complex software pro-

grams and thus can be seen as a programming paradigm. The development environment

is quite simple and flexible, providing sheets where users can store their data in cells. Cells

can have numeric or textual data, formulas to perform computation, and can be referenced

using the coordinates of their respective column and row. In addition to these basic features,

more complex ones are also available, providing data analysis and visualization tools for quick

1

2 CHAPTER 1. INTRODUCTION

prototyping and development of software solutions. When these features are not enough, it is

possible to implement new ones and automate further using macros, i.e., formulas or instruc-

tions developed in a programming language that can be used like native formulas. Therefore,

spreadsheets provide simple features making it easy for new users to start using them, but

they also can accommodate the needs of more experienced users.

The wide range of possible spreadsheet solutions coupled with the ample difference be-

tween basic spreadsheet users and the most experienced ones make spreadsheets very error

prone. As such, both the academics and industry have proposed solutions to make spread-

sheet development safer, but work is still required in order to empower end users with tools

that indeed provide safer spreadsheets.

The work of this thesis, presented in this dissertation, intends to provide safer spread-

sheets bringing common software development methodologies, techniques and tools to

spreadsheet developers. This work is motivated in the next section, followed by an overview

of the related state of the art and a summary of the approach taken in this thesis.

1.1 Motivation

The spreadsheet is an easy to use and flexible tool that allows people to solve their prob-

lems without requiring extensive programming knowledge. It permits to create programs to

solve simple problems but also complex ones. Therefore, spreadsheets are the tool of choice

in many situations. As such, many decisions are taken based on results of calculations per-

formed using spreadsheets.

Panko and Ordway cite several reports showing the extensive usage of spreadsheets (Panko

& Ordway, 2008), e.g., in 2004:

• financial intelligence firm CODA reported that 95% of U.S.A. firms use spreadsheets for

financial reporting;

• the International Data Corporation found that 85% of the 118 interviewed business

leaders were using spreadsheets in financial reporting and forecasting;

1.1. MOTIVATION 3

• A.R.C. Morgan interviewed 376 European individuals, with 80% of the respondents say-

ing their firm use spreadsheets for both managing the control environment and finan-

cial reporting.

The usage of spreadsheets still remains significant nowadays. In PwC’s 2014 Global Trea-

sury Survey, 89% of the 110 survey respondents, from companies across the world, use spread-

sheets (PwC, 2014). This trend is also present in the 2017 edition of the survey (PwC, 2017),

influencing the productivity of an organisation:

Treasury forecasting is still a cumbersome, manual and spreadsheet-based pro-

cess involving many people from across the organisation, resulting in monthly or

quarterly, rather than weekly, updates.
(PwC, 2017)

Being such pervasive, mistakes or errors in spreadsheets become common, with a poten-

tially serious impact in critical situations. News have been reported in some of these situa-

tions, e.g.:

• in the London 2012 Olympics, tickets to four synchronized swimming sessions were

oversold by 10,000 due to the incorrect entry of the number of remaining tickets, having

the organisation to make up to the people that were affected (Kelso, 2012);

• AstraZeneca, Britain’s second largest drug maker, released confidential information

that was inadvertently embedded in a spreadsheet template made available to ana-

lysts (Reuters, 2012);

• an influential economics paper (Reinhart & Rogoff, 2010) had, amongst other issues, a

coding error in a spreadsheet leading to results favourable to the paper author’s posi-

tion (Konczal, 2013).

These and other news, some of them collected by the European Spreadsheet Risks Interest

Group (EuSpRiG) in their horror stories page (EuSpRiG), show the importance of having cor-

rect spreadsheets and the impact an incorrect one can have.

4 CHAPTER 1. INTRODUCTION

Looking for the aspects of spreadsheet development that can lead to incorrect spread-

sheets, two main aspects arise: the spreadsheet developer and the tools used to develop.

The spreadsheet developer is usually also the end user, i.e., the one that uses the developed

spreadsheet. Such user is usually a non-professional developer lacking in programming skills.

The spreadsheet development environment is usually easy to use and flexible, giving much

freedom to the user. The combination of both of these aspects result in the development of

potentially incorrect spreadsheets, enabled by the lack of knowledge of the developer to cre-

ate correct logic and the absence of restrictions from the development environment to create

correct spreadsheets.

Many solutions implemented using spreadsheets, e.g., for budgeting and accounting, al-

ready have dedicated software solutions or could be implemented as one by professional de-

velopers. However, to move to one of those solutions would require additional costs, and

spreadsheet users are not usually keen to switch their work tools. Therefore, diverse solu-

tions were proposed by the industry and the academic community to assist spreadsheet users.

These solutions include principles, guidelines and standards to mitigate errors and improve

spreadsheet quality (e.g.: FAST, 2014; ICAEW, 2014; SSRB, 2010); tools in the form of add-ins

and extensions to the development environment to enforce some (informal) specification or

automate auditing tasks (e.g.: Modano1); and tools to help visualize, understand and locate

potential sources of errors (e.g.: PerfectXL2; J. Cunha, Fernandes, Mendes, Martins, & Saraiva,

2012).

Another kind of solutions proposed to improve spreadsheet development consists in using

a common software development methodology, namely Model-Driven Engineering (MDE).

MDE consists in the creation of an abstraction of the problem that is then used to specify the

solution. This methodology enables the use of further techniques and tools to support the

development of software. Researchers have applied this methodology to spreadsheets, thus

showing its applicability, but they did not take full advantage of what the methodology allows.

The work from this thesis intends to improve the usage of MDE in spreadsheet development,

1https://www.modano.com/
2https://www.perfectxl.com/

https://www.modano.com/
https://www.perfectxl.com/

1.2. BACKGROUND 5

further enhancing the development of spreadsheets

1.2 Background

The approach presented in this dissertation relies on existing methodologies, techniques and

tools already known to software developers. Some essential ones are explained in this section.

Model-Driven Engineering (MDE). It is a methodology in software development that uses

abstraction through modelling to specify a piece of software (Schmidt, 2006). Thus, a descrip-

tion of the domain of the problem (the model) is provided instead of stating the steps to solve

such problem (the code instructions).

At the simplest level, MDE translates to a pair of artefacts (a model and an instance of

that model) that are related by a conformance relation (fig. 1.1). More complex settings exist,

where the model is itself modelled resulting in a meta-model that specifies a model which

specifies an instance.

abstraction

Model

implementation

Instance

speci�es

conforms to

Figure 1.1: Overview of the model-driven engineering methodology.

In spreadsheets, the term model already exists: it is used to refer a spreadsheet solution

that abstracts a concrete problem, but does not have any connection to model-driven soft-

ware development.

In order to implement this methodology, other complementary concepts like domain-

specific modelling languages, model transformation and code generation are used.

Domain-Specific (Modelling) Language (DSL/DSML). A DSL (van Deursen, Klint, & Visser,

2000; Voelter et al., 2013) is a language designed to be applied to a concrete domain, in con-

6 CHAPTER 1. INTRODUCTION

trast to a General-Purpose Language (GPL) that can be applied across several domains. It

aims to provide domain-specific constructs to improve the expressivity of the language and

reduce the complexity required when solving the same problem with a GPL.

Domain-specific languages for modelling can be used to formalize the application struc-

ture, behaviour, and requirements within a particular domain, imposing domain-specific

constraints and performing model checking that can detect and prevent many errors in early

stages of the development process (Schmidt, 2006).

Model-instance synchronization. Using a model-driven approach can result in several arte-

facts for the same software object, but at distinct abstraction levels. When one of such arte-

facts is modified, or evolved, the others must be updated (co-evolved) to reflect the changes

made and keep the conformance relation between instance and model.

Bidirectional transformations (BX) are a mechanism to maintain the consistency between

related sources of information (Czarnecki et al., 2009; Diskin, 2008). They consist in a pair

of transformations: one to update the instance after the model is modified, called the to

transformation, and another to update the model after the instance is modified, called the

from transformation (fig. 1.2). These transformations can work with the state of the artefacts

(state-based BX), the differences between the original and the modified artefact (delta-based

BX) and the operation used to modify the artefact (operation-based BX).

m0 i0

m1 i1

conforms to

evolution

from

conforms to

m0 i0

m1 i1

conforms to

evolution

to

conforms to

Figure 1.2: Synchronization of model (m0) and instance (i0) after an evolution step.

Object-Oriented Paradigm. (OOP) The Object-Oriented Paradigm (Meyer, 1997) is a pro-

gramming paradigm where state and computation are grouped into objects. The data of the

1.3. STATE OF THE ART 7

object is stored in attributes of the object, whilst computation is performed by invoking meth-

ods of the object.

Objects can be abstracted by their class. An object class, or just class, defines the attributes

and methods of an object.

1.3 State of the Art

Industry and academics have both proposed solutions to improve spreadsheet development,

be it in terms of preventing errors, finding errors, or following certain specifications. This

section focuses on the state of the art of the specification of spreadsheets in order to prevent

errors or to check their correctness against some concrete specification. An important aspect

is that this covers specification of the spreadsheets themselves and not the data nor the com-

putation that are represented in a spreadsheet, i.e., the work mentioned in this section is not

an alternative to spreadsheet solutions.

Therefore, related work that uses models is presented, namely Model Master, Excelsior,

Gencel Templates and ClassSheets, but first an informal approach to spreadsheet specification

is provided.

Templates. Templates are not really spreadsheet models in the sense that they represent

spreadsheets that originate from them, but rather a base to develop spreadsheets, where the

initial layout and some labels and formulas may be present.

These templates are supported by some spreadsheet systems (e.g., LibreOffice Calc and

Microsoft Office), and many templates are available on the Internet, e.g., at:

LibreOffice Templates: http://templates.libreoffice.org/

Microsoft Office Templates: http://office.microsoft.com/templates/

Model Master. Ireson-Paine introduced in 1997 Model Master (1997), a compiler and an

object-oriented textual language to specify spreadsheets. The idea is that a textual representa-

tion of spreadsheets and the specification of formulas using named references instead of cell

http://templates.libreoffice.org/
http://office.microsoft.com/templates/

8 CHAPTER 1. INTRODUCTION

references (e.g., A1) is less error-prone than just editing the spreadsheet. Then, the compiler

would generate a spreadsheet conforming to the given model.

For the compilation process, each attribute is mapped to a column in the spreadsheet.

During this process, attribute names that are present within formulas are converted to cell

references. This way, the models only cover a limited kind of spreadsheets, namely database-

like tables (a header and a set of rows), but developers can improve the layout by specifying

the worksheets and columns/rows where some or each attribute should be in.

Contrary to common models, the ones developed with Model Master already contain in-

formation about the values of the attributes, which can make of them a spreadsheet replace-

ment for storage.

Model Master can provide some benefits:

Error reduction — Using named references, errors due to wrong references are reduced, and

using a compiler to generate spreadsheets allows to check for errors before having the

final spreadsheet.

Documentation — The textual format allows developers to insert comments with informa-

tion about different parts of the spreadsheets, which contributes as some kind of docu-

mentation.

Modularity — Parts of the code can be reused, either by referencing different parts of the

code (using object names), or by using object inheritance.

Portability — Models could be compiled to different kinds of spreadsheets, like LibreOffice

Calc and Microsoft Excel, or even to another programming language such as Fortran

and Pascal.

However, Model Master has also some limitations. After compiling the model to the spread-

sheet, no kind of error prevention is made except for possible features present in the host

spreadsheet system. Moreover, regarding the portability, the compiler itself may not be

portable, due to being programmed in Prolog which makes it dependent on the targets sup-

ported by the Prolog compiler.

1.3. STATE OF THE ART 9

Later, Ireson-Paine improved on the original proposal adding a decompilation feature, al-

lowing to convert spreadsheets to Model Master models (Ireson-Paine, 2001). Other features

also present in this paper include multidimensional tables, and units and dimensional analy-

sis when compiling.

Excelsior. Excelsior (Ireson-Paine, 2005) was developed by the same author of Model Mas-

ter, both models sharing some characteristics. Excelsior, like Model Master, is a textual speci-

fication for spreadsheets, that is then compiled to a spreadsheet.

Unlike Model Master, the language of Excelsior has a different grammar with more fea-

tures. A Excelsior specification is defined by a set of equations that can be related between

themselves using primitives to modularize the specified spreadsheets. These primitives in-

clude ∪ (combination of sets of equations) and ⇒ (shifting of equations), amongst others.

The advantages and disadvantages of Excelsior are the same as Model Master’s ones. In

practice, Excelsior can generate Microsoft Excel and Google Sheets spreadsheets, and can be

used to manipulate large spreadsheets in a programmatic way that provides more power than

the usual features present in traditional spreadsheet systems.

Gencel Templates. In 2005, Abraham, Erwig, Kollmansberger, and Seifert presented ViTSL,

a visual template specification language (Abraham et al., 2005; Erwig, Abraham, Cooperstein,

& Kollmansberger, 2005). This language has both textual and visual representations, the latter

being similar to spreadsheets themselves (see fig. 1.3).

Figure 1.3: Screenshot of the ViTSL editor, taken from Abraham et al. (2005).

The spreadsheet development process (fig. 1.4) using Gencel templates (or just templates)

10 CHAPTER 1. INTRODUCTION

is similar to when using Excelsior, where the developer specifies the spreadsheet which is then

compiled using Gencel to a spreadsheet that follows that specification. Unlike with Excelsior,

spreadsheets generated with Gencel contain machinery to restrict some user operations to

only those that are logically and technically correct for that template, preventing some kinds

of errors when modifying the spreadsheet. Along with the restrictions, new operations are

also added to perform some repetitive tasks like the repetition of a set of columns with some

default values. These are supported by an addon for Microsoft Excel.

Model Development Spreadsheet Use

Spreadsheet TemplateSpreadsheet TemplateViTSL EditorViTSL Editor GencelGencel Spreadsheet FileSpreadsheet File

Microsoft Excel / Gencel add-inMicrosoft Excel / Gencel add-in

Figure 1.4: ViTSL-based environment for spreadsheet development.

Gencel templates are a formalism to define the structure and contents of a spreadsheet.

Templates (t) are composed by blocks (b), which in turn can contain formulas (f). A template

block can represent in its basic form a spreadsheet cell, or it can be a composition of other

blocks, possibly forming columns (c). Moreover, template blocks (b or c) can be expandable,

i.e., their instances can be repeated either horizontally (c→) or vertically (b↓). When a block

represents a cell, it contains a basic value (ϕ, e.g., a string or an integer), a reference (ρ), or an

expression built by applying functions to a varying number of arguments given by a formula

(ϕ(f , . . . , f)).

Templates can be represented textually (Erwig et al., 2005) (see fig. 1.5), or visually using

the ViTSL language (Abraham et al., 2005).

f ∈ Fml ::= ϕ | ρ |ϕ(f , . . . , f) (formulas)
b ∈ Block ::= f | b|b | b^b (blocks, tables)
c ∈ Col ::= b | b↓ | c^c (columns)
t ∈ Template ::= c | c→ | t |t (templates)

Figure 1.5: Syntax of the textual representation of spreadsheet templates (Abraham et al.,
2005).

1.3. STATE OF THE ART 11

To generate a spreadsheet corresponding to a template, a spreadsheet of the size of the

template is created, where the contents of the cells in the template indicate the default con-

tent and the type of that cell in the spreadsheet. If a block is in an expandable area (ei-

ther horizontally, vertically, or both), then users can repeat it in the corresponding direc-

tion(s) (see figs. 1.6 and 1.7). Moreover, one can impose expansion limits, identifying the

(a) Template for a list of
values.

(b) A spreadsheet generated
from the template.

(c) A spreadsheet generated from
the template, with some values.

Figure 1.6: Example of a template that expands vertically.

(a) Template for a list of values.

(b) A spreadsheet generated from the template.

(c) A spreadsheet generated from the template, with some values.

Figure 1.7: Example of a template that expands horizontally.

number of columns or rows that should be repeated in each instance. This can be done re-

moving the column or row separators as depicted in fig. 1.8.

The construction of spreadsheet templates is restricted by a set of rules that are imposed

by a type system. This type system has two distinguished sets of types: one for formulas and

another for templates. The former enforces the correct use of references within formulas,

while the latter constraints the composition of template elements in addition to the ones im-

posed by the syntax of the language.

Simplistically, the formula typing ensures that range references are not used where a cell

reference is expected. When using a reference in a template, the corresponding reference in

the data can be either a cell reference or a range one depending on the location of the source

12 CHAPTER 1. INTRODUCTION

(a) Template for a list of values. Notice the missing column separator between columns B and
C.

(b) A spreadsheet generated from the template.

(c) A spreadsheet generated from the template, with some values.

Figure 1.8: Example of a template that expands horizontally, with two columns being re-
peated.

cell containing the formula with the reference and the target cell referenced in the formula

(see table 1.1).

Table 1.1: Types of references in Gencel Templates (Abraham et al., 2005).

Source cell Target cell Type of reference
non-repeating non-repeating cell
non-repeating repeating range

repeating non-repeating cell
repeating repeating (same group) cell
repeating repeating (different group) range

The template typing ensures that:

• when composing vertically two blocks, they have the same width;

• when composing horizontally two blocks, they have the same height;

• when composing vertically two columns, they have the same width; and,

• when composing horizontally two templates, they have the same height and the same

block pattern (i.e., expandable blocks in one template match the position and size of

the adjacent blocks in the other template).

With this information about spreadsheet templates, it is possible to create, for instance,

a spreadsheet for budgeting (see fig. 1.9), listing vertically the categories and horizontally the

years. For each intersection of the year columns with the category rows, there is the quantity,

1.3. STATE OF THE ART 13

Figure 1.9: Template for budgeting purposes.

cost and sub-total for the corresponding category in that particular year. Moreover, sub-totals

are also provided for each category (cell F4) and for each year (cell E5), and a grand total for

all expenses is defined in cell F5. Also, there is no column separators between columns C

and D, neither between columns D and E, which makes those three columns (C, D and E) to be

repeated whenever one wants to add information about a new year. For the expansion used to

add new categories, there is a separator between rows 3 and 4, implying that that expansion

repeats only one row per category.

Spreadsheet templates provide a way to ensure that spreadsheets follow a specific lay-

out, and allow to fill in cells more easily, having the user only to insert input values since the

formulas are automatically inserted with the correct references. However, spreadsheet tem-

plates still use non-user-friendly references with the format that is usual in spreadsheets, and

the contents of the template have no semantics related to the business model associated with

them.

ClassSheets. ClassSheet models are built upon spreadsheet templates, and are a high-level,

object-oriented formalism to specify the business logic of spreadsheets (Engels & Erwig, 2005).

They are very similar to spreadsheet templates, but with more information about the classes

used in the model, and with named attributes that can be used to reference cells by name,

removing the need to use the usual format of references (i.e., references like A1 and B3:D6).

Some improvements were made in the textual language to describe ClassSheets (see

fig. 1.10), namely the use of named references (n.a, where n is the name of the class and a

the name of the formula), the naming of formulas (a = f), and the definition of classes (c)

with the use of labels (l) to name them.

3It is assumed that the colours are visible through the use of the electronic version of this document.

14 CHAPTER 1. INTRODUCTION

f ∈ Fml ::= ϕ | n.a |ϕ(f , . . . , f) (formulas)
b ∈ Block ::= ϕ | a = f | b|b | b^b (blocks)
l ∈ Lab ::= h | v | .n (class labels)
h ∈ Hor ::= n | |n (horizontal)
v ∈ Ver ::= |n | |n (vertical)
c ∈ Class ::= l : b | l : b↓ | c^c (classes)
s ∈ Sheet ::= c | c→ | s|s (sheets)

Figure 1.10: Syntax of the textual representation of ClassSheets (Engels & Erwig, 2005), with
the differences from the template language in red.3

The visual representation of ClassSheets also has some improvements relatively to the

one for spreadsheet templates. The content of the cells can now have named references and

named formulas, borders with different colours are used to specify the area of the classes, and

bold-formatted labels identify the name of the classes.

These modifications are presented in the ClassSheet that models the budget

system (fig. 1.11) described above as a template in fig. 1.9. This budget system (represented by

Figure 1.11: ClassSheet modelling a budget spreadsheet (Engels & Erwig, 2005).

class Budget) is composed by three other classes: Year, Category, and a class that relates Year

and Category (similar to a relationship in a relational schema) that will be called Year_Cat-

egory for the remaining of this document. The budget system groups its data by year (class

Year) and by category (class Category).

Year can be expanded horizontally to include several years and contains an attribute year

that has default value 2005. The default value is used when a new instance of the class is added

so it is populated automatically with some data.

Category can be expanded vertically to set several items using the attribute name, that has

default value the string abc.

Year_Category relates a year with a category, since each instance is used to store informa-

1.3. STATE OF THE ART 15

tion for all the categories of a year, and all the years of a category. The information contained

in this class is the quantity (qnty) of a category, its cost (cost) and a sub-total (total).

The attribute total in Year_Category is used to calculate sub-totals for each category and

also for each year. This last sub-total is in turn used to calculate the grand total of the budget.

Model Comparison. Each of these modelling languages have their own characteristics to

help spreadsheet development. Thus, a simple high-level comparison using boolean attributes

to denote the presence of some features was performed using the following items:

Textual — The language has a textual representation.

Visual — The language has a visual representation.

Comments — The language supports comments.

Object Oriented — The language is based on concepts from the object-oriented paradigm.

Named References — The model can make use of named references in formulas.

Compiled — The model is compiled to spreadsheets.

Model Enforcement — The model specification is enforced on the spreadsheet.

Using these attributes, it is possible to compare the previously mentioned models as dis-

played in table 1.2. For the templates (from section 1.3), the characteristics available are the

ones already present in spreadsheets, and can vary from host to host.

One characteristic that most kind of models has is the possibility to use of named ref-

erences within formulas (excepting Gencel Templates). Actually, this is a feature in some

spreadsheet host systems that allows to name cells (or range of cells) and use that name to

refer to it (or them). However, this is not frequently found in common spreadsheets, and this

feature is not known by many spreadsheet users.

Although Model Master and Excelsior prevent some errors, they only are prevented through

the compilation process of the specification to the spreadsheet without any verification after-

wards. Using any of these tools, users have to decompile the spreadsheet to be sure that they

16 CHAPTER 1. INTRODUCTION

Table 1.2: Comparison of the different spreadsheet models.

Te
xt

u
al

V
is

u
al

C
o

m
m

en
ts

O
b

je
ct

O
ri

en
te

d

N
am

ed
R

ef
er

en
ce

s

C
o

m
p

il
ed

M
o

d
el

E
n

fo
rc

em
en

t

Templates X X X
Model Master X X X X X
Excelsior X X X X X
Gencel Templates X X X X
ClassSheets X X X X X X

are correct. On the other hand, Gencel Templates and ClassSheets impose some restrictions

on the data that are active during “runtime”, continuously preventing the input of some kinds

of errors.

1.4 Thesis

This work brings common software development methodologies, techniques and tools to

spreadsheets. It has some focus on end-user development, without neglecting automated

processing.

The approach taken in this work relies on MDE to specify spreadsheets and provides tools

to develop spreadsheets. With this approach, the following is expected:

• correct spreadsheets by construction;

• safe evolution of specification and corresponding solutions;

• support for a large set of real-world spreadsheets;

• low knowledge overhead.

1.5. CONTRIBUTIONS 17

Correct by construction. Many kinds of errors can be present in spreadsheets. The speci-

fication language defined in this work prevents by itself a class of common errors in spread-

sheets. Thus, when creating a new spreadsheet, it should be correct as per the specification.

Safe evolution. Using a bidirectional transformation engine, evolution of the specification is

applied also to the spreadsheet, i.e., the spreadsheet is co-evolved, but also structural changes

to the spreadsheet are applied to the spreadsheet’s specification. Thus, the conformance re-

lation is always kept intact.

Real-world spreadsheets. Many languages to model spreadsheets lack in expressiveness,

resulting in a relatively small set of spreadsheets that can specified. The language presented

in this work intends to be flexible enough to not restrict too much the spreadsheets that it

allows to specify.

Low knowledge overhead. Few additional concepts are required. Most of the features that

are specifiable have a direct translation to concrete spreadsheets, making most of the use of

spreadsheet features already available in common spreadsheet systems.

1.5 Contributions

This work has a strong relation to previous work on model-driven spreadsheets, namely

ClassSheets (Engels & Erwig, 2005), and it was developed alongside other projects close to

the concepts used in this thesis. The distinction of the author’s work to other’s work is made

whenever appropriate. Nevertheless, the main contributions are:

• A language to model spreadsheet tables.

• An embedding of the language within spreadsheets themselves.

• A technique to keep spreadsheets in conformance to their models.

• A prototype that implements a subset of the language’s features.

18 CHAPTER 1. INTRODUCTION

• An evaluation of the model-driven approach to spreadsheet development.

Language. The language resulting from this work is named Tabula, it is described in chap-

ter 3, and was also published in:

• “Tabula: A Language to Model Spreadsheet Tables”, Jorge Mendes and João Saraiva.

In proceedings of the 4th Workshop on Software Engineering Methods in Spreadsheets

(SEMS), 2017.

Conformant spreadsheets. The conformance of spreadsheets is obtained using multiple

concepts, including the embedding of models in spreadsheets themselves and the use of bidi-

rectional transformations for safe evolution (chapter 4), which were also published in:

• “Bidirectional Transformation of Model-Driven Spreadsheets”, Jácome Cunha, João Pau-

lo Fernandes, Jorge Mendes, Hugo Pacheco and João Saraiva. In proceedings of the 5th

International Conference on Model Transformation (ICMT), 2012.

• “MDSheet – Model-Driven Spreadsheets”, Jácome Cunha, João Paulo Fernandes, Jorge

Mendes, Rui Pereira and João Saraiva. In proceedings of the 1st Workshop on Software

Engineering Methods in Spreadsheets (SEMS), 2014.

• “Embedding, Evolution, and Validation of Model-Driven Spreadsheets”, Jácome Cunha,

João Paulo Fernandes, Jorge Mendes and João Saraiva. In IEEE Transactions on Software

Engineering, vol. 41, no. 3, 2015.

Prototype. The prototype (chapter 5) is used to show the feasibility of the approach, to eval-

uate it and to perform additional experiments. All publications refer to this support tool, but

the following one has a focus on it:

• “MDSheet: A Framework for Model-Driven Spreadsheet Engineering”, Jácome Cunha,

João Paulo Fernandes, Jorge Mendes and João Saraiva. In proceedings of the 34th Inter-

national Conference on Software Engineering (ICSE), 2012.

1.5. CONTRIBUTIONS 19

Evaluation. Specific parts of this work were evaluated through empirical studies (chapter 6),

with one of these studies being published in:

• “Towards an Evaluation of Bidirectional Model-Driven Spreadsheets”, Jácome Cunha,

João Paulo Fernandes, Jorge Mendes and João Saraiva. In proceedings of the User eval-

uation for Software Engineering Researchers (USER) workshop, 2012.

• “Embedding, Evolution, and Validation of Model-Driven Spreadsheets”, Jácome Cunha,

João Paulo Fernandes, Jorge Mendes and João Saraiva. In IEEE Transactions on Software

Engineering, vol. 41, no. 3, 2015.

Further related work using model-driven spreadsheets developed during this thesis was

published, including:

• “Complexity Metrics for Spreadsheet Models”, Jácome Cunha, João Paulo Fernandes,

Jorge Mendes and João Saraiva. In proceedings of the 13th International Conference on

Computational Science and its Applications (ICCSA), LNCS 7972, 2013.

• “Towards Systematic Spreadsheet Construction Processes” (abstract/poster), Jorge Men-

des, Jácome Cunha, Francisco Duarte, Gregor Engels, João Saraiva and Stefan Sauer. In

proceedings of the 39th International Conference on Software Engineering (ICSE), 2017.

• “Systematic Spreadsheet Construction Processes”, Jorge Mendes, Jácome Cunha, Fran-

cisco Duarte, Gregor Engels, João Saraiva and Stefan Sauer. In proceedings of the 2017

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2017.

Some more work on spreadsheet engineering, but not related to model-driven engineer-

ing, with the cooperation of other authors, was published in:

• “Towards the Design and Implementation of Aspect-Oriented Programming for Spread-

sheets”, Pedro Maia, Jorge Mendes, Jácome Cunha, Henrique Rebêlo and João Saraiva.

In proceedings of the 2nd Workshop on Software Engineering Methods in Spreadsheets

(SEMS), 2015.

20 CHAPTER 1. INTRODUCTION

• “Towards an Automated Classification of Spreadsheets”, Jorge Mendes, Kha N. Do and

João Saraiva. In proceedings of the 3rd Workshop on Software Engineering Methods in

Spreadsheets (SEMS), 2016.

Moreover, this work enabled other researchers to build upon model-driven spreadsheet

development resulting in the following publications with contributions from the author of

this thesis:

• “QuerySheet: A Bidirectional Query Environment for Model-Driven Spreadsheets”, Or-

lando Belo, Jácome Cunha, João Paulo Fernandes, Jorge Mendes, Rui Pereira and João

Saraiva. In proceedings of the 2013 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), IEEE, 2013.

• “Querying Model-Driven Spreadsheets”, Jácome Cunha, João Fernandes, Jorge Mendes,

Rui Pereira, and João Saraiva. In proceedings of the 2013 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC), IEEE, 2013.

• “Embedding Model-Driven Spreadsheet Queries in Spreadsheet Systems”, Jácome Cu-

nha, João Paulo Fernandes, Jorge Mendes, Rui Pereira and João Saraiva. In proceed-

ings of the 2014 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), IEEE, 2014.

• “ES-SQL: Visually Querying Spreadsheets”, Jácome Cunha, João Paulo Fernandes, Jorge

Mendes, Rui Pereira and João Saraiva. In proceedings of the 2014 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC), IEEE, 2014.

• “Design and Implementation of Queries for Model-Driven Spreadsheets”, Jácome Cu-

nha, João Paulo Fernandes, Jorge Mendes, Rui Pereira and João Saraiva, In Central

European Functional Programming – Summer School on Domain-Specific Languages

(CEFP/DSL 2013), Springer, 2014.

1.6. DOCUMENT STRUCTURE 21

• “Evaluating Refactorings for Spreadsheet Models”, Jácome Cunha, João Paulo Fernan-

des, Pedro Martins, Jorge Mendes, Rui Pereira, João Saraiva. In Journal of Systems and

Software, vol. 118, 2016.

The author, while working on this thesis, also contributed to these additional publications:

• “SmellSheet Detective: A Tool for Detecting Bad Smells in Spreadsheets” (tool demo),

Jácome Cunha, João Paulo Fernandes, Pedro Martins, Jorge Mendes and João Saraiva.

In proceedings of the 2012 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), 2012.

• “Model Inference for Spreadsheets”, Jácome Cunha, Martin Erwig, Jorge Mendes and

João Saraiva. In Automated Software Engineering, Springer US, 2014.

• “Model-based Programming Environments for Spreadsheets”, Jácome Cunha, Jorge

Mendes, João Saraiva and Joost Visser. In Science of Computer Programming (SCP), El-

sevier, 2014.

• “Spreadsheet Engineering” (invited tutorial), Jácome Cunha, João Paulo Fernandes,

Jorge Mendes and João Saraiva. In Central European Functional Programming – Sum-

mer School on Domain-Specific Languages (CEFP/DSL 2013), Springer, 2014.

1.6 Document Structure

This dissertation describes the work accomplished while developing this thesis. It includes a

summary of the relevant state of the art, some background on spreadsheets, a description of

the proposed solution and an evaluation of the such solution. The contents in this disserta-

tion are organised as follows:

Chapter 1 A description of what this thesis is about, a presentation of the concepts exposed

in this dissertation and the results that where obtained.

Chapter 2 Definition of spreadsheets and their contents as used in this thesis.

22 CHAPTER 1. INTRODUCTION

Chapter 3 Definition of the Tabula model to abstract and specify spreadsheets.

Chapter 4 Tools to enable evolution of the specification of the spreadsheets to be propagated

to the respective spreadsheets.

Chapter 5 The implementation of the theory developed in the previous chapters.

Chapter 6 Evaluation of the approach and results of using the implementation.

Chapter 7 Final thoughts, results, and possible future lines of work based on the contribu-

tions from this thesis.

Chapter 2

Spreadsheets

Spreadsheets are a versatile tool that can be decomposed into three main components:

• language — a two-dimensional language to store data and define computations;

• program — a concrete computer program implementation and execution, using the spread-

sheet language; and as a

• host — a program that reads, writes and executes spreadsheet programs.

The spreadsheet language is the main point of focus of this work. A description of such

language is presented below. This language allows to create spreadsheet programs that con-

tain both logic and data, which are stored in spreadsheet files. The program is developed and

presented to the user using a spreadsheet host system. Examples of spreadsheet hosts include

LibreOffice Calc1, Microsoft Excel2, and Google Sheets3.

Depending on the spreadsheet host and the file format used to store the spreadsheet,

spreadsheet languages and programs can have distinct features not compatible between them.

Therefore, the language described further on does not represent all kinds of spreadsheets, but

it includes the foundational features shared by most of the formats. A specification to model

this language, which makes the core of this work, is then provided in chapter 3.

1About LibreOffice Calc: https://www.libreoffice.org/discover/calc/
2About Microsoft Excel: https://products.office.com/en/excel
3About Google Sheets: https://www.google.com/sheets/about/

23

https://www.libreoffice.org/discover/calc/
https://products.office.com/en/excel
https://www.google.com/sheets/about/

24 CHAPTER 2. SPREADSHEETS

2.1 Foundational Features

Some spreadsheet features are transversal to most spreadsheet systems and spreadsheet file

formats. The features described in the next subsections were gathered based on experience

using the spreadsheet host systems mentioned above. The list of features is by no means

meant to be exhaustive nor to formalize the core of the mentioned spreadsheet systems. In-

stead, it describes essential features that make spreadsheets a valuable tool.

2.1.1 Spreadsheet Structure

A spreadsheet or workbook, in its basic form, consists of a set of worksheets (or simply sheets)

that are two-dimensional grids of cells. Cells can have a value, either text or a number, which

can be directly set or that can be computed from a formula. Cells in a sheet are referenced

by coordinates, indicating the column and row of the referenced cell and that can be in the

form (0,0), A1, or R1C 1. In a top-down approach, the following definitions describing the

spreadsheet language are obtained:

Definition 1. A spreadsheet (or workbook) Sp is a pair Sp = (N,S?) where:

• N is the name of the spreadsheet;

• S? is a list of worksheets.

When stored in a file, the name of the spreadsheet is its file name.

Definition 2. A worksheet (or sheet for short) S is a pair S = (N,G) where:

• N is the name of the sheet;

• G = C?? is a two-dimensional grid of cells C.

Definition 3. A grid G = E?? is a two-dimensional rectangular structure with elements of E. A

grid Gm×n has m columns and n rows with elements G(x,y) = E at column x ∈ [0..m−1] and row

y ∈ [0..n −1]:

2.1. FOUNDATIONAL FEATURES 25

Gm×n =

G(0,0) G(1,0) · · · G(m−1,0)

G(0,1) G(1,1) · · · G(m−1,1)

...
...

. . .
...

G(0,n−1) G(1,n−1) · · · G(m−1,n−1)

Each cell in a sheet grid has a position that is given by its column and row. However, the

usual notation used in spreadsheets is different from the one used in definition 3. Columns

are identified by an equivalent bijective base-26 numeration system using the letters of the

Latin alphabet. Therefore, column references range from A to Z continued with AA, AB, until

ZZ, followed by AAA, AAB, and so on. Rows are identified by natural numbers, starting at 1.

Thus, the first (top-left) cell is at position A1, the one to its right is at position B1, and the

one bellow the former is at position A2. More information on cell addressing is provided in

section 2.1.2.

Definition 4. A cell is a container that can store values and formulas to compute values. The

contents of a cell are represented textually. Values in cells are of two types, with the contents of

a cell being of the following kinds:

• Number — a value representable as a number;

• Text — any value that is not a number;

• Formula — a formula to compute a numerical or textual value.

The type system of cell values is simple, with only two types:

Number. Any value that can be represented by a number, e.g., integer numbers, real num-

bers, currency amounts, and dates. Its value is represented using a real number allowing

to display any of the other kinds of supported numerical values.

Text. Any value that cannot be represented by a number, and thus is represented as text, i.e.,

a sequence of characters. Moreover, numbers can also be represented as text, which can

be specified when inserting a value into a cell.

26 CHAPTER 2. SPREADSHEETS

Moreover, when a value cannot be evaluated (e.g., due to a division by zero) its type becomes

of a special type error indicating the reason why the value could not be correctly computed.

The main function of cells is to store data and computations. The type of a cell is the

type of the inserted value or the one computed by its formula. However, the type of the cell

can also be influenced by the format applied to it, defining a specific view of the data and,

in addition, its type. Moreover, the format applied to a cell can provide further information

using a secondary notation (Petre, 1995).

The contents of a cell in a spreadsheet host is defined inserting a textual representation of

the contents that is then interpreted and its type is inferred. Grammar 1 presents a simplifi-

cation of the possible contents spreadsheet cells can have, covering all features addressed in

this work.

Grammar 1 (Spreadsheet cell content). The content of a cell should match the following

grammar, with 〈cell〉s being the entry point:

〈cell〉S ::= NUMBER (numeric value)
| TEXT (textual value)
| ‘ = ’ 〈expr〉S (formula)

〈expr〉S ::= FUN ‘(’
(〈args〉S | ε

)
‘)’ (function call)

| (‘+ ’ | ‘− ’)〈expr〉S (expression sign)
| 〈expr〉S‘%’ (expression percentage)
| 〈expr〉S〈op〉S〈expr〉S (binary operation)
| 〈ref〉S (cell and range reference)
| 〈value〉S

〈args〉S ::= 〈expr〉S (argument)
| 〈expr〉S‘, ’〈args〉S (list of arguments)

〈op〉S ::= ‘+ ’ | ‘− ’ | ‘× ’ | ‘÷ ’ (arithmetic operators)
| ‘ < ’ | ‘ ≤ ’ | ‘ ≥ ’ | ‘ > ’ | ‘ = ’ | ‘ 6= ’ (logical operators)
| ‘^’ (exponentiation)
| ‘&’ (text concatenation)

〈ref〉S ::= REF (cell reference)
| REF ‘:’ REF (range)
| 〈ref〉S ∪〈ref〉S (range union)
| 〈ref〉S ∩〈ref〉S (range intersection)

〈value〉S ::= NUMBER | QUOTEDTEXT

In the grammar above, FUN is a function name (e.g., SUM, IF and VLOOKUP), NUMBER is a

number, TEXT is some arbitrary text, QUOTEDTEXT is some arbitrary text in between quotes

2.1. FOUNDATIONAL FEATURES 27

and REF is a reference. These elements are provided by the lexer, whose concrete description

is not given as it is not relevant for this work. Hence, the different kinds of references are

abstracted into a single REF terminal, ignoring the different kinds of possible references (e.g.,

A1, R1C1 and named references).

The basic features and layout of spreadsheets are demonstrated in example 1. In this ex-

ample, two visual representations of a concrete spreadsheet are shown, both including the

coordinates of the columns (on top) and of the rows (on the left). The first representation

(fig. 2.1a) displays the definition of the spreadsheet program. The second one (fig. 2.1b) dis-

plays de execution of the program where the formula in cell B5 is evaluated.

Example 1 (List of items). A simple kind of spreadsheet that is commonly found contains

a list of entries and, at the end, a summation formula. In this example, there is a label for

the table in cell A1, a list of three items in rows 2 through 4 with a description of the item in

column A and the respective value in column B, and finally a summation formula in cell B5

with its respective label in cell A5.

A B

1 Items

2 apple 5

3 banana 2

4 cherry 8

5 Total =SUM(B2:B4)

(a) The table showing the definition of the
program.

A B

1 Items

2 apple 5

3 banana 2

4 cherry 8

5 Total 15

(b) The table showing the execution of the
program.

Figure 2.1: Spreadsheet holding a list of items with their respective value and their total.

Since the type of the cell is inferred from the parsed textual content, there is no guaran-

tee that the content is of the supposed type. When a user inserts a value, the value is not

checked to ensure it is of the correct type the logic defined expects, leading to the first kind of

spreadsheet error:

Spreadsheet Error 2.1. Incorrect type — the inserted value is not of the correct type for the

spreadsheet logic or for the conceptual model behind the spreadsheet.

28 CHAPTER 2. SPREADSHEETS

This error can contribute to incorrect values being computed, with unexpected results.

Spreadsheet hosts are quite fault tolerant, with these incorrect computations being overlooked

or even unnoticed.

Example 2. Such situation is demonstrated in table 2.1, where, for two inputs of varying types,

the result of three formulas are presented. The different formulas have the same goal: to

calculate the sum of two values. However, this is performed in three distinct forms: using the

addition arithmetic operator, using the SUM function giving the inputs as two arguments, and

using the SUM function giving the inputs as a range in a single argument. With at least one of

the values provided as text, the result is not the expected one when using the SUM function,

but it is correct when using the addition operator.

Table 2.1: Results for the same inputs using similar formulas but with different input types (N
for number andT for text) as obtained in LibreOffice Calc, Microsoft Excel and Google Sheets.

A1 B1 Formula Result
1N 2N =A1+B1 3N
1N 2 T =A1+B1 3N
1 T 2 T =A1+B1 3N
1N 2N =SUM(A1,B1) 3N
1N 2 T =SUM(A1,B1) 1N
1 T 2 T =SUM(A1,B1) 0N
1N 2N =SUM(A1:B1) 3N
1N 2 T =SUM(A1:B1) 1N
1 T 2 T =SUM(A1:B1) 0N

This situation is hard to notice in a real-world spreadsheet, but there are some possible

indicators that something is wrong, e.g., the visual aspect of the input is different when it is as

text (usually left-aligned if textual and right-aligned if numeric).

Microsoft Excel has an option to help detect erroneous situations related to cell contents,

e.g., signalling when numbers are inserted as text. Moreover, when in a series of cells, it can

flag cells with “strange” contents that differ from the other contents in the series. This kind

of error can also be found using a smell analyser (e.g., J. Cunha, Fernandes, Mendes, Martins,

& Saraiva, 2012). However, some of these techniques are statistical and do not work in every

2.1. FOUNDATIONAL FEATURES 29

situation. A possible native solution for this problem resorts to the use of validation rules

(see section 2.2).

It is not only the flexibility of the cell contents that facilitate errors but also their position-

ing. Since there is no restriction to the contents of a cell, inserting a value in the cell next to

the correct one can also lead to an invalid spreadsheet.

Spreadsheet Error 2.2. Incorrect position — the inserted contents are not in the expected cell.

Moreover, if the incorrect cell has already some content, it is possible to overwrite the

contents of such cell inadvertently. This can be done by copying a range of cells and then

pasting it in such a way that it overlaps with other non-empty cells, or by dragging a range

with a similar outcome.

Spreadsheet Error 2.3. Erroneous overwrite — the contents of a cell are overwritten incorrectly.

Spreadsheet hosts have features to limit such errors, e.g., showing a warning dialogue

when pasting or dragging values into cells already with some contents (see fig. 2.2). How-

ever, such warnings can be easily disabled in the settings of the spreadsheet host and thus not

prompting the user in future similar situations. Another feature that can help prevent both

previous errors (2.2 and 2.3) is the sheet and cell protection mechanisms, preventing users to

change cell contents they are not supposed to and thus limiting the impact of such errors.

(a) LibreOffice Calc warning when pasting
data over non-empty cells.

(b) Microsoft Excel warning when dragging
data to non-empty cells.

Figure 2.2: Examples of warnings when overwriting existing data.

30 CHAPTER 2. SPREADSHEETS

2.1.2 Cell References

The ability to reference cells is one of the features that make spreadsheets a valuable tool. It

allows to separate data from computation and to decompose computations into several cells

using a simple mechanism to use the contents of other cells.

Spreadsheet hosts provide distinct forms to reference cells, being the A1 and R1C1 nota-

tions the most common. In both formats, it is possible to have absolute and relative refer-

ences. The difference between these are noticeable when building spreadsheets, where rel-

ative references are modified to accompany copy-and-paste or cell fill actions. In contrast,

absolute references are never modified. Using the A1 notation, it is possible to indicate that a

coordinate is absolute using a dollar sign ($):

• inserting the sign before the first coordinate (the column), e.g., $A1, makes the first co-

ordinate absolute;

• inserting the sign before the second coordinate (the row), e.g., A$1, makes the second

coordinate absolute; and,

• inserting before each coordinates, e.g., A1, makes both of them absolute.

The same result can be obtained with the R1C1 notation using a different syntax, but with the

same concept for making the indices relative.

Example 3. The simplest form to demonstrate the use of a reference is by creating a formula

that references another cell, thus showing the content of that cell, e.g., using =A1 in B1 to show

the content of A1 also in B1. To show the use of absolute or relative references, it is possible

to duplicate a table of data by only inserting once the formula for the top-left cell and then

copy-and-pasting it into other cells. This feature is depicted in table 2.2.

The correct usage of cell reference relativity allows spreadsheet developers to create a se-

ries of similar formulas without much effort. The developer has only to create the formula

for the first element and then copy-and-paste or use the fill feature to insert the formula for

2.1. FOUNDATIONAL FEATURES 31

Table 2.2: Comparison of absolute references versus relative ones, duplicating a table of nu-
meric values using references by defining the top-left formula and copying it to the other cells.

(a) Data for the comparison.

A B C

1 1 2 3
2 4 5 6
3 7 8 9

(b) Relative reference.
(=A1)

=A1 =B1 =C1
=A2 =B2 =C2
=A3 =B3 =C3

1 2 3
4 5 6
7 8 9

(c) Mixed reference:
absolute column and
relative row. (=$A1)

=$A1 =$A1 =$A1
=$A2 =$A2 =$A2
=$A3 =$A3 =$A3

1 1 1
4 4 4
7 7 7

(d) Mixed reference:
relative column and
absolute row. (=A$1)

=A$1 =B$1 =C$1
=A$1 =B$1 =C$1
=A$1 =B$1 =C$1

1 2 3
1 2 3
1 2 3

(e) Absolute reference.
(=A1)

=A1 =A1 =A1
=A1 =A1 =A1
=A1 =A1 =A1

1 1 1
1 1 1
1 1 1

the other elements of the series. However, its incorrect usage might pass unnoticed providing

improper results.

Spreadsheet Error 2.4. Incorrect relativity — the cell reference is not made (partially) absolute

when it should have been or it is made (partially) absolute when it should have been relative.

In addition to references to single cells, cell references can be made to multiple cells. This

is achieved using range operators:

• range operator (:)

• intersection operator (∩, ! (exclamation point) in Calc, space in Excel)

• union operator (∪, ~ (tilde) in Calc, , (comma) in Excel)

Range references in formulas are updated when cells are added within the range. How-

ever, no update is performed when cells are added before or after the range, resulting in an

incorrect spreadsheet.

Spreadsheet Error 2.5. Outdated range — the reference to a range does not reflect the current

set of values.

32 CHAPTER 2. SPREADSHEETS

Similar issues may occur when using more advanced features. For instance, if a macro

refers to a specific cell and this cell is moved to another coordinate, then the macro would be

outdated and future uses of the macro might yield incorrect results as a consequence.

Spreadsheet systems usually provide tools to work with cell references. It is possible to use

the mouse to select cells to be referenced when writing a formula, drag-and-drop to select a

range of cells (: operator), and use the control key to select multiple ranges (∪ operator), to

name the most common.

Spreadsheet Error 2.6. Wrong selection — the cell (range) is not the correct one due to, e.g., an

incorrect or involuntary click of the mouse.

Spreadsheets allow other kinds of references. For instance, Microsoft Excel allows to de-

fine structured tables and then refer to cells in those tables using the name of the table and

the name of the column (fig. 2.3). This is a similar feature common to other spreadsheet hosts,

and also available in Microsoft Excel, called named ranges, that help prevent some issues re-

lated to range references. Named ranges are explained in the next section.

Figure 2.3: Example of a Microsoft Excel structured table called People and a formula refer-
encing one of its columns.

2.1.3 Named Ranges

Named ranges are a feature that enables users to define a dictionary of names with an asso-

ciated range in the spreadsheet. Then, when writing a formula, ranges can be referenced by

their name.

They provide better readability in formulas and ensure the range reference in a series of

formulas is the same. Moreover, when a range is modified, only the reference of the named

range needs to be updated, whilst when using a concrete range reference in a series of for-

2.2. DATA VALIDATION 33

mulas, the developer has to update the reference in all formulas. Without named ranges, the

update can be performed using copy-and-paste or using automatic filling features, but is an

extra step that needs to be performed and that can introduce errors.

On the other hand, named ranges add another level of indirection. Thus, when auditing

a spreadsheet, the user has to check which named ranges are used and then verify the refer-

ence set in the named range. Furthermore, with this additional layer of indirection, it is more

difficult to ensure the correctness of the reference when the original range is updated, e.g.,

when new cells are added at the beginning or at the end of the range, since in such cases the

reference of the named range is not updated automatically by the spreadsheet host.

Spreadsheet experts often advise (e.g., in spreadsheet-related online forums) for the use

of named ranges. However, researchers have found that they have a negative effect on novice

users when debugging and developing spreadsheets (McKeever & McDaid, 2010, 2011; McK-

eever, McDaid, & Bishop, 2009).

2.2 Data Validation

The cells in a spreadsheet can have rules to validate the data they contain, provided by a

feature called data validity (LibreOffice Calc) or data validation (Microsoft Excel and Google

Sheets). This feature can help prevent the introduction of invalid values (e.g., by providing an

error message) and also to verify existing values (e.g., adding rules to existing data and then

asking for the invalid data).

Preventive usage. Setting data validation rules before inserting the data prevents the intro-

duction of invalid data. When the user tries to insert an invalid value, the spreadsheet host

warns the user of the error.

The behaviour of the spreadsheet host can vary when an invalid value is inserted. It can

discard the introduced value, accept it or perform a programmed action. This behaviour is

defined when creating the validation rule.

34 CHAPTER 2. SPREADSHEETS

Corrective usage. Defining data validation rules to legacy spreadsheets can help find “a nee-

dle in a haystack”, i.e., it is possible to assign a rule to a range of cells without looking a their

content and then select an option in the spreadsheet host system to find values that break the

rules.

The validation rules can be applied to both numeric and textual values. Most of spread-

sheet hosts support the following kind of rules:

• value is a number with format decimal number conditioned by a comparison;

• value is a number with format whole number conditioned by a comparison;

• value is a number with format date conditioned by a comparison;

• value is a number with format time conditioned by a comparison;

• value is textual with text length conditioned by a comparison;

• value is in a list or cell range, i.e., the value belongs to a predefined set of values;

• any value that is provided to a formula expression or macro which result evaluates to

true.

Moreover, spreadsheet hosts provide an option to ignore blank cells, thus allowing the devel-

oper to select if an input cell can be left unset.

To help users introduce values, validation rules allow to define a help message composed

by a title and some message. This help message is displayed to the user when the cell with the

validation rule is selected (fig. 2.4).

Figure 2.4: Example of input help defined by a validity rule for cell A1 in LibreOffice Calc.

2.3. OTHER ELEMENTS 35

Finally, the developer has to define if invalid values are accepted or not. In either case,

a message with a custom title and description can be displayed when an invalid value is in-

serted. If invalid values are not accepted, then an error message is displayed. Otherwise, an

warning or information message is displayed.

Adding data validation rules to existing data allows to find invalid values in legacy spread-

sheets. The process is the same as when setting rules for new data. However, the user has

then the option to mark invalid data which circles cells that do not follow their validation

rules (fig. 2.5).

Figure 2.5: Finding invalid values in LibreOffice Calc. The validity rule is set to allow decimal
values between 0 and 1.

2.3 Other Elements

Spreadsheets support many other kinds of elements, including charts, pivot tables, and me-

dia objects. Some of these elements make use of data in spreadsheets (e.g., charts and pivot

tables). As such, they also make use of cell references to refer to that data. However, these

elements are not taken into account in this work.

36 CHAPTER 2. SPREADSHEETS

Chapter 3

Tabula: Modeling Spreadsheet Tables

Tabula, the language resulting from the work performed in the context of this thesis to specify

spreadsheet tables, emerges to overcome the limitations in other table modelling languages.

It allows to implement to a greater extent the model-driven engineering methodology and to

come closer to what spreadsheet users are familiar with.

The development of a spreadsheet using Tabula involves several artefacts, namely the Tab-

ula model, an instance of such model and the concrete spreadsheet table (fig. 3.1). In this set-

ting, the Tabula is an abstraction of the table, specifying its layout and logic, and the instance

is an annotated representation of the table. However, the spreadsheet user only works with

the Tabula and the table, the instance being an intermediate representation to support the

model-driven ecosystem. These artefacts are explained in the next sections.

Tabula

instance

table

conforms to

represents

read

Figure 3.1: Overview of the artefacts in developing a spreadsheet table using Tabula.

37

38 CHAPTER 3. TABULA: MODELING SPREADSHEET TABLES

3.1 Tabula

Tabula was first implemented as a technical solution to represent and work with ClassSheet

models. The ClassSheet language is, from the related table modelling languages, the one that

is at a higher conceptual level. It applies concepts from the object-oriented paradigm, with

ties to UML, but it also comes close to the environment provided to spreadsheet users with its

spreadsheet-like visual language. However, there was still a gap between ClassSheet models

and spreadsheet developers.

In previous work, ClassSheets were embedded into spreadsheet themselves to provide an

unified model-driven spreadsheet development environment directly within a spreadsheet

host (J. Cunha, Fernandes, Mendes, Pacheco, & Saraiva, 2012; J. Cunha, Fernandes, Mendes,

& Saraiva, 2011; Mendes, 2012). The implementation used a different abstract representation

to work with ClassSheets, simplifying their manipulation and evolution within the develop-

ment environment. Whilst evaluating the model-driven spreadsheet development using the

embedded models, several limitations were found when modelling using the constraints im-

posed by the ClassSheet language. However, the abstract representation could provide sup-

port to a wider range of models if some of those constraints were not applied. Therefore, the

abstract representation was paired with a new set of rules to provide a new language: Tabula.

Definition 5 (Tabula). A Tabula model (pl. Tabulae) T is a tuple T = (N,C?,G) where:

• N is the name of the Tabula model;

• C? is the set of classes C;

• G is the grid (definition 3) of model cells.

The model consists in a grid specifying the contents of the cells in the table and in a list of

classes to group the cells.

Definition 6 (Class). A class C is the abstract representation of an object in the table and is

defined as a tuple C = (N,R,E) where:

3.1. TABULA 39

• N is the name;

• R is the range;

• E is the expansion information.

Being defined by a range, a class is therefore rectangular, occupying a corresponding area

in the grid of the Tabula. Moreover, a class can specify a singleton object in the table or a

sequence of distinct objects with the same properties as defined by the kind of expansion of

the class.

Definition 7 (Range). A range R = (
p0, p1

)
is a rectangular area in a grid starting with its top-

left coordinate at point p0 ∈ P and ending with its bottom-right coordinate at point p1 ∈ P, with

P being the set of valid points in the grid.

Definition 8 (Expansion). The expansion E of a class specifies if the class is a singleton or a

sequence of zero or more elements, with the possible values:

• None — the class represents a singleton object;

• Down — the class represents a sequence of zero or more objects which are layed out in the

table in a vertical fashion, i.e., one below the other;

• Right — the class represents a sequence of zero or more elements which are layed out in

the table in a horizontal fashion, i.e., one to the right of the other;

• Both — the class represents a sequence of zero or more elements which are layed out in

the table in a vertical and horizontal fashion.

The layout is as presented by the grid, where each cell in the Tabula grid represents one or

more cells in the spreadsheet. There are three kinds of Tabula cells: input, formula and label.

An input cell is specified with the contents in the format “name=default”, where name

is the name of the attribute it represents and default is the default value for the respective

cells in the spreadsheet. This value is also used to define the type of the contents, where a

40 CHAPTER 3. TABULA: MODELING SPREADSHEET TABLES

numeric value implies the type being a number and a quoted text (possibly empty) implies

the type being textual. Moreover, input cells can be constrained by a logical expression, a

regular expression (regex) or by a set of values given from another attribute.

A formula cell is similar to an input cell. It is defined using the format “name=formula”,

where name is the name of the attribute it represents and formula is the formula it defines.

References in the formula are made using attribute names defined by input cells or by other

formula cells.

A label cell is any cell that is neither of kind input nor formula. The content of the respec-

tive cells in the spreadsheet are exactly the same content as in the Tabula cell. Labels can be

numeric, textual or even be empty.

Grammar 2 (Tabula cell content). The content of a Tabula cell should match the following

grammar, with 〈cell〉T being the entry point:

〈cell〉T ::= 〈attribute〉T (attribute cell)
| 〈label〉T (label cell)

〈attribute〉T ::= ATTRIBUTE ‘ = ’ 〈value〉S (input cell)
| ATTRIBUTE ‘ = ’ 〈value〉S ‘; ’ 〈constraint〉T (constrained input cell)
| ATTRIBUTE ‘ = ’ 〈expr〉T (formula cell)

〈constraint〉T ::= (‘ < ’ | ‘ ≤ ’ | ‘ ≥ ’ | ‘ > ’ | ‘ = ’ | ‘ 6= ’) 〈value〉S (logical constraint)
| ‘"’ REGEX ‘"’ (regex constraint)
| 〈ref〉T (attribute constraint)

〈label〉T ::= NUMBER | TEXT (label value)
〈expr〉T ::= FUN ‘(’

(〈args〉T | ε
)

‘)’ (function call)
| (‘+ ’ | ‘− ’)〈expr〉T (expression sign)
| 〈expr〉T‘%’ (expression percentage)
| 〈expr〉T〈op〉S〈expr〉T (binary operation)
| 〈ref〉T (attribute reference)
| 〈value〉S

〈args〉T ::= 〈expr〉T (argument)
| 〈expr〉T‘, ’〈args〉T (list of arguments)

〈ref〉T ::= ATTRIBUTE (simple reference)
| CLASS ‘.’ ATTRIBUTE (fully qualified reference)

This grammar is similar to the one for common spreadsheet cells, with differences in the

top-level values and in the references. For the top-level values, there are productions for the

three kinds of cells (input, formula and label). Input attributes can be optionally constrained,

3.1. TABULA 41

with three kinds of constraints. The regular expression is represented by the terminal REGEX,

with the actual flavour (e.g., POSIX and PCRE) not being of impact for this work but just a tech-

nical detail. At the reference level, only references to class attributes are allowed. These are

composed by an attribute name (represented by the terminal ATTRIBUTE, which is a sequence

of alphanumeric characters starting with a letter) and by an optional class name (represented

by the terminal CLASS, which is a sequence of alphanumeric characters starting with a letter

similarly to attributes).

A Tabula is defined using the elements described above, with the classes identifying which

objects a spreadsheet contains and how its data can evolve, and the attributes specifying the

contents that are allowed in the spreadsheet. The following examples show the structure of

Tabula models and a concise visual representation for them, with the semantics explained

afterwards.

Example 1 (List of items, continuing from p. 27). Recalling the spreadsheet from the example,

it contains a simple structure where the first line is static, lines 2 through 4 have a similar

structure and content to each other, i.e., a description of an item and a value, and the last line

(5) has a formula that references elements in lines 2 to 4.

The Tabula for this example contains a two-by-three grid with two classes, where one class

(Items) is for the whole list of items and another class (Item) for each item (lines 2, 3 and 4 in

the spreadsheet):

(
“ItemList”, {(“Items”((0,0), (1,2))None),(“Item”((0,1), (1,1))Down)} , g

)
where

g =
Items

desc="" value=0

Total total=SUM(Item.value)

The graphical representation of this Tabula is presented in figure 3.2. It describes the grid

in its tabular format and uses the background colour to identify the classes each cell belongs

42 CHAPTER 3. TABULA: MODELING SPREADSHEET TABLES

to. On the side there is a legend relating the colour to the class since the name is not always

displayed in the table: the class Items (in yellow) has a label in its top-left cell but the class

Item (in orange) does not. Moreover, in some cases, the label can be different from the class

name. The arrow pointing down on the left of the attribute desc indicates that the class Item

expands down.

Items

↓ desc="" value=0

Total total=SUM(Item.value)

Items

Item

Figure 3.2: Tabula specifying a spreadsheet to hold a list of items as described in example 1.

The layout of a Tabula can also expand to the right. Moreover, the expansion area can

contain multiple columns or rows. This configuration is presented in example 4.

Example 4. A spreadsheet can contain information about an item along the years. This infor-

mation, which corresponds to value in example 1, can be stored in multiple attributes. In this

example, the base class Items is kept, but the class Item is left out for simplification. Instead,

a new class Year is created. It contains the attributes year, stock and sold to represent the

year an object refers to, the stock of the item at the end of the year and the number of items

sold that year, respectively. Finally, this information will be for an item apple and an average

sold across the years is calculated at the end. This is pictured in figure 3.3.

In example 5, the conjugation of the configurations introduced in examples 1 and 4 is

presented. Its result contains an additional class that relates the expandable classes from

both of the previous Tabulae.

Example 5. Merging examples 1 and 4 implies to relate two data sets: the list of items and

the data for the years. Since the former was specified vertically and the latter horizontally,

this merging is trivial. The resulting Tabula contains the class Items from both examples,

the class Item from example 1 and the class Year from example 4. Moreover, it contains a

new class to represent the attributes that are in the relation between Item and Year named

3.1. TABULA 43

A B C D E F

1 Items 2012 2013

2 stock sold stock sold Average sold

3 apple 5 12 4 16 =AVERAGE(C3,E3)

(a) Spreadsheet definition.

A B C D E F

1 Items 2012 2013

2 stock sold stock sold Average sold

3 apple 5 12 4 16 14

(b) Spreadsheet execution.

→
Items year=2000

stock sold Average sold

apple stock=0 sold=0 avg=AVERAGE(sold)

Items

Year

(c) Tabula specification of the spreadsheet.

Figure 3.3: Example of the yearly stock and quantity sold of apples.

ItemYear, which expands in both directions: to the right and down. This is specified as:

(
“ItemYears”, {(“Items”,((0,0), (3,3)),None)

,(“Item”,((0,2), (3,2)),Down)

,(“Year”,((1,0), (2,3)),Right)

, (“ItemYear”,((1,2), (2,2)),Both)}, g
)

where

g =

Items year=200

Stock Sold Average Sold

desc="" stock=0 sold=0 avg=Average(sold)

Total total=SUM(Item.stock)

or graphically as in figure 3.4.

Classes are layed out in a layered fashion, where smaller classes stay on top of larger ones.

44 CHAPTER 3. TABULA: MODELING SPREADSHEET TABLES

A B C D E F

1 Items 2012 2013

2 stock sold stock sold Average sold

3 apple 5 12 4 16 =AVERAGE(C3,E3)

4 banana 2 10 3 12 =AVERAGE(C4,E4)

5 cherry 8 9 1 3 =AVERAGE(C5,E5)

6 Total =SUM(B3:B5) =SUM(D3:D5)

(a) Spreadsheet definition.

A B C D E F

1 Items 2012 2013

2 stock sold stock sold Average sold

3 apple 5 12 4 16 14

4 banana 2 10 3 12 11

5 cherry 8 9 1 3 6

6 Total 15 8

(b) Spreadsheet execution.

→
Items year=2000

stock sold Average sold

↓ desc="" stock=0 sold=0 avg=AVERAGE(sold)

Total total=SUM(stock)

Items

Item

Year

ItemYear

(c) Tabula specification of the spreadsheet.

Figure 3.4: Example of the spreadsheet and Tabula for the relation between items and the
yearly stock and quantities sold.

This layering is defined by the range inclusion relation.

Definition 9 (Range inclusion). For two ranged elements a and b, a v b means that all ele-

ments of the range a are included in the range b, i.e.:

v: R → R → {True,False }

a v b
def= (leftb ≤ left a) ∧ (right a ≤ rightb) ∧ (topb ≤ top a) ∧ (bottom a ≤ bottomb)

Definition 10 (Range member). For a point (x, y) and a range r , (x, y) ` r means that (x, y) is

3.1. TABULA 45

a point within the bounds of r , i.e.:

`: P → R → {True,False }

(x, y) ` r
def= (leftr ≤ x) ∧ (x ≤ rightr) ∧ (topr ≤ y) ∧ (y ≤ bottomr)

Definition 11 (Class layers). The class layers of a Tabula t is defined by a partial order ≤L

where, for the classes C of t , c0,c1 ∈C , c0 ≤L c1 ⇔ c0 v c1.

A graphical representation of the class layers for example 5 is demonstrated in figure 3.5,

alongside the ordering of the classes.

Items
Year

Item

ItemYear

(a) Graphical representation of the class layers.

Items

Item Year

ItemYear

(b) Class partial ordering.

Figure 3.5: Class layers from example 5.

From the class layers comes also the notion of children and parents of a class. The children

of a class are given by the covering relation lL .

Definition 12 (Covering relation). The covering relation is a subset of the partial order ≤L that

relates elements without elements in between, i.e., a lL b if and only if a <L b and there is no

element c such that a <L c <L b, where <L contains elements a ≤L b such that a 6= b.

Definition 13 (Well-formed Tabula layout). A well-formed Tabula layout must comply with

the following rules:

1. There must always be a base class with the size of the Tabula grid. In the running example,

this base class is Items.

46 CHAPTER 3. TABULA: MODELING SPREADSHEET TABLES

2. Inner classes must either use the whole height or the whole width of the base class. In

the former case, the class is called a vertical class, possibly expanding to the right, and in

the latter case the class is called an horizontal class, possibly expanding down. This rule

prevents spreadsheet layout deformation when adding new instances of a class.

3. An horizontal class must leave a line above and another below of the class below. A ver-

tical class must leave a column to the left and another one to the right of the class below.

This rule prevents ambiguity in the layer order and allows for a simpler visual represen-

tation. Note that there is no need to leave space between two classes at the same level.

4. Two classes are allowed to intersect when one is contained by the other, i.e., the intersec-

tion area is the area of the contained class, or when a class is a vertical one and the other

is an horizontal class.

5. When a vertical class intersects with an horizontal one, a relation class must use the in-

tersection area.

6. Only relation classes can expand both to the right and down at once.

Definition 13 has a similar objective as the tiling rules for ClassSheets, ensuring a correct

layout of the classes.

The references in the model are made to other attributes in the same Tabula. References

only can be made using the name of the attribute or by prepending the name of the at-

tribute with the name of the respective class. This characteristic minimizes spreadsheet er-

ror 2.6 (wrong selection) since it only allows to select existing attributes and due to the use

of explicit names (if suitable names are given to the attributes). The former is called a simple

reference whilst the latter option is said to be a reference using the fully qualified name of the

attribute (see table 3.1 for an example). When using a fully qualified reference, the reference

is unique as it is forbidden to have two classes with the same name and also to have two at-

tributes within a single class with the same name. However, when using simple references,

there can be ambiguity about the attribute a references is to.

3.1. TABULA 47

Definition 14 (Attribute Name Resolution). Attribute name resolution consists in finding the

concrete attribute that is the target of a reference. A simple reference is resolved by searching

attributes with the name of the reference through different contexts in the following order:

1. within the same class;

2. within an inner class, i.e., a class that is contained in the class where the reference is made;

3. within an outer class, i.e., a class that contains the class where the reference is made;

4. within any other class.

The first attribute found is the one that is referenced. This attribute must be unique in its con-

text.

Table 3.1: Attributes from example 5, their class and fully-qualified name.

Attribute Class Fully qualified name
desc Item Item.desc
avg Item Item.avg
year Year Year.year
total Year Year.total
stock ItemYear ItemYear.stock
sold ItemYear ItemYear.sold

Definition 15 (Well-formed Tabula content). A well-formed Tabula content must comply with

the following rules:

1. Classes have distinct names.

2. Attributes within a class have distinct names.

3. References are only to existing attributes.

4. Cells follow the given grammar and function attributes are in a correct number and of

the correct type.

5. Constraints are valid.

48 CHAPTER 3. TABULA: MODELING SPREADSHEET TABLES

Definition 16 (Well-formed Tabula). A Tabula is said well-formed if and only if both its content

and layout are well-formed (definitions 13 and 15).

3.2 Tabula Instance

A spreadsheet that is a Tabula instance is an enhanced representation of the respective spread-

sheet. On top of the normal spreadsheet, it contains a list of classes instances (objects), and

does not need any named range.

Definition 17 (Tabula Instance). A Tabula instance I is a tuple I = (N,O?,G) where

• N is the name;

• O? is the set of objects O;

• G is the grid.

Classes are instantiated as objects. These objects, similarly to classes, are bound to a range

in the instance grid and have the name of their class. However, unlike classes, they do not have

information about expansion.

Definition 18 (Object). An object O is a pair O = (N,R) where

• N is the name;

• R is the range.

The cells within a Tabula instance are identical to spreadsheet cells, following the same

grammar.

An instance is well-formed if it has its object correctly layed out in its grid, thus following

rules similar to the ones for a well-formed Tabula layout:

Definition 19 (Well-formed instance). A well-formed instance must comply with the following

rules:

3.2. TABULA INSTANCE 49

1. There must always be a base object with the size of the instance.

2. Inner objects must either use the whole height or the whole width of the base object. In

the former case, the object is called a vertical object, and in the latter case the object is

called an horizontal object. From this rule are excepted relation objects.

3. An horizontal object must leave a line above and another below of the object below. A

vertical class must leave a column to the left and another one to the right of the object

below.

4. A vertical object and an horizontal one are allowed to intersect when one is contained by

the other, i.e., the intersection is the area of the contained object, or when an object is a

vertical one and the other is an horizontal object.

5. When a vertical class intersects with an horizontal one, a relation object muse use the

intersection area.

Additionally, a Tabula instance must conform to its Tabula:

Definition 20 (Tabula instance conformance). A Tabula instance must comply with the fol-

lowing rules in order to conforms to its Tabula model:

1. there is a base object corresponding to the Tabula’s base class;

2. if a class as a corresponding object, then all its non-expanding sub-classes have a corre-

sponding object;

3. the cover relation of the objects follows the cover relation of the classes;

4. all cells in the instance are well-typed according to their respective cell in the Tabula.

The relation between a Tabula cell t(tx ,ty) and an instance cell i(ix ,i y) is given by the relation

of positions in the Tabula and in the instance:

t(tx ,ty)ª i(ix ,i y) ≡ (tx , ty)ª(ix , i y)

50 CHAPTER 3. TABULA: MODELING SPREADSHEET TABLES

The notation ·ª· is used to denote both a relation between cells and between points.

Moreover, it is used to denote a relation between the elements of the points, i.e., tx ª ix and

ty ª i y , since the coordinates can be looked at independently because, if an expansion exists,

it uses the whole width or the whole height of the Tabula or instance.

A point (tx , ty) in a Tabula t with classes C is related to all points (ix , i y) in an instance i

with objects O such that:

ix = left o + (tx − left c −∆cx)+∆ox

∧ i y = topo + (ty − top c −∆c y)+∆oy

∧ c�o ∧ (tx , ty) ` c ∧ c ∈C ∧ o ∈O

where

• � is the relation between classes and objects;

• ∆cx is the sum of the widths of the inner classes between the left of the class containing

the Tabula point and the column of such point;

• ∆c y is the sum of the heights of the inner classes between the top of the class containing

the Tabula point and the row of such point;

• ∆ox is the sum of the widths of the objects from the inner classes mentioned for ∆cx

which are within the current object;

• ∆oy is the sum of the heights of the objects from the inner classes mentioned for ∆c y

which are within the current object.

Definition 21 (Well-typed cell). An instance cell is well typed by its respective Tabula cell if the

rules bellow are satisfied. For these rules, it is assumed an environment Γ= (T, I ,CT ,C I), where

T is the Tabula, I is the instance, CT is a Tabula cell at some position and C I is an instance cell

at some position.

vi ∈N vt ∈N (numeric attribute)vi :: a = vt

vi ∈T vt ∈T (textual attribute)vi :: a = vt

3.3. SPREADSHEET RECOGNITION 51

vi :: a = vt �p�vi
(constrained attribute)vi :: a = vt ; p

ei :: et ei ∉N ei ∉T (formula)= ei :: a = et

vi ∈N vt ∈N vi = vt (number)vi :: vt

vi ∈T vt ∈T vi = vt (text)vi :: vt

ai 0 :: at 0 ai 1 :: at 1 . . . ai n :: at n ϕi =ϕt
(function)ϕi (ai 0, ai 1, . . . , ai n) :: ϕt (at 0, at 1, . . . , at n)

ei :: et äi =ät (signed expression) where ä∈ {+,−}äi ei :: ät et

ei :: et (percentage)ei % :: et %

ai 0 :: at 0 ai 1 :: at 1 äi =ät
(operation) where ä∈ {<,É,Ê,>,=, 6=}ai 0äi ai 1 :: at 0ät at 1

R t c.a (tx , ty) (ix , i y) = {r0,r1, . . . ,rn}
(reference)t , i , (tx , ty), (ix , i y) ` r0 ∪ r1 ∪·· ·∪ rn :: c.a

The environment of the previous definition is only required to verify cell references. Well-

typed cells prevent spreadsheet errors 2.1 (incorrect type) and 2.4 (incorrect relativity). It also

prevents error 2.5 (outdated range) if type checking is ensured whenever changes are per-

formed (further details in chapter 4).

Definition 22 (Initial instance). An initial instance is one that contains the minimum contents,

with default values, that is conforming to a Tabula.

Initial instances can be generated from a Tabula by:

• copying the Tabula;

• removing all expandable classes, including their contents;

• converting all remaining classes to objects;

• translating attribute references to cell references; and,

• converting attribute cells to spreadsheet cells.

3.3 Spreadsheet Recognition

Spreadsheet tables do not have the information present in Tabula instances. In order to apply

model-driven techniques to these tables, they are first converted into a Tabula instance using

52 CHAPTER 3. TABULA: MODELING SPREADSHEET TABLES

a Tabula as a guide. This is called spreadsheet recognition.

Spreadsheet recognition makes use of techniques applied to pictures, also known as two-

dimensional language parsing. Some background on two-dimensional languages are pre-

sented in the next section (3.3.1), with a description of generic recognizers for these lan-

guages afterwards (section 3.3.2) and finally applying the concept to spreadsheet tables (sec-

tion 3.3.3).

3.3.1 Two-Dimensional Languages

Existing spreadsheet models do not have a method to read a spreadsheet with the help of a

model that indicates its structure and contents. This can be used for several ends, includ-

ing verifying the conformance of a spreadsheet. Nevertheless, some work has been done in

finding pre-defined patterns in spreadsheets, e.g., using inference rules (Abraham & Erwig,

2006b) or using automata (Hermans, 2013). The former example provides a set of inference

rules with no algorithm on how to apply them, while the latter provides a concrete algorithm

to parse a spreadsheet based on a grammar. Moreover, the latter is based on one-dimensional

algorithms and the parse is tree-based

In this work, an algorithm made to parse two-dimensional pictures is used. This algo-

rithm is better suited for spreadsheets due to their two-dimensional nature, where each cell

corresponds to one element of a picture’s two-dimensional array.

Concretely, a two-dimensional language is used to describe a picture, which is a rectangu-

lar array of symbols from a finite alphabet Σ, with # identifying the picture boundaries.

Example 6. The 3×2 picture with Σ= {a} is

#

a a a

a a a

#

In the literature, many concepts and techniques were proposed to support two-dimensional

3.3. SPREADSHEET RECOGNITION 53

language recognition. One such technique relies on two-dimensional on-line tessellation au-

tomata (2OTA) (Inoue & Nakamura, 1977), described in the next section.

3.3.2 A Two-Dimensional Language Recognizer

A two-dimensional language recognizer takes a language specification and a picture, and

checks if the picture conforms to the given language. The work presented in this disserta-

tion uses two-dimensional on-line tessellation automata (2OTA) (Inoue & Nakamura, 1977) to

convert a spreadsheet into a Tabula instance, checking its contents and adding the required

meta-information.

Definition 23. A non-deterministic two-dimensional on-line tessellation automaton, referred

as 2OTA, is completely defined by A = (Σ,Q, I ,F,δ) where:

• Σ is the input alphabet;

• Q is a finite set of states;

• I ⊆Q is the set of “initial” states;

• F ⊆Q is the set of “final” states;

• δ : Q ×Q ×Σ−→ 2Q is the transition function.

The recognition of a picture using a 2OTA consists in assigning states to each cell, starting

at the top-left cell and ending at the bottom-right one. A successful run assigns a state from

the set of the 2OTA’s final states to this last cell. The run for a picture p has

k = widthp +heightp −1 steps. At each step, states are assigned to the cells (x, y) with

x + y −1 = k, thus traversing the picture by diagonals.

3.3.3 Tabula Instance Recognizer

The Tabula instance recognizer, guided by a given Tabula, reads some regular spreadsheet

into one of its instances. In order to perform this, the Tabula model is converted to a 2OTA,

which is then run on the spreadsheet grid.

54 CHAPTER 3. TABULA: MODELING SPREADSHEET TABLES

The alphabet the 2OTA works on is the set of cells that are possible to write in a spreadsheet

and the boundary symbol (#).

The states used in the 2OTA are Q = {Invalid,Border)}∪P , where P is the set of cell positions

in the given Tabula. The state Invalid indicates that an invalid state was reached, Border is

the state of a border cell and a position indicates that a cell is represented by the cell at that

position in the Tabula.

The initial state for a Tabula t is I = {Border} and the final one is F = {(widtht −1,heightt −1)}.

The transition function δ has four cases: for the top-left cell, cells with a border on the left,

cells with a border on the top and cells in the middle. For the first case and initial case, the

top-left cell is analysed, checking if it type checks with the top-left cell of the Tabula:

δ(Border,Border, a) = if a :: t(0,0) then {(0,0)} else {Invalid}

Cells with a border on the left are checked against the cell above, given in sAbove, and checked

against the type of cell below it in the model using the auxiliary function firstColumnCell.

Moreover, in case of the above cell being contained in an expandable class, it is checked if the

current cell is in a new object with the auxiliary function vRepetition.

δ(Border,sAbove, a) = let s = firstColumnCell∪vRepetition

in if s 6= {} then s else {Invalid}

firstColumnCell ={
(0, y)

∣∣ y ∈ [1,heightt −1]∧ sAbove = (0, y −1)∧a :: t(0,y)
}

vRepetition ={
(x, topc)

∣∣ c ∈ classes t ∧expandsV c ∧a :: t(x,topc)

∧ (
if sLeft = Border then x ∈ {leftc} else x ∈ [leftc, rightc]

)
∧sAbove = (x,bottomc)∧ (

sLeft = (x −1,topc)∨ sLeft = Border
)}

Similarly to the previous case, cells with a border above are checked against the cell on the

left sLeft using the auxiliary function firstRowCell and then type checked against the type of

the cell to its right. There is also a check to see if the cell begins another repetition using the

3.4. EMBEDDED TABULA 55

auxiliary function hRepetition.

δ(sLeft,Border, a) = let s = firstRowCell∪hRepetition

in if s 6= {} then s else {Invalid}

firstRowCell ={
(x,0)

∣∣ x ∈ [1,widtht −1]∧ sLeft = (x −1,0)∧a :: t(x,0)
}

hRepetition ={
(leftc, y)

∣∣ c ∈ classes t ∧expandsH c ∧a :: t(leftc,y)

∧ (
if sAbove = Border then y ∈ {topc} else y ∈ [topc,bottomc]

)
∧sLeft = (rightc, y)∧ (

sAbove = (leftc, y −1)∨ sAbove = Border
)}

The final case is for inner cells, checking the cell to the left sLeft and the one above sAbove

and then type checking the current cell using the auxiliary function middleCell. Repetitions

are given by the cells to the left and above and thus no further checking is necessary.

δ(sLeft,sAbove, a) = let s = middleCell

in if s 6= {} then s else {Invalid}

middleCell ={
(x, y)

∣∣ x ∈ [1,widtht −1]∧ y ∈ [1,heightt −1]

∧ sLeft = (x −1, y)∧ sAbove = (x, y −1)∧a :: t(x,y)
}

After recognizing a Tabula instance successfully, the table is converted to an instance by

copying the grid and parsing the states given to each cell. With this parsing, each range of

cells parsed is tagged with its corresponding object information.

3.4 Embedded Tabula

The embedding of a Domain-Specific Language (DSL) within a general-purpose language is a

well-known technique (Swierstra, Henriques, & Oliveira, 1999). It exploits features of the host

language as native of the domain-specific one and reduces the effort to create a complete

development environment for the DSL.

56 CHAPTER 3. TABULA: MODELING SPREADSHEET TABLES

In this case, the general-purpose language is the spreadsheet: a visual language containing

a grid of cells which can have additional formatting. The plain view of a spreadsheet is like:

A B C D E . . .

1

2 . . .

3
...

...

The embedding of the ClassSheet language within spreadsheets themselves (J. Cunha et

al., 2011; J. Cunha, Fernandes, Mendes, & Saraiva, 2015) provided an unique environment

that allowed to experiment with model-driven spreadsheets and evaluate their results with-

out having to introduce different tools to spreadsheet users. This embedding was possible

due to the ClassSheet visual language being similar to spreadsheets, but the ClassSheet visual

required some changes to be technically feasible.

Tabula originated from ClassSheets, keeping a similar visual language which is also similar

to spreadsheets. However, Tabula has additional features that are not easily embedded into

spreadsheets, including the support for expandable classes within other expandable classes.

Therefore, only a subset of the Tabula language is supported in this embedding.

The embedding of Tabula follows closely the visual notation used in section 3.1. Its con-

tents are represented as follows:

• each cell of the Tabula grid corresponds to a cell in the spreadsheet;

• each class in the Tabula gives an unique colour to the classes it contains;

• if a class expands to the right, an additional column is present in the spreadsheet on the

right of the cells of that class, where the cells have ellipses;

• if a class expands down, an additional row is present in the spreadsheet below the cells

of that class, where the cells have ellipses.

The Tabula of example 5 and its corresponding embedding are displayed in fig. 3.6.

3.4. EMBEDDED TABULA 57

→
Items year=2000

stock sold Average sold

↓ desc="" stock=0 sold=0 avg=AVERAGE(sold)

Total total=SUM(stock)

Items

Item

Year

ItemYear

(a) Visual representation of the Tabula.

A B C D E

1 Items year=2000 . . .

2 stock sold . . . Average sold

3 desc="" stock=0 sold=0 . . . avg=AVERAGE(sold)

4
...

...
...

. . .
...

5 Total total=SUM(stock) . . .

(b) Embedding of the Tabula.

Figure 3.6: Tabula from example 5 (3.6a) and its corresponding embedding (3.6b).

58 CHAPTER 3. TABULA: MODELING SPREADSHEET TABLES

Chapter 4

Spreadsheet Evolution

Evolution is a need in most software, where maintenance or upgrades are required. Spread-

sheets are no exception. They can have a long lifetime (e.g., in a study by Hermans, Pinzger,

and van Deursen (2011), the average lifetime of the spreadsheets was longer than five years),

with requirements being changed and bugs being corrected.

A spreadsheet can be evolved at two levels: at its specification and at its implementation.

The former corresponds to Tabula evolution, detailed in section 4.1, and the latter to Tabula

instance evolution, detailed in section 4.2. Evolution at either level reflects the possible basic

atomic operations that can be performed on plain spreadsheets:

add sheet — add a new empty sheet to a spreadsheet;

delete sheet — delete a sheet, discarding its contents, from a spreadsheet;

rename sheet — rename a sheet, without any change to its contents;

add column — add a new empty column to a sheet;

delete column — delete a column, discarding its contents, from a sheet;

add row — add a new empty row to a sheet;

delete row — delete a row, discarding its contents, from a sheet;

insert cell — add a new cell, shifting existing ones in a selected direction; and,

set cell — define new contents for a cell.

59

60 CHAPTER 4. SPREADSHEET EVOLUTION

All but the last operation above perform changes to the layout of the spreadsheet. In some

cases, further steps are required to obtain a correct spreadsheet, e.g., updating references.

Furthermore, some of these steps can be performed automatically, like the update of refer-

ences when adding or removing rows or columns. However, in some cases, it produces in-

valid or unexpected results and in other cases an update is expected but is not performed (see

spreadsheet error 2.5).

4.1 Tabula Evolution

The structure the Tabula language follows closely the one of spreadsheets. However, it only

models sheets, hence operations on sheets have no equivalent operation on Tabulae. Fur-

thermore, the Tabula language contains a significant restriction: one cannot insert a single

cell into the model without adding a whole column or a whole row. This restriction is impor-

tant since it prevents layout deformations and simplifies the mechanics of models. Therefore,

from the operations on spreadsheets presented previously, also the insert cell operation can-

not be performed on Tabulae. Moreover, three additional basic atomic operations related to

classes are available for Tabulae. This results in the following operations:

add class — add a class to an existing range of a Tabula;

delete class — delete a class from a Tabula, without deleting its contents;

rename class — changes the name of a class;

add column — add a new empty column to a Tabula;

delete column — delete a column, discarding its contents, from a Tabula;

add row — add a new empty row to a Tabula;

delete row — delete a row, discarding its contents, from a Tabula; and,

set cell — define new contents for a cell.

Each of these operations, with some arguments applied, operate on a well-formed Tabula and

return a new well-formed Tabula, thus making the operations composable.

4.1. TABULA EVOLUTION 61

Add class. Adds a class to a Tabula, without performing changes in its grid. The type of this

operation is:

addClassT : Class → Tabula → Tabula

The given class should follow the rules to have a well-formed Tabula layout (definition 13).

This operation adds the required relation classes, otherwise it could create an ill-formed Tab-

ula.

Delete class. Deletes a class from a Tabula, without performing changes in its grid. The type

of this operation is:

delClassT : Class → Tabula → Tabula

The class to delete should not have attributes with the same name as its parent classes in

order not to produce a class with duplicated attribute names, thus creating ambiguity when

referencing one of those attributes. This restriction is imposed by item 2 of the well-formed

Tabula content definition. This operation deletes first its inner classes, applying the same

restrictions.

Rename class. Renames a class in a Tabula. The type of this operation is:

renameClassT : Class → Name → Tabula → Tabula

The new name should not be used by any another class in order to be unique in the resulting

Tabula. Moreover, this operation updates all fully-qualified attribute references to the class.

This operation could be achieved by removing the given class and then adding it again

with the new name. However, in order to be able to perform the renaming in two steps, the

composite operation would have to be as restrictive as the delClassT operation.

Add column. Adds a column to the Tabula at a relative position to the given index:

addColumnT : RelPosT → Index → Tabula → Tabula

62 CHAPTER 4. SPREADSHEET EVOLUTION

The relative position RelPosT can have one of the following values:

• BeforeClass — add the column at the given index, but outside of the class at that index

if it is its leftmost column;

• BeforeIndex — add the column at the given index, within the class at the same index;

• AfterIndex — add the column after the given index, within the class at the same index;

• AfterClass — add the column after the given index, but outside of the class at that index

if it is its rightmost column.

Delete column. Deletes the column at the given index from the Tabula:

delColumnT : Index → Tabula → Tabula

If this column is the last one of a class, that class is also deleted.

Add row. Adds a row to the Tabula at a relative position to the given index:

addRowT : RelPosT → Index → Tabula → Tabula

The relative position RelPosT can have the same values as for the add column operation, with

the index being relative to the row instead of the column.

Delete row. Deletes the row at the given index from the Tabula:

delRowT : Index → Tabula → Tabula

Similarly to the deletion of columns, if the row is the last one of a class, that class is also

deleted.

4.2. INSTANCE EVOLUTION 63

Set cell. Defines the cell at the given position of the Tabula.

setCellT : Position → CellT → Tabula → Tabula

The contents of the cell must be as such that they do not break any rule of the well-formed

Tabula content definition.

4.2 Instance Evolution

Instance evolution is similar to spreadsheet evolution, with the support of the classes to add

new objects with the correct structure and to update the references when required. However,

it is not allowed to edit arbitrary cells in the instance. This limitation is described below in the

definition of the set cell operation.

Add object. Adds an object to the instance:

addObjectI : Object → Instance → Instance

The object to be added should be such that it keeps the conformance with the Tabula. This

operation adds the required columns or rows. It also adds the required inner objects. Refer-

ences are updated afterwards.

Delete object. Deletes an object from the instance, including its columns and rows:

delObjectI : Object → Instance → Instance

The inner objects are also deleted. References are updated afterwards.

Rename object. Changes the name of an object in the instance:

renameObjectI : Object → Name → Instance → Instance

64 CHAPTER 4. SPREADSHEET EVOLUTION

This operation maintains the structure of the instance intact and references are position-

based instead of name-based, thus references do not need to be updated.

Add column. Adds a column to the instance at a relative position to the given index:

addColumnI : RelPosI → Index → Instance → Instance

References are updated afterwards. The relative position RelPosI can have one of the following

values:

• BeforeObject — add the column at the given index, before the object at the same index;

• BeforeIndex — add the column at the given index, within the object at the same index;

• AfterIndex — add the column after the given index, within the object at the same index;

• AfterObject — add the column after the given index, after the object at the same index.

From these, only BeforeIndex and AfterIndex are allowed for user transformations, being

BeforeObject and AfterObject reserved for the bidirectional transformations.

Delete column. Deletes a column from the instance:

delColumnI : Index → Tabula → Tabula

References are updated afterwards.

Add row. Adds a row to the instance at a relative position to the given index:

addRowI : RelPosI → Index → Instance → Instance

References are updated afterwards. The relative poosition RelPosI can have the same values as

for the add column operation, with the index being relative to the row instead of the column.

4.3. BIDIRECTIONAL TRANSFORMATIONS 65

Delete row. This deletes a row from the instance. It has the index of the row to delete as a

parameter.

delRowI : Index → Instance → Instance

References are updated afterwards.

Set cell. Defines the contents of a cell at the given position in the Tabula. Its type is:

setCellI : Position → Cell → Instance → Instance

This operation is only valid if setting a cell that implements an input value. The content

should be either numeric or textual (i.e., formulas are not allowed), with the type identified in

the Tabula and the value should be a valid one relative to the constraint defined in the model,

if any.

4.3 Bidirectional Transformations

Performing transformations on either the Tabula or corresponding instance can lead to states

where the conformance between the instance and the Tabula is not met. Additional steps

are required to restore the conformance. The chosen solution is to perform coupled transfor-

mations (Lämmel, 2004), i.e., performing transformations in all artefacts in a way the confor-

mance is maintained. More specifically, since operations are allowed in both the Tabula and

in the instance at any given moment, bidirectional transformations are used.

Bidirectional transformations are used to keep the conformance relation between the in-

stance and its model intact. In many contexts, these kind of transformations are state based.

However, in this case, the approach is based on operations, as spreadsheets are a highly inter-

active tool and the operations are available to the system, providing more information about

the changes to the different artefacts. This allows a coupled transformation system to be per-

formed synchronously.

The bidirectional transformation environment for Tabula models and respective instances

66 CHAPTER 4. SPREADSHEET EVOLUTION

is designed with user interaction in mind for use in a spreadsheet host system. Thus, the en-

vironment is used in an online setting, where it reacts immediately to each user modification,

and the transformations are based on operations users perform. In this environment, an user

operation may require several transformations, both in the artefact where the user performs

the operation and its related artefact. Therefore, the bidirectional transformation environ-

ment is defined by a pair of unidirectional transformations with the following signature:

toT,I : Op?T → Op?I

fromT,I : Op?I → Op?T

The toT,I transformation takes a sequence of operations on the Tabula, from the opera-

tions defined in section 4.1, and returns a sequence of operations to be performed on the

instance. The fromT,I transformation takes a sequence of operations on the instance, from

the operations defined in section 4.2, and returns a sequence of operations to be performed

on the Tabula.

Having a Tabula t and a conforming instance i , performing a sequence of operations op?T

on t , yielding a Tabula t ′, and the sequence of operations toT,I op?T on i , yielding an instance

i ′, results in i ′ conforming to t ′. In other words, the conformance relation is maintained. Simi-

larly, performing a sequence of operations op?I on i , yielding an instance i ′′, and the sequence

of operations fromT,I op?I on t , yielding a Tabula t ′′, results in i ′′ conforming to t ′′.

t

t ′

i

i ′

op?T toT,I op?T

conforms to

conforms to

(a) Evolution of the Tabula and
co-evolution of the instance.

t

t ′′

i

i ′′

fromT,I op?I op?I

conforms to

conforms to

(b) Evolution of the instance and
co-evolution of the Tabula.

Figure 4.1: Conformance after performing operations.

However, the supported sequences of operations is limited and defined based on concrete

4.3. BIDIRECTIONAL TRANSFORMATIONS 67

operations required by end users. From the point of view of the user, the following operations

on Tabulae are available:

• add class;

• delete class;

• rename class;

• add Tabula column;

• delete Tabula column;

• add Tabula row;

• delete Tabula row; and,

• set Tabula cell.

Add class. Performs the addClassT operation. When the class to add does not expand, an

object for each object of the parent class is added to the instance. When the class expands

to the right or down (but not in both directions), the columns and rows, respectively, in the

instance that correspond to the ones in the Tabula are removed, i.e., a new expandable class

does not have objects in the instance. It translates to the sequence of instance operations:

toT,I
{
addClassT c

}=

{
addObjectI (instantiate o′ c)

∣∣ c l c ′∧ c ′�o′ } if expansion c ≡ None{
delColumnI xI

∣∣ xT ∈ [leftc, rightc]∧xT ªxI
}

if expansion c ≡ Right{
delRowI yI

∣∣ yT ∈ [topc,bottomc]∧ yT ªxI
}

if expansion c ≡ Down

where instantiate creates an object equivalent to the given class. The delete operations must

be performed from right to left or from bottom to top. Moreover, classes expanding both to

the right and down are relation classes and thus cannot be added explicitly with an addClassT

operation. The definition above omits one situation: when a non-expanding class is added

and relation classes are created. In such a case, relation objects are also added.

68 CHAPTER 4. SPREADSHEET EVOLUTION

Delete class. Performs the delClassT operation. It deletes all objects of the class, adds columns

and rows to restore the size of the class and sets its contents.

toT,I
{
delClassT c

}= {
delObjectI o

∣∣ c�o
}

∪

{
addColumnI BeforeObject xI

∣∣ xT ∈ [leftc, rightc]∧xT ªxI
}

if c is vertical{
addRowI BeforeObject yI

∣∣ yT ∈ [topc, topc]∧ yT ª yI
}

if c is horizontal

∪{
setCellI (xI , yI)(defaultCell T(xT ,yT)) | (xT , yT) ` c ∧ (xT , yT)ª(xI , yI)

}
where defaultCell creates an instance cell with a default value from a Tabula cell.

Rename class. Performs the renameClassT operation. In the instance, all objects of the re-

named class are also renamed.

toT,I
{
renameClassT c n

}= {
renameObjectI o n

∣∣ c�o
}

Add Tabula column. Performs the addColumnT operation. A new column is added to each

object of the class where the column is added.

toT,I
{
addColumnT posT xT

}= {
addColumnI posI xI

∣∣ x ′
T ªxI

}
where

posI = BeforeObject ∧ x ′
T = min

{
x

∣∣ xT É x ∧∃xI : xªxI
}

if posT ≡ BeforeClass

posI = BeforeIndex ∧ x ′
T = xT if posT ≡ BeforeIndex

posI = AfterIndex ∧ x ′
T = xT if posT ≡ AfterIndex

posI = AfterObject ∧ x ′
T = max

{
x

∣∣ xT Ê x ∧∃xI : xªxI
}

if posT ≡ AfterClass

There is no guarantee that an expanding class has objects and thus an adequate index is used

to get the correct index in the instance where to add the new column.

4.3. BIDIRECTIONAL TRANSFORMATIONS 69

Delete Tabula column. Performs the delColumnT operation. Each corresponding column

in the instance is deleted.

toT,I
{
delColumnT xT

}= {
delColumnI xI

∣∣ xT ªxI
}

Add Tabula row. Performs the addRowT operation. A new row is added to each object of the

class where the row is added.

toT,I
{
addRowT posT yT

}= {
addRowI posI yI

∣∣ y ′
T ª yI

}
where posI and y ′

T are calculated in a similar fashion to posI and x ′
T , respectively, for the add

Tabula column operation.

Delete Tabula row. Performs the delRowT operation. Each corresponding row in the in-

stance is deleted.

toT,I
{
delRowT yT

}= {
delRowI yI

∣∣ yT ª yI
}

Set Tabula cell. Performs the setCellT operation. Each corresponding cell in the instance is

set to a new default value.

toT,I
{
setCellT (xT , yT) c

}= {
setCellI (xI , yI) (defaultCell c)

∣∣ (xT , yT)ª(xI , yI)
}

Similar operations to the ones applied on Tabulae are available to be applied on the in-

stance. However, they require multiple operations on the instance in order to keep the con-

formance with model. The operations available on instances are:

• add object;

• delete object;

• add instance column;

• delete instance column;

• add instance row;

• delete instance row; and,

• set instance cell.

70 CHAPTER 4. SPREADSHEET EVOLUTION

Add object. Performs the addObjectI operation. This operation produces an instance con-

forming to the Tabula and thus does not require any change in the Tabula.

fromT,I

{
addObjectI o

}= {}

Delete object. Performs the delObjectI operation. This operation produces an instance con-

forming to the Tabula and thus does not require any change in the Tabula.

fromT,I

{
delObjectI o

}= {}

Add instance column. Performs the addColumnI operation. This operation produces an

instance not conforming to the Tabula. Two main cases exist: the column is added to an object

that is the unique object of its class; the column is added to an object with other objects of its

class that remain unchanged. For the first case, the solution is simple:

fromT,I

{
addColumnI posI xI

}= {
addColumnT posT xT

∣∣xT ªxI
}

i.e., a column is added to the object’s class.

For the second case, where multiple objects of the same class exist, additional changes are

required in the instance in order to create a valid transformation, with multiple changes being

applied to the Tabula.

fromT,I

({
renameObjectI o′ no1

∣∣ 〈o′is a left inner object in the same parent as o〉}
∪{

renameObjectI o′ no2
∣∣ 〈o′is a inner object of o〉}

∪{
renameObjectI o′ no3

∣∣ 〈o′is a right inner object in the same parent as o〉}
∪{

renameObjectI o′ no4
∣∣ 〈o′is a inner object with another parent〉}

∪{
addColumnI posI xI

})
= {

addColumnT BeforeClass (leftc)
∣∣ 〈(width c) times, if any object with name no1〉

}
∪{

addColumnT AfterClass (rightc)
∣∣ 〈(width c) times, if any object with name no3〉

}

4.3. BIDIRECTIONAL TRANSFORMATIONS 71

∪{
renameClassT c ′ no2

∣∣ 〈c ′ is an inner class of c〉}
∪{

addClassT c ′o1

∣∣ 〈c ′o1is the copy of a class of c into the first set of new columns〉}
∪{

addClassT c ′o3

∣∣ 〈c ′o3is the copy of a class of c into the second set of new columns〉}
∪{

setCellT (x ′
T , y ′

T) T(xT ,yT)
∣∣ 〈for all (xT , yT) of c into corresponding cell of c ′o1〉

}
∪{

setCellT (x ′
T , y ′

T) T(xT ,yT)
∣∣ 〈for all (xT , yT) of c into corresponding cell of c ′o3〉

}
∪{

setCellT (x ′
T , y ′

T) (updateReferences T(x ′
T ,y ′

T))
}

∪{
addColumnT posT xT

∣∣ xT ªxI 〈after all other transformations〉}
where no1, no2 and no3 are new unique names based on the ones from the original classes,

and no4 is equal to no1 if any new object has this name, or it is equal to no3 otherwise. The

object o is the inner-most expandable vertical object where the operation is to be performed.

The sequence of instance operations does not perform any layout nor content changes unless

for the wanted operation. It renames some objects to conform to the layout changes in the

Tabula. On the Tabula part, the class c such that c�o is replicated. It is replicated to the left

if there is any object on the left of the object o of the same class, and it is replicated to the

right if there is any object on the right of the object o of the same class. Moreover, references

to any attribute in the original class is converted to the union of references to the replicated

attributes using the updateReferences function.

Delete instance column. Performs the delColumnI operation. The set of operations on the

instance and respective operations on the Tabula follow the same pattern as for the add in-

stance column operation:

fromT,I

(
. . . ∪{

delColumnI xI
})= . . . ∪{

delColumnT xT
∣∣xT ªxI

}

Add instance row. Performs the addRowI operation. The set of operations on the instance

and respective operations on the Tabula follow the same pattern as for the add instance col-

72 CHAPTER 4. SPREADSHEET EVOLUTION

umn operation:

fromT,I

(
. . . ∪{

addRowI posI yI
})= . . . ∪{

addRowT posT yT
∣∣yT ª yI

}
Delete instance row. Performs the delRowI operation. The set of operations on the instance

and respective operations on the Tabula follow the same pattern as for the add instance col-

umn operation:

fromT,I

(
. . . ∪{

delRowI yI
})= . . . ∪{

delRowT yT
∣∣yT ª yI

}
Set instance cell. Performs the setCellI operation. Since this instance operation can only be

performed on input cells, no changes are required on the Tabula.

fromT,I

{
setCellI (xI , yI)c

})= {}
This operation could also be allowed to make non-conformant changes. However, it has two

drawbacks: there would be no restriction on cell modifications, and thus users could over-

write formulas or insert values of the wrong type; and an additional bidirectional transforma-

tion engine at the cell level would be needed. Ignoring these drawbacks, the implementation

would follow the pattern of add instance column operation, but twice: one replication for the

vertical classes and another for the horizontal classes.

4.4 Bidirectional Transformation Properties

Since the aim of the bidirectional transformations is to restore the conformity between in-

stances and models, a basic requirement is that they satisfy correctness (Stevens, 2007) prop-

erties entailing that propagating edits on spreadsheets or on models leads to consistent states:

i :: t
(to-correct)(tot ,i opT) i :: opT t

i :: t
(from-correct)opI i :: (fromt ,i opI) t

4.5. DIRECTED EVOLUTION 73

In other words, an instance i conforms to a Tabula t if i :: t , for a binary consistency relation

(::) ∈ Instance ↔ Tabula.

As most interesting bidirectional transformation scenarios, spreadsheet instances and mod-

els are not in bijective correspondence, since multiple spreadsheet instances may conform

to the same model, or vice versa. Another bidirectional property, hippocraticness (Stevens,

2007), postulates that transformations are not allowed to modify already consistent pairs, as

defined for from:
i :: t opI i :: t

(from-hippocratic)(fromt ,i opI) =;

Reading the above law, if an operation on the instance opI preserves conformity with the

existing Tabula, then fromt ,i opI produces an empty sequence of operations for the Tabula.

Operationally, such a property is desired in our framework. For example, if a user adds a new

object of an expandable class, preserving conformity, the original Tabula is expected to be

preserved because it still reflects the structure of the data. However, hippocracticness for tot ,i

is deemed too strong because, even if the updated model is still consistent with the old data,

we still want to update the data to reflect a change in the structure, making a better match with

the model (Diskin, 2008). For example, if the user adds a column to the model, the intuition

is to insert also a new column in the data, even if the old data remains consistent.

Moreover, as common for incremental transformations (that translate operations rather

than whole states), the application of sequential transformations naturally satisfies an history

ignorance (Diskin, 2008) property, meaning that the application of consecutive updates does

not depend on the update history.

4.5 Directed Evolution

Spreadsheets are many times required to be evolved, where the current spreadsheet must

meet the requirements of a new model. In order to have the spreadsheet conforming to the

new model, the legacy one can be evolved to be equal to the new model taking advantage of

the coupled evolution that performs the evolution also on the spreadsheet. Thus, in the end,

74 CHAPTER 4. SPREADSHEET EVOLUTION

the legacy spreadsheet conforms to the new model.

This evolution can be performed manually, with the user performing evolution steps on

the current model until it becomes equal to the new one. Another approach is to find such

steps automatically. This section focuses on the latter, providing two distinct approaches

based on spreadsheet differences and on bounded model checking (sections 4.5.2 and 4.5.3,

respectively).

4.5.1 Evolution Sequence

The problem of directed evolution can be divided in two phases: finding a sequence of evo-

lution steps and performing that sequence on the original model. Both approaches to the

directed evolution problem are focused on the former, i.e., finding a suitable sequence of

evolution steps to apply to the model. The latter consists in the composition of the evolution

steps, which is a natural operation in the bidirectional transformation environment (fig. 4.2).

t

t1 t2 . . . tn

t ′
directed evolution

Figure 4.2: Directed evolution as the application of a sequence of operations.

Any Tabula t can be evolved into another Tabula t ′. This is easily accomplished by resizing

t in accordance to t ′, removing the classes of t , adding the classes of t ′, and setting all cells to

4.5. DIRECTED EVOLUTION 75

the value of the corresponding cell in t ′. Formally, this would give the following operations:

{
addColumn AfterClass (x −1)

∣∣ x ∈ [right t +1,right t ′]
}

∪ {
delColumn x

∣∣ x ∈ [right t ′+1,right t]
}

∪ {
addRow AfterClass (y −1)

∣∣ y ∈ [bottom t +1,bottom t ′]
}

∪ {
delRow y

∣∣ y ∈ [bottom t ′+1,bottom t]
}

∪ {
delClass c

∣∣ c ∈ classes t ∧〈c is vertical or horizontal 〉}
∪ {

addClass c ′
∣∣ c ′ ∈ classes t ′∧〈c is vertical or horizontal 〉}

∪ {
renameClass c (name c ′)

∣∣ c ∈ classes t ∧〈c is neither vertical nor horizontal 〉
∧ c ′ ∈ classes t ′ ∧ range c ≡ range c ′

}
∪ {

setCell (x, y) t ′(x,y)

∣∣ x ∈ [left t ′, right t ′] ∧ y ∈ [top t ′,bottom t ′]
}

Although correct, this universal method to evolve a legacy Tabula into a new one has a fun-

damental flaw: all the data in the spreadsheet is lost when it is co-evolved. The two proposed

approaches intend to minimize this issue.

4.5.2 Spreadsheet Differences

One method to prevent data loss is to evolve the Tabula without touching the parts common to

both the legacy and the new Tabulae. Such a way consists in finding the differences between

the two models and applying evolution steps to remove those differences.

The automatic application of this method, without an oracle identifying the common

parts, can still lead to some data loss. Moreover, another issue arises, namely the use of old

data that should have been deleted. An example of this issue consists in the renaming of a

class instead of deleting the original class and adding a new one. In the former situation, all

the data of that class is kept, whilst in the latter the data is deleted and default values are set

when the new class is added.

This method follows the universal method presented in the previous section coupled with

an algorithm to find spreadsheet differences. Moreover, when parts of the Tabula detected

as deleted are equal to other parts detected as added, it is assumed those parts were moved.

76 CHAPTER 4. SPREADSHEET EVOLUTION

This moving translates to operations on the spreadsheets, where data is copied from the old

positions to the new ones. Overall, the steps are:

i. identify grid operations;

ii. identify class operations;

iii. identify cell editions;

iv. move detection;

v. copy spreadsheet data.

Grid operations. The operations included in this step are delColumnT , delRowT ,

addColumnT and addRowT . The set of operations to be applied to the legacy Tabula is ob-

tained by finding a core grid, which is common to both the legacy and the new Tabulae, i.e.,

without any of the differences between the Tabulae.

In order to find this core grid, the RowColAlign algorithm (Harutyunyan, Borradaile, Cham-

bers, & Scaffidi, 2012) is used. The objective is to find the maximal sub-sequence of rows

and columns that both grids have in common, also known as the Longest Common Sub-

sequence (LCS) problem. RowColAlign provides an alignment that is the basis to infer the

operations needed to evolve the legacy model into the new one. Moreover, this alignment is

not strict, allowing for a larger common set of columns and rows in exchange for a small set

of different cells.

The end result of this step is a sequence of delColumnT and delRowT operations to convert

the legacy Tabula’s grid into the common grid followed by another sequence of addColumnT

and addRowT operations to convert the common grid into the new Tabula’s grid. This se-

quence of operations, applied to the legacy Tabula, results in a Tabula with the same width

and height of the new Tabula, possibly with different cells and classes.

Class operations. The information about classes is not taken into account when devising

the grid operations. Thus, the range of the classes in the legacy Tabula might not match the

4.5. DIRECTED EVOLUTION 77

range of the classes in the new Tabula.

In order to diminish the effects of deleting no longer existing classes (either due to re-

naming of repositioning), a first pass on the grid operations is performed. This pass adjusts

the arguments to the add operations, setting the relative position to BeforeClass, BeforeIndex,

AfterIndex or AfterClass, and modifying the index accordingly.

Then, classes in the legacy Tabula are matched by their range with classes in the new Tab-

ula. If a class in the legacy Tabula is not matched, is is deleted. If a class in the new Tabula

has no match, it is added. For all other classes, if the names of the matched classes are not the

same, the legacy Tabula class is renamed to the name of the new Tabula class.

Cell editions. Applying the grid and class operations, each cell in this evolved Tabula will

correspond to the cell of the new Tabula at the same position. Iterating over each position

and comparing both cells gives a set of cells that do not have the value they should have. For

these cells, their contents is set to the content of the cell in the new Tabula. Reducing the

number of setCellT operations also reduces the loss of data.

Move detection. It is possible to prevent loss of data due to repositioning of the rows or

columns by detecting such “moves”. The basic idea is find pairs of removal and insertion

(e.g., delColumnT followed by an addColumnT and multiple setCellT replicating the column

contents). However, finding moves in the Tabula can be ambiguous: an attribute was deleted

from a class and added to another, was this a move? In some situations a move is desirable

whilst in others not. Many more examples could be provided, where the correct choice is

difficult to make without further information. Hence, only column and row moves are taken

into account in this work.

In order to find column moves, a set of deleted columns from the legacy Tabula and a set of

added columns to common grid are obtained. Basically, the first set is given by the indices of

the delColumnT operations whilst the second is given by the addColumnT arguments. Each

deleted column is compared with each added column, but taking into account only the rows

in the common grid. The contents of the former set come from the legacy Tabula whilst the

78 CHAPTER 4. SPREADSHEET EVOLUTION

contents of the latter come from the new Tabula, thus removing the need to take into ac-

count setCellT operations. When a pair of columns is equal, then it is assumed a move was

performed. To find row moves, the process is analogous.

Spreadsheet data copy. The data corresponding to moved cells needs to be copied in order

to not be lost. Before performing the co-evolution of the operations inferred in the previous

steps, the data that should be moved is copied. Only the data in the matched cells in the

columns and row comparisons is used. After performing the co-evolution of the operations,

the data is inserted into their respective cells. When the number of elements copied is differ-

ent from the number of elements to be pasted (e.g., due to a move from a class to another),

two situations are possible:

• more elements where copied than the ones are needed;

• more elements needed than the ones copied.

In the former case, a prefix of the elements is kept, whilst in the latter additional values are

left at their default value.

4.5.3 Bounded Model Checking

Another method to find evolution steps between two Tabulae is using a solver to perform

bounded model checking (Biere, Cimatti, Clarke, Strichman, & Zhu, 2003). It follows work on

bounded model checking of temporal formulas (A. Cunha, 2014) and model repair (Macedo,

Jorge, & Cunha, 2017), which this problem can be seen as. Model repair consists in finding a

new model that is consistent with some property. In this case, the property is a new Tabula.

Some approaches to solve the model repair problem also rely on solvers.

This method uses a description of each Tabula, a description of the possible evolution

steps and a formula stating there is no way from the legacy Tabula to the new one using the

given possible steps. Moreover, limits are imposed on the elements present in the description

(i.e., they are bounded), preventing an explosion of states during the solving. Two results are

possible:

4.5. DIRECTED EVOLUTION 79

• the formula is true and thus there is no way between both Tabulae with the given con-

straints; or,

• the formula is false and at least one counter-example is given, i.e., a set of steps that

transform the legacy Tabula into the new one.

Conceptually, this method is simpler than the one based on spreadsheet differences as

the effort is transferred to an external solver. It is also more powerful since multiples options

can be given to the user in order to choose the one more suited to the situation and weights

can be given to implement heuristics. These heuristics would allow to show the user “better”

operation sequences first (e.g., based on prevention of data loss).

The implementation of this approach (section 5.2.2) is based in the relational language

Alloy (Jackson, 2002, 2012). It requires thus to express Tabulae in a relational form, along

with the Tabula operations. Well-formedness of Tabulae does not need to be specified, as the

given legacy and new Tabulae must already be well-formed, and applying the operations must

produce well-formed Tabulae. Moreover, contents of cells and names are not required.

Tabula representation. In order to represent a Tabula, the following types are used:

• Tabula

• Class

• Row

• Column

• Cell

• Expansion

Using these types, a Tabula is defined by two relations:

classes : Class → Tabula

content : Row → Column → Cell → Tabula

80 CHAPTER 4. SPREADSHEET EVOLUTION

A class is defined by four relations:

left : Class → Column → Tabula

right : Class → Column → Tabula

top : Class → Row → Tabula

bottom : Class → Row → Tabula

expansion : Class → Expansion → Tabula

where Expansion can be one of None, Right, Down or Both. Moreover, for each row and col-

umn, there is a relation next to order them:

next : Row → Row → Tabula

next : Column → Column → Tabula

Operation representation. Each operation is represented by a corresponding type which

is ultimately a subtype of Operation. It is the Operation type that imposes an order on the

application of operations, with two relations:

pre : Event → Tabula

post : Event → Tabula

to identify the Tabula before the operation and the Tabula after the operation, respectively.

Moreover, there is a RowOperation type specifically for rows to identify on which row the op-

eration is performed, and a ColumnOperation type for columns to identify on which column

the operation is performed.

There is a type for each Tabulae operation and argument not represented by one of the

available types, e.g., there is the type AddColumnBeforeIndex for the addColumnT operation

with its RelPosT argument being BeforeIndex. Moreover, constraints are applied to each of

these types to identify the changes from the pre Tabula to the post one.

4.5. DIRECTED EVOLUTION 81

Operation sequence. The result from executing the solver consists in an operation sequence.

To achieve that, two concrete subtypes of Tabula are used: Source and Target. The Source is

used to identify the legacy Tabula and it is in the pre relation of the first operation. The Target

is used to identify the new Tabula and it is in the post relation of the last operation. Any con-

sistent representation of the environment is a valid operation sequence that can be used to

evolve the legacy Tabula into the new one.

82 CHAPTER 4. SPREADSHEET EVOLUTION

Chapter 5

A Concrete Implementation

The Tabula language, its instances and their evolution were implemented in a library, allowing

reuse in other software artefacts. In order to evaluate the use of model-driven spreadsheet de-

velopment with Tabula, an extension to LibreOffice Calc was created using the library, dubbed

MDSheet.

The implementation first started as an enhancement to the HaExcel framework (J. Cu-

nha, Saraiva, & Visser, 2009), a framework to manipulate, transform and query spreadsheets.

It was implemented to support ClassSheet models and transformations on them, with the

automatic co-evolution of their spreadsheets (J. Cunha et al., 2011; Mendes, 2011). The ad-

vantages of this model-based environment were immediately recognized when it was first

presented to the scientific community at the 2011 VL/HCC. However, questions also arose,

namely what happened when changes where performed in the instance, and people wanted

to make changes there. This showed the value of the presented work, the value of having a

functional tool and the feedback of its users, but also next steps to research.

As work on the implementation advanced, new features were added thus augmenting

complexity of the extension. It was decided then to separate the code, with a library for the

implementation of the developed theory and an extension for LibreOffice Calc to experiment

on it with end users. Both of these artefacts are described below.

83

84 CHAPTER 5. A CONCRETE IMPLEMENTATION

5.1 Core Library

The Tabula core library is implemented in Haskell. It describes data types for Tabulae and

respective instances, functions to evaluate the correctness of the values of those types and

functions to evolve them, amongst other auxiliary functions.

Thus, data types exist for Tabulae and instances:

data Tabula = Tabula Name [Class] (Grid TCell)

data Instance = Instance Name [Object] (Grid Cell)

translating their definitions from chapter 3, and using auxiliary types for names, classes, ob-

jects, grids and cells. Therefore, the use of the library is similar to the use of their definitions,

with the Tabula from example 1 being implemented as:

Tabula "ItemList"

[Class "Items" ((0,0), (1,2)) None,

Class "Item" ((0,1), (1,1)) Down]

Grid.fromLists [["Items", ""]

, ["desc=\"\"","value=0"]

, ["Total", "total=SUM(Item.value)"]]

Name, TCell, Cell being instances of IsString and using the OverloadedStrings language

extension.

Then, there are the following functions to validate Tabulae, instances and the conformity

of the instance with its Tabula:

checkTabula :: Tabula → Bool

checkInstance :: Instance → Bool

models :: Tabula → Instance → Bool

With a pair of well-formed Tabula and conforming instance, the following functions can

be used to evolved either of these artefacts:

5.2. DIRECTED EVOLUTION 85

type Evolution = (Tabula, Instance) → (Tabula, Instance)

-- Tabula evolution and instance co-evolution

addClassT :: Class → Evolution -- add class

delClassT :: Class → Evolution -- delete class

addColumnT :: RelPos → Int → Evolution -- add column

delColumnT :: Int → Evolution -- delete column

addRowT :: RelPos → Int → Evolution -- add row

delRowT :: Int → Evolution -- delete row

setCellT :: Int → Int → TCell → Evolution -- set cell

-- instance evolution and Tabula co-evolution

addClassI :: Class → Int → Evolution -- add an object

delClassI :: Class → Int → Evolution -- delete an object

addColumnI :: RelPos → Int → Evolution -- add column

delColumnI :: Int → Evolution -- delete column

addRowI :: RelPos → Int → Evolution -- add row

delRowI :: Int → Evolution -- delete row

setCellI :: Int → Int → Cell → Evolution -- set cell

The implementation also includes functions to export Tabulae and instances to HTML for

easy visualization without the use of a spreadsheet system, to import a plain spreadsheet into

a Tabula instance, and other auxiliary functions to be used by external tools (e.g., for querying

data).

5.2 Directed Evolution

The directed evolution was two distinct implementations, reflecting the two approaches un-

dertaken. The next two sections present how each of them is implemented.

86 CHAPTER 5. A CONCRETE IMPLEMENTATION

5.2.1 Spreadsheet Differences

The spreadsheet differences are based on the RowColAlign algorithm (Harutyunyan et al.,

2012). An implementation of this algorithm was already available, but it was implemented

in MATLAB (MathWorks). This MATLAB implementation deals with spreadsheets as matri-

ces and has auxiliary functions to convert CSV files into such matrices, with each cell being

hashed for easier comparison of their contents.

The MATLAB implementation was translated to Haskell to be included with the Tabula

core library. Moreover, since the RowColAlign algorithm only provides alignments, a few mod-

ifications were made in order to work with Tabulae and to return operations. The main func-

tion to use the algorithm is:

rowColAlign :: Tabula → Tabula → (OperationT , [[Integer]], [[Integer]])

which, from a legacy Tabula and a new one, returns a list of operations, to evolve the grid of

the former into the grid of the latter, and two alignment tables between those two Tabulae.

The operations resulting from rowColAlign are refactored in order to take into account the

classes of the Tabulae, to which operations to rename, delete and add classes are appended.

The operations, with the help of the two alignments, are then used to detect column and row

moves.

Finally, the old data is copied, the operations are applied to the pair of Tabula and instance,

and the data is pasted into the correct place.

5.2.2 Bounded Model Checking

The solver used to infer the steps for the directed evolution is KodKod (Torlak & Dennis, 2006),

a SAT-based constraint solver. This solver was chosen for several reasons, such as it provides

an API, it has a tight relation with Alloy, a language the author of this thesis is already familiar

with, and there were knowledgeable individuals in the same research centre.

The directed evolution was first implemented in Alloy, creating a concise and easily read-

able description of the relations and the universe of possible atoms. From the Allow descrip-

5.2. DIRECTED EVOLUTION 87

tion, and using sample models and evolution steps, Java code was generated. This code uses

the KodKod API and it is specific for the given samples, having 4844 lines of code for two sam-

ple models with three columns and two rows and one setCellT operation. Moreover, in order

to be compiled, the generated code requires refactoring so that it becomes syntactically cor-

rect. The specific parts of the code are then identified and generalised, resulting in code with

half the number of lines of codes. The generalised code uses the Java representation of the

involved artefacts, with Java classes for cells, classes, Tabulae and operations. Furthermore,

restrictions described in Alloy were transposed to Java code, slightly optimizing the final code.

The steps to perform the directed evolution is found by creating two Tabulae, represent-

ing the legacy and new ones, and then executing the solver. It is also possible to set an upper

bound for the number of operations expected to be obtained. This is exemplified by the fol-

lowing sample Java code:

Tabula t0 = new Tabula(...);

Tabula t1 = new Tabula(...);

DirectedEvolution steps = new DirectedEvolution(t0, t1);

steps.setSteps (5);

steps.solve ();

The result of the solver is a Solution Java object which, if a solution is found, contains the

atoms of the solution found. From these atoms, the list of operations is extracted.

Although at a higher level than difference-based step finding, bounded model checking,

and specifically the implemented approach, has important drawbacks:

• it may not find a solution within the defined number of steps;

• it is slower for larger inputs; and,

• it accepts only “small” inputs.

When trying to find steps for real-world spreadsheets, the relations require a large universe

which KodKod cannot technically handle1. This situation was obtained with a real-world

spreadsheet, where the legacy Tabula has 102 columns, 2 rows and 1 class, and the new Tab-

1KodKod returns the error kodkod.engine.CapacityExceededException .

88 CHAPTER 5. A CONCRETE IMPLEMENTATION

ula has 105 columns, 2 rows and 1 class. Therefore, further work using this method was not

pursued, including finding move operations.

5.3 LibreOffice Calc Extension

LibreOffice has a powerful modular extension model, allowing to install external components

(extensions) without changes to the LibreOffice code. These components define services that

can be used by LibreOffice, but also by other components, using the Unified Network Objects

framework (fig. 5.1).

LibreO�ce

UNO

...component 2component 1 component n

Figure 5.1: Overview of the LibreOffice extension model using components.

The extension for LibreOffice Calc was developed using the Tabula core library with addi-

tional code to connect the user interface with the corresponding actions in the library. It was

developed in C/C++, Haskell and LibreOffice Basic.

Thus, Haskell code defines the main behaviour of the extension and the simplification of

some data structures to be marshalled to C structures. Around this code, there is C code to

invoke the Haskell one as Haskell’s Foreign Function Interface (FFI) does not support C++.

Finally, the C++ code call the C one, but also interacts with some of the LibreOffice features,

implementing callbacks for some actions and dealing with the objects required for the em-

bedding (e.g., named ranges and buttons in the instance sheet).

Finally, in the user interface, a toolbar is provided with buttons to perform the evolution

steps and other functions from the library (see fig. 5.3). When one of those buttons is clicked,

5.3. LIBREOFFICE CALC EXTENSION 89

OpenOffice / LibreOffice

User Interface

Component 1 Component n...

UNO MDSheet

Transformation
Engine

Other Features

Interface Code

User Interface OpenOffice Basic

C and C++

Haskell

Figure 5.2: Overview of the MDSheet architecture within the LibreOffice environment.

a routine defined in Basic is invoked. Other user interactions also invoke actions, e.g., editing

cells in the Tabula sheet and clicking in buttons in the instance sheet to add new objects.

add class

delete class

add column

delete column

add row

delete row

evaluate metrics

infer functional dependencies

perform directed evolution

Figure 5.3: MDSheet extension toolbar.

LibreOffice Basic and C/C++. Most of the interface with the user and between LibreOffice

Calc and the MDSheet extension is programmed in LibreOffice Basic. Actions to be performed

by the extension are triggered by user actions in LibreOffice’s user interface, invoking a Basic

routine that gathers the necessary data and then invokes the appropriate code from the ex-

90 CHAPTER 5. A CONCRETE IMPLEMENTATION

tension. This last code is written in C++ but, since both LibreOffice Basic and C++ have UNO

bindings, the interaction between the two is transparent with the conversion between the

different representations of a data type being performed automatically.

C/C++ and Haskell. C++ code is not directly compatible with Haskell, thus the C++ parts

that need to interact with Haskell code have C wrappers. The C wrappers for functions are

compatible with the Haskell FFI and the wrappers for C++ objects are used as black boxes,

without direct access from Haskell code. Moreover, some types are used at every level of this

stack:

• integers;

• real numbers; and,

• text.

Integers and real numbers are converted without difficulties between the different layers.

Text is a bit more complex since LibreOffice uses Unicode text in order to support a large set

of languages and symbols. In Basic, text is identified with the type String, in UNO IDL it is

identified with the type string and in C++ it is identified with the type OUString. All three of

these types are equivalent as they are integrated in the UNO framework. In Haskell, the type

used to store Unicode is Text from the Data.Text module of the text Haskell package. The

convertion between C++ and Haskell takes advantage of the fact that both C++ and Haskell

types use the same format in their structures. Thus, using the FFI from the Data.TextHaskell

module, marshalling of the structures is made with little additional complexity.

5.4 Google Sheets Add-On

Google Sheets is an online spreadsheet host system with a web-based interface and applica-

tions for mobile devices. It provides a basic functional spreadsheet system with additional

5.4. GOOGLE SHEETS ADD-ON 91

features (e.g., formatting and pivot tables). Furthermore, similarly to extensions in LibreOf-

fice, Google Sheets supports add-ons that allow developers to provide new features. There-

fore, Google Sheets was also targeted as a host for embedding spreadsheet models using the

MDSheet framework.

The approach used consists in providing a web service with MDSheet’s functionalities that

is used by an add-on in Google Sheets. Since there is no framework to unite both ends, un-

like the UNO framework in LibreOffice, an intermediate data representation is used, namely

JavaScript Object Notation (JSON). The architecture of this version of MDSheet, pictured in

fig. 5.4, consists in an add-on to be installed on the client side, as a Google Sheets add-on,

that communicates with a server providing the bidirectional transformation engine used in

the MDSheet extension. The add-on is programmed in Javascript, using the Google Sheets

API2, whilst the web service server is written in Haskell.

MDSheet-Google

Ranges

Grid values

Sheet protection

Other features

MDSheet

Server

Tabula

Core Library

MDSheet Web Service

JSON Internet

Figure 5.4: Architecture of the MDSheet-Google system.

Unfortunately, at the time of development of this version of MDSheet, the Google Sheets

API lacked in some fundamental features. One of them was the ability to manipulate named

ranges (it was only possible to create them). This issue was worked around by adding an

additional sheet to keep the required data.

Moreover, the architecture used added too much latency and was not suitable for a pro-

duction environment.

2https://developers.google.com/sheets/api/

https://developers.google.com/sheets/api/

92 CHAPTER 5. A CONCRETE IMPLEMENTATION

Chapter 6

Empirical Evaluation

User interaction is an important part of spreadsheet development. In order to assess the im-

pact of this work, two aspects were evaluated: the usage of model-driven spreadsheets (sec-

tion 6.1) and the understanding of the bidirectional evolution environment (section 6.2).

Both these studies focus on the evolution and editing of existing model-driven spread-

sheets by end users. The design of the language and the creation of new model-driven spread-

sheets were not considered in these evaluations. In both cases, it is assumed a spreadsheet

modelling expert develops the initial Tabula.

6.1 Model-Driven Spreadsheets1

In the context of software engineering research, empirical validation is widely recognized as

essential in order to assess the validity of newly proposed techniques or methodologies (Wohlin

et al., 2012). While our previous work on the construction of a model-driven spreadsheet de-

velopment environment has received good feedback from the research community, the fact

is that its assessment in a realistic and practical context was still lacking. In this line, we have

designed an empirical study that we describe in this section and whose results we also analyze

1Also published in section “empirical evaluation” of: “Embedding, Evolution, and Validation of Model-Driven
Spreadsheets”, J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva. IEEE Transactions on Software Engineering
(Volume: 41, Issue: 3, March 1 2015), © 2015 IEEE

93

94 CHAPTER 6. EMPIRICAL EVALUATION

in detail here.

The experiment that we envisioned is motivated by the need to understand the differences

in individual performance that users achieve under MDSheet (using what we call model-

driven spreadsheets) against traditional spreadsheet systems (from now on termed plain).

The perspective of the experiment is from the point of view of a researcher who would like to

know whether there is a systematic difference in the users’ performance.

In this section we detail the different stages that we underwent in preparing and designing

our study (section 6.1.1), in running it (section 6.1.2), and in analyzing (section 6.1.3) and

interpreting (section 6.1.4) the results, which are discussed afterwards (section 6.1.5). Finally,

we can summarize the scope of this study as suggested in (Wohlin et al., 2012) as follows:

Analyze the spreadsheet development process

for the purpose of evaluation

with respect to its effectiveness and efficiency

from the point of view of the researcher

in the context of the usage of two different spreadsheets by Master students.

6.1.1 Design

The goal of our study is to analyze several aspects of spreadsheet development, and to evalu-

ate the implications of using a model-driven approach against the more commonly used ap-

proach of designing and introducing spreadsheet data from scratch and immediately within

spreadsheets themselves.

In particular, we want to evaluate the effectiveness and efficiency of using MDSheet. As we

described earlier, it is quite common to find errors in spreadsheets. As one of the objectives

of our approach is to improve this scenario, to evaluate its effectiveness was important. How-

ever, it could be the case that users would make less mistakes, but were (much more) slower.

This would decrease the practical interest of our approach. Thus, we also want to evaluate its

efficiency.

The study that we conducted was designed for a controlled environment mostly because

6.1. MODEL-DRIVEN SPREADSHEETS 95

our tool was never tested in production. In order to achieve this controlled environment, we

decided to perform the study in an off-line setting (in an academic environment and not in

industry), and with university students attending a Master’s program. Furthermore, our study

analyzes the specific use of ClassSheet-based models (a subset of the Tabula language equiv-

alent to ClassSheets), and does not consider generic model-driven spreadsheet development.

Finally, in our study, participants were asked to solve realistic problems, in situations that

were closely adapted from real-world situations.

Hypotheses

MDSheet uses models to specify spreadsheets, hence it benefits from advantages such as:

(i) users are freed from the risks associated with editing formulas directly, and (ii) users do not

have to manually identify parts of the spreadsheet that are repeatable (class expansions). In

theory, (i) reduces the number of errors and (ii) improves spreadsheet development perfor-

mance. However, this needs to be tested. Thus, we can informally state two hypotheses:

1. In order to perform a given set of tasks, users spend less time when using model-driven

spreadsheets instead of plain ones.

2. Spreadsheets developed in the model-driven environment contain less errors than plain

ones.

Formally, two hypotheses are being tested: HT for the time that is needed to perform a

given set of tasks, and HE for the error rate found in different types of spreadsheets. They are

respectively formulated as follows:

1. Null hypothesis, HT0 : The time to perform a given set of tasks using MDSheet is not less

than that taken with plain spreadsheets. HT0 :µd É 0, where µd is the expected mean of

the time differences.

Alternative hypothesis, HT1 : µd > 0, i.e., the time to perform a given set of tasks using

MDSheet is less than with plain spreadsheets.

Measures needed: time taken to perform the tasks.

96 CHAPTER 6. EMPIRICAL EVALUATION

2. Null hypothesis, HE0 : The error rate in spreadsheets when using MDSheet is not smaller

than with plain spreadsheets. HE0 :µd É 0, where µd is the expected mean of the differ-

ences of the error rates.

Alternative hypothesis, HE1 : µd > 0, i.e., the error rate when using MDSheet is smaller

than with plain spreadsheets.

Measures needed: error rate for each spreadsheet.

Variables

The independent variables are: for HT the time to perform the tasks, and for HE the error rate.

Subjects and Objects

The subjects for this study were first year Master students undergoing a course at the Uni-

versity of Minho. Out of a total number of thirty-five students that were invited, twenty-five

actually accepted the invitation and participated in our study. More details about the subjects

participating in the study are presented in Section 6.1.3.

The objects for the study consisted in three different kinds of spreadsheets that are de-

scribed later in this paper, in Section 6.1.1. One spreadsheet was used to support an in-study

tutorial that was given to participants before they were actually asked to perform a series of

tasks on the model-driven versions of the remaining two spreadsheets. This design choice at-

tempts to minimize the threats to construct validity, namely the mono-operation bias (please

refer to Section 6.1.4 for more details on threats to validity).

Design

In our study, we followed a standard design with one factor and two treatments, as presented

in (Wohlin et al., 2012). The factor is the development method, that is, spreadsheet develop-

ment without using MDSheet. The treatments are plain and model-driven. The dependent

variables are measurable in a ratio scale, and hence a parametric test is suitable.

6.1. MODEL-DRIVEN SPREADSHEETS 97

Moreover, blocking is provided in the sense that each hypothesis is tested independently

for each object. This reduces the impact of the differences between the two spreadsheets.

Instrumentation

As we have been describing, our study was supported by three distinct kinds of spreadsheets.

For the spreadsheet that was used in the tutorial, we have only constructed its model-driven

version, but for the two remaining spreadsheets we have used both their model-driven and

plain versions.

The spreadsheet that was used in the tutorial was designed to record (simplified) informa-

tion on the flights of an airline company, namely its planes, their crew and the meals available

on-board. As for the two remaining kinds of spreadsheets, they were selected based on their

practical interest: one of them, from now on termed budget, is an adapted version of the Per-

sonal budget worksheet that is available from Microsoft Office’s webpage2 (this spreadsheet

has been downloaded over 4 million times); the other, payments is an adapted version of a

spreadsheet that is being used to register the entire information regarding the payments that

occur in the municipal utilities company Agere3 that is responsible for the water supply in the

city of Braga, Portugal. In order to be usable, we have reduced the size of both spreadsheets,

without changing their complexity.

The given budget spreadsheet had 66 rows and 80 columns with 3306 filled cells. It con-

tained the information for 12 months of 6 consecutive years, organized in 11 different cate-

gories of income/expenses subdivided in income/expense items. Each year and category had

a subtotal, and there was a grand total for the years and another for the categories, all of them

being formulas.

The given payments spreadsheet had 33 rows and 55 columns with 1645 filled cells. It

contained the information for 3 years, subdivided in 9 payment forms with 6 kinds of totals,

and 1 month (January) with 31 days. At the end of each month/year there was also a grand

total.

2http://office.microsoft.com/en-us/templates/personal-budget-worksheet-TC006206279.aspx
3http://www.agere.pt/

98 CHAPTER 6. EMPIRICAL EVALUATION

Guidelines were also provided to participants: they consisted of the list of tasks to be per-

formed. For both spreadsheets, three tasks were given (non-essential data is omitted, being

replaced by “[...]”):

Budget

i) “Add to the budget two new categories of expenses, [...], with the following ex-

penses [...].”

i i) “Add a new year, [...], to the budget keeping the structure of the spreadsheet, and

insert the following data: [...].”

i i i) “Delete the information from categories [...].”

Payments

i) “Add a new month, [...], maintaining the structure of the spreadsheet and add the

following data: [...].”

i i) “Add a new year, [...], keeping the structure of the spreadsheet and insert the fol-

lowing data: [...].”

i i i) “Change the spreadsheet in order to remove the information related to kind of pay-

ment [...], removing the corresponding column.”

Several versions of the lists of tasks were prepared, where each version had a specific task

order, thus each participant performed the tasks sequentially in a random order. This was

done to avoid learning effects on the tasks, as also done in other studies (for instance in (Hen-

ley & Fleming, 2014)). The data to be inserted did not contain more than six values per task.

The participants had to update the formulas to include new references to cells when needed.

The full description of the six tasks, that include the data to be added to the spreadsheets, is

available at the tool webpage presented earlier.

To evaluate the participants’ work, each task was sub-divided in small parts equivalent

to each “atomic” operation that they should perform. This division into several operations

allows to create a better profile of spreadsheet errors, enabling us to see where users make

6.1. MODEL-DRIVEN SPREADSHEETS 99

mistakes: insertion of cell for the new data, input of data, update of formulas. They are precise

enough but without introducing unnecessary complexity to the analysis of the results. With

this division we intend to analyze common errors that users make, e.g., input of wrong values,

oblivion to update formulas, and (implicit) layout changes.

For the budget spreadsheet, we have the following sub-division, with a total of twenty-

three items:

• ten items for i), corresponding to inserting the lines for the data, inserting the values,

and updating the formulas;

• nine items for i i), corresponding to inserting the new cells, inserting the data, inserting

the formulas, and updating the formulas for the totals;

• four items for i i i), corresponding to removing the categories, and updating the formu-

las.

For the payments spreadsheet, we have the following sub-division, with a total of ten items:

• four items for i), corresponding to inserting new cells for the data, inserting the data,

and updating the formulas;

• four items for i i), corresponding to inserting new cells for the data, inserting the data,

and updating the formulas;

• two items for i i i), corresponding to deleting the columns and updating the formulas.

In order to understand the background of the subjects and the difficulties they experi-

enced when participating in the study, two questionnaires were prepared: one answered be-

fore the study itself (pre-questionnaire) and another after (post-questionnaire).

The data collected consists of the modified spreadsheets by the participants, and some

information about the performance of our model-driven environment. For that, the MDSheet

add-on was modified in order to provide a log of the user actions when working with the

model-driven spreadsheet. This log contains the action performed (e.g., “add instance” and

“remove class”), and how much time the system took for each action.

100 CHAPTER 6. EMPIRICAL EVALUATION

Data Collection Procedure

Several steps were planned to run the study, with two distinct options in the order they should

be performed. One of them is:

1. Filling the pre-questionnaire.

2. Performing the sets of tasks on the two plain spreadsheets, with a time limit of fifteen

minutes.

3. Attending the tutorial on MDSheet.

4. Performing the sets of tasks on the two model-driven spreadsheets, with a time limit of

fifteen minutes.

5. Filling the post-questionnaire.

6. Collecting all spreadsheets, questionnaires and logs.

The other option is: (1), (3), (4), (2), (5), and (6). This option consists of first performing

the operations with the model-driven environment and then the operations on plain spread-

sheets, as opposed to the first option in which the operations on plain spreadsheets is first.

This design choice attempts to minimize the learning effects between treatments and so the

validity threats. This is a common technique used in other studies, for instance in (Henley &

Fleming, 2014).

In steps (3) and (6), our team was expected to have a direct participation, giving the tutorial

in step (3) and retrieving, in step (6), all the artifacts used or created by the subjects.

All the subjects of our study were expected to perform the two sets of tasks on the re-

spective spreadsheets. The goal of the study is not to compare one spreadsheet against an-

other, but instead to compare two methods to develop spreadsheets. Furthermore, using two

spreadsheets permits to reduce the mono-operation bias (see Section 6.1.4).

6.1. MODEL-DRIVEN SPREADSHEETS 101

Analysis Procedure and Evaluation of Validity

The analysis of the collected data is achieved performing paired tests where the performance

of each subject on the plain version of the spreadsheet is tested against the model-driven

version. For this, the following tests are available: paired t-test, Wilcoxon sign rank test, and

the dependent-samples sign-test.

Since the study is composed of several tasks, and each participant may not complete all

of them, participants that do not complete all the tasks for both treatments of a spreadsheet

will be discarded from the global analysis of that spreadsheet. This will allow us to compare

the results of the remaining participants against each other, and not doing so could lead to

incorrect illations given that a concrete task may be more error-prone than the others.

To ensure the validity of the data collected, several kinds of support were planned: con-

stant availability to clarify any doubt, tutorial to teach the model-driven development pro-

cess, and slightly supervise the work done by the subjects in a way that do not interfere with

their work. This last point consists of navigating through the room and see which subjects

look like they are having problems and try to help them if it is about something that does not

influence the results of the study.

6.1.2 Execution

The study was performed in two classrooms with twenty-five university students, eleven in

one room and fourteen in the other one. The participants were randomly assigned to each

room. All performed the study at the same time, but with different execution orders depend-

ing on the room that they were in.

The participants first started filling the pre-questionnaire, with generic information about

themselves (gender, age range, and undergraduate major). They also answered some ques-

tions so we could assess their previous experience with spreadsheets.

While they filled the questionnaire, we checked if their environment was correctly set. This

environment consisted in a virtual machine with Lubuntu 11.10 as the installed operating

system, where we pre-installed LibreOffice Calc, and our add-on – MDSheet.

102 CHAPTER 6. EMPIRICAL EVALUATION

The list of tasks to be performed was then distributed amongst the participants, and they

had fifteen minutes to perform all the tasks on the spreadsheets, but without the assistance

of our framework.

Before telling the participants to perform the tasks on the spreadsheets with the models,

they attended the tutorial that we prepared on how to use the MDSheet framework. During

the tutorial, we answered all the questions that the participants had, making sure that they

could use the framework.

The subjects in one room first performed the tasks with plain spreadsheets, then attended

the tutorial and then performed the tasks on model-driven spreadsheets. The subjects in

the other room first attended the tutorial, then performed the tasks on model-driven spread-

sheets, and finally performed the tasks on plain spreadsheets.

At the end, we gave the post-questionnaire to the participants to evaluate the confidence

that they had on their performance during the study. Finally, we collected the modified spread-

sheet files, so that we could analyze them later on.

6.1.3 Analysis

The global quantitative analyses were performed with results of the subjects that completed

all the tasks for any of the given spreadsheets as described in Section 6.1.1. This results in 15

subjects for the budget spreadsheet, and 12/11 for the payments one (for time/error analysis,

respectively, as participant 3 only submitted the times taken in each task, but not the resulting

spreadsheets themselves).

Descriptive Statistics

Subjects: Basic information about the subjects was gathered, namely their gender, age, stud-

ies’ background, and familiarity with spreadsheets. From the twenty-five subjects, twenty-

one are male and four are female. Most of them are aged between twenty and twenty-eight,

with two subject being over thirty-one. The subjects come from different areas, most of them

having a background in informatics engineering or computer science, but others come from

6.1. MODEL-DRIVEN SPREADSHEETS 103

information technology and communication, IT for health, or IT management. Two of the

subjects never worked with spreadsheets previously and the levels of experience vary from

having used at least once to an heavy usage.

Time spent: As expected, differences were found in the time that subjects used to perform

the tasks. The minimum times recorded on each spreadsheet were by participants using the

model-driven environment, with average times being lesser for the model-driven approach.

Figure 6.1 shows the time each participant took to achieve the given tasks, both with and

without the model-driven environment, for the budget spreadsheet. Only the results for the

subjects that performed all the tasks are displayed to allow for an easier comparison.

1 2 4 6 7 8 9 11 13 15 16 17 21 24 25
00:00

05:00

10:00

15:00

Model-Driven

Plain

Subject

T
im

e
 (

m
m

:s
s

)

1 2 3 5 7 8 11 13 15 18 21 22
00:00

05:00

10:00

15:00

Model-Driven

Plain

Subject

T
im

e
 (

m
m

:s
s

)

Figure 6.1: Time used to perform the tasks on the budget spreadsheet.

Similar results were obtained for the payments spreadsheet, as shown in Figure 6.2.

1 2 4 6 7 8 9 11 13 15 16 17 21 24 25
00:00

05:00

10:00

15:00

Model-Driven

Plain

Subject

T
im

e
 (

m
m

:s
s

)

1 2 3 5 7 8 11 13 15 18 21 22
00:00

05:00

10:00

15:00

Model-Driven

Plain

Subject

T
im

e
 (

m
m

:s
s

)

Figure 6.2: Time used to perform the tasks on the payments spreadsheet.

Error rates: To evaluate the correctness of the spreadsheets produced during the study, er-

104 CHAPTER 6. EMPIRICAL EVALUATION

ror rates are used. Each of the six tasks requires a set of spreadsheet operations to be correctly

performed. Such operations included: adding a new row, adding a new column, changing

the value of a cell, or changing the value of a formula. One error occurs when the participant

does not perform one of those operations (e.g., the formula was not updated after inserting

a new record), or the operation was performed incorrectly (e.g., the wrong value was intro-

duced in the cell). The errors obtained correspond to the percentage of (sub)tasks that were

not performed correctly.

Error rates for the plain budget spreadsheet are around 50%, most of the errors being re-

lated to wrong formulas. Some errors are also present in the model-driven version of this

spreadsheet, but they are in much lesser quantity since the environment deals automatically

with the formulas. The errors present in the model-driven version (and also present in the

plain one) result from the input of wrong values, or their input in the wrong places. This in-

formation is graphically shown in Fig. 6.3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26

-864

-691

-518

-346

-173

00

173

346

Pagamentos

T1

T2

T3

Ti
m

e
D

iff
er

en
c e

 (
s)

1 2 4 6 7 8 9 11 13 15 16 17 21 24 25
0%

20%

40%

60%

80%

100%

Model-Driven

Plain

Subject

E
rr

o
r

R
a

te
 (

%
)

1 2 5 7 8 11 13 15 18 21 22
0%

20%

40%

60%

80%

100%

Model-Driven

Plain

Subject

E
rr

o
 R

a
te

 (
%

)

Figure 6.3: Error rate in the budget spreadsheet.

Similar results were obtained for the payments spreadsheet (see Fig. 6.4), with a slightly

higher error rate for the plain version of the spreadsheet (around 60%).

This analysis was also performed at the task level, yielding similar results. They are not

shown here since they do not bring any relevant information than what is already presented.

Subjects made mistakes in both plain and model-driven spreadsheets. Typical errors made

in plain spreadsheets are the wrong or misplaced values, a wrong formula, and the lost of the

spreadsheet structure. In the model-driven version the only type of errors are the wrong and

6.1. MODEL-DRIVEN SPREADSHEETS 105

1 2 4 6 7 8 9 11 13 15 16 17 21 24 25
0%

20%

40%

60%

80%

100%

Model-Driven

Plain

Subject

E
rr

o
r

R
a

te
 (

%
)

1 2 5 7 8 11 13 15 18 21 22
0%

20%

40%

60%

80%

100%

Model-Driven

Plain

Subject

E
rr

o
 R

a
te

 (
%

)

Figure 6.4: Error rate in the payments spreadsheet.

misplaced values.

Hypothesis Testing

The significance level used throughout the evaluation of all the tests is 0.05. The evaluation

of the tests was performed using the R environment for statistical computing (R Core Team,

2013).

Comparison of times: The difference of times between the execution of tasks in plain

spreadsheets and model-driven ones do not follow a normal distribution. Thus, we used the

Wilcoxon test, which is the best fit for these cases (Wohlin et al., 2012).

The results obtained from the tests show that for model-driven spreadsheet development,

in the particular case when our tool is used, the time taken to perform the tasks is statistically

less than when using a plain spreadsheet (with p-value of 0.007882 for the budget spreadsheet

and 0.0002441 for the payments one).

Comparison of error rates: The differences of error rates between plain spreadsheets and

model-driven ones do not follow a normal distribution. Thus, we used a Wilcoxon test to test

the null hypotheses for both spreadsheets, in order to be able to compare the results.

The results obtained from the tests show that for model-driven spreadsheet development,

in the particular case when our tool is used, the number of errors are statistically less than

when using a plain spreadsheet (with p-value of 0.0003579 for the budget spreadsheet and

0.001911 for the payments one).

106 CHAPTER 6. EMPIRICAL EVALUATION

6.1.4 Interpretation

The results from the analysis suggest that a model-driven approach to spreadsheet devel-

opment can improve users’ performance, while reducing the error rate. Moreover, from the

questionnaires we can conclude that subjects felt more confident in the results of the model-

driven approach compared to the the plain one. This indicates that some restrictions on the

development process are welcome by the user since they understand this will make them per-

form better on their tasks.

Threats to validity

The goal of the study is to demonstrate a causal relationship between the use of a model-

driven approach and improvements in the spreadsheet development process. Moreover, this

study is defined to ensure that the actual setting used represents the theory we developed.

Next, validity threats for this study are analyzed, divided in four categories as defined

in (Cook & Campbell, 1979), namely: conclusion validity, internal validity, construct valid-

ity, and external validity.

Conclusion validity. The main concern is the low statistical power due to the low number

of participants. To overcome this issue more powerful statistical tests were performed where

possible, taking always into account the necessary assumptions.

Problems related to measures can also arise, e.g., the times that the subjects took to per-

form the tasks. Nevertheless no significant differences to the real values are expected. More-

over, subjects performed the same tasks and in an environment that they are used to. Also,

subjects have a similar background, which minimizes the risk of the variation being due to in-

dividual differences instead of the use of different treatments, but introduces problems when

generalizing (see further on).

6.1. MODEL-DRIVEN SPREADSHEETS 107

Internal validity. In order to minimize the effects on the independent variables that would

reflect on the causality, several actions were taken. First, this study, with these subjects, is

executed only once, some starting with plain spreadsheets and subsequently with the model-

driven environment, while others starting with the model-driven environment and then work-

ing with the plain spreadsheets, with the goal to reduce learning effects. Second, the time to

perform the study was reduced as much as possible so that the subjects could remain focused

during all the study. Third, the instruments used (e.g., spreadsheets and questionnaires) were

defined so that we could collect just what was needed. Fourth, all the subjects performed the

same tasks, so issues from having different groups with distinct treatments do not arise. How-

ever, the tasks were performed in a random order to avoid learning effects. Specifying as much

as possible the study, we obtained more control and reduced possible internal validity threats.

Construct validity. For this validity, several hypotheses to cover the aspects to analyze were

defined with much detail, and mono-operation bias was reduced using two spreadsheets to

collect data. Furthermore, the subjects were guaranteed to not be affected by this study, since

they were not under evaluation (this was said to them several times during the study exe-

cution), and they were put at ease so that they would perform as much like in a real-world

setting.

The tasks we asked users to perform are common in spreadsheets. Some of them, e.g.,

updating a formulas after adding/removing data, are automated by our setting exploiting in-

formation that is inferred from the underlying model. While this may suggest that MDSheet

is being favored by our study, the fact is that such framework incorporates multiple automa-

tion opportunities while also adding ways to interact with spreadsheets that users are not

accustomed to. So, our framework and its usage could actually suffer from participants: a)

exploiting one automation opportunity when asked to explore another, e.g., due to misuse

of MDSheet’s features; and b) participants ending up constructing spreadsheets with an in-

correct structure, e.g., due to misuse of instance evolution steps. Moreover, it would not be

possible to compare both treatments equally if part of the operations were not considered.

108 CHAPTER 6. EMPIRICAL EVALUATION

Thus, we believe the study construction permits to evaluate the use MDSheet in a real sce-

nario of usage.

External validity. This validity is related to the ability to generalize the results of the experi-

ment to industrial practice. For that, the spreadsheets used to collect the data were based on

real-world ones. However, since this study was performed with a small homogeneous group,

the results from this study cannot be generalized without analyzing the domain where to ap-

ply.

Inferences

Since this study was performed in a very specific setting, we cannot generalize to every case.

Nevertheless, our setting was the most similar possible to a real one, where spreadsheets

were based on real ones and Master students studies can come close to ones with profession-

als (Höst, Regnell, & Wohlin, 2000), so the results could be as if it was performed in a industry

setting with professionals. This can bring the possibility that model-driven spreadsheet de-

velopment can be useful, and studies in the industry can be used to assess the methodology

in specific cases.

6.1.5 Discussion

The empirical study we conducted reveals very promising results for model-driven spread-

sheets. Although participants had little time to learn model-driven spreadsheets, they com-

pleted their tasks faster and with less errors using such spreadsheets compared to the ones

without models. This suggests that with little training users can greatly benefit from the use

of models guiding them. Moreover, as we theorized, it was apparently easy to use the model-

driven setting in an environment users are used to, that is, a spreadsheet system.

Nevertheless, from the study results we can also see how to improve our framework. The

errors committed by participants in the model-driven environment were similar to the ones

6.1. MODEL-DRIVEN SPREADSHEETS 109

found in the plain spreadsheets. Two kinds of errors were found: both correct and incorrect

values inputted in the wrong cell and incorrect values inputted in the correct cell.

Although our observations seem to indicate that we are in the right research direction,

they also indicate that more techniques and tools are necessary to aid users with always in-

putting the correct values in the correct places.

To improve on the first scenario, where values are inserted in wrong places, we believe the

following solutions could help:

• Labels’ context: as often happens, the spreadsheets we gave to participants had blocks

of cells repeated over columns/rows (e.g., payments over months, budgets over years).

Given this scenario, it is quite easy to scroll over the spreadsheet and lose visual contact

with labels, mainly in large spreadsheets. We believe that keeping labels always visible

would help users to input the values in the correct cells. Thus, we plan to make labels as

visible as possible. This can be achieve in two ways: first, one could use the spreadsheet

mechanism that allows to keep some columns/rows visible always; second, given that

our spreadsheets have a corresponding model where labels are known, MDSheet could

repeat label cells every number of columns/rows it would see appropriate, or it could

also suggest the person creating the model to repeat such labels when again it would

see fit.

• Complete row/column context: we believe the previous solution can still be improved.

Even with labels visible, inputting values “far” from labels can be error-prone. A possible

helper mechanism would be to highlight the column/row corresponding to the cell the

user is currently selecting. This would give extra context to the users’ actions and would

possibly minimize inputting values in the wrong cells.

To help in the second scenario, that considers wrong values inserted in the right places,

we believe to have already created improvement mechanisms in the past:

• The first one is the possibility of restricting the range and kind of values users can in-

sert in the cells (J. Cunha, Fernandes, & Saraiva, 2012). For instance, when creating the

110 CHAPTER 6. EMPIRICAL EVALUATION

model, it is possible to specify that a range of cells can only have values between a range

of integers (for instance, between 0 and 10, for an exam marking spreadsheet). This will

probably not avoid all input errors, but will avoid some. It can also be seen as documen-

tation, as the error messages the users get explain them which range/kind of values are

expected (J. Cunha, Fernandes, Mendes, & Saraiva, 2012).

• A second mechanism is the set of tools we have created to find bad smells and faults in

spreadsheets. A bad smell may not be an error, but may lead to one. By pin pointing the

bad smells in a spreadsheet may help the user to find the errors contained in it (J. Cunha,

Fernandes, Mendes, Martins, & Saraiva, 2012; J. Cunha, Fernandes, Ribeiro, & Saraiva,

2012). These smells can further be analyzed by a fault-localization algorithm which

will point more precisely to the faults contained in a spreadsheet (Abreu et al., 2014a,

2014b).

All these potential solutions need, of course, to be empirically validated. We plan to in-

clude them in MDSheet and pursue further validation both individually and in combination.

To improve the second problem, the wrong values, we propose the integration of known

techniques such as testing (Abraham & Erwig, 2006a, 2007a, 2007b, 2009; Fisher II, Cao, Rother-

mel, Cook, & Burnett, 2002; Fisher II et al., 2006; Rothermel, Burnett, Li, Dupuis, & Sheretov,

2001) and smell finders (Asavametha, 2012; J. Cunha, Fernandes, Ribeiro, & Saraiva, 2012;

Hermans, Pinzger, & Deursen, 2012; Hermans, Pinzger, & van Deursen, 2012). It is quite dif-

ficult to know if an inputted value is correct or not, but testing techniques could aid the user

to know better. Moreover, smells can help users to search for places that can be potentially

dangerous in the sense that errors can arise from those spreadsheet locations.

6.2 Bidirectional Evolution Environment

An empirical study was performed in order to assess the practicality and understandability

of the bidirectional transformation features implemented in the MDSheet LibreOffice exten-

sion. This study, in contrast to the one presented in the previous section, was made to obtain

6.2. BIDIRECTIONAL EVOLUTION ENVIRONMENT 111

feedback from the users and thus falls into the qualitative category.

Therefore, four people performed the study. They work in a secretariat at the University

of Minho and have large experience in using spreadsheets. However, they are only end users

and do not have any programming experience nor model-driven software development back-

ground.

The study was composed by:

• an explanation on the concepts and features of MDSheet;

• a tutorial where the participant was shown how to perform a given task, and then the

participant would have to do a similar one;

• a set of tasks performed on two spreadsheets.

The study was designed for a controlled environment and in an off-line setting. The tasks

were defined to represent realistic problems from real-world spreadsheets and were performed

in a virtual machine in the author’s computer.

Initial explanation. The explanation started with a description of the concepts behind

model-driven engineering, i.e., the use of a model to describe the spreadsheet. Then, the con-

crete approach to model-driven spreadsheets was presented, with the description of what the

model and its contents abstract in the spreadsheet.

Tutorial. The tutorial started with a description of the work, explaining the application of

model-driven engineering to spreadsheets as is described in this work. It was supported by a

list of tasks displayed in a web browser and a spreadsheet to perform those tasks. A spread-

sheet to register the flights of an aviation company served as the base spreadsheet to perform

the tasks tutorial. The tasks consisted in adding data to the spreadsheet (the instance), adding

new features to the model (e.g., a column or row and some attribute), adding a new feature to

the model but only in one repetition of the instance. With these tasks it was shown the nec-

essary features to perform the tasks of the study. The duration of the preparation of the study

112 CHAPTER 6. EMPIRICAL EVALUATION

was of about 30 minutes (10 minutes for the explanation part and 20 minutes to perform the

tutorial tasks).

Study tasks. The study tasks were performed using two distinct spreadsheets. One of the

spreadsheets was for budgeting, with two main categories for income and expenses along a

series of months. Each of these categories contained multiple items (originally three and six,

respectively) and there were records along twelve months. The other spreadsheet contained

records of hourly oil extraction in different locations for a given day, (originally twenty-four

hours and two locations).

Each participant performed tasks on both spreadsheets, but the order of each spreadsheet

was random. The tasks consisted in adding a formula attribute, adding an entry to insert new

data, and adding a new attribute in one object of the instance. The first task only required

changes to the model, the second only to the instance and the third required changes to the

instance and then to the model. However, no indication on which artefact the task should be

performed was given. Therefore, the participant would have to think which of the artefacts

would be the correct one to perform the task, thus showing if the participant understood the

concept and how it was supposed to be used.

The study was one-on-one, i.e., subjects participated one at a time with the supervision of

the author, and during their working hours. The tasks were performed by themselves, under

the supervision of the author, with help when they were blocked for some reason. The par-

ticipants were encouraged to think aloud, which allowed to understand the difficulties they

faced.

Analysis. The participants faced some difficulties, namely due to concrete implementation

of the embedding. One of the issues was the closeness of the button to add new objects to the

data, which lead to the involuntary press of this button and the consequent addition of a new

object. Nevertheless, this was of no importance to the study and was ignored when it hap-

pened (the participants told when they pressed involuntarily). Another technical issue was

the limitation in the use of the undo feature. In one case, the participant corrected an incor-

6.2. BIDIRECTIONAL EVOLUTION ENVIRONMENT 113

rect action using further evolution operations. However, in other cases, the participant was

said to ignore the issue and to proceed, with the incident being logged for posterior analysis.

The feedback given by the participants was related to the concrete implementation (with-

out impact to the study) and related to the model-driven approach (also without impact to

the study). Some said that certain tasks were simple due to the automation inherent to the

approach and that the approach was accessible.

Interpretation. This study had only four participants and thus the interpretation of the re-

sults needs some caution. Nevertheless, the results show some important aspects to improve.

First, two of the participants were nervous and unfocused while the other two showed

more interest in the tool and the approach. For the ones the former case, a study spread over

time would have been more beneficial in order to introduce some familiarity and allowing the

participants to feel more at ease and focused on the subject. This is directly related to how the

study was performed. Nevertheless, all participants said that with some more experience they

would have performed better.

Second, the given tasks were not very precise in terms of the concrete actions to perform.

This was with the purpose to not bias them towards the correct answer. At first, mainly during

the tutorial and a little while performing the study tasks and they were blocked, the partici-

pants were asked to talk about what was the solution they were thinking. Feedback was then

given as the participants were not familiar with neither the problem nor the model-driven

approach.

Finally, all participants made mistakes but, by the end of the study, the participants that

were more focused were able to understand which artefact was the one where to perform the

task. Also, as a result of the approach and implementation, some mistakes were prevented,

namely the introduction of data or new attributes in the spreadsheet instance. This made

them think about what they were doing and lead them to change their action to the correct

one.

114 CHAPTER 6. EMPIRICAL EVALUATION

Discussion. This study approached the subject in a lightweight form, gathering feedback

from a little exposure to the model-driven spreadsheets, the bidirectional environment itself

and the used spreadsheets. In order to have an in-depth analysis of the value of the bidi-

rectional transformation environment, a more detailed study is required. This study would

require a more robust tool, allowing it to be used in an on-line scenario. This would allow to

gather deeper information on the bidirectional environment, as the subjects would work on

solutions that they are familiar with, and with a new paradigm that would be integrated in

their workflow.

Nevertheless, the results are positive as some of the participants understood the approach

at the end of the study and appreciated the benefits it can provide.

Chapter 7

Conclusion

Spreadsheets are used as a programming language to solve computation and storage prob-

lems. However, end user interaction is error prone. Spreadsheets lack tools to support ap-

plication development. Many spreadsheet users are not aware of best practices to prevent

errors, nor are aware of tools to help them audit or verify the correctness of their spreadsheet.

Proposed solutions in the literature are not sufficient. They either tackle specific issues

or the solutions they provide are not user friendly. For instance, a situation that fits in the

former case is the analysis of only spreadsheet formulas to help refactor them in order to

prevent mistakes and make them more understandable. Another instance, which fits in the

latter situation, consists in defining spreadsheet models that are usable by machines (e.g., to

create or to process spreadsheets) but that users cannot take advantage of. Note that the user

interaction is the most delicate part.

7.1 Model-Driven Spreadsheet Development

The work from this thesis brings the means to spreadsheet users build their solutions safely

and with minimal effort. This work relies on common software development methodologies,

namely model-driven engineering, and builds upon previous work on this topic, specifically

on model-driven spreadsheet development.

115

116 CHAPTER 7. CONCLUSION

As a first contribution, a new domain-specific modelling language for spreadsheets is pre-

sented. Tabula is a new language with origins on ClassSheets, with the ability to use a visual

notation similar to spreadsheets to describe models. Its internal representation is completely

different, allowing a more powerful specification of spreadsheets and overcoming limitations

from the ClassSheet language. Tabula are also embedded within spreadsheets themselves

providing a unique tool to develop spreadsheets, which users are already familiar with.

As another contribution, a bidirectional transformation engine was developed on top of

Tabula and spreadsheets, allowing the evolution of spreadsheet specifications thus giving

support to users along the life cycle of a spreadsheet.

The use of model-driven spreadsheets was evaluated with end users through empirical

studies, using a prototype provided as an extension to LibreOffice Calc. This prototype, MD-

Sheet, started by implementing embedded ClassSheets (now replaced by the Tabula language),

its instances, the bidirectional transformation engine and further features for experimenta-

tion. The empirical studies aimed at:

1. assessing the expressiveness of the language to model real world spreadsheets;

2. validating the benefits of model-driven spreadsheets over plain spreadsheet usage,

namely the decrease of errors and the increase in productivity;

3. assessing if end users understand the role of the bidirectional transformation engine

and if they can use and benefit from it.

The expressiveness of the initial modelling language (embedded ClassSheets) was not enough

to model many kinds of real-world spreadsheets, which lead to the development of Tabula, a

more powerful language. Nevertheless, the application of a model-driven methodology to

spreadsheet development is beneficial, reducing error rates and increasing the performance

of end users. These benefits derive from the restrictions that the models impose on the devel-

opment, preventing a class of errors by construction. However, users have some difficulties

in understanding the bidirectional transformation effects in some cases at first, but they felt

confident these difficulties would be removed with training and with more experience using

7.2. SPREADSHEET ENGINEERING 117

the prototype.

The proposed solution intends to take common software development tools and tech-

niques to create safe spreadsheets and improve end user performance automating repetitive

and monotonous tasks. The results of the empirical studies show that this was accomplished

to a certain point, with users being able to use the prototype, making less mistake and taking

less time to accomplish the proposed tasks.

7.2 Spreadsheet Engineering

Spreadsheet users may profit from further research unrelated to model-driven engineering.

One topic of research is the use of other programming paradigms. On this topic, the author

of this thesis cooperated with Pedro Maia, Henrique Rebêlo and João Saraiva to bring Aspect-

Oriented Programming (AOP) to spreadsheets (Maia, Mendes, Cunha, Rebêlo, & Saraiva, 2015).

This work presents a new language to apply aspects to spreadsheets, i.e., small parts of spread-

sheet “code” that promote modularization and allows the introduction of new features to a

spreadsheet in a non-intrusive manner.

Another research topic is the analysis of spreadsheets and their classification. Having

spreadsheet corpora helps researchers to understand better the structure of spreadsheets and

how users use them. Some existing corpora include the EUSES spreadsheet corpus (Fisher II

& Rothermel, 2005), the Enron spreadsheets (Hermans & Murphy-Hill, 2015) and VEnron ver-

sioned corpus (Dou et al., 2016). From these examples, only the EUSES corpus includes some

classification of the spreadsheets it contains, but which was performed manually. Therefore,

taking the EUSES corpus as a starting point, a new methodology to classify spreadsheets into

different domains was devised in collaboration with Kha N. Do and João Saraiva (Mendes, Do,

& Saraiva, 2016). Although with good results in terms of classification, using the EUSES as a

training data set is not ideal due to its biased and ad hoc manual classification, resulting in

unrealistic automatic classification. Further work is required to produce an initial data set

suitable to train the classification algorithms, allowing then researchers to benefit from the

ability to process large spreadsheet corpora with minimal manual effort.

118 CHAPTER 7. CONCLUSION

Further related work that relies on spreadsheet analysis includes smell detection, which

helps to find potentially erroneous cells or patterns. Spreadsheet host systems already pro-

vide smell detection to some degree, but many more situations can be harmful to spread-

sheets. These were taken from smell detection in common software, as introduced by Fowler

(1999). These smells were applied to spreadsheet formulas and references (Hermans, Pinzger,

& Deursen, 2012; Hermans, Pinzger, & van Deursen, 2012) and to cells in general (Abreu et al.,

2014a, 2014b; J. Cunha, Fernandes, Mendes, Martins, & Saraiva, 2012; J. Cunha, Fernandes,

Ribeiro, & Saraiva, 2012).

Many more research topics related to improving the spreadsheet paradigm exist, with

much research for common software engineering being applicable to spreadsheets.

7.3 Future Work

The work presented in this dissertation covers the core of spreadsheet specification, with

many features commonly used still needing to be formalized. Thus, future work is required to

specify these features, but also to provide a solid spreadsheet development environment.

Tabula is a language to specify single spreadsheet tables. The use of multiple worksheets

is not taken into account. However, support for multiple tables and instances, thus forming

a complete spreadsheet file, can be added by expanding the referencing notation, e.g., by

including the Tabula name as another level. Additional sheets and respective models bring

further issues, e.g.:

• Are references to another model to all the Tabula instances, to a specific one or to a

subset of the instances?

• How to specify a reference to a specific sheet in the model?

In order to find an optimal and practical solution, studies on real world spreadsheets are re-

quired. From these studies, we should gather information on how sheets are related at a

higher level (i.e., at the level of the model), if that is a good solution, and how should that

high-level information be related in a concrete spreadsheet solution.

7.3. FUTURE WORK 119

Furthermore, since Tabulae model tables, how should the other features in spreadsheets

be modelled? These other features include pivot tables and charts amongst other common

features.

An initial solution for these problems as already been presented and is being developed

(Mendes et al., 2017a, 2017b). This solution, instead of modelling the spreadsheet itself, mod-

els the process to construct a spreadsheet, using ClassSheet models to specify the tables. The

use of these ClassSheet models can be replaced by Tabula models. This work shows the ne-

cessity of having powerful formal models able to specify artefacts that are developed and used

by users lacking in programming knowledge, but also to guide those users.

Additionally, Tabula models can be used in any other kind of software to describe tables

that do not just follow the pattern with one header row and multiple other rows for data and

that also contain computation using formulas.

120 CHAPTER 7. CONCLUSION

References

Abraham, R., & Erwig, M. (2006a). Autotest: A tool for automatic test case generation in

spreadsheets. In 2006 IEEE Symposium on Visual Languages and Human-Centric Com-

puting (VL/HCC) (pp. 43–50). IEEE Computer Society. doi: 10.1109/VLHCC.2006.11

Abraham, R., & Erwig, M. (2006b). Type inference for spreadsheets. In Proceedings of the

8th ACM SIGPLAN International Conference on Principles and Practice of Declarative

Programming (PPDP) (pp. 73–84). ACM. doi: 10.1145/1140335.1140346

Abraham, R., & Erwig, M. (2007a). GoalDebug: A spreadsheet debugger for end users. In

Proceedings of the 29th International Conference on Software Engineering (ICSE) (pp.

251–260). IEEE Computer Society. doi: 10.1109/ICSE.2007.39

Abraham, R., & Erwig, M. (2007b). UCheck: A spreadsheet type checker for end users. Journal

of Visual Languages & Computing, 18(1), 71–95. doi: 10.1016/j.jvlc.2006.06.001

Abraham, R., & Erwig, M. (2009). Mutation operators for spreadsheets. IEEE Transactions on

Software Engineering, 35(1), 94–108. doi: 10.1109/TSE.2008.73

Abraham, R., Erwig, M., Kollmansberger, S., & Seifert, E. (2005). Visual specifications of correct

spreadsheets. In 2005 IEEE Symposium on Visual Languages and Human-Centric Com-

puting (VL/HCC) (pp. 189–196). IEEE Computer Society. doi: 10.1109/VLHCC.2005.70

Abreu, R., Cunha, J., Fernandes, J. P., Martins, P., Perez, A., & Saraiva, J. (2014a). FaultySheet

Detective: When smells meet fault localization. In 2014 IEEE International Conference

on Software Maintenance and Evolution (ICSME) (pp. 625–628). IEEE Computer Society.

doi: 10.1109/ICSME.2014.111

Abreu, R., Cunha, J., Fernandes, J. P., Martins, P., Perez, A., & Saraiva, J. (2014b). Smelling faults

121

http://dx.doi.org/10.1109/VLHCC.2006.11
http://dx.doi.org/10.1145/1140335.1140346
http://dx.doi.org/10.1109/ICSE.2007.39
http://dx.doi.org/10.1016/j.jvlc.2006.06.001
http://dx.doi.org/10.1109/TSE.2008.73
http://dx.doi.org/10.1109/VLHCC.2005.70
http://dx.doi.org/10.1109/ICSME.2014.111

122 REFERENCES

in spreadsheets. In 2014 IEEE International Conference on Software Maintenance and

Evolution (ICSME) (pp. 111–120). IEEE Computer Society. doi: 10.1109/ICSME.2014.33

Asavametha, A. (2012). Detecting bad smells in spreadsheets (Master’s thesis). Oregon State

University.

Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., & Zhu, Y. (2003). Bounded model checking.

Advances in Computers, 58(11), 117–148.

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues for

field settings. Houghton Mifflin.

Cunha, A. (2014). Bounded model checking of temporal formulas with Alloy. In Abstract State

Machines, Alloy, B, TLA, VDM, and Z (pp. 303–308). Springer Berlin Heidelberg. doi:

10.1007/978-3-662-43652-3_29

Cunha, J., Fernandes, J. P., Mendes, J., Martins, P., & Saraiva, J. (2012). SmellSheet Detective:

A tool for detecting bad smells in spreadsheets. In 2012 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC) (pp. 243–244). IEEE Computer

Society. doi: 10.1109/VLHCC.2012.6344535

Cunha, J., Fernandes, J. P., Mendes, J., Pacheco, H., & Saraiva, J. (2012). Bidirectional transfor-

mation of model-driven spreadsheets. In Theory and Practice of Model Transformations

– ICMT 2012 (pp. 105–120). Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-

30476-7_7

Cunha, J., Fernandes, J. P., Mendes, J., & Saraiva, J. (2011). Embedding and evolution of

spreadsheet models in spreadsheet systems. In 2011 IEEE Symposium on Visual Lan-

guages and Human-Centric Computing (VL/HCC) (pp. 179–186). IEEE Computer Soci-

ety. doi: 10.1109/VLHCC.2011.6070396

Cunha, J., Fernandes, J. P., Mendes, J., & Saraiva, J. (2012). Extension and implementation

of ClassSheet models. In 2012 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC) (pp. 19–22). IEEE Computer Society. doi: 10.1109/VL-

HCC.2012.6344473

Cunha, J., Fernandes, J. P., Mendes, J., & Saraiva, J. (2015). Embedding, evolution, and valida-

tion of model-driven spreadsheets. IEEE Transactions on Software Engineering, 41(3),

http://dx.doi.org/10.1109/ICSME.2014.33
http://dx.doi.org/10.1007/978-3-662-43652-3_29
http://dx.doi.org/10.1109/VLHCC.2012.6344535
http://dx.doi.org/10.1007/978-3-642-30476-7_7
http://dx.doi.org/10.1007/978-3-642-30476-7_7
http://dx.doi.org/10.1109/VLHCC.2011.6070396
http://dx.doi.org/10.1109/VLHCC.2012.6344473
http://dx.doi.org/10.1109/VLHCC.2012.6344473

REFERENCES 123

241–263. doi: 10.1109/TSE.2014.2361141

Cunha, J., Fernandes, J. P., Ribeiro, H., & Saraiva, J. (2012). Towards a catalog of spread-

sheet smells. In Computational Science and Its Applications – ICCSA 2012 (pp. 202–216).

Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-31128-4_15

Cunha, J., Fernandes, J. P., & Saraiva, J. (2012). From relational classsheets to UML+OCL.

In ACM Symposium on Applied Computing (SAC) (pp. 1151–1158). ACM. doi:

10.1145/2245276.2231957

Cunha, J., Saraiva, J., & Visser, J. (2009). From spreadsheets to relational databases and back.

In Proceedings of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and Program

Manipulation (PEPM) (pp. 179–188). ACM. doi: 10.1145/1480945.1480972

Czarnecki, K., Foster, J. N., Hu, Z., Lämmel, R., Schürr, A., & Terwilliger, J. F. (2009). Bidirec-

tional transformations: A cross-discipline perspective. In Theory and Practice of Model

Transformations – ICMT 2009 (pp. 260–283). Springer-Verlag Berlin Heidelberg. doi:

10.1007/978-3-642-02408-5_19

Diskin, Z. (2008). Algebraic models for bidirectional model synchronization. In Model Driven

Engineering Languages and Systems – MODELS 2008 (pp. 21–36). Springer Berlin Hei-

delberg. doi: 10.1007/978-3-540-87875-9_2

Dou, W., Xu, L., Cheung, S.-C., Gao, C., Wei, J., & Huang, T. (2016). VEnron: A versioned

spreadsheet corpus and related evolution analysis. In 2016 IEEE/ACM 38th Interna-

tional Conference on Software Engineering Companion (ICSE-C) (pp. 162–171). ACM.

doi: 10.1145/2889160.2889238

Engels, G., & Erwig, M. (2005). ClassSheets: Automatic generation of spreadsheet applica-

tions from object-oriented specifications. In Proceedings of the 20th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE) (pp. 124–133). ACM. doi:

10.1145/1101908.1101929

Erwig, M., Abraham, R., Cooperstein, I., & Kollmansberger, S. (2005). Automatic gen-

eration and maintenance of correct spreadsheets. In Proceedings of the 27th In-

ternational Conference on Software Engineering (ICSE) (pp. 136–145). ACM. doi:

10.1145/1062455.1062494

http://dx.doi.org/10.1109/TSE.2014.2361141
http://dx.doi.org/10.1007/978-3-642-31128-4_15
http://dx.doi.org/10.1145/2245276.2231957
http://dx.doi.org/10.1145/1480945.1480972
http://dx.doi.org/10.1007/978-3-642-02408-5_19
http://dx.doi.org/10.1007/978-3-540-87875-9_2
http://dx.doi.org/10.1145/2889160.2889238
http://dx.doi.org/10.1145/1101908.1101929
http://dx.doi.org/10.1145/1062455.1062494

124 REFERENCES

EuSpRiG. (n.d.). Spreadsheet mistakes - news stories collated by the European Spreadsheet

Risks Interest Group. Retrieved 2017-09-30, from http://www.eusprig.org/horror

-stories.htm

FAST. (2014). The FAST Standard. Retrieved 2017-09-30, from http://www.fast-standard

.org/the-standard

Fisher II, M., Cao, M., Rothermel, G., Cook, C., & Burnett, M. (2002). Automated test case gen-

eration for spreadsheets. In Proceedings of the 24th International Conference on Soft-

ware Engineering (ICSE) (pp. 141–153). ACM. doi: 10.1145/581339.581359

Fisher II, M., & Rothermel, G. (2005). The euses spreadsheet corpus: A shared resource for

supporting experimentation with spreadsheet dependability mechanisms. In Proceed-

ings of the First Workshop on End-User Software Engineering (WEUSE) (pp. 1–5). ACM.

doi: 10.1145/1082983.1083242

Fisher II, M., Rothermel, G., Brown, D., Cao, M., Cook, C., & Burnett, M. (2006). Integrating

automated test generation into the WYSIWYT spreadsheet testing methdology. ACM

Transactions on Software Engineering and Methodology (TOSEM), 15(2), 150–194. doi:

10.1145/1131421.1131423

Fowler, M. (1999). Refactoring: Improving the design of existing code. Addison-Wesley.

Harutyunyan, A., Borradaile, G., Chambers, C., & Scaffidi, C. (2012). Planted-model eval-

uation of algorithms for identifying differences between spreadsheets. In 2012 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 7–14).

IEEE Computer Society. doi: 10.1109/VLHCC.2012.6344471

Henley, A. Z., & Fleming, S. D. (2014). The patchworks code editor: Toward faster navigation

with less code arranging and fewer navigation mistakes. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI) (pp. 2511–2520). ACM. doi:

10.1145/2556288.2557073

Hermans, F. (2013). Analyzing and visualizing spreadsheets (PhD thesis). Delft University of

Technology.

Hermans, F., & Murphy-Hill, E. (2015). Enron’s spreadsheets and related emails: A dataset and

analysis. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

http://www.eusprig.org/horror-stories.htm
http://www.eusprig.org/horror-stories.htm
http://www.fast-standard.org/the-standard
http://www.fast-standard.org/the-standard
http://dx.doi.org/10.1145/581339.581359
http://dx.doi.org/10.1145/1082983.1083242
http://dx.doi.org/10.1145/1131421.1131423
http://dx.doi.org/10.1109/VLHCC.2012.6344471
http://dx.doi.org/10.1145/2556288.2557073

REFERENCES 125

(ICSE) (pp. 7–16). IEEE. doi: 10.1109/ICSE.2015.129

Hermans, F., Pinzger, M., & Deursen, A. v. (2012). Detecting and visualizing inter-worksheet

smells in spreadsheets. In 2012 34th International Conference on Software Engineering

(ICSE) (pp. 441–451). IEEE. doi: 10.1109/ICSE.2012.6227171

Hermans, F., Pinzger, M., & van Deursen, A. (2011). Supporting professional spreadsheet

users by generating leveled dataflow diagrams. In 2011 33rd International Conference

on Software Engineering (ICSE) (pp. 451–460). ACM. doi: 10.1145/1985793.1985855

Hermans, F., Pinzger, M., & van Deursen, A. (2012). Detecting code smells in spreadsheet

formulas. In 2012 28th IEEE International Conference on Software Maintenance (ICSM)

(pp. 409–418). IEEE. doi: 10.1109/ICSM.2012.6405300

Höst, M., Regnell, B., & Wohlin, C. (2000). Using students as subjects – a comparative study

of students and professionals in lead-time impact assessment. Empirical Software En-

gineering, 5(3), 201–214. doi: 10.1023/A:1026586415054

ICAEW. (2014). Twenty principles for good spreadsheet practice. Retrieved 2017-

09-30, from https://www.icaew.com/en/technical/information-technology/

excel/twenty-principles

Inoue, K., & Nakamura, A. (1977). Some properties of two-dimensional on-line tessellation

acceptors. Information Sciences, 13(2), 95–121. doi: 10.1016/0020-0255(77)90023-8

Ireson-Paine, J. (1997). Model Master: an object-oriented spreadsheet front-end. In

Computer-Aided Learning using Technology in Economies and Business Education

(CALECO).

Ireson-Paine, J. (2001). Ensuring spreadsheet integrity with Model Master. In Proceedings of

EuSpRIG 2001.

Ireson-Paine, J. (2005). Excelsior: Bringing the benefits of modularisation to Excel. In Pro-

ceedings of EuSpRIG 2005.

Jackson, D. (2002). Alloy: a lightweight object modelling notation. ACM Trans-

actions on Software Engineering and Methodology (TOSEM), 11(2), 256–290. doi:

10.1145/505145.505149

Jackson, D. (2012). Software abstractions: Logic, language, and analysis. MIT press.

http://dx.doi.org/10.1109/ICSE.2015.129
http://dx.doi.org/10.1109/ICSE.2012.6227171
http://dx.doi.org/10.1145/1985793.1985855
http://dx.doi.org/10.1109/ICSM.2012.6405300
http://dx.doi.org/10.1023/A:1026586415054
https://www.icaew.com/en/technical/information-technology/excel/twenty-principles
https://www.icaew.com/en/technical/information-technology/excel/twenty-principles
http://dx.doi.org/10.1016/0020-0255(77)90023-8
http://dx.doi.org/10.1145/505145.505149

126 REFERENCES

Kelso, P. (2012, Jan. 04). London 2012 olympics: lucky few to get 100m final tickets

after synchronised swimming was overbooked by 10,000. Retrieved 2017-09-30,

from http://www.telegraph.co.uk/sport/olympics/8992490/London-2012

-Olympics-lucky-few-to-get-100m-final-tickets-after-synchronised

-swimming-was-overbooked-by-10000.html

Konczal, M. (2013, Apr. 16). Researchers finally replicated Reinhart-Rogoff, and there are

serious problems. Retrieved 2017-09-30, from http://rooseveltinstitute.org/

researchers-finally-replicated-reinhart-rogoff-and-there-are-serious

-problems/

Lämmel, R. (2004). Coupled software transformations. In First International Workshop on

Software Evolution Transformations (pp. 31–35).

Macedo, N., Jorge, T., & Cunha, A. (2017). A feature-based classification of model re-

pair approaches. IEEE Transactions on Software Engineering, 43(7), 615–640. doi:

10.1109/TSE.2016.2620145

Maia, P., Mendes, J., Cunha, J., Rebêlo, H., & Saraiva, J. (2015). Towards the design and im-

plementation of aspect-oriented programming for spreadsheets. CoRR, abs/1503.03463.

Retrieved from http://arxiv.org/abs/1503.03463

MathWorks. (n.d.). Matlab. Retrieved 2017-09-30, from https://www.mathworks.com/

products/matlab.html

McKeever, R., & McDaid, K. (2010). How do range names hinder novice spreadsheet de-

bugging performance? CoRR, abs/1009.2765. Retrieved from http://arxiv.org/abs/

1009.2765

McKeever, R., & McDaid, K. (2011). Effect of range naming conventions on reliability and

development time for simple spreadsheet formulas. CoRR, abs/1111.6872. Retrieved

from http://arxiv.org/abs/1111.6872

McKeever, R., McDaid, K., & Bishop, B. (2009). An exploratory analysis of the impact of named

ranges on the debugging performance of novice users. CoRR, abs/0908.0935. Retrieved

from http://arxiv.org/abs/0908.0935

Mendes, J. (2011). ClassSheet-driven spreadsheet environments. In 2011 IEEE Symposium on

http://www.telegraph.co.uk/sport/olympics/8992490/London-2012-Olympics-lucky-few-to-get-100m-final-tickets-after-synchronised-swimming-was-overbooked-by-10000.html
http://www.telegraph.co.uk/sport/olympics/8992490/London-2012-Olympics-lucky-few-to-get-100m-final-tickets-after-synchronised-swimming-was-overbooked-by-10000.html
http://www.telegraph.co.uk/sport/olympics/8992490/London-2012-Olympics-lucky-few-to-get-100m-final-tickets-after-synchronised-swimming-was-overbooked-by-10000.html
http://rooseveltinstitute.org/researchers-finally-replicated-reinhart-rogoff-and-there-are-serious-problems/
http://rooseveltinstitute.org/researchers-finally-replicated-reinhart-rogoff-and-there-are-serious-problems/
http://rooseveltinstitute.org/researchers-finally-replicated-reinhart-rogoff-and-there-are-serious-problems/
http://dx.doi.org/10.1109/TSE.2016.2620145
http://arxiv.org/abs/1503.03463
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://arxiv.org/abs/1009.2765
http://arxiv.org/abs/1009.2765
http://arxiv.org/abs/1111.6872
http://arxiv.org/abs/0908.0935

REFERENCES 127

Visual Languages and Human-Centric Computing (VL/HCC) (pp. 235–236). IEEE Com-

puter Society. doi: 10.1109/VLHCC.2011.6070409

Mendes, J. (2012). Evolution of model-driven spreadsheets (Master’s thesis). Universidade do

Minho.

Mendes, J., Cunha, J., Duarte, F., Engels, G., Saraiva, J., & Sauer, S. (2017a). Systematic

spreadsheet construction processes. In 2017 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC) (pp. 123–127). IEEE Computer Society. doi:

10.1109/VLHCC.2017.8103459

Mendes, J., Cunha, J., Duarte, F., Engels, G., Saraiva, J., & Sauer, S. (2017b). Towards systematic

spreadsheet construction processes. In 2017 IEEE/ACM 39th International Conference

on Software Engineering Companion (ICSE-C) (pp. 356–358). IEEE. doi: 10.1109/ICSE-

C.2017.141

Mendes, J., Do, K. N., & Saraiva, J. (2016). Towards an automated classification of spread-

sheets. In Software Technologies: Applications and Foundations – STAF 2016 (pp. 346–

355). Springer International Publishing. doi: 10.1007/978-3-319-50230-4_26

Meyer, B. (1997). Object-oriented software construction, 2nd edition. Prentice-Hall.

Panko, R. R., & Ordway, N. (2008). Sarbanes-oxley: What about all the spreadsheets? CoRR,

abs/0804.0797. Retrieved from http://arxiv.org/abs/0804.0797

Petre, M. (1995). Why looking isn’t always seeing: Readership skills and graphical program-

ming. Communications of the ACM , 38(6), 33–44. doi: 10.1145/203241.203251

PwC. (2014, Oct.). Treasury shown in a new light – PwC global treasury survey 2014.

PwC. (2017, Jan.). The ‘virtual reality’ of treasury – global treasury benchmark survey 2017.

R Core Team. (2013). R: A language and environment for statistical computing [Computer

software manual]. (http://www.r-project.org)

Reinhart, C. M., & Rogoff, K. S. (2010). Growth in a time of debt (Tech. Rep.). National Bureau

of Economic Research.

Reuters. (2012, Jan. 09). Astrazeneca reaffirms outlook after mistaken release. Re-

trieved 2017-09-30, from http://uk.reuters.com/article/uk-astrazeneca

-idUKTRE8080BX20120109

http://dx.doi.org/10.1109/VLHCC.2011.6070409
http://dx.doi.org/10.1109/VLHCC.2017.8103459
http://dx.doi.org/10.1109/ICSE-C.2017.141
http://dx.doi.org/10.1109/ICSE-C.2017.141
http://dx.doi.org/10.1007/978-3-319-50230-4_26
http://arxiv.org/abs/0804.0797
http://dx.doi.org/10.1145/203241.203251
http://www.r-project.org
http://uk.reuters.com/article/uk-astrazeneca-idUKTRE8080BX20120109
http://uk.reuters.com/article/uk-astrazeneca-idUKTRE8080BX20120109

128 REFERENCES

Rothermel, G., Burnett, M., Li, L., Dupuis, C., & Sheretov, A. (2001). A methodology for testing

spreadsheets. ACM Transactions on Software Engineering and Methodology (TOSEM),

10(1), 110–147. doi: 10.1145/366378.366385

Schmidt, D. C. (2006). Guest editor’s introduction: Model-Driven Engineering. Computer,

39(2), 25–31. doi: 10.1109/MC.2006.58

SSRB. (2010). Best Practice Spreadsheet Modelling Standards (version 6.1). Retrieved from

http://www.ssrb.org/standards

Stevens, P. (2007). Bidirectional model transformations in QVT: Semantic issues and open

questions. In Model Driven Engineering Languages and Systems – MODELS 2007 (p. 1-

15). Springer Berlin Heidelberg. doi: 10.1007/978-3-540-75209-7_1

Swierstra, S. D., Henriques, P. R., & Oliveira, J. N. (Eds.). (1999). Advanced functional program-

ming (Vol. 1608). Springer.

Torlak, E., & Dennis, G. (2006). Kodkod for alloy users. In First Alloy Workshop.

van Deursen, A., Klint, P., & Visser, J. (2000). Domain-specific languages: An annotated bibli-

ography. ACM SIGPLAN Notices, 35(6), 26–36. doi: 10.1145/352029.352035

Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L. C. L., . . . Wachsmuth,

G. (2013). DSL engineering – designing, implementing and using domain-specific lan-

guages. dslbook.org. Retrieved from http://www.dslbook.org

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., & Wesslén, A. (2012). Experimen-

tation in software engineering. Springer.

http://dx.doi.org/10.1145/366378.366385
http://dx.doi.org/10.1109/MC.2006.58
http://www.ssrb.org/standards
http://dx.doi.org/10.1007/978-3-540-75209-7_1
http://dx.doi.org/10.1145/352029.352035
http://www.dslbook.org

