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Abstract

Microservices is a distributed software architecture that divides the business logic of an applica-
tion into more minor, fine-grained services. Due to their distributed nature, microservices have
implementation challenges that make their application (and maintainability) non-trivial. One of
the main issues with microservices is debugging; their differences from traditional distributed sys-
tems make the process even harder. Our focus is on developing a novel approach to the Spectrum-
based Fault Localization (SFL) technique adapted to the context of microservices. Traditionally,
this technique analyzes components of the code, statements, and its execution or non-execution in
passing and failing test cases. From there, a coefficient algorithm is applied to each component to
determine the probability of being faulty. Then the components are ranked by that probability, the
most likely component to be faulty being placed at the top.

Debugging microservices is not a trivial task, and the current developments are still limited
in providing time-saving solutions to developers, who still spend a lot of time manual debugging
when a failure occurs. Finding a feasible solution that is accurate and capable of dealing with
information density is a challenge that the complex nature of microservices imposes. Moreover,
current approaches to debugging microservices are limited and often focus on monitoring per-
formance metrics or tracing techniques that require further manual analysis. Besides that, we
conclude that a combination of techniques might be beneficial to tackle the problem at hand.

Our work is towards a novel approach for debugging microservices through SFL via Log
Analysis. We achieve this by using the traditional SFL technique and adapting it to the context
of microservices by introducing the concept of hierarchy entities, in this case, composed of two
levels, service and method entity. We obtain this information from the logs generated by the
microservices, which are collected and processed. Since we cannot ensure the completeness of
logs, we created the two-leveled entity hierarchy to capture valuable information. From there, the
SFL technique works, as usual, analyzing the number of times each entity is or is not executed in
good and faulty scenarios and computing the rank of entities with the highest probability of being
faulty at the top.

The evaluation consisted of executing our tool with logs from a preexistent microservice ap-
plication. We created a log processing configuration and a suite of scenarios with various faults we
injected. As the selected application did not offer complete information in its logs, a common oc-
currence in real-life applications, it required several adaptations. We measured the tool’s accuracy
in each scenario given by the expected faulty entities’ positions in the rank. With the application
tested, we achieved a 68% global accuracy, with several scenarios above 90% accuracy, which tells
us there is potential for improvement and better accuracy in scenarios with complete information.

Keywords: microservices, debugging, log analysis, spectrum-based fault localization, SFL
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Resumo

Microserviços é uma arquitetura de software distribuído que divide a lógica de negócio de uma
aplicação em serviços de menor granularidade. Devido à sua natureza distribuída, os microserviços
têm os seus próprios desafios de implementação que tornam a sua aplicabilidade (e manutenção)
um problema não trivial. Um dos maiores problemas com microserviços é o debugging; as difer-
enças que entre estes e sistemas distribuídos tradicionais têm tornam esse processo ainda mais
difícil. O nosso foco é desenvolver uma abordagem nova da técnica de Spectrum-based Fault Lo-
calization (SFL) adaptada ao contexto de microserviços. Tradicionalmente, esta técnica analisa
componentes do código, statements, e a sua execução e não execução em testes passados e falha-
dos. Daí, um algoritmo de coeficientes é aplicado a cada componente para determinar a probabili-
dade de ter falhas. Posteriormente os componentes são ordenados por essa probabilidade, sendo o
componente com maior probabilidade de ter falhas colocado no topo do ranking.

Debugging de microserviços não é uma tarefa trivial, e os desenvolvimentos atuais são ainda
limitados em fornecer soluções que poupem tempo aos programadores, que ainda perdem tempo
em debugging manual quando uma falha ocorre. Encontrar uma solução viável que seja exata e ca-
paz de lidar com densidade de informação é um desafio que a natureza complexa de microserviços
impõe. Além disso, abordagens atuais para fazer debugging de microserviços são limitadas e fre-
quentemente focam-se na monitorização de métricas de performance ou técnicas de tracing que
requerem análise manual adicional. Por fim concluímos que a combinação de técnicas poderá ser
benéfico para enfrentar o problema em mãos.

O nosso contributo é no sentido de implementar uma abordagem nova para debugging mi-
croserviços por SFL via análise de logs. Para isso introduzimos o conceito de entidades hi-
erárquicas, neste caso compostas de dois níveis, entidade de serviço e método. Obtemos a in-
formação necessária para criar as entidades dos logs gerados pelos microserviços, recolhidos e
processados. Uma vez que não é possível assegurar que os logs são e estão completos, criamos a
hierarquia de dois níveis nas entidades para obter toda a informação relevante. A partir daí a téc-
nica de SFL funciona como normalmente, analisando o número de vezes que cada entidade é ou
não executada em cenários com e sem falhas, calculando o ranking das entidades com a entidade
com maior probabilidade de ter falhas no topo.

A avaliação consiste em executar a nossa ferramenta com logs originados de uma aplicação
baseada em microserviços pré-existente. Criamos uma configuração para processar os logs e uma
bateria de cenários com um número variável de falhas injetadas manualmente. Como a aplicação
selecionada não fornece informação completa nos seus logs, o que é uma ocorrência comum em
aplicações usadas em cenários reais, foi necessário fazer várias adaptações. Medimos a exatidão da
ferramenta em cada cenário baseada na posição das entidades com falhas conhecidas no ranking.
Com a aplicação testada, obtivemos uma eficácia global de 68%, com vários cenários com exatidão
superior a 90%, confirmando o potencial para melhorias e uma melhor eficácia em cenários com
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informação completa.

Palavras-chave: microserviços, debugging, análise de logs, spectrum-based fault localization,
SFL
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Chapter 1

Introduction

This introductory chapter presents the context and motivation for the problem at hand. In addition,

we also lay out the general goals we expect to accomplish, issues to face, and main results obtained.

In the end, we present the layout of this document.

1.1 Context

With fast-paced environments around software development, new tools and techniques emerge

every day to face the challenges of building scalable and highly complex systems. Microservices is

a distributed software architecture that originated from the necessity of dealing with the complexity

of giant monoliths, as their tight-coupling, which makes maintenance and introducing changes

difficult [21].

In sum, a microservice is a minimal component of an application that executes a particular

task independently from other services, making the development and deployment of changes more

effortless and scale better [34]. Of course, its issues and drawbacks make this solution unsuitable

for some applications. One is debugging these systems, which requires different approaches than

the traditional monoliths.

Debugging is a process essential to software development and consists of inspecting and find-

ing an issue in the software, and it is something every programmer does. Many techniques are

dedicated to different kinds of software and architectures [27].

“Every coin is two-faced,” and challenges come with the advantages that microservices bring.

One of them is how to debug these systems when an error occurs. As a relatively recent approach,

the diversity of tools to assist this process still allows for research and new findings.

1.2 Motivation

Given the growing usage of the microservices architecture, creating and maintaining these grow-

ing systems requires more resources. Besides the monetary cost of building or buying tools that

help debug the systems, there is the time spent developing, configuring, and using them. When

1



Introduction 2

the number of services involved increases, the number of hours dedicated to localizing the fault

increases, as surveyed by Zhou et al. [113]. Therefore, manually debugging becomes a severe

“strain on developers’ shoulders”, usually with time constraints.

There are several techniques dedicated to debugging distributed systems [8] but less dedicated

to microservices. In Chapter 3 (p. 17) contributions deemed relevant are explored and analyzed.

Although the application code is divided into several services, there are issues like the high

network load, the dispersity of the services across different physical machines, and the parallel

execution of instances for the same service. These are just some examples to demonstrate how the

issue is not trivial.

1.3 Goals

Our main goal is to present a novel solution for fault localization based on log analysis and the

spectrum-based fault localization (SFL) technique. In Chapter 2 (p. 5) and Chapter 3 (p. 17) we

explain and exemplify the concepts here mentioned and the rationale behind using them.

In essence, the idea of our solution is to leverage the information provided by the system logs

and process it into a standard format. From there, that structured log data can feed a technique

developed based on SFL to obtain fault localization of components in the application code.

As the setting of microservices is usually complex systems, the tools used should interfere as

little as possible with the system in production. Besides, as the scale of the products is significant,

it is also crucial for the cost of these tools to be inexpensive and not become a liability. From this

general perspective of the system, we target these goals:

Minimal intrusion:
Ideally, any tool the developers use to debug should not make any changes to the codebase,

as it could be an entry point for bugs itself. If this goal is unattainable, the design of the

solution should strive for minimal intrusion in the code.

Agnostic:
The solution should be agnostic of the microservice implementation. Microservices benefit

from being seamlessly polyglot, so it only makes sense that our solution is as generic as

possible.

High Accuracy:
The more accurate our solution is, the better. We want to pinpoint failures with the highest

degree of granularity, from the microservice (calls it makes) to the class, the function, and

ultimately, the line. This is, of course, the best outcome and, simultaneously, the biggest

challenge.

Inexpensive:
Developers should debug their programs without worrying about their impact on the costs
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both in time and computational resources (CPU usage, RAM). The objective of any debug-

ging tool is to directly or indirectly save the developer’s time; hence, the cost of deploying

it should not outweigh the time saved. The proposed solution should then not become a lia-

bility with its costs. Furthermore, it should be inexpensive so as not to overload the network

or delay the communications between services.

Scalable:
Since it is a hard requirement for microservices to be scalable, we aim for our solution to

be scalable. Without this property, it becomes an obstacle for the developer and, therefore,

quickly discarded.

The principal goals to be achieved are the minimal intrusion, agnostic-oriented implemen-
tation, and high accuracy of our tool. These are the minimal requirements to achieve success

in our solution. The other goals, inexpensive and scalable, come as a secondary priority. The

rationale is that the first three are essential to the tool’s functionality, i.e., correctly pinpointing

failures in generic microservices. On the other hand, the last two are not so important to achieve

that, despite being essential for having the tool ready to be used in a production-level environment.

1.4 Issues

Developing microservices and debugging, in general, have associated issues, and the debugging of

microservices is no exception. The particular scenario of microservices architecture raises issues

in developing our debugging tool. We highlight the following:

Complexity:
Microservices are built for complex systems, so debugging them is as complex or more. The

tools for debugging are then required to deal with this complexity.

Scalability:
Scalability is one of the goals of microservice architecture. Thus, any tool built for it must

satisfy this goal to be usable.

Density:
Due to the high cardinality of services, the number of metrics and logs generated are a

challenging obstacle. The tool needs to be prepared to filter and separate irrelevant data in

each specific instance.

Infrastructure:
Starting from scratch is not feasible in our scope. Therefore, we must rely on existing

infrastructures. We will build upon that infrastructure to achieve our goals, so finding the

appropriate basis for our solution is essential to the success of our work. This constraint

applies to the log processing mechanism and the evaluation process.
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Log Processing:
Our tool requires processing logs from microservices. Due to the diversity of logs used, we

must face the issue of being able to process logs without a standardized format.

Technique Incompatibility:
As explained in Chapter 3 (p. 17), the traditional approach to SFL is not well-suited to deal

with executing microservices. Therefore, one of the main implementation issues is to find

a way to adapt the technique to the context of microservices and leverage the log data to

achieve it.

1.5 Main Results

The results we obtained are further explored in Chapter 5 (p. 40) and Chapter 6 (p. 62). To sum-

marize, we tested the tool in a microservice-based application that provided logs with incomplete

information. The main results show that we obtain an average 68% accuracy in detecting faulty

components in the code, considering a variety of scenarios. We conclude that the results, while

not excellent, reveal the potential for improvement and better results with scenarios with complete

information.

1.6 Document Structure

The structure of the document is as follows:

• Introduction 1: In this chapter, the context of debugging microservice applications is pre-

sented, the motivation for a novel solution for fault localization, and its main objectives.

• Background 2: So that further information and concepts are provided, this chapter goes into

detail regarding the two main topics of this Thesis, microservices and debugging.

• Related Work 3: This chapter explores the current state of the art regarding solutions for

microservice debugging, analyzing the presented approaches, traits, and gaps.

• Debugging Tool Implementation 4: This chapter details the architecture and concrete con-

cepts applied in the implementation of the debugging tool prototype and the concrete design

choices used.

• Evaluation 5: This chapter is about presenting the evaluation setup prepared for the tool.

Moreover, it is about presenting and analyzing the results in depth.

• Conclusions 6: This closing chapter concludes this dissertation with the withdrawn conclu-

sions from the completed work and the main points to focus on in future work.



Chapter 2

Background

The Background chapter introduces fundamental concepts required to have in the context of the

problem. The first part of this chapter is dedicated to diving into microservices’ concepts and

main ideas and explaining some of their advantages and challenges. Following that, we provide a

general overview of debugging to contextualize some of the main techniques used for debugging.

2.1 Microservices

As introduced in Chapter 1 (p. 1), microservices are a contemporary architecture that divides an

application “into a set of fine-grained services, which can be independently developed, tested,

and deployed” [54]. Fowler and Lewis [21] characterize microservices architecture style as “an

approach to developing a single application as a suite of small services, each running in its process

and communicating with lightweight mechanisms, often an HTTP resource API”. In the following

subsections, we present the motivation and origins of microservices, along with their main issues

and usages in the industry.

2.1.1 Monoliths

Monoliths are applications that follow the traditional architecture of encapsulating the whole logic

of the application in a single service. When it comes to scaling, the whole is replicated. For a long

time, this architecture fit customers’ needs as they were small. However, as applications grew, this

architecture started showing its flaws. The high complexity, poor reliability, and limited scalability

have created the need for a change that microservices would come to satisfy. Figure 2.1 displays

a general view of the monolithic architecture.

The drawbacks of giant monoliths [87] can be firstly seen in the large codebases, which are

intimidating, especially for new developers in a team. The code becomes hard to understand and

modify, slowing development speed. Since modularity is not a hard requirement in monoliths, it

eventually breaks down, increasing the coupling of the application. Also, it takes more and more

time to start up the containers or components required to develop or test the application, which

considerably impacts the developer’s productivity.

5
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It is tricky with large monoliths if a team has a rule of frequently deploying the application.

Since they are tightly coupled, the redeployment of just one component implies the redeployment

of the whole application. For example, for a team that does daily deployments, deploying an

extensive application might take the whole day and render the frequent deployment useless. There

is also the case when an error occurs in a single application. A quick fix must be deployed to

correct the issue quickly, which becomes impossible if the whole application is redeployed.

As mentioned, scaling monoliths is troublesome because their architecture is not suited to deal

with the increasing data volume. Monoliths can only scale in one dimension, horizontally, which

means running copies of the application to handle the traffic volume. However, each copy accesses

the same data, interfering with caching, memory consumption, and I/O usage.

Figure 2.1: Monolithic Architecture [54]

2.1.2 SOA

Service-Oriented Architecture (SOA) is considered the precursor of microservices as they are

today. Fundamentally, it would divide the backend of an application into multiple loosely coupled

services, communicate with a service bus, and use the same database, as shown in Figure 2.2.

Despite being an evolution of the “old” monolith, it still has some issues regarding high complexity

and scalability.

SOA was the first step into de-coupling the application’s business logic into separate services.

However, one of the main issues [32] in this approach is the separation of concerns. Since the

application code is ever-changing, the boundaries between services that were once well-defined

may become blurred, and there is the risk of falling back to the one-service-does-all logic, which

in the end, is regressing to the monolithic approach.

2.1.3 Microservices and Usages

Large applications today, like e-commerce and social networks, require a high functioning stan-

dard, like availability, concurrency, and scalability. Microservices have independent development,

deployment, release, high concurrency and availability, and low coupling. These attributes allow

them to meet the requirements of these large and complex systems. [54]

The evolution towards microservices happens with the fine-granularity of the services, as mi-

croservices divide the services into smaller, task-specific components, as displayed in Figure 2.3.

This architecture “proposes (...) loosely coupled services oriented to business responsibilities”
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Figure 2.2: Service-Oriented Architecture [54]

[54]. The isolation and autonomy are due to a “share-nothing philosophy” of the architecture. It

also facilitates the application of agile and DevOps practices, the automation of the infrastructure

proving continuous delivery (CD) features, and decentralized data management and governance

among services [22]. Nowadays, its extensively used in many companies, such as Amazon, Net-

flix, and Twitter. Especially Netflix, which has made many contributions in this field and uses

more than 500 microservices [54].

One of the leading frameworks used for microservice development is Spring Boot [96] as it

provides essential features such as REST client, database integrations, externalized configuration,

and caching. Containerization is at the core of the microservice architecture, and the de facto stan-

dard is Docker [15], as it provides portability, flexibility, efficiency, and speed. The organization

of microservices is usually managed by clusters that provide configuration management, service

discovery, service registry, and load balancing by using a framework such as Spring Cloud [97],

Mesos [7], and Kubernetes [48] [113].

Figure 2.3: Microservices Architecture [54]

One of the main principles of microservices is the division of request processing into several
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smaller tasks distributed throughout the systems’ services. This requirement means they must

communicate to fulfill the request in all its steps. In addition, other requirements exist to maintain

the system healthy and monitor any abnormalities. A “simple” approach could be embedding these

features into each microservices as required. However, this means duplication of functionality,

heavier load on the microservices as they are no longer focused solely on the business logic they

are meant to perform, and many other drawbacks that make this approach unfeasible. Nowadays,

it comes down to two options, which are:

API Gateway
The API gateway approach centralizes the required microservices features (such as authen-

tication, security, monitoring, logging, caching, and rate-limiting) in a single component.

Notable examples of API gateways are Kong [47] and AmazonAPI [6].

Service Mesh
The service mesh is a dedicated infrastructure layer for facilitating and controlling service-

to-service communications between microservices. Notable examples of service meshes are

the ones of Istio [39], Linkerd [52], Consul [33], and Open Service Mesh [66].

Microservices also have drawbacks, some of which are not as pertinent to the problem tackled

in this document. Nevertheless, despite not being critical to the system’s functioning (and some-

times overlooked), proper performance is required for its maintenance and long run. However,

with microservices, this has become a more critical metric, as separating the services requires

more communication transactions between them to guarantee the correct execution of the pro-

gram. This increased amount of messages between services also increases latency and causes

speed loss, and specific applications require a tight margin for that [54].

Another most relevant issue is the debugging of these systems. Despite being a concurrent dis-

tributed system, microservices systems are more complex and dynamic, and techniques primarily

applied for debugging distributed systems do not apply so well. Examples of those techniques

are tracing and visualization, which are explored in more detail in the following section (cf. Sec-

tion 2.2).

The reasoning behind the previous affirmation regarding the complexity of microservices is

the following [54]:

• Microservices in a large number also run on a larger number of nodes (both physical or

virtual machines), and their distribution is constantly changing, increasing communication

uncertainties between microservices;

• These systems often require complex configurations, and sometimes faulty executions are

related to the incorrect configuration of one or more services;

• As mentioned before, many interactions between microservices are involved, and often they

are asynchronous, which leads to complex call chains and can cause runtime failures.
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2.2 Debugging

Ghosh and Singh [27] state that “debugging is a process of finding out the incorrect execution and

locating the root cause of the incorrectness”. It is a process that persists in software development,

and every developer faces it as they program, no matter the size and complexity of the project. This

section describes some main processes and techniques, such as the exceptional cases of debugging

distributed systems and microservices.

2.2.1 Processes and Techniques

As systems become more prominent, so does the number of faults and bugs developers need to fix

in different stages of the product. Nowadays, it is estimated that developers spend 20% to 40%

of their time [95] and professionals tend to agree on fault locations identified through trace-based

and interactive debugging, described in this section.

Generally speaking, debugging requires detecting a bug, gathering the necessary data for anal-

ysis, and investigating it to determine a root cause [14]. Besides that, developers learn from expe-

rience to use certain tricks or use a process to debug systematically. In Figure 2.4 it is presented a

generic systematic debugging process that applies these concepts.

Debugging does not (or should not) always begin after a fault is found. Developers can use

certain software development processes to prevent and locate bugs, such as unit testing, logging,

and static analysis. It can be useful for complex cases (such as non-deterministic failures and

memory corruption) and aid during bug location.

Other processes are used by leveraging the abilities of debuggers. They can be mighty when

well used, but it is not always a trivial task, and the learning curve can be somewhat complicated.

Some of these features are the following [95]:

Reverse debugging
It is essentially “the ability to run code in reverse”, allowing the developer to find and track

statements that could influence a statement where a fault has been detected. Debuggers like

gdb [28] already implement this feature.

Capture-and-replicate or Record-and-Replay
Extremely useful to debug non-deterministic faults, this technique allows the developer to

capture and replicate a program’s memory access or communication operations in full detail.

Usually, the application is run under control until the failure is detected. Then, an execution

recording is generated to be replayed afterward under a debugger to locate the statement

that causes the fault. Examples of tools that implement this technique are Friday [26] and

D3S [56].

Running and dead processes
Debugging a running process usually occurs when the failure is difficult to reproduce. First,

the developer finds the process identifier (PID) to attach the debugger. From there, the
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standard features of a debugger can be used: interrupt a stuck program, add new breakpoints,

and examine values. On the other hand, debugging dead processes allows a post-mortem of

the execution and investigation of the facts related to the crash. A widely known approach of

this type is called core dump. This dump consists of an image of the memory associated with

the process and can be retrieved to be examined under a specialized, dedicated development

environment.

And some of the proeminent techniques for debugging are the following [27, 105]:

Trace-Based Debugging
It works with breakpoints to trace a fault. Breakpoints are used to pause or stop the execu-

tion of a program, allowing to examine the state and observe any anomalies at a given point.

The developers can then set one or more breakpoints and repeat the process until every bug

is found and fixed. There are different implementations of this technique. Trace debugging

is the traditional approach, examining the state of the execution line by line, and the devel-

oper investigates manually. An omniscient debugging is a more powerful version of this, as

the debugger can trace the computation in both backward and forward ways, implying sub-

stantial execution traces and low scalability. Others are algorithmic and hybrid debugging,

which bring a higher level of abstraction and automation and mix the best techniques (this

applies only to the hybrid technique).

Slice-Based Debugging
The program slicing technique allows obtaining a reduced form of the program by delet-

ing statements that do not interfere with the program behavior in a specific case. Ergo, the

resulting slice must have the same result as the original (whole) program. There are two

main variants, static and dynamic slicing. The first is the original one and promotes the idea

that the defect of a variable value in a statement will be found in the static slice associated

with that “variable-statement pair”, reducing the search to the slice alone. The second one,

dynamic slicing, was created because static slicing still includes statements that could affect

the variable’s value. However, some slices could not be used in a specific execution, mak-

ing them unnecessary in that scenario. The new variant considers only statements directly

affecting a specific execution scenario statement.

Delta Debugging
It is an automated test case minimization process. In essence, the goal is to identify a failing

test case and gather the set of inputs that are or can be involved in the error. From there,

minimal changes to these inputs enable filtering of the ones that do not cause the error. In

the end, the result is a minimal subset of inputs that ease the process of fault localization.

The number of failing test cases can vary, and the complexity of the input can also vary,

from runtime variables to configuration variables. It is part of the family of state-based
debugging techniques.
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Spectrum-Based Debugging
Also named spectrum-based fault localization, is a process that focuses on a particular ex-

ecution trace and monitors the statements involved. SFL estimates possible fault locations

based on program spectra (i.e., program entities) and their coverage status in failed and

passed tests. In particular, these approaches count how often a statement is executed for

failing and successful executions. A similarity coefficient is then computed, and the state-

ments are then ranked, being statement at the top, the most likely to contain the failure.

There are many more techniques for debugging that are not mentioned in this dissertation.

Some of them are used in debugging distributed systems and microservices, which is why they are

discussed in the following Subsection 2.2.2 and Subsection 2.2.3.

2.2.2 Debugging Distributed Systems

Distributed systems are everywhere in our lives, whether in our online stores, chat applications,

or banking applications. They allow for better scaling and performance, but they pose serious

challenges to development. According to Beschastnikh et al. [8], they are the following:

Heterogeneity
The challenge of heterogeneity comes from the diversity of nodes that a system can have

(mobile phones, laptops, server machines). Developers must manage compatibility during

development but also during debugging.

Concurrency
Having simultaneous operations occurring leads to concurrency. This can introduce race

conditions and deadlocks, which are difficult to debug. In addition, one must consider the

packet delay and loss in network communications.

Distributed state
Having a distributed system state across multiple nodes, although removing a central point

of failure and improving scalability, also requires complex node coordination to assure syn-

chronization of the state among the nodes. Despite distributed algorithms preventing even-

tual inconsistencies, it is a rather difficult or maybe impossible task to rebuild the global

state of the system scattered across multiple nodes. This also is an issue for bug diagnosis

and validation.

Partial failures
Having a distributed architecture allows the system to have a particular grade of fault toler-

ance compared to traditional centralized systems. Nevertheless, achieving this tolerance is

not a trivial task and requires previous thought from the developers, and the design is often

complex and hard to test.

With that in mind, several techniques have been discovered and improved over the years to

make this process easier for developers.
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Some of them are fundamental elements of software development, such as testing. However,

there are also areas dedicated to going in great depth to validate the systems, such as the case of

model checking and theorem proving [8, 75].

Others are more balanced with applicability and utility for developers. To summarize:

Monitoring
One of the most used debugging techniques is monitoring. Not only for the debugging but

also for performance checking, monitoring allows developers to be alerted when something

goes wrong when some resource is over or underused and quickly informs the team to

examine the system and understand the misbehavior. Usually is used to detect abnormalities

in the system architecture, configuration, and deployment rather than the code of a specific

process.

Log analysis
Log analysis works better with systems that cannot be modified and are therefore a lighter-

weight approach. The reason for this is its black-box approach to collecting console logs,

debugging logs, and various other log sources and examining them to find anomalous behav-

ior. Detailed logs from large systems contain a considerable amount of relevant information,

but the volume is often too heavy for developers to use, as it is overwhelming [8].

Event logging
A branch of the logging technique, event logging is the go-to tool as it is not yet possible to

single-step concurrently through the significant number of processes in a modern distributed

system. This technique consists of processes logging operational events that target system

admins and reliability engineers. It can always be enabled in a production environment and

provides observability, aiding developers in evaluating the application’s status and interac-

tions between processes and determining possible changes in the system’s configuration. By

making explicit the contents of the error messages and metrics, finding the root problem is

made more accessible in a complex failure [95].

Tracing
Tracing is used to track data flow in a system across applications and servers, such as a

database, web server, DNS, load balancer, or VPN. Traditionally, tracing is more efficient

than Record and Replay because it focuses on a specific subset of data. However, it requires

instrumenting applications and protocols to forward tracing metadata without consuming it

[8].

Visualization
Due to the complexity of these systems, visualization techniques have come to the surface to

face this issue and make the systems more transparent to developers. A common drawback is

that they do not help a developer understand the system’s underlying communication pattern

nor the distributed order of messages [8]. Theia [25] is an example of a Visualization tool,

as it displays the visual signature of Hadoop executions like resource usage [95].
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Record and replay
As also mentioned in the previous subsection, this technique helps debug non-deterministic

behaviors. The main issue is recording complex executions, which can be expensive and

even change the system’s behavior beneath.

2.2.3 Debugging Microservices

Microservices are distributed systems, but they are much more complex and dynamic than tradi-

tional ones. According to Zhou et al. [113], it is hard to establish a relation between microservices

and system nodes due to the natural ability of microservices scaling (instances can be created and

destroyed at any time). Therefore, some or most of the tools used to debug distributed systems

might not be suitable for microservices in general.

For instance, existing debugging techniques based on breakpoints are ineffective for microser-

vices due to the high concurrency, which can cause the same breakpoint to be reached in different

executions and have different program states. In addition, the asynchronous processes, character-

istic of microservices, require tracing multiple breakpoints across multiple processes, being a very

challenging task.

Another example is traditional fault localization techniques, such as spectrum-based fault lo-

calization mentioned before, that are inadequate for highly concurrent and dynamic systems such

as microservices. Recently there have been efforts to extend these techniques to concurrent and

distributed systems. However, they require execution data at the thread level to apply such fault

localization techniques. This is a highly complex task due to the dynamism of microservices

instances, complicating the evaluation of the produced logs. That being said, it is natural that

runtime verification and debugging are the main challenges for microservice developers, as they

heavily depend on monitoring and tracing of the systems.

Developers also make use of logging techniques. As mentioned before, the simplest level is to

analyze execution logs that the system “spits” to locate faults. Usually, the developers need to look

over a considerable amount of logs manually, so naturally, the efficiency of this process is related

to the developer’s experience, both with the system and faults of the same family. Another level,

more structured, is the use of visual log analysis that allows developers to find more easily the set

of logs that they might be interested in with appropriate search operators. Furthermore, the results

can be sorted and presented in different statistical charts. A common stack used for this purpose is

called ELK, which is composed of ElasticSearch [17] (responsible for log indexing and retrieval),

Logstash [20] (responsible for log collection), and Kibana [19] (responsible for visualization).

The most advanced level of analysis is visual tracing. Here developers inspect collected

system execution traces with the support of visualization tools. Traces are accompanied by an ID

and allow identifying the invocation chains among microservices.

The time developers spend debugging is directly correlated to the number of microservices

involved in the fault. Having more than three microservices is enough to make this process almost

two days. Depending on the service provided, it can be critical and cause a significant loss to the

company.



Background 14

We explored academia and industry, and our understanding is that the research on fault local-

ization in microservices is in an early stage and is usually based on small systems, which is not a

comparable benchmark for many industrial-grade microservices.

2.3 Summary

In this Background Chapter, we explored foundational concepts for our work, which relies on

microservices and debugging.

Regarding microservices, in Table 2.1 it is shown a summary comparing different architec-

tures.

Table 2.1: Comparison of different architectures [54]

Categories Monolithic Architecture Service-Oriented
Architecture

Microservices Archi-
tecture

Componentization Module Service Fine-grained

Component size Big Coarse-grain Fine-grained

Elasticity A single point of failure No single point of
failure

No single point of
failure

Deployment Holistic creation and de-
ployment

Each component
deployed indepen-
dently

Each component de-
ployed independently

Storage mechanism Shared database Shared database Private database

Technology The same programming
language and framework

Isomorphism Heterogeneous

Scalability Unable to scale on de-
mand

Scale on demand Scale on demand

There has been an evolution of architecture as they needed to face new challenges. In the

era of microservices, there is motivation to face the challenges that come with the architecture,

and the gain is undeniable. Therefore, the more (and better) tools developers have to tackle these

issues, the better the product will be. It is in the interest of all to keep exploring techniques and

approaches to improve all phases of software development in this distributed architecture.

Debugging is the process of finding and fixing a problem in a program. With the evolution of

software architectures and processes, the techniques used to debug programs followed this trend.

With the emergence of distributed systems, new challenges have arisen for developers due to

the complexity of these systems. New tools have appeared to assist developers in debugging these

systems, but they still consume many resources, such as time.
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Microservices are the latest trend in distributed systems and come with their challenges. Some

techniques such as tracing, monitoring, logging, and visualization are the microservice develop-

ers’ “better” friends. However, there is much room for improvement, and research on debugging

techniques for microservices is still in its early stages.

Some techniques, when combined, can be powerful allies and contribute with their strengths

to tackle the complexity of debugging microservices. The case of logging and spectrum-based

fault localization is the cornerstone of our solution.
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Figure 2.4: A process for systematic debugging [95]
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Related Work

This chapter explores concrete solutions from industry and academia dedicated to debugging mi-

croservices. We also explore debugging solutions that, despite not being aimed towards microser-

vices directly, can be adaptable or inspirational towards our methods for developing our solution.

Finally, we explore approaches that, while not debugging microservices, are useful for developers

by analyzing the system and its behavior and generally indicate where a problem might be found.

Our literature review is then composed of three sections highlighting microservice debugging

approaches, traditional system debugging approaches, and other helpful tools to assist the de-

bugging process. We here consider traditional systems with a monolithic nature, whether single-

threaded or multi-threaded (both concurrent and distributed).

3.1 Debugging Microservices

3.1.1 Spectrum-based Fault Localization

Spectrum-based fault localization, as mentioned in the previous chapter, estimates possible fault

locations based on program spectra and their coverage status in failed and passed tests. In this

section, we present an SFL solution applied to microservices.

Ye et al. propose T-Rank [110], a lightweight spectrum-based performance diagnosis tool,

which provides a ranking for a list of microservices to localize the root cause of a failure. It

leverages the SFL algorithm and a single standard metric, the latency in completing the request.

This avoids the challenge of building complex dependency graphs. They apply the SFL algorithm,

which does not require previous training and the causal graph of the system.

T-Rank collects tracing data in a sliding time window and condenses them into tracing chains

representing the request generated by client service, from the beginning to its end. Then it labels

the data by the metric representing the elapsed time of the whole request. Based on the spectrum

algorithm, it creates a ranking score for a list of containers (microservices). It compares different

SFL algorithms with some focus on the Ochiai algorithm [4].

It may be the case where more than one root cause exists at the same time, and the tool is only

able to localize only one. The container with the second-highest score in suspiciousness may be

17
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innocent because it is only affected by the root cause container in the same tracing chain. It needs

to reduce the number of false alarms raised. It is a valuable tool for use as a support tool due to its

lightweight.

SFL is an exciting approach that we further explore in the context of “traditional” systems. In

T-Rank, it is explored as a performance diagnosis tool, while we intend to focus on faults in the

code.

3.1.2 State-based fault localization

In state-based fault localization the technique leverages the state of a program at a given point

of execution, usually when a failure occurs, and explores it to find the origin. A definition for a

program state is that it “consists of variables and their values at a particular point during program

execution, which can be a good indicator for locating program bugs.” [105] One particular example

of this technique, which can be applied in microservices, is the delta debugging technique.

Zhou et al. [115] repurpose the delta debugging algorithm on microservice systems. In delta

debugging, the goal is to “minimize failure-inducing deltas of circumstances (e.g., deployment,

environmental configurations) for effective debugging.”

A particularity of their approach is to define a set of dimensions that bound the execution of

microservice systems, to construct the failing circumstance space. The dimensions in question are

Node, Instance, Configuration, Sequence, and Input. Therefore, the circumstances conjugate these

dimensions in a specific setting.

The approach identifies failure-inducing deltas that effectively help root-cause diagnosis, but

it is a rather consuming process and not trivial to implement. In [112], the same authors make an

effort to optimize this process by parallelizing the delta testing tasks, which improves the efficiency

of delta debugging significantly.

They are still limited by the granularity of the supported atomic deltas, and the dimensions of

the circumstances are limited. In essence, it fails to consider reasonable deltas (for example, the

default value not being unlimited memory) and does not consider specific relevant dimensions,

such as the invocation chain. Despite the limitations, this tool is one of the few advanced fault

localization techniques applied to microservices and shows great promise.

3.1.3 Record And Replay

In record and replay techniques, the developer records essential parts of the system execution

(calls, requests, responses) and stores the data to perform a replay in a controlled environment.

In this way, the developer can perform a deep inspection of the conditions that lead to a fault and

manipulate the scenario toward fixing the original root cause of the fault.

In his master’s dissertation, Silva [92] proposes a solution based on the Record and Replay

technique for microservices. In particular, the proposed framework focus on instrumenting and

recording network communications and random number generation. The premise is that recording

those components is enough to replicate the previous execution deterministically. The solution
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targets individual microservices, thus not having a holistic system view. It records network com-

munications protocol-agnostic and random number generation in the JVM (Java Virtual Machine)

programs.

The resulting prototype reveals a low overhead on the system execution and low intrusion on

the source code. However, storing the high amount of data generated from the recording phase

is an issue. This limits the tool’s usage on systems with many events (mainly network events).

Furthermore, the tool excludes microservices that do not run on the JVM, which, however broadly

used, does not contribute to the programming-language agnostic aspect of debugging tools.

Another approach to Replay Debugging is the one that Mathur [63] proposes in his master’s

dissertation. In more detail, he proposes a language-agnostic replay debugging framework (for

microservices) using a distributed tracing system to record network communication. He replays

them on cloned service containers that run in a debug environment. One highlighted feature is an

anomaly detector that uses span-level and container-level monitoring in fault symptoms detection

and trace-level fault localization to find the root cause. This detection occurs from a mathematical

formulation of span-level (latency) and container-level (memory and CPU usage) applied to time

series data.

The author claims that the framework’s overhead is “10X less than the case in which language-

specific recording tools (...) are used” as part of the evaluations performed on the tool. It is also

stated that the tool cannot reproduce all executions of the microservice application but can be a

valuable tool for finding the root cause of common faults. Furthermore, the tool deals with several

sources of non-deterministic faults, such as network, resources, and asynchronous requests. It

does not handle non-determinism from third parties, which can happen when services call external

APIs. Naturally, the responsibility of debugging an external API does not fall on the system’s

developer. However, it is helpful to recognize such interactions when retracing the steps that lead

to abnormal behavior.

3.1.4 Live Debugging

In live debugging the developer performs traditional debugging, e.g., with breakpoints, on a run-

ning program, by interacting with it.

A recent tool for live debugging microservices is Squash [94], which allows debugging of

running microservices, containers in a pod, service, and such in real-time. The idea is to bring

the powerful functionalities of debuggers in the traditional monoliths to microservices. It aims to

bridge between apps running in a Kubernetes environment and the developer’s IDE. Since it is re-

cent, it is limited to Kubernetes implementations, which cover a large part of modern microservice

deployments. It also supports known debuggers, including gdb, node, and python. Besides Kuber-

netes platform also supports OpenShift and Istio, which provide the service mesh. Currently, the

supported IDEs are VS Code, IntelliJ, and Eclipse.

Squash has a promising potential, but currently, it is elementary in functionality and still lays

on the developers’ shoulders most of the configuration and debugging work. A demo by the team

[49] shows that despite integrating with commonly used tools such as Zipkin and Jaeger, it is
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still a long way from becoming an essential tool for debugging microservices. In addition, the

project seems inactive according to their official git repository. As of 2022, the latest update in

the main branch dates back to 2020, and the latest release dates back to 2019, which is somewhat

concerning if the project is to be kept alive.

3.1.5 Anomaly Detection

Anomaly detection encompasses detecting the symptoms that a fault cause in the system. This

way, we can find the correspondence between the anomaly and the concrete failure it is causing

and fix it. Anomalies can be detected at two levels: application level (when considering the

symptoms of the application as a whole) or at the service level (by focusing on the symptoms

detected at that level). There are also different techniques to base the detection, namely log-based

techniques, distributed tracing-based techniques, and monitoring-based techniques [93].

In the case of log-based techniques, they usually leverage unsupervised machine learning al-

gorithms. These are used to process the logs generated by the services and learn the system’s

behavior when there is no failure in execution. Such are the cases of [41, 42, 70], which apply

the said technique. The cost of this technique is associated with the training the approach has,

how much data is required, how diverse the training data is, and how accurate it is. However, they

benefit from no intrusion since the log processing requires no code instrumentation.

As for techniques based on distributed tracing, they can leverage unsupervised machine learn-

ing algorithms [43, 55, 72], supervised machine learning algorithms [24, 71, 9, 114], or by com-

paring traces [10, 64, 101]. The first two require data training and therefore have the additional

cost mentioned before. The second is trained with known anomalies to improve accuracy and have

the associated additional cost. The third, and last, follows a much simpler approach by collecting

the different possible traces in the system and comparing the new traces with the collected ones. It

is simple and less costly than the previous ones but also less effective. Distributed tracing implies

instrumentation of the code and therefore goes against the principle of no-intrusion. Configuring

the tool to train data is also not a negligible effort from the developer’s side.

Finally, the techniques based on monitoring use agents installed on the systems to monitor

Key Performance Indicators (KPIs) and detect an anomaly in the readings. To learn the baseline

of the systems, these techniques often leverage unsupervised [30, 60, 84, 88, 100, 107, 108] and

supervised [16, 61] machine learning algorithms. Nevertheless, there are also ones that rely on

SLO (Service-level objective) checks [12, 29, 90] and heartbeat [111], a more fundamental mech-

anism of checking the availability of a given service. These last two have a much broader view of

the application and, therefore, are less detailed. In general, monitoring-based approaches require

specific or additional configuration to set up the agents to monitor the KPIs. The cases of solutions

based on SLOs or heartbeats avoid the training costs of the machine learning techniques. How-

ever, SLOs require previous monitored KPIs to generate a baseline system model, even if it is on

a much smaller scale than training data sets.

These approaches based on anomaly detection are helpful and sometimes easy to deploy when

the developer has/wants already tools in place to monitor the system performance, considering
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external conditions not directly related to the application code. It is not the focus of our work, as

we intend to focus on eliminating the faults that originated in the code. However, the conditions

the tools presented work with are (almost) the same as ours, given the microservices and cloud

computing contexts.

3.1.6 Root Cause Localization

The root-cause localization technique identifies why an anomaly or failure occurs, aiming to lo-

cate the root of the failure at the application or service level [93]. Such as in anomaly detection

techniques, we separate them into three categories considering log, tracing, or monitoring nature.

Regarding log-based techniques, it leverages the application logs to generate a causality graph

of the execution and extract possible candidates for the root cause from the anomaly. The case

of [5] analyzes frontend errors on multi-service applications to generate a causality graph by per-

ceiving the services as multivariate time series. They extract the “cause-effect” relation between

them to create the topology, extract the causality graph, and select a subset of application services

that might be the root cause. Finally, it uses another algorithm to rank them according to the root

cause probability. Log-based techniques are more straightforward and might have the necessary

information for the developer to decide and detect the problem.

As for the (distributed) tracing-based techniques, as explored in the previous section of anomaly

detection, it requires the instrumentation of the code to leverage the tracing of the applications’

requests. The approach used to analyze the traces can be separated into visualization-based

[31, 113], direct [50, 55, 67] or topology-based [46, 53] analysis. In visualization analysis, the

developer is presented with a visual comparison of traces, so they manually determine the root of

the anomalous traces. On the other hand, in direct analysis, the root cause finding is automated

with a given approach. For example, in [50], it classifies traces as anomalous through anomaly

detection and considers microservices with a high ratio number of abnormal traces versus normal

ones, providing a ranked subset of these microservices. Finally, there is the case of topology-based

approaches where the application’s topology is determined from the traces, and they leverage that

to apply a specific analysis and determine the possible root causes for the anomalies observed.

Tracing techniques have a necessary degree of intrusion of the system to allow the instrumen-

tation of the code and obtain the traces. The automated approaches have the advantage of requiring

less effort from the developer to detect root causes than manual approaches, such as visualization-

based. The direct analysis does not rely on the topology, which is better in cases where it is hard

to extract the topology of the network or is highly connected.

Monitoring-based techniques, such as it happens with anomaly detection, rely on active mon-

itoring of the system KPIs data collected by agents installed inside the system. The analysis pro-

vide can be on a direct basis [90, 99, 77, 76], topology-based [88, 107, 108, 116, 98], or causality

graph-based [12, 29, 85, 100, 57, 58, 65, 51, 60]. The direct analysis is based on the idea that an

anomaly detected on the frontend is registered by (anomalous) KPIs identifying the corresponding

service. Topology-based analysis works the same way as before, driving the analysis according to
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a reconstructed topology model. The causality-based analysis is quite similar to performing the

analysis based on the extracted causality graph of the services.

The root-cause analysis is, in our opinion and based on the observed applications, an appropri-

ate tool to explore when performance evaluation mechanisms are already deployed. Their focus

on application or service level is limited in assisting the developer in finding the root cause in the

application code, i.e., at a lower level.

3.2 Debugging Traditional Systems

3.2.1 Configuration Fault Localization

Configuration fault localization is the technique that aims to identify faults in the configuration of

a particular component, which is the source of failure when given failure-inducing conditions.

In [45] the authors present a novel approach to performing configuration fault localization

based on the difference of configuration parameters in components that share a resource. More

specifically, they define a Reference Configuration State based on the “set of non-faulty probing

components for each faulty component with respect to shared resources”. The wrong configuration

parameter is localized by obtaining the difference in the configuration of that reference state with

the faulty component.

The solution has the advantage of not requiring the expertise of the domain at hand, which

can be helpful sometimes and even more with complex configurations. In addition, it seems to be

scalable in large systems. However, it still lacks accuracy due to the data available in resources

and applications. The experiment showed that the tool could detect about 20% of the configuration

faults. It is an interesting approach but completely overlooks other sources of faults, making

it suitable as an additional tool to inspect microservices configuration, but it is limited to that

function.

3.2.2 Slice-based Fault Localization

Program slicing is a technique to abstract a program into a reduced form by deleting irrelevant

parts such that the resulting slice will still behave the same as the original program concerning

certain specifications. There are two main variations of slicing, one of which is static slicing,

which is the traditional approach based on the static analysis of the program. On the other hand,

dynamic slicing computes the slice during the program execution and considers only statements

that directly contribute to the detected faulty behavior. The main difference is that dynamic slicing

reduces the set of statements of the slice even further.

Wotawa’s JSDiagnosis [106] combines dynamic slicing with model-based diagnosis to achieve

a more effective fault localization. The basic idea of the approach is to combine slices for faulty

variables to minimize the resulting set of statements that may lead to the detected misbehavior.

It states as prerequisites of the approach are the program source code and at least one test case.

It dismisses the need for large test suits, which is common in other approaches of this type. It



3.2 Debugging Traditional Systems 23

assumes that a missing statement does not originate the fault; in that case, the tool still works, but

with no guarantee of usefulness in the results. The tool collects dynamic slices for faulty variables

using a given test suite against a program. From there, it constructs hitting sets, which contain at

least one statement from each (dynamic) slice. The probability of a statement being faulty is based

on the number of hitting sets covering that statement.

Given the nature of the tool and its implementation (focused on Java programs alone), we

analyze this tool in the approach sense since it could make sense to adopt a slice-based strategy

in our debugging solution. We, therefore, refer the reader to [105] for an in-depth review of the

technique and the extensive literature based on it.

It is also known that techniques based on slicing-hitting-set-computation sometimes produce

an undesirable ranking, including certain statements, such as constructors, which are executed

in many test cases, placing them at the top [105]. Another known limitation of dynamic slicing-

based techniques is their failure to capture execution omission errors, which translates into specific

critical statements in a program not to be executed and ultimately lead to failures.

3.2.3 Spectrum-based Fault Localization

We previously defined Spectrum-based fault localization and provided an example applied to mi-

croservices. However, most of the work based on this approach has been applied to “traditional”

systems. We present essential tools and refer the reader to [105] for further review of the literature

regarding this technique.

Zoltar [40] is a toolset that implements spectrum-based fault localization techniques, with a

highlight to the BARINEL algorithm, of the same authorship. The toolset provides the necessary

infrastructure to instrument automatically the source code to produce data in run-time and analyze

it afterward to return a list of candidates. It is aimed at complete automation and, therefore, can

instrument the analyzed program with fault screeners, replacing test oracles at run-time. Fault

screeners are generic program invariants trained to be application-specific. Some of the program

spectra included by the tool are basic block hits, function hits, and def-use pairs. There are two

approaches that the tool uses for fault localization. The first is based on statistics, based on the as-

sumption that a high similarity to an error vector indicates a high probability that the corresponding

parts of the software are the cause of the errors and that the computed similarity coefficients rank

the parts of the program according to the likelihood of containing faults. Once more, the default

coefficient (algorithm) used in the toolset is the Ochiai [4], but it mentions other coefficients the

tool provides optionally. The second approach is based on a reasoning method called BARINEL,

a spectrum-based, logic reasoning approach to fault localization. This approach is also able to

detect multiple candidates with multiple faults. It then returns a ranked list of candidates based on

a posterior probability.

It is a tool based on abstractions of program traces and is extensible by design. It does not

translate directly into a practical tool to be used off the bat. However, it is worth considering

design aspects while developing a technique for fault localization based on the program spectrum.
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Q-SFL [82], is an SFL approach that leverages SFL with Qualitative Reasoning (QR) by in-

troducing quantitative landmarks that partition the domains of system components into a set of

qualitative descriptions. QR is a branch of Artificial Intelligence, and it describes continuous

values with discrete, behavioral qualities, allowing the reasoning of a system’s behavior without

specific quantitative information. By considering the descriptions generated by QR SFL com-

ponents, it is possible to record their coverage and then apply the traditional SFL approach by

diagnosis and ranking. Thus it allows the suggestion of the most probable location of the bug and

pinpoints behavioral properties that induce failures, adding value to the report produced by the

algorithm.

Nevertheless, the authors concluded regarding the innovative approach that there is “no single

(automated) landmarking strategy that was consistently better than the original spectra, meaning

that using more intricate, white-box strategies will likely be necessary for practical applications of

the approach.” This goes in favor of our belief that strategies must be combined.

While the particular tools described in this section are not suitable for microservices, it is a

fascinating technique to find faults in the application code and could benefit from the information

that contextualizes the nature of microservices. In sum, the technique is not built for dealing with

the idiosyncrasies of microservices, but it seems adaptable to such scenarios.

3.2.4 Breakpoints

One of the most traditional debugging approaches is using the use of breakpoints. A given state-

ment is marked with a breakpoint, and the developer executes the program in a “special” configu-

ration, usually called “debug mode”. When the program’s execution reaches the marked statement,

it halts until the developer resumes the execution. In the halted state, the developer can access the

program state at that moment of the execution and inspect variable values in the call stack, among

other functionalities. The most famous tool for breakpoint debugging is, most likely, GDB [28],

which has been used for a long time and remains actively used.

Naturally, it is impossible to employ this strategy in complex scenarios such as microservices.

It is naturally overwhelming for the developer to halt the execution of an instance (not the mi-

croservice itself) and try to debug from there. Some efforts like the one mentioned in the live

debugging section still fall short compared to other techniques better prepared for these scenarios.

3.3 Debugging Assistance

3.3.1 Monitoring

The monitoring technique consists of constantly analyzing the system performance to detect abnor-

mal behavior. By continuously tracking performance metrics (response time, CPU, and memory

usage), the developer can discover when a fault occurred, which will help find the cause.

Kmon [102] is a monitoring tool that aims to provide multiple run-time information on mi-

croservices such as latency, topology, and performance metrics with low overhead. It makes the
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argument that capturing “all types of indicators with a unified data structure” can reduce the cost of

aggregating indicators. This is necessary when different monitoring tools provide information in a

different format. It also argues for monitoring more fine-grained indicators to discover additional

deeper problems. An example of a livelock is made to exemplify that CPU and other resources’

usage does not guarantee proper execution of a program. Avoiding code instrumentation makes a

case for the tool collecting complex data, such as TCP messages’ latency.

The results show that CPU usage of the tool is negligible, but its memory usage is not. This is

defined as future work since it severely impedes its application. It also lacks a generic view of the

TCP connection, thus unsuitable for services that communicate through message queues.

There are also “black-box” approaches to monitoring, which collect information about perfor-

mance and calls (e.g., elapsed time of the request, content of the request, and response) without

a deep knowledge of the system or a low-level insight of the functioning. This is the case of the

tool proposed by Pina et al. [83], where they propose to log gateway activity, thus not interfering

with the application code. It does not interfere with the system at the microservice level, making

it a good solution for monitoring systems already in production. The information extracted allows

computing the system’s topology, average response time, and the load in each microservice, which

also allows inferring each part’s maximum capacity and Quality-of-Service (QoS).

However, this approach has some drawbacks, especially regarding causality. Because the tool

does not have a fine-grained view of the system that usually tracing techniques provide, it is natu-

rally limited in indicating faults localization, leaving the developer to explore the system deeper to

achieve that. Furthermore, despite being a reasonably good solution for monitoring microservice

systems, it is built around systems that resort to API gateways to serve the system communications.

Therefore, it would require adaptation for service mesh,

3.3.2 Log Analysis

In the log analysis technique, the developer leverages the logging of the system to inspect the

behavior and gather in-depth details about a specific execution.

Falcon [73] is a tool that aims to make the log analysis of distributed systems more practical

and effective. It is built as an extensible pipeline, providing modularity, and can combine different

logging sources without much effort. It also generates a space-time diagram of the distributed

executions. This is achieved by employing a happens-before symbolic formulation and obtaining

a coherent chain of events with a constraint solver.

As it is based on the logs produced by the system, it does not require instrumentation of the

code, avoiding intrusion in the system code. However, the constraint solver used to perform the

causal ordering cannot scale to executions with more than a couple of thousand events. Naturally,

this is not suitable for production environments, let alone for microservice systems. The manipula-

tion of execution traces is also limited, making it more challenging to use in day-to-day debugging

scenarios.

Another example of log analysis tools is Horus [74], the successor of Falcon. It also “enables

causally-consistent refinement of distributed system logs in a non-intrusive and scalable fashion”.
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The novel approach in this proposal is leveraging kernel-level probing to capture events and es-

tablish causality between logs from multiple sources at the application level. Furthermore, the

events are present using a directed acyclic graph (DAG) and stored in a graph database, allowing

querying and thus facilitating the debugging process.

The results show that the tool surpasses widely-adopted similar systems in pinpointing the

root cause of faults and performs considerably better (“up to 3 orders of magnitude”) in building

causally-consistent logs of the distributed executions. It also outperforms traditional traversals in

graph databases in the query computation time by reducing it up to 30 times. Despite the outstand-

ing performance, a drawback of this system is the necessity to do a proper configuration to ensure

intra-process and inter-process causality. This means that additional time must be spent config-

uring how events are collected in the tool and should be updated when the microservice system

changes (a new microservice produces new events, so that must be considered). Furthermore, it is

unclear what the support for RPC is, and it is a growing trend with microservices, especially with

service meshes. Even though RPC is considered a form of inter-process communication, the phys-

ical address space is not the same, and it is not clear how the causality is established in executions

in a microservice triggered by a remote call in another.

3.3.3 Tracing

The tracing technique correlates events by identifying the messages interchanged between pro-

cesses or services, thus allowing to establish a trace of the events involved in a specific execution.

One of the first examples of distributed tracing is Dapper [91], which was proposed by Google

back in 2010. Despite its age, it contributed significantly to how tracing is performed, and this

work has inspired several tools that have appeared since then. The tool has contributed with

new features, including sampling and achieving a degree of application-level transparency that

makes it more appropriate in production. The goals of Dapper are low overhead, application-level

transparency, and scalability. It records timestamped messages and events that trace the whole

execution of the system. Nevertheless, it restricts its instrumentation to a small set of common

libraries.

As mentioned before, one of the novel contributions of Dapper is the use of sampling towards

maintaining a low overhead, especially useful in scenarios that are very sensitive to latency varia-

tion. They use a uniform sampling approach to select which data to record. They also found that,

on average, 1 out of 1024 requests has enough relevant data in services with high data throughput.

This would not be the case with services with lower traffic. In addition, the scenarios described in

the paper are based on the uniformity of the system. This is not the case of the typical microser-

vice architecture, nor is it the goal it tries to achieve, but the exact opposite. Microservices are

meant to be inherently heterogeneous, and the work required for instrumentation would be pretty

considerable, as the effort required to maintain the interoperability of the tool.

Zipkin [80] and OpenTracing [79] (which is now merged into OpenTelemetry [78]) are widely

known tools in the industry that provide distributed tracing. They require the instrumentation of

the application code in order to report trace data. They also support the primary protocols for
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communication at the application level (level 7), such as HTTP, message queues, or RPC. The

tracing headers in each request are minimized to maintain a low overhead. The identifiers in each

request are sent in-band with the rest of the application communication, but the details of each

request, which can be analyzed later, are sent out-of-band asynchronously. This permits tracking

causal and temporal relationships of service invocations in each request.

They are potent tools for distributed tracing and are among the most used in the industry [59].

However, since it requires the instrumentation of the application code, it is not fully transparent to

the user. It only gives the developer information on where a fault might be, but it does not assist in

finding the root cause of the fault. This is because the state leading to the fault is not recorded with

the trace (which makes sense since it is not a record and replay tool). Hence the conclusion about

these tools is that they are not to be used singlehandedly but to support other tools or techniques

the developer employs towards debugging and maintaining its system.

Another example of a tracing-based tool that leverages the sampling technique is Sieve [35],

which focuses on systems with massive amounts of trace data. The proposal is a novel sampling

technique that aims towards uncommon traces, often overlooked by typical sampling approaches,

and provides helpful information. The strategy for the online sampling approach is to use the

robust random cut forest, a variant of isolation forest, to detect uncommon traces. It highlights

traces that distinguish themselves from others (either temporarily or structurally) and gives them

higher chances of being included in the sampling. This technique helps detect uncommon traces

and reduce the cost of storage that is part of the implementation of sampling.

The approach results show a low overhead, considering it is an online tool. The tool’s appli-

cability must be considered with additional tools, mainly tracing, to provide the necessary data to

perform well.

A more low-level and infrastructure-specific approach is Rbinder [89], whose novelty lies in

joining proxies usage and operating system syscalls monitoring to handle tracing and establishing

causality between multiple requests, respectively. This is an effort to address the high hetero-

geneity that microservice systems possess. They aim to separate instrumentation and application

code, minimizing the performance overhead. In a first step, Rbinder deploys one proxy for each

microservice as a middleman (similar to the approach of service meshes) and inserts the tracing

headers in each request that passes the proxy. Afterward, the service must run as a child process

of the tool. It happens this way to ensure the application propagates the header given by the proxy

in each request. This way, the tool achieves a transparent application of tracing.

It is a future-oriented approach to tracing, as it leverages proxies to perform tracing, but the

necessity of intrusion remains a drawback. In addition, it still does not support other protocols

besides HTTP, which is a limitation. The use of service mesh promotes the growing usage of RPC

since it is more performant than HTTP.

To address the lack of transparency in tracing, the authors of Inkle [81] argue for a transparent

tracing system based on microservices that use RPC (gRPC, in particular) to communicate. Re-

mote Procedure Call allows performant communication between services when they require tasks

performed by other services. The microservice-based systems targeted are run with Kubernetes.
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The solution implements passive tracing, which requires the system to be non-intrusive. This is

achieved by performing packet interception on the packets sent by the application, recording the

gRPC trace data, and writing it to a log. It leverages ElasticSearch for storage and Kibana for

visualization and analysis.

This tool can perform transparent tracing, but it cannot do it recursively due to its log-based

approach. Ultimately request causality cannot be discovered through the tool, as the trace data

related to the request does not establish a relationship between requests. Furthermore, the success

rate of the trace seems to be inaccurate to this constraint.

3.3.4 Visualization

Visualization is a technique that allows the developer to view the system functioning graphically,

as opposed to the traditional textual view of logs and traces. In the same way, one can read the

traces of a call to understand the flow of a call; visualization tools allow one to visualize that same

call flow, simplifying that process for developers and ultimately saving time.

The work of Beschastnikh et al. gave origin to ShiViz [8], a visualization tool dedicated to

distributed systems. This tool displays distributed executions as “interactive time-space diagrams

that explicitly capture distributed ordering of messages and events in the system”. ShiViz estab-

lishes the happens-before relation between events to represent the execution more accurately. It

does not guarantee total order, as some events may occur after or before others without affecting

its behavior. Nevertheless, when causality is required, it can establish the relationship between

events. The tool also allows rich manipulation and querying of the data to understand the flow

in question. ShiViz assists developers in visualizing the events (partial) order, searching existent

communication patterns, and registering causality among events. This is extremely helpful con-

sidering the nuances of distributed executions and the abnormal behavior that can emerge from

there.

Notwithstanding, the tool has some limitations. First, it is not helpful to understand high-level

behavior due to the low-level nature of its information ordering. It is based on logical ordering

and not real-time, making it unsuitable for inspecting specific performance metrics. The tool is

built as a client-side-only browser application, making it portable and appropriate for sensitive log

data, but it also severely limits its scalability.

Another underlying problem in visualizing microservice traces is mapping microservices units

to nodes. Since microservice instances run on containers and are dynamically created and de-

stroyed (along with their containers), this is an issue for visualization. Furthermore, it is unknown

a priori which instance is assigned to handle a call made towards a microservice.

3.4 Summary

In this chapter, we analyzed several tools and techniques used and developed by academia and

industry to help developers debug their systems.
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First, we explored debugging approaches for microservice-based systems and noticed that

there is not yet a large variety of solutions implementing fault localization techniques. Such ex-

ceptions are solutions that apply delta debugging (state-based fault localization) and spectrum-

based fault localization. Both of them focus on external aspects, although necessary, besides the

application code and do not provide a fine-grained insight into the fault itself. We also explored

record-and-replay and live debugging tools, which give developers some of the “power of debug-

ging monoliths” back with limitations. At last, in this section, we also explored anomaly detection

and root-cause analysis tools, which are essential to discuss, although not focusing on the applica-

tion code due to their practicality in production scenarios.

Afterward, we explored debugging approaches for “traditional” (non-microservice-based) sys-

tems, as it contains most of the literature on debugging techniques, especially for distributed sys-

tems, of which microservices are a part. We focused on advanced fault localization techniques

such as configuration, slice-based, and spectrum-based fault localization.

Finally, we discussed debugging assistance tools and approaches. Despite not being tools

that actively find faults, they are widely used in industry and are essential to track the system’s

performance. Specifically, we explored monitoring, log analysis, tracing, and visualization tools.

The first three are the primary tools of developers in most cases, including microservice-based

systems [113].

In this chapter, we analyzed several tools and techniques used and developed by academia and

industry to help developers debug their systems.

First, we explored debugging approaches for microservice-based systems and noticed that

there is not yet a large variety of solutions implementing fault localization techniques. Such ex-

ceptions are solutions that apply delta debugging (state-based fault localization) and spectrum-

based fault localization. Both of them focus on external aspects, although necessary, besides the

application code and do not provide a fine-grained insight into the fault itself. We also explored

record-and-replay and live debugging tools, which give developers some of the “power of debug-

ging monoliths” back with limitations. At last, in this section, we also explored anomaly detection

and root-cause analysis tools, which are essential to discuss, although not focusing on the applica-

tion code due to their practicality in production scenarios.

Afterward, we explored debugging approaches for “traditional” (non-microservice-based) sys-

tems, as it contains most of the literature on debugging techniques, especially for distributed sys-

tems, of which microservices are a part. We focused on advanced fault localization techniques

such as configuration, slice-based, and spectrum-based fault localization.

Finally, we discussed debugging assistance tools and approaches. Despite not being tools

that actively find faults, they are widely used in industry and are essential to track the system’s

performance. Specifically, we explored monitoring, log analysis, tracing, and visualization tools.

The first three are the primary tools of developers in most cases, including microservice-based

systems [113].

To conclude this chapter, we want to point out that there are tools dedicated to different kinds

of systems. Therefore one single tool could not cover all bases of debugging, and combining
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tools and techniques seems to be the way to develop a novel solution. In particular, we draw

the reader’s attention to logging and tracing techniques, which provide rich information about

the system execution at a low level. The more information is present, the more likely are we to

find some critical detail that helps pinpoint a given faulty component. Our highlight regarding

debugging techniques is the spectrum-based fault localization. It is a fascinating approach we

intend to focus on while developing our strategy and designing our solution.



Chapter 4

Debugging Tool Implementation

In the previous chapter, we discussed the parameters of our solutions, the goals we mean to

achieve, and the issues and challenges we expect to face. To go from logs of microservices systems

executions to a ranking exposing possible faulty entities requires a certain degree of manipulation

of the information. Besides the SFL technique itself, we soon realize that the data must be pro-

cessed when it is in a plain log format. For this reason, our implementation is divided into two

parts, one dedicated to processing the logs collected from the microservice system and the other

dedicated to extracting entities and performing analysis to obtain the SFL rank. For the rest of the

chapter, we discuss the prototype’s architecture and each implementation part in its section. The

code repository for our prototype is accessible at [62].

4.1 Architecture

At a high level, we see the architecture of our prototype divided into four components: log proces-

sor, entity parser, analytics, and ranking. In Figure 4.1 we present a UML components’ diagram

describing the relationships between the components.

The first component to address, the log processor, is a component that is not implemented

from the core but instead configured and adapted to extract the log data in the proper format.

The data should have a standard format, but different degrees of completeness in the entries are

also expected. Therefore, each entry has minimal requirements, so the SFL technique can still

be applied. In the following section, we analyze further in detail which are the mandatory and

optional fields extracted from each log.

Afterward, the first component of the second part of the implementation, as mentioned before,

is the entity parser. This component is responsible for parsing SFL entities from the extracted log

data. Since we do not guarantee complete information, we must consider the two levels of entities

that can be extracted, the service being executed and the method invoked. In Subsection 4.3.2, we

detail the concrete implementation approach to adapt the extracted data to entities eligible for the

SFL technique.

31
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SFL Tool

Log Processor

Entity

Entity Parser

AnalyticsRanking

Extracted
Log Data

Analyzed
Entities

Figure 4.1: SFL Tool Architecture Component Diagram

The following component is responsible for analyzing the entity references and computing the

hit spectra of each entity. This is the final step before applying the SFL algorithm.

The last step, performed by the ranking component, is to compute the probability of being

faulty for each entity, given the SFL coefficient algorithm. Finally, the rank is created, ordering

the entities by highest value (probability) and outputting the ranking to the end-user.

4.2 Logs Processor

Log processing is not a novel process, and in the observability area, several developments already

exist that provide many capabilities to the users. We must analyze a considerable amount of logs

and be able to parse and extract relevant information from them in a feasible time.

After some time spent researching, we encountered a tool that was able to fulfill our needs.

As we already discussed in Chapter 2 (p. 5), the Logstash [20] tool provides us the means for

log manipulation and streaming the data into various output formats. In addition, we realized that

there was an open-source version, which we used as our baseline.

We used its Docker container image to run the tool, as it is quicker to start without any extra

configurations. As we will refer to from now on as Logstash, the log processor has many ca-

pabilities beyond our scope and need. For our case, the essential features are its pipelines and

configuration files, which we explain immediately.

The pipeline indicates a job that Logstash must perform, each job/pipeline being associated

with a configuration file. It can be configured to distribute the available resources customarily

through the active pipelines.

A configuration file indicates where the information comes from, what operations it does with

it, and where does it output to. There are numerous possible input and output plugins for both input
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and output, such as files, message queues, TCP/UDP servers, and many more. One can specify the

flow of data with almost no restrictions. As for the operations possible to perform, they are also

quite extensive. The standard data format is JSON, and from there, one can modify data values,

perform conditional operations, and extract information from strings with Grok [18] patterns.

4.2.1 Configuration example

A sample configuration file can be observed in Listing 1.

In this example, the log data is retrieved from two possible sources. The first is from files in

the local storage, which are located in the directory /data/file and have the extension .log. The

second is from a RabbitMQ server, which should be running in localhost with the port 5672, and

the data should be coming from the exchange logstash-input. As for the operations performed, a

grok filter plugin is used to extract information from the logs. In fact, there are several patterns,

which means that the logs expected should come in different formats. Different segments can be

extracted into a field in each pattern if they match the pattern required. For example, if the first

part of the log has the format of the timestamp ISO-8601, that part of the string that matched the

template will be extracted to the field timestamp. The syntax for applying the intermediate patterns

is %{PATTERN:field_name}, where PATTERN is a macro for a regular expression and field_name

is the name of the field to be created if the data matches the pattern. Some patterns are more

complex and contain others within, such as the case of COMBINEDAPACHELOG which captures

an Apache-type log. The last operation performed on the extracted data removes some unused

fields that are not attractive. Finally, the information is outputted. Since there is a conditional

operation, the extracted data is only outputted if there is no tag indicating a failure parsing the

logs in the grok filter. This means only the logs that fully match one of the above patterns are

outputted. If that happens, the output is again the RabbitMQ server. The extracted data is sent to

the exchange logstash-output. We obtain a powerful setup to process and extract logs into a parsed

and structured object with just a couple of lines.

4.2.2 Log Processor Adaptation

Once the primary container is set up, one must create the appropriate configuration file for each

scenario. This task is not heavy and provides excellent control over the manipulation of the infor-

mation, making it relatively quick to obtain extracted and parsed log information from the logs.

The records are stored or output in JSON format to ease the posterior use of the extracted data

since it is easily readable and manipulated.

After some consideration and experimentation, we arrived at a template of what information

should be extracted from a log entry. Most of its fields are optional, as we do not expect such

completeness and uniformity in the logs. However, it could hold information relevant for the de-

veloper when he is debugging from a faulty entity, so it has this information “close-by”. However,

there are some mandatory fields, as we consider them the essential minimum for the SFL tool to

work to create an entity reference from extracted data.
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1 input {
2 file {
3 path => "/data/file/*.log"
4 }
5 rabbitmq {
6 host => "localhost"
7 port => 5672
8 exchange => "logstash-input"
9 codec => "plain"

10 }
11 }
12 filter {
13 grok {
14 match => {
15 "message" => [
16 "%{TIMESTAMP_ISO8601:timestamp} %{LOGLEVEL:logLevel}

%{JAVAFILE:className} - %{GREEDYDATA:logMessage}",↪→

17 "%{MONTHNUM:month}/%{YEAR:year} %{LOGLEVEL:loglevel} :
\.*%{DATA:action}",↪→

18 "%{COMBINEDAPACHELOG}"
19 ]
20 }
21 }
22 mutate {
23 remove_field => ["event", "@version", "log"]
24 }
25 }
26 output {
27 if "_grokparsefailure" not in [tags] {
28 rabbitmq {
29 host => "localhost"
30 exchange => "logstash-output"
31 port => 5672
32 }
33 }
34 }

Listing 1: Logstash Sample Configuration File

The provided guiding template for the outputted log format is in Listing 2.

4.3 SFL Tool

The core feature of our prototype is manipulating structured log data into components and applying

the SFL technique to them. The uncertainty of log quality forces us to consider settings with
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1 {
2 "correlationID": "[REQUIRED] <string> of the request ID

that started the invocation chain",↪→

3 "durationProcessing": "[OPTIONAL] <number> of the duration,
in milliseconds, taken to fulfill the logged
request/method",

↪→

↪→

4 "spanID": "[OPTIONAL] <string> of the span ID of the
service",↪→

5 "endpoint": "[OPTIONAL] <string> of the endpoint that
invoked the logged activity",↪→

6 "httpCode": "[OPTIONAL] <integer> of the HTTP status code
produced by the request",↪→

7 "instanceIP": "[OPTIONAL] <string> of the instance IP where
the microservice is running",↪→

8 "methodInvocation": {
9 "fileName": "[OPTIONAL] <string> of the file name/path

where the method is invoked",↪→

10 "className": "[OPTIONAL] <string> of the class
name/path where the method is invoked",↪→

11 "line": "[OPTIONAL] <integer> of the line of the logged
activity",↪→

12 "methodName": "[OPTIONAL] <string> of the method
invoked"↪→

13 },
14 "logLevel": "[OPTIONAL] <string> of the log level (e.g:

DEBUG, INFO, ERROR, 1, 2, 3)",↪→

15 "message": "[OPTIONAL] <string> of a message explaining the
logged activity",↪→

16 "microserviceName": "[REQUIRED] <string> of the
microservice name",↪→

17 "parentSpanID": "[OPTIONAL] <string> of the span ID of the
parent service that invoked the current service",↪→

18 "timestamp": "[REQUIRED] <string> of the timestamp, in
ISO-8601 format and in UTC time standard, when the
logged activity occured",

↪→

↪→

19 "user": "[OPTIONAL] <string> of the user name or id
associated to the user that initiated the logged
request"

↪→

↪→

20 }

Listing 2: Processed Log Template

incomplete information and adapt to it. To perform SFL, we must have the concept of an entity in

the code. In the following steps, we detail step-by-step the implementation of our tool, from the

raw structured log data to the SFL ranking.
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4.3.1 Inputs

Production environments often have a high data flow and are automatic, i.e., the systems are de-

ployed and executed without human interference. We chose a method of automatically receiving

the parsed log data so that the tool could be integrated into a pipeline and receive continuous

data streams in real-time. Our first option was using RabbitMQ [86] as a message broker for the

messages containing the log data, as it is robust and well-supported.

In certain situations, using a data stream is not practical, for example, when a developer per-

forms a static analysis of the code and logs. To keep our tool generic for multiple purposes, we

also implemented file reading, allowing asynchronous analysis and smaller scenarios to be tested

quicker.

4.3.2 Entity Reference Extraction and Generation

Once the log data is manipulable, the next step is to use it to construct the entity reference, which

is the basis for applying the SFL technique. Considering the restraint of possible incomplete

information in the logs, we implemented a two-level hierarchy for the entities, one for the service

and the other for the method invocation inside the service.

In the code, there are components that, given a set of conditions, and variables, are executed.

Those components, or entities, can be executed or not in passing or failing test cases. These are

two foundational premises of SFL. In the context of microservices, we made two adaptions to

these premises.

For the first adaptation, regarding the entities, we now consider two entities of different hier-

archical levels, a service entity referred to when a service is invoked, and a method entity referred

to when a method in that service is invoked. This is our response to the possibility of incomplete

information. Even if it is not possible to point out the faulty method, we can point in the general

direction and focus the attention on one single service in the system.

We consider executions of microservices and do not expect test cases for the second adaptation,

as it is the traditional approach. Instead of passing and failing test cases, we expect “good” and

“faulty” executions of the system. We consider the execution of the system every step since a

request is received/generated in the system until it is fulfilled. The distinction between “good”

and “faulty” executions relies on the system’s behavior and if the output is considered correct or

incorrect. Therefore, the tool expects two sources of log data, one for the logs regarding “good”

executions and the other for the logs regarding “faulty” executions”.

For each log data entry, we create a reference to the entity its mentions. At the very least, a

service entity reference is always created for each log entry. The method entity reference is also

created if the data contains information regarding the method invocation. This is the process for

every log data entry received.

A diagram for the entity class can be observed in Figure 4.2. For each log entry, there is an

instance of at least one entity, the service entity, and the method entity might also be instantiated.
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Entity

+ name: str

+ references: Dict[str, List]

+ entity_type: Enum

+ request_id: Optional[str,None]

+ timestamp:  Optional[str,None]

+ parent_name: str

+ children_names: Set[str]

Method Entity

+ log_level: Optional[str,None]

+ message: Optional[str,None]

+ method_invocation: Dict

Service Entity

+ endpoint: Optional[str,None]

+ instance_ip: Optional[str,None]

+ span_id: Optional[str,None]

+ parent_span: Optional[str,None]

+ http_code: Optional[str,None]

+ user: Optional[str,None]

Figure 4.2: Entity Class Diagram with Python-like Typing

After collecting all the entity references, multiple references belong to the same entity because

one service or method is rarely executed only once. The final step of entity extraction and genera-

tion is to merge the references into a compilation. To merge references of the same entity, they are

hashed with their name, entity type, and parent name. We collect the specific information about

the references and children’s names during the merge because that is the different information

between entity references.

The result is two sets of unique entities, with the same total number of entities present in

the code and are captured by the logs, one extracted from the “good” logs and another from the

“faulty” logs.

4.3.3 Entity Analytics

The analytics step of the tool is to obtain the hit spectra, a term used in SFL which means the

number of unique times an entity is executed or not in “good” and “faulty” scenarios. Since we

already have the entities’ sets separated by the two scenarios, we perform the analytics for each.

For the “faulty” scenario entity set, we compute how many times it was executed in that sce-

nario for each entity. At the same time, we keep track of the number of unique executions. Each

unique execution is represented by its request ID or correlation ID. Nevertheless, all entity ref-

erences without it are counted as single executions, as requests of their own, since they cannot

be related to any other. This number of (unique) executions permits retrieving the number of

non-executions for the same entity, as executions and non-executions are complementary.
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The exact process is done for the “good” scenario, and in the end, for each entity, we obtain

the count of unique executions and non-executions for both scenarios.

During the testing of the tool, we observed that the service entity often had a higher ranking

than the method entities and consistently outranked every one of its children. Therefore, we im-

plemented an attenuation step in the service entities’ metrics in the analytics step. We explored

different approaches discussed in Chapter 5 (p. 40), and the selected winner was the “average”

approach. In this strategy, we traverse each service entity’s children and obtain their average on

each metric (number of times executed or not in “good” and “faulty” scenarios). We replace the

service entity’s metric value with its children’s average for the same metric. This way, we can

balance the service entity’s impact on the ranking.

4.3.4 SFL Ranking

The final step is to obtain the SFL rank from each entity’s analytics. As we explored in Chapter 3

(p. 17), there are more than one alternative to the coefficient algorithm. In this prototype we

implemented several of them, namely Ochiai [13], Jaccard [11], Tarantula [44], Zoltar [2], O [69],

OP [69], Kulczynski2 [68], McCon [68], DStar (D*) [104], and Minus [109].

The tool also supports multiple metrics used by merging, currently performing the average or

the median (average is the default). Since not all of them follow the standard probabilistic scale (0

to 1), we also implemented a normalization step for the metric values to be correctly merged.

Once each entity has its SFL value, we prepare the ranking list and order it with the highest

valued entity on top.

This step is easily extensible, and more metrics can be added to customize the ranking opera-

tion.

4.3.5 Outputs

The ranking is outputted into a JSON file and a separate file containing the ranked entities’ ref-

erences. For each scenario, “good” and “faulty”, its entities references are also registered in case

of posterior analysis. Providing the ranking in this format is easily readable and manipulable in a

programmatic way.

4.4 Summary

Our tool must be able to process information from the logs before it is possible to apply the SFL

technique and generate a ranking. Our implementation has a first part dedicated to performing log

processing and a second to implementing the SFL technique.

There are several options available to deal with log processing. Our choice was Logstash

which has an open-source version and the necessary features for our case. We built a Docker con-

tainer image for our usage and prepared the required setup for it to be used. Logstash works with

pipelines that represent different jobs and can have the assigned resources dynamically allocated.
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A configuration file in each job details how the information is retrieved. It can be from files, mes-

sage queues, web servers, and many more. It also details operations to perform on the data read; it

can be parsing the string data into meaningful variables, manipulating the existing fields, shape the

output data into a structured object. It can also detail how the processed data is outputted, having

the same options as it does with the input. The significant number of possibilities is a great plus

for our work since it provides a generic and highly customizable way of processing log data into

usable data for our tool.

Once the log data for “good” and “faulty” scenarios is available, it is processed, and for each

log entry, the tool extracts an entity reference. An entity could be one of two types, service or

method. The service entity represents a higher-level component of the system, and the method

entity represents a child component of the service. After processing all log entries, they are com-

piled and merged into two sets of unique entities. Then each entity is analyzed by counting the

times it is executed in each scenario. At the same time, in each scenario, the tool keeps track of

unique executions, represented by the request IDs or by the number of references without them.

This permits us to infer the number of times each entity has not been executed and complete the

analysis. Finally, the last step is to apply the SFL coefficient algorithms to each entity’s analytics

and arrange them by their SFL value in descending order. The ranking is the writing on a JSON

file, completing the process.

With the complete pipeline, we can now integrate it with microservice logs and produce rank-

ings. Our tool is now ready to be tested after performing some simple test cases and fixing any

lingering issues.
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Evaluation

Once we have implemented our prototype, we must test it to be validated. Therefore, in this

chapter, we first detail the setup developed for the evaluation, and afterward, we analyze the results

obtained from running the test scenarios we created.

5.1 Evaluation Setup

We created this tool to be compatible with microservice systems, and therefore we decided to test

the tool with actual data and logs produced by a microservice system. The application chosen for

our evaluation was Instana’s [36] Robot Shop [37].

5.1.1 Test Application

The Robot Shop is a web application for the online shopping of robots composed of 12 microser-

vices, 7 of which were created for the application. Therefore we could alter their code (the re-

maining services are databases and message queues). The application is also polyglot, supporting

our intention to build a generic, agnostic tool.

In this blog post [38], the authors describe the application as having a single web page using

AngularJS (1.x), having its resources served by Nginx, which performs as a reverse proxy for the

backend microservices as well. Since the microservices are polyglot, they make use of different

frameworks. MongoDB stores data of the product catalogue and registered users, MySQL is

responsible for looking up shipment information, and Redis holds the data about active shopping

carts. RabbitMQ is used to process the order pipeline.

Besides supporting services for databases and message queuing, the business logic is spread

in these seven services:

• User - Deals with user accounts and order history

• Payment - Deals with payments and forward to payment gateways

• Catalogue - Deals with robots availability and storage

40
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• Cart - Deals with each user’s current cart

• Shipping - Deals with shipment costs

• Ratings - Deals with robot ratings

• Web - Deals with the shop frontend and proxy the requests to the microservices

5.1.2 Log Extraction And Processing

Upon analyzing the services’ code and logs when executed, we quickly understood that some in-

formation gaps in the logs would affect how the tool could find responsible entities. First, only

two of the seven services observed contained request/correlation IDs in their logs, making it in-

sufficient to relate requests between the rest. Second, no service would log the invocated method

during the log’s generation. We foresaw both problems as the tool was developed, and we found

alternative solutions for them.

Since having a request id is unavoidable, problem one is that we cannot assume a relation

between requests. We would not be able to do it without extracting more information, which is

highly intrusive. Instead, we have the worst case: every service execution has its request. This

means that instead of the intended correspondence of test cases in the traditional SFL approach to

requests in our approach, we have each invocation of the entity belonging to its request. Regard-

less, we can separate good and faulty executions of the system and, therefore, separate entities into

the two categories.

As for the second problem, upon further inspection of the logs generated by the services, we

detected that all produced logs were present at the endpoint they were serving. By analyzing the

code, we decided that we could meet halfway and assume that the method invocations could be

represented by the endpoints or, more specifically, the code executed when they are called. Most

endpoints were successfully present in the injected faults, but not all. Endpoints also introduced

some noise from a service logged by another service, which is not ideal to “blame” a faulty entity.

We ran the load generator already available in the application demo to produce logs. We

executed each scenario for 10 minutes to provide a high number of log entries. Since the execution

was local, we only had one instance for each service, but it was sufficient to produce enough logs.

Once able to configure and collect logs from the application, we prepared a configuration to

extract information from the logs (as explained in Chapter 4 (p. 31)’s Log Processor section). Each

service provided logs in a different format and structure, which the log processor allowed not to

become a challenge.

5.1.3 Fault Injection

To assess the ability of the tool to localize faults, we collected logs from scenarios where the

system was running normally, unaffected, and others where we injected faults into the code of the

services.
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There was no limit, at first, to how many faults we would inject into the system to evaluate

the performance. However, as we see in [3], and due to the size of the microservice system, we

explored the injection of faults up to 5, and the results we obtained revealed to be sufficient for

conclusion making. In addition, we were curious to see if the fault’s distribution in the services

impacted the tool’s ability to detect faults, so we ran scenarios where the faults were distributed

up to 5 services. For each scenario, we executed four combinations to obtain results with different

sets of services. We chose this number of combinations to provide a sufficient variety of results

without losing too much time exploring every possible combination, which our time frame would

not allow. Since we have from one to five fault scenarios, and they are distributed in one to five

services, the result is fifteen different categories. The four combinations per category make for 60

executions in the scenario suite.

The injected faults had different natures, as the services had different settings. Some were

composed of injecting null values in a variable of a request body. Others were misspelling or

altering a URL used for an intermediate request, changing constant values used in conditional

statements, changing initialization values of booleans, and changing returns values. Our rationale

was to inject errors that would not necessarily break the system altogether but be executed, perform

erroneous behavior, and test whether our tool could detect it. Examples of the injected faults are

in Listings 3, 4, 5, 6, and 7.

103 // return all users for debugging only
104 app.get('/users', (req, res) => {
105 if(mongoConnected) {
106 usersCollection.find().toArray().then((users) => {
107 // res.json(null); <-- The fault is inserted here
108 res.json(users);
109 }).catch((e) => {
110 req.log.error('ERROR', e);
111 res.status(500).send(e);
112 });
113 } else {
114 req.log.error('database not available');
115 res.status(500).send('database not available');
116 }
117 });

Listing 3: Example of a null value injection in the user service in server.js

5.1.4 Scenario Generation

Each scenario has a different combination of services in which the faults have been injected. We

test four scenarios for each category, classified by the number of faults and services containing

them. For simplicity, we used the terminology XfYs, in which X stands for the number of faults
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201 $scope.addToCart = function() {
202 // var url = '/api/cart/add/' + currentUser.uniqueid + '/' +

$scope.data.quantity + '/' + $scope.data.product.sku; <--
The fault is inserted here

↪→

↪→

203 var url = '/api/cart/add/' + currentUser.uniqueid + '/' +
$scope.data.product.sku + '/' + $scope.data.quantity;↪→

204 console.log('addToCart', url);
205 ...

Listing 4: Example of URL tampering in the web service in controller.js

140 // update/create cart
141 app.get('/add/:id/:sku/:qty', (req, res) => {
142 // check quantity
143 var qty = parseInt(req.params.qty);
144 if(isNaN(qty)) {
145 req.log.warn('quantity not a number');
146 res.status(400).send('quantity must be a number');
147 return;
148 // } else if(qty < 2) { <-- The fault is inserted here
149 } else if(qty < 1) {
150 req.log.warn('quantity less than one');
151 res.status(400).send('quantity has to be greater than

zero');↪→

152 return;
153 }
154 ...

Listing 5: Example of a modification of a constant value in a conditional statement in the cart
service in server.js

and Y for the number of services the faults were distributed. For example 4f3s means that this

category is for scenarios containing four faults distributed in three different services. In Table 5.1,

we present the generated combination for each scenario and category selected randomly.

5.1.5 Performance Evaluation

To evaluate each scenario’s performance, we focused on measuring the accuracy of the scenario

according to the ranking outputted. We used the combination of Ochiai and Jaccard metrics, best

and second-best techniques as seen in [1].

There is a set of faulty entities for each scenario we test due to the injection of faults. The faulty

entity’s detection accuracy depends on the distance (delta) to the top of the ranking produced. For
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73 ...
74 # has_shipping = True <-- The fault is inserted here
75 has_shipping = False
76 for item in cart.get('items'):
77 if item.get('sku') == 'SHIP':
78 has_shipping = True
79

80 if cart.get('total', 0) == 0 or has_shipping == False:
81 app.logger.warn('cart not valid')
82 return 'cart not valid', 400
83 ...

Listing 6: Example of a boolean value modification in the payment service in payment.py

78 /**
79 * @Route("/fetch/{sku}", methods={"GET"})
80 */
81 public function get(Request $request, string $sku): Response
82 {
83 try {
84 if (!$this->ratingsService->ratingBySku($sku)) {
85 throw new NotFoundHttpException("$sku not found");
86 }
87 } catch (\Exception $e) {
88 throw new HttpException(500, $e->getMessage(), $e);
89 }
90

91 // return new JsonResponse(['avg_rating' => 1.42,
'rating_count' => 420]); <-- The fault is inserted here↪→

92 return new
JsonResponse($this->ratingsService->ratingBySku($sku));↪→

93 }

Listing 7: Example of a return value modification in the ratings service in RatingsApiCon-
troller.php

the fairness of the evaluation, once an entity has been evaluated, it is not considered present in the

ranking for the remaining entities’ evaluation. This means that if we expect the presence of two

faulty entities and they occupy first and second places, their delta is zero in both cases, resulting

in an accuracy of 100% for that scenario.

In addition, we also add up the accuracy of the parent (service), as the service is more easily

found to be faulty than the method invocation. Notwithstanding, it is added with a weight to

maintain balance.
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Table 5.1: Set of scenario combinations generated for each category of number of faults and fault
distribution

Category Combinations

1f1s cart catalogue user web

2f1s cart catalogue user web

2f2s cart-catalogue payment-ratings shipping-user web-cart

3f1s cart ratings shipping user

3f2s cart-catalogue payment-ratings shipping-user web-cart

3f3s cart-catalogue-payment ratings-shipping-user web-cart-catalogue payment-shipping-ratings

4f1s cart catalogue ratings web

4f2s cart-catalogue payment-ratings shipping-user web-cart

4f3s cart-catalogue-payment ratings-shipping-user web-cart-catalogue payment-shipping-user

4f4s cart-catalogue-payment-ratings shipping-user-web-cart payment-web-catalogue-user cart-ratings-shipping-payment

5f1s cart shipping user web

5f2s cart-catalogue payment-ratings shipping-user web-cart

5f3s cart-catalogue-payment ratings-shipping-user web-cart-catalogue payment-shipping-ratings

5f4s cart-catalogue-payment-ratings shipping-user-web-cart payment-shipping-user-cart catalogue-ratings-web-cart

5f5s cart-catalogue-payment-ratings-shipping user-web-cart-catalogue-payment ratings-shipping-user-web-payment cart-catalogue-web-ratings-payment

We consider that if the method is not present in the ranking, the parent service still points in

the general direction of the method, so it must be accounted for.

We also consider that if the parent’s weight is not balanced, a service found guilty will influ-

ence all the methods children that are not to be blamed.

Therefore, our conclusion was to divide the parent’s accuracy by the number of entities in the

ranking before adding it to the method entity’s accuracy.

For each scenario, the total accuracy is the average of the faulty entity’s accuracy expected to

be detected.

For example, we have a test scenario with the faulty entities “A”, “B” and “C”, whose parents

are the service entities “D”, “E”, and “F”, respectively. After running the tool, the ranking has ten

entities, and each entity occupies the corresponding place:

• Method entity “A” occupies first place

• Method entity “B” occupies fifth place

• Method entity “C” is not part of the rank

• Service entity “D” occupies second place

• Service entity “E” occupies third place

• Service entity “F” occupies sixth place

“A” has a zero delta since it occupies the first place. Therefore the accuracy of detecting “A”

is 100%.

“B” has a delta of three because it occupies the fifth place (delta is four), and “A” has been

processed before. Its parent, “E”, has a delta of one, as it occupies the third place, and “A” has been
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processed before. “B” has the accuracy of 1− 3/10 = 0.7, which is 70%. “E” has the accuracy

of 1−1/10 = 0.9, which weighed down is 0.9/10 = 0.09, resulting in 9%. The final accuracy of

“B” is 79%.

“C” is not part of the ranking, so its accuracy is 0%. However, its parent, “F”, is present

and has a delta of three since it occupies sixth place (delta is five), and “A” and “B” have been

processed before. “F” has the accuracy of 1−3/10 = 0.7, which weighed down is 0.7/10 = 0.07,

resulting in 7%. The final accuracy of “C” is 7%.

This scenario’s total accuracy is the average accuracy of all faulty entities, which is 62%.

In addition to the accuracy, we registered the position in the ranking and the SFL value at-

tributed to each faulty entity in each scenario.

As an extra step, we tracked the application’s execution time in the best configuration (service

attenuation with average) to benchmark it. The machine used in the evaluation process possesses

16 GB RAM and Intel™ Core i7-7700 2.8 GHz with 4 cores.

5.1.6 Additional Evaluation Points: Entity Ties

As it is common in SFL, and we confirmed so in our results, there are often ties with entity

values; therefore, they have placed adjacently in the ranking. We analyzed different “tie-breaking”

strategies that represent the order a developer would analyze each entity when debugging the

system. Our study examined four strategies: best case, worst case, average, and “as-is”. The

best case means that the entity is always the first to be considered independently, so it has the

highest-ranking position of the entities with the same value. For example, if the first three entities

would have the same value, all of them would be considered in the first place when evaluated. The

worst-case means that the entity is always the last to be considered, so it has the lowest ranking of

the entities with the same value. For example, if the first three entities would have the same value,

all of them would be considered in the third place when evaluated. The average case means that

the entity is always in the average place, so it has the average ranking position of the entities with

the same value. For example, if the first three entities had the same value, all of them would be

considered in the average position, which is second, when evaluated. The “as-is” case processes

the ranking as it is, without any tie-breaking considerations.

5.1.7 Additional Evaluation Points: Endpoint Coverage Percentage

Another evaluation point we considered relevant was the tool’s performance with varying grades

of endpoints/method invocation presence and how it impacts the accuracy if there is a threshold of

necessary endpoint presence. We executed the same suite with a different number of services with

endpoints as method invocations to evaluate this. We considered a presence of 100%, 75%, 50%,

25%, and 0% of the services with endpoints. We also tested along with the 0% endpoints scenario,

the same suite but pointing only to services so that we can evaluate the tool’s performance with

only the service information available.
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5.2 Results And Their Analysis

As we mentioned before, our evaluation consisted of analyzing the rankings produced by executing

the tool on logs of the microservice application in different settings. From one to five faults,

distributed in one to five various services, we analyzed the results in different aspects, focusing

on the accuracy of each scenario. While the results in this section represent the average accuracy

in each category of scenarios, the individual accuracies of each specific scenario are presented in

Appendix A (p. 64).

5.2.1 Scenario Suite

Results In every run, we evaluate the accuracy of each scenario and then extract useful informa-

tion from them. We compute the average accuracy for the category with X of faults and with Y
of services the faults have been distributed. Furthermore, for each specific scenario and these two

compilations, we compute the minimum and maximum accuracies and the average minimum and

maximum of all the scenarios. As a general pointer, we also calculate the global average accuracy

of all scenarios together.

In the first execution of the tool, we could not extract the method invocations in the endpoints

in the logs of three services, payment, shipment, and ratings. This constraint implied a reduction

in the number of entities identifiable in the results. The results in Table 5.2 confirm just that.

Table 5.2: Evaluation results for the scenario suite in the first log extraction

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 70.73% 45.60% 94.60% 1f1s 70.73% 45.60% 94.60%

2f 48.76% 2.44% 75.10% 2f1s 53.53% 33.90% 75.10%

3f 36.16% 2.40% 78.20% 2f2s 43.99% 2.44% 72.20%

4f 42.33% 2.50% 80.40% 3f1s 24.75% 2.40% 66.50%

5f 37.81% 2.50% 83.40% 3f2s 45.68% 2.40% 78.20%

1s 41.07% 2.40% 94.60% 3f3s 38.05% 2.50% 73.60%

2s 43.76% 2.40% 80.40% 4f1s 35.68% 2.50% 76.50%

3s 41.89% 2.50% 83.40% 4f2s 44.55% 2.50% 80.40%

4s 43.59% 13.20% 65.00% 4f3s 47.13% 21.50% 80.40%

5s 41.85% 29.90% 62.20% 4f4s 41.95% 13.20% 65.00%

5f1s 20.65% 2.50% 40.40%

Global average 5f2s 40.83% 2.50% 79.70%

42.34% 5f3s 40.50% 2.50% 83.40%

5f4s 45.23% 33.70% 56.00%

5f5s 41.85% 29.90% 62.20%

AVG 13.34% 72.28%

The results in Table 5.3 represent the evaluation on the second batch of logs extracted. We

would not need another rerun of log extraction, as we extracted all the information available in

this application.



Evaluation 48

Table 5.3: Evaluation results for the scenario suite in the second, and final, log extraction

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 75.88% 56.90% 95.90% 1f1s 75.88% 56.90% 95.90%

2f 62.05% 30.70% 84.20% 2f1s 58.63% 35.80% 83.40%

3f 64.50% 28.30% 87.80% 2f2s 65.48% 30.70% 84.20%

4f 61.73% 19.00% 84.40% 3f1s 60.80% 28.30% 87.80%

5f 59.20% 19.00% 87.80% 3f2s 69.63% 31.70% 84.20%

1s 57.64% 19.00% 95.90% 3f3s 63.08% 50.10% 78.90%

2s 66.53% 30.70% 84.40% 4f1s 51.00% 19.00% 84.40%

3s 68.07% 50.10% 86.90% 4f2s 67.45% 47.40% 84.40%

4s 58.60% 36.20% 74.10% 4f3s 72.28% 66.30% 84.40%

5s 60.70% 48.80% 69.10% 4f4s 56.20% 36.20% 70.60%

5f1s 41.88% 19.00% 87.80%

Global average 5f2s 63.55% 48.10% 83.90%

62.43% 5f3s 68.85% 50.80% 86.90%

5f4s 61.00% 43.80% 74.10%

5f5s 60.70% 48.80% 69.10%

AVG 40.86% 82.67%

Analysis In this first run, in Table 5.2, we understand that the more faults are introduced, the

lower the accuracy. In this particular run, the accuracy drops from 70% to 38%, almost half. Here

we see that the fault distribution in the services does not seem to affect the performance, as the

average accuracy in all Ys is quite similar.

In general, the results are inferior, and this is due to the apparent lack of information in the

logs for us to extract the method invocation of the endpoints.

The low results lead us to focus on the missing method invocation from the services mentioned

earlier. Looking deeper into the logs, we detected and extracted endpoint information from those

services, corresponding to the method invocation.

In Table 5.3, the results improved considerably in this new iteration, with the global average in-

creasing by about 20 points. The accuracy gap between scenarios with a different number of faults

has closed significantly. Now it goes from 76% to 59%, and it is worth mentioning that while the

upper bound has increased slightly, the lower bound rose the most. The worst-performing scenario

also improved its accuracy from 2.4% to 19%. The average bound puts the accuracy above 50%

chance, with the average minimum accuracy at 41% and the average maximum accuracy at 83%.

The number of services seems to oscillate the accuracy more than previously but without any

connection. It goes between 57% and 67%, a ten-point distance, peaking with the distribution

among three services and having the lowest percentages in the scenarios with 1 and 4 services

containing the faults.

Still in the lowest-performing scenarios, with 19% of accuracy, we analyzed the results and

the logs and found the root cause for this. First, since we extracted more information from the logs

than previously, the number of entities extracted before was 37 now rose to 49. Some of them are
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irrelevant to the business logic and therefore not targeted by the fault injection, but extracting the

remaining helpful information was the only option. The second cause for this low accuracy was

that the faults injected into the web service were not properly logged. This service makes many

intermediate calls for the other services and logs those calls. However, most of the calls to its

endpoints are not logged, so injecting a fault in one of its endpoints would not be captured because

any or most logs produced in that endpoint did not specify the endpoint it was invoked from. This

phenomenon is a natural consequence of assuming endpoints as method invocations. Since this

has occurred in very few scenarios, we accepted this phenomenon and the drop in accuracy.

5.2.2 Service Entity Weight Attenuation

Due to having a mixed ranking with different hierarchy levels, we found an issue in the rankings.

Service entities were occupying the higher ranking levels due to the aggregation of all its children,

plus any extra references that did not generate a method entity. This meant that the service en-

tity containing a faulty method entity would be positioned above the child, therefore hurting the

ranking the method entity would have.

To solve this, we had multiple ideas that we tested. For once, divide the service entity metric

counts (the number of times (not) executed in good (or faulty) scenarios) by the number of children

it had. Here the idea is to cut down the numbers and analyze the impact.

Another strategy was to consider the children’s average for each metric count and replace the

service’s original value. Here the idea is that the service cannot outrank the best child it has.

The third strategy used the maximum value of the children count assigned to the service. The

idea here is a softer reduction of the service impact by replacing the sum of the children’s metric

count with their maximum value only.

Results The results of the first, second, and third strategy implemented are in Table 5.4, Ta-

ble 5.5, and Table 5.6, respectively.

Analysis In the first strategy, in Table 5.4, we observe the results when the service entities are

weighted down by dividing the count (of each metric, executed/not, good/bad) by the number of

children. This operation is equivalent to multiplying a factor which is the children’s average, by

the service’s metric count. For example, being g_e the total of the service metric, and a,b,c, each

of its child metric count, this means that g_e = a+b+c. The average of the children is then avg =

(a+ b+ c)/3 . There the factor to weight would be f = avg/g_e = ((a+ b+ c)/3)/(a+ b+ c),

which is equivalent to 1/3 . Therefore, multiplying f ∗g_e is the same as g_e/3.

As analyzed, the impact is negligible, as the statistics remain closely similar. It is even slightly

worse, indicating that it is not a viable option for attenuation. As observed in SFL, the reason for

this is that the proportion is more relevant than the count. Entities being executed in faulty runs

are more relevant than in good runs. So if one entity has five times more references in faulty runs

than good ones, it will still have that proportion if the metric values are divided equally.
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Table 5.4: Evaluation results for the scenario suite using the service attenuation with division

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 75.88% 56.90% 95.90% 1f1s 75.88% 56.90% 95.90%

2f 62.05% 30.70% 84.20% 2f1s 58.63% 35.80% 83.40%

3f 64.13% 28.30% 87.80% 2f2s 65.48% 30.70% 84.20%

4f 61.14% 19.00% 84.40% 3f1s 60.80% 28.30% 87.80%

5f 58.76% 19.00% 87.80% 3f2s 69.38% 30.70% 84.20%

1s 57.83% 19.00% 95.90% 3f3s 62.20% 49.40% 78.90%

2s 66.56% 30.70% 84.40% 4f1s 51.28% 19.00% 84.40%

3s 67.33% 49.40% 86.90% 4f2s 67.45% 47.40% 84.40%

4s 57.04% 33.50% 74.10% 4f3s 71.55% 64.10% 84.40%

5s 59.28% 46.60% 67.40% 4f4s 54.30% 33.50% 68.40%

5f1s 42.55% 19.00% 87.80%

Global average 5f2s 63.93% 47.40% 83.90%

62.05% 5f3s 68.25% 50.10% 86.90%

5f4s 59.78% 41.10% 74.10%

5f5s 59.28% 46.60% 67.40%

AVG 40.00% 82.41%

Table 5.5: Evaluation results for the scenario suite using the service attenuation with average

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 82.73% 58.40% 100.00% 1f1s 82.73% 58.40% 100.00%

2f 67.39% 32.70% 96.20% 2f1s 63.95% 39.30% 90.60%

3f 70.24% 32.20% 97.40% 2f2s 70.83% 32.70% 96.20%

4f 67.27% 20.40% 91.60% 3f1s 66.50% 32.20% 97.40%

5f 64.97% 20.50% 97.40% 3f2s 75.25% 33.70% 96.20%

1s 63.04% 20.40% 100.00% 3f3s 68.98% 56.50% 83.90%

2s 72.44% 32.70% 96.20% 4f1s 55.10% 20.40% 91.60%

3s 74.57% 55.80% 91.70% 4f2s 73.43% 52.30% 88.90%

4s 63.54% 39.60% 78.70% 4f3s 79.60% 71.90% 88.80%

5s 66.40% 52.70% 75.50% 4f4s 60.95% 39.60% 77.60%

5f1s 46.93% 20.50% 97.40%

Global average 5f2s 70.28% 55.10% 87.80%

68.14% 5f3s 75.13% 55.80% 91.70%

5f4s 66.13% 49.90% 78.70%

5f5s 66.40% 52.70% 75.50%

AVG 44.73% 89.49%

In the second strategy, in Table 5.5, we observed the results when we performed the service

entity attenuation by replacing the service metric with the average of its children, meaning ge =

avg = (a+b+ c)/3.

In this run, the accuracy rises, and the global average hits 68%. There is even one scenario
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Table 5.6: Evaluation results for the scenario suite using the service attenuation with maximum

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 79.33% 56.90% 100.00% 1f1s 79.33% 56.90% 100.00%

2f 64.46% 29.90% 93.60% 2f1s 60.83% 36.30% 84.40%

3f 67.52% 30.90% 95.80% 2f2s 68.10% 29.90% 93.60%

4f 64.03% 19.00% 86.40% 3f1s 64.68% 31.10% 95.80%

5f 61.76% 19.00% 95.80% 3f2s 72.95% 30.90% 93.60%

1s 60.58% 19.00% 100.00% 3f3s 64.93% 53.00% 80.10%

2s 69.65% 29.90% 93.60% 4f1s 52.45% 19.00% 85.40%

3s 70.78% 53.00% 89.30% 4f2s 70.50% 48.80% 86.40%

4s 60.16% 37.10% 73.90% 4f3s 75.83% 67.20% 85.90%

5s 61.58% 50.30% 69.40% 4f4s 57.35% 37.10% 70.90%

5f1s 45.60% 19.00% 95.80%

Global average 5f2s 67.05% 49.50% 85.90%

65.05% 5f3s 71.60% 53.00% 89.30%

5f4s 62.98% 46.90% 73.90%

5f5s 61.58% 50.30% 69.40%

AVG 41.93% 86.03%

with 100%, as its faulty entity is correctly placed in the first place of the ranking. The average

minimum is about 45%, and the average maximum is about 89.5%, the highest values registered

until now.

This is a clear improvement on the previous approach and seems to be the best candidate thus

far.

The third and last strategy, in Table 5.6, shows an improvement compared to the default sit-

uation, without attenuation of the service entities. However, it still is left behind the previous

approach in all aspects. The global average is about 3% behind, the average lower bound is 42%,

and the average upper bound is 86%.

We verified that the average strategy produced the best outcome and effectively attenuated the

service entity weight based on the results.

5.2.3 Ranking Ties

One aspect of the ranking produced by the tool is that it does not naturally consider a tie when two

entities have the same SFL value. Each entity occupies whatever position resulting from sorting

the ranking list. We also evaluated entities based on their default ranking, or “as-is”. However,

this might not necessarily mean the order in which the developer will observe each entity if they

are tied. When evaluating an entity, we considered that, in a tie, the developer could analyze that

entity first (best-case scenario), last (worst-case scenario), or consider a middle ground (average-

case scenario). Therefore, we evaluated three tie-breaking strategies, besides the default “as-is”,

as observed in the previous subsections.
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Results Here are the results for the best-case, worst-case, and average-case scenarios. They are

detailed in Table 5.7, Table 5.8, and Table 5.9, respectively.

Table 5.7: Evaluation results for the scenario suite using the best-case tie-breaking strategy

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 82.73% 58.40% 100.00% 1f1s 82.73% 58.40% 100.00%

2f 67.51% 32.70% 96.20% 2f1s 64.20% 39.30% 91.60%

3f 70.61% 32.20% 97.40% 2f2s 70.83% 32.70% 96.20%

4f 67.51% 20.40% 92.70% 3f1s 66.75% 32.20% 97.40%

5f 66.14% 20.50% 97.40% 3f2s 75.75% 35.70% 96.20%

1s 63.41% 20.40% 100.00% 3f3s 69.33% 57.90% 83.90%

2s 73.01% 32.70% 96.20% 4f1s 55.63% 20.40% 92.70%

3s 74.92% 57.20% 91.70% 4f2s 73.90% 53.70% 88.90%

4s 65.34% 42.90% 79.10% 4f3s 81.03% 73.00% 88.80%

5s 67.65% 55.40% 76.40% 4f4s 62.88% 42.90% 78.70%

5f1s 47.73% 20.50% 97.40%

Global average 5f2s 71.58% 57.20% 87.80%

68.71% 5f3s 75.93% 57.20% 91.70%

5f4s 67.80% 53.10% 79.10%

5f5s 67.65% 55.40% 76.40%

AVG 45.97% 89.79%

Table 5.8: Evaluation results for the scenario suite using the worst-case tie-breaking strategy

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 82.73% 58.40% 100.00% 1f1s 82.73% 58.40% 100.00%

2f 66.60% 30.60% 96.20% 2f1s 62.90% 39.30% 86.40%

3f 68.73% 28.90% 97.40% 2f2s 70.30% 30.60% 96.20%

4f 64.69% 20.40% 88.90% 3f1s 66.00% 32.20% 97.40%

5f 62.21% 20.50% 97.40% 3f2s 74.05% 28.90% 96.20%

1s 62.34% 20.40% 100.00% 3f3s 66.15% 52.30% 83.90%

2s 71.20% 28.90% 96.20% 4f1s 53.80% 20.40% 87.50%

3s 72.15% 52.30% 91.70% 4f2s 72.38% 50.20% 88.90%

4s 58.54% 30.50% 78.70% 4f3s 77.43% 67.10% 88.80%

5s 61.93% 45.30% 71.50% 4f4s 55.15% 30.50% 72.70%

5f1s 46.25% 20.50% 97.40%

Global average 5f2s 68.08% 50.20% 87.80%

66.13% 5f3s 72.88% 53.00% 91.70%

5f4s 61.93% 41.30% 78.70%

5f5s 61.93% 45.30% 71.50%

AVG 41.35% 88.34%
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Table 5.9: Evaluation results for the scenario suite using the average-case tie-breaking strategy

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 82.73% 58.40% 100.00% 1f1s 82.73% 58.40% 100.00%

2f 67.13% 32.70% 96.20% 2f1s 63.43% 39.30% 88.50%

3f 69.51% 31.60% 97.40% 2f2s 70.83% 32.70% 96.20%

4f 66.38% 20.40% 91.60% 3f1s 66.25% 32.20% 97.40%

5f 63.80% 20.50% 97.40% 3f2s 74.73% 31.60% 96.20%

1s 62.89% 20.40% 100.00% 3f3s 67.55% 54.40% 83.90%

2s 72.02% 31.60% 96.20% 4f1s 55.10% 20.40% 91.60%

3s 73.48% 54.40% 91.70% 4f2s 72.98% 51.60% 88.90%

4s 61.35% 35.90% 77.40% 4f3s 78.90% 69.80% 88.80%

5s 64.33% 49.70% 73.70% 4f4s 58.53% 35.90% 75.40%

5f1s 46.93% 20.50% 97.40%

Global average 5f2s 69.55% 53.00% 87.80%

67.33% 5f3s 74.00% 54.40% 91.70%

5f4s 64.18% 46.70% 77.40%

5f5s 64.33% 49.70% 73.70%

AVG 43.37% 88.99%

Analysis The best-case strategy, in Table 5.7, shows a slight improvement in the accuracy over-

all. We see that some faulty entities do happen to tie with others in the rankings and are not always

placed first, and this strategy bumps them to the best place. We also analyzed the rankings and

verified that several more ties are happening in the ranking, as it is natural. Still, only a handful

are the ones related to the faulty entities we evaluate. Therefore the tie-breaking in this setting is

limited but still note-worthy.

In the worst-case strategy, in Table 5.8, it does the reverse, bumping tied entities to the last

position. The average accuracy drops here, naturally, by about 2%. It is still not very relevant,

showing that some ties spread across many entities, but it is not very impactful.

The average accuracy, in Table 5.9, also drops in the average-case strategy, but less than 1%.

It is the closest strategy to the default “as-is”.

These different strategies show how differently the results from our tool could be interpreted

and how our evaluation fits the possibilities of a developer debugging. Analyzing these results,

the default behavior seems to fall within their set boundaries, which we consider the desirable

outcome.

5.2.4 Method Entity Percentage

So far, we have analyzed the tool’s performance when all services provide information about the

method invocation in the endpoints. As we mentioned before, a relevant challenge for the tool

is to observe its performance with varying percentages of services providing this information.

Therefore we filtered this in several executions to simulate its absence from the tool. This means
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explicitly that in each log entry, we keep the information relative to the service but discard the

information relative to the children (methods).

Results Considering only 75% of the services with endpoints (as method invocations), we al-

lowed only this information from the cart, catalogue, payment, ratings, and shipment services,

given that it is the closest fraction to that percentage (five out of seven). The results are shown in

Table 5.10.

Table 5.10: Evaluation results for the scenario suite using 75% of services with endpoints as
method invocations

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 41.00% 2.60% 93.10% 1f1s 41.00% 2.60% 93.10%

2f 45.89% 2.50% 85.90% 2f1s 41.70% 2.50% 85.90%

3f 53.69% 2.60% 84.10% 2f2s 50.08% 36.00% 82.00%

4f 50.05% 3.90% 85.90% 3f1s 52.65% 2.60% 79.40%

5f 47.30% 2.70% 79.40% 3f2s 56.23% 38.90% 84.10%

1s 43.06% 2.50% 93.10% 3f3s 52.20% 40.10% 57.70%

2s 54.55% 26.80% 84.10% 4f1s 48.20% 3.90% 85.90%

3s 56.54% 40.10% 71.80% 4f2s 57.73% 26.80% 84.10%

4s 41.84% 23.80% 67.80% 4f3s 55.90% 44.70% 66.80%

5s 43.75% 36.10% 53.00% 4f4s 38.38% 23.80% 61.00%

5f1s 31.75% 2.70% 79.40%

Global average 5f2s 54.18% 26.90% 68.80%

48.70% 5f3s 61.53% 48.40% 71.80%

5f4s 45.30% 23.80% 67.80%

5f5s 43.75% 36.10% 53.00%

AVG 23.99% 74.72%

Considering 50% of the services with endpoints (as method invocations), we allowed only this

information from the cart, catalogue, and payment services. The results are shown in Table 5.11.

Considering only 25% of the services with endpoints (as method invocations), we allowed

only this information from the cart and catalogue services. The results are shown in Table 5.12.

Considering 0% (none) of the services with endpoints (as method invocations), we filtered this

information from all the services. The results are shown in Table 5.13.

The results for the service entity targeting are shown in Table 5.14

Analysis In Table 5.10, by removing 25% of the method invocations, we see a significant drop

in the accuracy, below 50% in average accuracy. The poorly performant scenarios are also many

more, with five scenarios below 5% accuracy. Only 11 scenarios out of 60 performed with an

accuracy above 70%. In the default scenario, that number is 33.

In Table 5.11, with half of the services providing method invocations, the average accuracy

floats around 30%, a steady drop from the previous scenario.
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Table 5.11: Evaluation results for the scenario suite using 50% of services with endpoints as
method invocations

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 37.33% 3.30% 89.50% 1f1s 37.33% 3.30% 89.50%

2f 34.65% 3.20% 78.20% 2f1s 37.58% 3.20% 78.20%

3f 29.74% 3.40% 76.80% 2f2s 31.73% 3.50% 74.80%

4f 33.93% 3.60% 78.20% 3f1s 18.80% 3.40% 63.30%

5f 30.08% 3.60% 68.20% 3f2s 39.10% 3.60% 76.80%

1s 27.95% 3.20% 89.50% 3f3s 31.33% 4.20% 54.30%

2s 36.63% 3.50% 76.80% 4f1s 33.25% 4.70% 78.20%

3s 35.29% 4.20% 68.20% 4f2s 39.20% 3.60% 76.20%

4s 30.29% 17.30% 51.60% 4f3s 36.40% 4.80% 63.70%

5s 29.28% 11.90% 35.50% 4f4s 26.85% 17.30% 42.40%

5f1s 12.78% 3.60% 37.40%

Global average 5f2s 36.48% 3.70% 63.40%

32.13% 5f3s 38.15% 4.80% 68.20%

5f4s 33.73% 17.40% 51.60%

5f5s 29.28% 11.90% 35.50%

AVG 6.20% 63.57%

Table 5.12: Evaluation results for the scenario suite using 25% of services with endpoints as
method invocations

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 35.68% 3.50% 88.00% 1f1s 35.68% 3.50% 88.00%

2f 31.59% 3.30% 75.60% 2f1s 35.95% 3.30% 75.60%

3f 26.04% 3.50% 73.70% 2f2s 27.23% 3.70% 71.70%

4f 30.81% 3.80% 75.60% 3f1s 17.83% 3.50% 58.60%

5f 27.04% 3.80% 66.70% 3f2s 33.43% 3.80% 73.70%

1s 26.88% 3.30% 88.00% 3f3s 26.88% 4.50% 50.00%

2s 32.16% 3.70% 73.70% 4f1s 32.23% 5.20% 75.60%

3s 30.75% 4.00% 66.70% 4f2s 35.45% 3.80% 72.90%

4s 27.46% 15.00% 47.70% 4f3s 31.78% 4.00% 62.20%

5s 25.23% 5.40% 32.40% 4f4s 23.78% 15.10% 38.10%

5f1s 12.70% 3.80% 35.80%

Global average 5f2s 32.53% 3.90% 61.10%

29.03% 5f3s 33.60% 4.70% 66.70%

5f4s 31.15% 15.00% 47.70%

5f5s 25.23% 5.40% 32.40%

AVG 5.55% 60.67%

With just a quarter of the services providing method invocations, in Table 5.12, the drop in the

accuracy is much smaller than the previous scenario with 50% of services with method invocations.

It goes below 30% in average accuracy, but close by, it is not a significant change from what we
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Table 5.13: Evaluation results for the scenario suite using 0% of services with endpoints as method
invocations

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 8.60% 3.10% 12.50% 1f1s 8.60% 3.10% 12.50%

2f 9.26% 3.60% 14.40% 2f1s 9.90% 3.60% 14.40%

3f 8.82% 4.30% 14.00% 2f2s 8.63% 4.40% 12.10%

4f 11.76% 4.80% 20.80% 3f1s 6.70% 4.30% 9.00%

5f 13.86% 5.20% 22.10% 3f2s 9.58% 5.20% 13.80%

1s 9.94% 3.10% 20.80% 3f3s 10.18% 8.40% 14.00%

2s 10.28% 4.40% 17.40% 4f1s 13.18% 8.50% 20.80%

3s 12.04% 6.10% 21.70% 4f2s 11.15% 4.80% 16.40%

4s 13.28% 7.70% 22.10% 4f3s 11.38% 6.10% 17.50%

5s 16.43% 13.90% 19.10% 4f4s 11.33% 7.70% 13.00%

5f1s 11.33% 5.20% 20.80%

Global average 5f2s 11.75% 5.30% 17.40%

11.33% 5f3s 14.58% 8.40% 21.70%

5f4s 15.23% 9.00% 22.10%

5f5s 16.43% 13.90% 19.10%

AVG 6.53% 16.31%

Table 5.14: Evaluation results for the scenario suite targeting service entities with no method
invocations

Category Accuracy Min Accuracy Max Accuracy Category Accuracy Min Accuracy Max Accuracy

1f 68.75% 25.00% 100.00% 1f1s 68.75% 25.00% 100.00%

2f 65.74% 25.00% 100.00% 2f1s 68.75% 25.00% 100.00%

3f 58.43% 25.00% 90.30% 2f2s 62.73% 33.00% 85.70%

4f 65.94% 33.00% 100.00% 3f1s 46.88% 25.00% 62.50%

5f 64.20% 25.00% 100.00% 3f2s 63.43% 39.30% 90.30%

1s 63.75% 25.00% 100.00% 3f3s 64.98% 51.00% 88.90%

2s 60.73% 33.00% 90.30% 4f1s 78.13% 50.00% 100.00%

3s 62.57% 42.10% 88.90% 4f2s 59.15% 33.00% 79.50%

4s 67.76% 43.20% 95.00% 4f3s 60.18% 42.10% 88.90%

5s 75.35% 63.50% 86.00% 4f4s 66.30% 49.90% 80.80%

5f1s 56.25% 25.00% 100.00%

Global average 5f2s 57.60% 39.30% 79.50%

64.02% 5f3s 62.55% 51.00% 88.90%

5f4s 69.23% 43.20% 95.00%

5f5s 75.35% 63.50% 86.00%

AVG 39.69% 88.40%

consider already poor results.

At last, with no services providing method invocations, in Table 5.13, every faulty entity will

not be identified since no method invocations are present in the extracted information. The ob-
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tained results are the weighed parent accuracy of entities having a low impact. The average accu-

racy is at its lowest, at 11%. The highest accuracy level registered is only 22%.

As this last case was expected to be unfruitful, we also adapted our test suite for identifying

the faulty service entities instead of the methods since there would be no information pointing to

them.

In this scenario, in Table 5.14, the results are not far away from the default with all the service

method invocations without service weight attenuation. The significant difference is that the values

observed seem more disparate, oscillating from 25% accuracy to 100%. This is only because the

number of entities in the ranking is low since only the service entities are reported.

5.2.5 Execution Times

Results The execution times results, while important, they play a secondary role in our evalua-

tion step, as our focus at this point is on the accuracy of the tool, and the machine used for testing

is not appropriate for production-level microservices, as described in Subsection 5.1.5. Since the

purpose of this step is to benchmark the execution times of the tool, we computed the execution

times in the tool’s configuration with the best accuracy results (service weight attenuation with

average). They are shown in Table 5.15. In Appendix B (p. 78) we present the execution times of

each individual scenario for reference.

Table 5.15: Execution times (in seconds) in the most accurate scenario suite (service weight atten-
uation with average).

Category Avg Min Max Category Avg Min Max

1f 7.0967 5.2879 8.7980 1f1s 7.0967 5.2879 8.7980

2f 6.8629 4.7905 7.8597 2f1s 6.6811 4.7905 7.7746

3f 7.3498 4.4619 8.9848 2f2s 7.0446 6.5107 7.8597

4f 6.6452 4.7722 8.0032 3f1s 6.8911 4.4619 8.5373

5f 7.2676 4.8807 12.1451 3f2s 7.7889 6.7925 8.9644

1s 6.5800 4.4619 8.7980 3f3s 7.3693 6.2890 8.9848

2s 7.3374 5.9315 9.3037 4f1s 5.7430 4.7722 6.8019

3s 7.6067 5.0214 12.1451 4f2s 7.1671 6.0035 8.0032

4s 6.8745 6.2888 7.2863 4f3s 7.0307 6.6583 7.3888

5s 6.9717 6.1931 8.4100 4f4s 6.6399 6.2888 7.0032

5f1s 6.4880 4.8807 7.4484

Global

Avg Min Q1 25% 5f2s 7.3491 5.9315 9.3037

7.0527 4.4619 6.50752 5f3s 8.4202 5.0214 12.1451

Med Q3 75% Max 5f4s 7.1091 6.9070 7.2863

6.9728 7.52992 12.1451 5f5s 6.9717 6.1931 8.4100
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Analysis Regarding the execution time of our tool, in Table 5.15, we observe that it revolves

around seven seconds in our test application. It is noteworthy that it encompasses the whole

reading of log data (already processed), entity extraction, analysis, ranking, and completing all

the outputs. Since it is replaceable and meant to be generic, we do not track the execution time

of the log processor, Logstash. Ignoring the tool’s accuracy, it seems that the execution time is

appropriate given the time spent debugging manually, as discussed in Section 1.2, and the amount

of log data and size of the codebase. Possibly the time spent in I/O operations (reading/writing

files) has a more significant impact than the remaining of the tool’s operation, but that would

require further investigation to corroborate it.

5.3 Comparative Analysis

Besides analyzing the results individually, it is relevant to analyze other approaches’ results and

compare them with ours, where deemed appropriate. To the best of our knowledge, there are

no other approaches to debugging microservices by applying the SFL technique via log analysis.

Therefore, we analyze different approaches in either the context of debugging microservices or

using the SFL technique. All the techniques are already explored as part of the Related Work, in

Chapter 3 (p. 17).

Analyzing approaches dedicated to debugging microservices, we consider T-Rank [110], which

also leverages the SFL technique. However, this technique focuses on root cause localization and

analyzing performance metrics. In their evaluation, the authors use the EXAM score (among other

metrics) to assess the approach’s effectiveness. This metric represents the percentage of compo-

nents observed before the faulty component is analyzed. This is complementary to the accuracy

we evaluate, given the distance of the faulty component to the top of the ranking. Given that their

score is 0.013, the respective accuracy is 98.3%. Strictly comparing numbers, this represents that

it surpasses our approach by 30%. Notwithstanding, it is relevant to consider that tracing data

is imperative in this approach, while our approach functions without it, and we have evaluated a

scenario without tracing data. Furthermore, the granularity of this approach is limited to the con-

tainer, which is relevant for localizing faults of other nature, such as configuration and instance.

Moreover, our approach is not limited to a specific level of granularity, being able to pinpoint

faults at the line of code level given that the logs contain that information.

On the subject of delta debugging, there is the approach presented in [112] that proposes

a technique based on delta debugging, a type of state-based fault localization. Here different

dimensions that can interfere with the proper execution of the microservice system are considered,

and the goal is to determine which circumstances cause the system to malfunction. The approach

considers various dimensions besides the code, such as configuration and sequence. Their results

show that the tool is successful in most cases in detecting the delta responsible. There are no

explicit numerical values to assess the approach’s effectiveness, but comparing the granularity

of both approaches is more relevant. While this approach can analyze different categories of

faults in the system, it always requires further inspection to find the root cause while we can
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pinpoint the fault in the code. In addition, the setup required to perform debugging with this tool

is more complicated as it needs to deal with multiple categories of deltas. At the same time, our

configuration is restricted to the source and processing of the logs.

Regarding anomaly detection in microservices, we analyzed the proposed algorithm in [43],

which is based on machine learning. The algorithm analyzes invocation chains to mine causality

and locates the root cause of anomalies. It requires information necessary to establish invocations

chains of services and other KPIs, such as CPU, memory, and cache usage. Besides evaluating

precision and recall, the authors also compute a score for the algorithm. This is based on the total

root cause indicators score divided by the number of faults. The achieved score is 0.8304, and the

precision is 90%. This approach is more appropriate than ours for detecting performance issues,

whereas ours is more focused on detecting faults in the code.

In [5], the authors propose a root cause localization technique in (cloud) microservice appli-

cations. They focus on microservices’ error rates (golden signals) to localize operational faults (at

the microservice level), using runtime logs to infer causality. Their approach to localizing oper-

ation faults is two-fold, localizing the faulty microservice and finding the error message of that

service responsible that flags the fault. Based on the causal relationships of golden signal errors

and microservice errors, they produce a ranked list of possible faulty components, an output with a

similar format to ours. It achieves an F-score of 88%. The focus is operation faults instead of faults

in the code, so naturally, the maximum granularity level achievable is that of the microservice.

Turning the focus to SFL approaches, we analyze the approach presented in [3]. The pro-

posed tools focus on localizing multiple faults by applying the SFL combined with model-based

diagnosis. The performed evaluation considers single faults, but our focus is on multiple faults,

the scenario parallel to our evaluation. In the multiple scenarios evaluated, there was a range of

multiple faults used, from one to five. The metric used to assess the effectiveness of the approach

was wasted effort, which is the percentage of components observed until the faulty component

is reached. Another way to see it is as the complement the accuracy. Computing the average of

wasted effort in all scenarios, we arrive at 8.4%. The complementary that we consider analog to

accuracy is then 91.6%. Perhaps we cannot achieve the same level of accuracy in the context of

microservices as the level achieved in traditional systems. Nevertheless, this result favors SFL as

a valid technique to be adapted to the context of microservices.

Another SFL approach is [82], which combines Qualitative Reasoning with the SFL technique.

Q-SFL “leverages the concept of qualitative reasoning to augment the information made available

to SFL techniques by qualitatively partitioning the values of data units from the system and treating

each qualitative state as a new SFL component to be used when diagnosing”. In the empiric

evaluation performed, based on 167 components observed, the tool produced an average of 37.56

components evaluated before the faulty component was observed. From this, we can compute

the percentage of wasted effort, 37.56/167 = 0.225, or 22.5%. The accuracy of the tool is then

77.5%. This result is closer to ours and again reinforces the potential for improvement of our tool.
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5.4 Threats to Validity

Given our evaluation process, it is also important to consider existent threats to the validity of our

study. We consider two categories to assess possible threats based on [103], internal and external.

5.4.1 Internal Validity

Threats to internal validity affect the conclusions about the established causal relationship between

execution and the outcome.

• Instrumentation: Considering that we manually and randomly inject faults, some faults

may be more or less relevant in the sense that they have little or no occurrence in real-world

scenarios. However, we strived to insert diverse types of faults to cover several scenarios.

• Selection: In the evaluation process, we considered only a single application to evaluate.

The motivation was simply that it provided minimal log information and was easily manip-

ulable in a local machine. The choice was free of any bias that could positively influence the

results. However, since there is one sample, it is impossible to guarantee that the application

logs are favorable, and the general case would be less so.

Even more so, we considered an application that provides incomplete information: no trac-

ing data and concrete method invocation. The hypothesis is that given that the missing

information is present, the results would improve. However, we cannot validate this hypoth-

esis without concrete scenarios to prove our assumption.

5.4.2 External Validity

Threats to external validity affect the ability to generalize the experiment’s results to industrial

practice.

• Interaction of selection and treatment: Considering production-level microservice sys-

tems, the size and complexity can be superior to the application used in the evaluation

process. Despite the business logic being of a real-world application, the nature of mi-

croservices is to deal with a high cardinality of operations. The application selection may

not be representative of the majority of real-world microservices.

5.5 Summary

After implementing the prototype, we had to test our tool and observe its performance. We chose

to apply a small-grade microservice application based on an online shopping site that could be set

up locally and have its source code altered for fault injection. This application did not consider

request IDs in all its services, so we had to adapt our implementation and view all the available

information.
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We run the tool and evaluate the entities injected with a fault, their position in the ranking,

and compute its detection accuracy. Each scenario can have one or more faulty entities to be

discovered, and the total accuracy for each scenario is the average accuracy of its fault entities.

With a complete log extraction, we obtained a global accuracy of 63%. It is an acceptable

value considering the non-optimal conditions it has with this demo application.

We detected an overweight of the service entities when compared to its children and applied a

strategy to alleviate it. The winner strategy, the average of the service children, was able to bring

the global accuracy up to 68%.

Regarding rank ties, we considered multiple approaches to see if the default behavior varies

too much from them. Viewing the results of the best-case, worst-case, and average-case scenarios,

we establish that the default behavior seems to fall within the boundaries they set, which is the

desirable outcome.

Finally, our last evaluation of interest was considering varying percentages of services with

endpoints as method invocations and analyzing the impact on the tool’s performance. For that

reason, we thought of scenarios with 100% (default), 75%, 50%, 25%, and 0% of services with

method invocations. We also analyzed the tool’s performance targeting the service entities when

0% of the services had method invocations extracted from the logs. We soon understood that the

impact of having method invocations in the logs is vital to the healthy functioning and accuracy

of the tool. By having 75% of the services with method invocations, the global accuracy drops

above 50%, and with 50% of the services, it goes close to 30%. By removing all of the method

invocations, we hit a low 11% of accuracy, which is the representation of the fault entity parent

(service entity) weighed accuracy. By running the same scenario targeting the service entities

instead, we return to the baseline of 64% of global accuracy.

The application’s execution time is around seven seconds in our test scenarios. Considering the

volume of log data, the codebase’s size, and comparing the execution time with the time frequently

spent on manual debugging, the current execution time represents an improvement.

When comparing to other approaches, we observed that, while not outperforming other tech-

niques, their focus is not on the code, where ours is. Traditional SFL approaches have great results,

leading us to believe that there is potential for improvement, given that we are exploring the usage

of the technique in the context of microservices.

The validity of our evaluation process has possible internal and external threats. At the internal

level, we consider that having this evaluation process applied to a single application does not

guarantee that the same results extend to other applications in the same conditions. Furthermore,

given the size and complexity of the application, it might not be representative of all production-

level microservices.

This complete set of results allows us to draw conclusions and point to strong and weak points,

which we discuss as part of the future work for this tool.
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Conclusions

In this final chapter, we reflect on the considerations we began the Thesis based on, the challenges

faced during development, the obtained results versus the expected results, and the contributions

of our work. Additionally, it is essential to be critical of our work and analyze potential threats to

the work performed. Finally, based on all the conclusions, it is also necessary to delineate relevant

topics to focus on as future work and maintain continuity to the project.

6.1 Final Considerations

This work focus on a particular fault localization technique applied to microservices. As part of

its nature, it can be built with various options, configurations, and paradigms. We realize it is

challenging to create a generic tool to be viable with all microservices while requiring the lowest

information possible.

During the implementation, we faced that issue head-on, and, when possible, we strived to

make it generic. Mainly when dealing with logs, we rapidly faced the reality of processing non-

uniform logs and logs without complete information. The issue of logs not containing request IDs

is even more specific and usually used in tracing techniques. It is essential to have this information

present to be more accurate in assessing the components in the code as faulty.

However, if a system is currently legacy and, for some other reasons, it cannot be altered, one

must be prepared to deal in cases where the input data is not optimal. We prepared for that and

evaluated our tool in such circumstances. We tested our tool in a small-scale, apt microservice-

based application without complete information. We obtained an average of 68% accuracy in

overall the scenarios discussed in Chapter 5 (p. 40).

Considering the results and current accuracy in pinpointing a faulty entity, we conclude that,

considering the circumstances in which the application was evaluated, this result is encouraging

for the tool, and the potential for improvement is correctly assumed. Our comparative analysis

also indicates that further work in our approach is reasonable to make it outstanding.

62
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Notwithstanding the already tested and validated technique that is SFL, our approach is a novel

approach to adapt this technique to the context of microservices and requires many modifications

throughout the project’s timeline.

The main contributions our work provides are:

• A generic tool that can perform debugging of microservices based on log analysis and the

SFL technique

• A novel approach to SFL adapted to the context of microservices

6.2 Further Work

The prototype we developed has some limitations. First, as we develop a tool for evolving soft-

ware, we must consider certain aspects of the implementation that could become problematic. In

more detail, the communication/transaction section of the tool requires further evaluation to ensure

the most efficient method to guarantee the complete delivery of information (log data). Moreover,

our primary focus during the development was the accuracy of the tool’s detection. We must fur-

ther evaluate the tool’s performance in other aspects (such as resource usage) in microservices

and optimize its implementation, if necessary. However, further investigation is required to assess

optimization points, mainly in I/O operations.

An interesting topic to work on is the classification of executions/requests, which separate

logs. We consider our tests a manual classification given that we executed the system with and

without injected faults. However, this is not the typical case of real-world microservices, and the

classification of a request, and its respective logs, is not a trivial task. For future work, we consider

it would be relevant to find a generic method to label executions in an automated but reliable way.

Regarding the validity threats as analyzed in Chapter 5 (p. 40), we believe that further evalua-

tion and analysis are required to assure the tool’s usability. In the first part, we consider it relevant

to gather more applications suitable for the scenarios presented in the evaluation process. By hav-

ing a non-homogenous group of tested applications, we can further advocate for the generalization

of the tool. In the second part, some of those applications should push the tool’s limits with their

size and complexity. It would also be interesting to assess what is the limit, if it exists, of the

number of services in the application before the tool is unable to provide meaningful outputs. An

example of such applications and interesting to test in the future is TrainTicket [23], which in its

total capacity would require more computational power to execute.



Appendix A

Evaluation Accuracy for Individual
Scenarios Results

In this appendix, the accuracies for individual scenarios are presented. In addition to the accuracy,

the ranking of the expected faulty entities and its SFL value in each scenario are presented. In

scenarios with multiple faulty entities their ranking and SFL value are separated with a bar, “/”,

and they have they are presented in the same order in the ranking and SFL values column. For the

ranking, they can have a number from one to the number of entities present in the SFL ranking, or

denoted with “-” if they are not present in the ranking. The SFL value will be 0 if the entity is the

last of the rank or if its not present in it.
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A.1 Scenario Suite

Table A.1: Individual accuracies in the first execution of the scenario suite. The rank has 37
entities.

Category Combination Accuracy Entities Ranking Entities SFL Value Category Combination Accuracy Entities Ranking Entities SFL Value

1f1s

cart 45.60% 22 0.026

2f1s

cart 65.10% 8/22 0.058/0.025

catalogue 94.60% 4 0.153 catalogue 75.10% 4/19 0.154/0.042

user 77.80% 10 0.069 user 40.00% 10/- 0.06/0

web 64.90% 15 0.037 web 33.90% 15/- 0.035/0

2f2s

cart-catalogue 72.20% 4/21 0.159/0.039

3f1s

cart 66.50% 7/22 0.059/0.025

payment-ratings 2.44% -/- 0/0 ratings 2.60% -/- 0/0

shipping-user 40.00% 10/- 0.058/0 shipping 2.40% -/-/- 0/0/0

web-cart 61.30% 12/21 0.046/0.38 user 27.50% 10/-/- 0.059/0/0

3f2s

cart-catalogue 78.20% 4/7/21 0.16/0.089/0.039

3f3s

cart-catalogue-payment 48.40% 4/21/- 0.158/0.038/0

payment-ratings 2.40% -/- 0/0 ratings-shipping-user 27.70% 10/-/- 0.064/0/0

shipping-user 27.60% 10/-/- 0.06/0/0 web-cart-catalogue 73.60% 4/12/21 0.153/0.045/0.037

web-cart 74.50% 3/12/21 0.149/0.04/0.037 payment-shipping-ratings 2.50% -/-/- 0/0/0

4f1s

cart 45.20% 7/22/- 0.07/0.03/0

4f2s

cart-catalogue 74.00% 4/7/18/21 0.156/0.088/0.043/0.039

catalogue 76.50% 4/18 0.114/0.031 payment-ratings 2.50% -/-/-/- 0/0/0/0

ratings 2.50% -/- 0/0 shipping-user 21.30% 10/-/-/- 0.055/0/0/0

web 18.50% 15/-/-/- 0.036/0/0/0 web-cart 80.40% 3/6/12/20 0.161/0.124/0.047/0.039

4f3s

cart-catalogue-payment 59.00% 4/7/21/- 0.159/0.089/0.039/0

4f4s

cart-catalogue-payment-ratings 37.00% 4/21/-/- 0.157/0.038/0/0

ratings-shipping-user 21.50% 10/-/-/- 0.069/0/0/0 shipping-user-web-cart 52.60% 8/12/21/- 0.077/0.047/0.039/0

web-cart-catalogue 80.40% 4/12/21 0.152/0.045/0.037 payment-web-catalogue-user 65.00% 4/8/12/- 0.154/0.078/0.046/0

payment-shipping-user 27.60% 10/-/- 0.064/0/0 cart-ratings-shipping-payment 13.20% 21/-/-/- 0.037/0/0/0

5f1s

cart 40.40% 7/21/31/- 0.075/0.032/0/0

5f2s

cart-catalogue 63.40% 4/7/19/21/31 0.1/0.088/0.043/0.038/0

shipping 2.50% -/-/-/- 0/0/0/0 payment-ratings 2.50% -/- 0/0

user 21.20% 10/-/-/- 0.058/0/0/0 shipping-user 17.70% 10/-/-/-/- 0.065/0/0/0/0

web 18.50% 15/-/-/- 0.037/0/0/0 web-cart 79.70% 3/6/12/21 0.148/0.114/0.044/0.036

5f3s

cart-catalogue-payment 58.30% 4/7/19/22/- 0.12/0.066/0.033/0.029/0

5f4s

cart-catalogue-payment-ratings 48.90% 4/6/20/-/- 0.159/0.089/0.039/0/0

ratings-shipping-user 17.80% 10/-/-/-/- 0.062/0/0/0/0 shipping-user-web-cart 42.30% 8/12/21/-/- 0.075/0.046/0.038/0/0

web-cart-catalogue 83.40% 4/7/12/21 0.155/0.087/0.046/0.038 payment-shipping-user-cart 33.70% 8/21/-/- 0.077/0.037/0/0

payment-shipping-ratings 2.50% -/-/-/- 0/0/0/0 catalogue-ratings-web-cart 56.00% 4/12/20/21/- 0.153/0.045/0.042/0.037/0

5f5s

cart-catalogue-payment-ratings-shipping 29.90% 4/21/-/-/- 0.153/0.037/0/0/0

user-web-cart-catalogue-payment 62.20% 4/8/12/21/- 0.154/0.08/0.046/0.038/0

ratings-shipping-user-web-payment 30.30% 11/15/-/-/- 0.065/0.037/0/0/0

cart-catalogue-web-ratings-payment 45.00% 4/12/21/-/- 0.153/0.045/0.037/0/0
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Table A.2: Individual accuracies in the second execution of the scenario suite. The rank has 49
entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart 23 56.90% 0.05

2f1s

cart 7/23 73.80% 0.117/0.049

catalogue 4 95.90% 0.257 catalogue 4/17 83.40% 0.258/0.067

user 11 81.30% 0.106 user 11/- 41.50% 0.089/0

web 17 69.40% 0.055 web 17/- 35.80% 0.054/0

2f2s

cart-catalogue 7/23 73.80% 0.117/0.049

3f1s

cart 6/23 74.90% 0.118/0.049

payment-ratings 4/17 83.40% 0.258/0.067 ratings 13/38 52.20% 0.071/0.035

shipping-user 11/- 41.50% 0.089/0 shipping 8 87.80% 0.139

web-cart 17/- 35.80% 0.054/0 user 11/-/- 28.30% 0.088/0/0

3f2s

cart-catalogue 4/7/22 83.00% 0.262/0.145/0.061

3f3s

cart-catalogue-payment 4/22/43 57.30% 0.26/0.061/0

payment-ratings 33/38 31.70% 0.048/0.036 ratings-shipping-user 8/11/38 66.00% 0.14/0.095/0.034

shipping-user 9/11 84.20% 0.139/0.089 web-cart-catalogue 4/13/22 78.90% 0.256/0.073/0.059

web-cart 3/13/22 79.60% 0.246/0.07/0.057 payment-shipping-ratings 9/33/38 50.10% 0.14/0.048/0.035

4f1s

cart 6/23/- 50.50% 0.136/0.057/0

4f2s

cart-catalogue 4/7/16/22 81.20% 0.258/0.145/0.068/0.061

catalogue 4/16 84.40% 0.224/0.059 payment-ratings 13/34/37 47.40% 0.076/0.05/0.038

ratings 14/39 50.10% 0.07/0.033 shipping-user 9/11/- 56.80% 0.135/0.083/0

web 17/-/-/- 19.00% 0.054/0/0/0 web-cart 3/6/13/21 84.40% 0.256/0.196/0.072/0.06

4f3s

cart-catalogue-payment 4/7/22/43 66.30% 0.261/0.144/0.061/0

4f4s

cart-catalogue-payment-ratings 4/22/23/43 58.00% 0.259/0.06/0.051/0

ratings-shipping-user 10/11/13/38 68.90% 0.135/0.104/0.071/0.034 shipping-user-web-cart 8/13/22/45 60.00% 0.121/0.072/0.059/0

web-cart-catalogue 4/13/22 84.40% 0.255/0.072/0.059 payment-web-catalogue-user 4/8/13/43 70.60% 0.257/0.128/0.073/0

payment-shipping-user 8/11/33 69.50% 0.141/0.097/0.049 cart-ratings-shipping-payment 22/23/43/45 36.20% 0.058/0.047/0/0

5f1s

cart 7/22/49/- 39.00% 0.141/0.059/0/0

5f2s

cart-catalogue 4/7/17/22/49 65.40% 0.171/0.149/0.07/0.063/0

shipping 8 87.80% 0.143 payment-ratings 13/33/37 48.10% 0.076/0.051/0.039

user 11/-/-/- 21.70% 0.089/0/0/0 shipping-user 9/11/- 56.80% 0.136/0.097/0

web 17/-/-/- 19.00% 0.055/0/0/0 web-cart 3/6/13/22 83.90% 0.245/0.188/0.07/0.057

5f3s

cart-catalogue-payment 4/7/17/22/43 67.80% 0.231/0.125/0.06/0.053/0

5f4s

cart-catalogue-payment-ratings 4/6/21/23/43 66.10% 0.262/0.145/0.062/0.049/0

ratings-shipping-user 9/11/13/37 69.90% 0.14/0.091/0.074/0.038 shipping-user-web-cart 8/13/22/45 60.00% 0.12/0.072/0.059/0

web-cart-catalogue 4/7/13/22 86.90% 0.258/0.142/0.073/0.06 payment-shipping-user-cart 8/22/43/45 43.80% 0.124/0.058/0/0

payment-shipping-ratings 8/33/38 50.80% 0.139/0.048/0.037 catalogue-ratings-web-cart 4/13/18/22/23 74.10% 0.256/0.073/0.067/0.06/0.048

5f5s

cart-catalogue-payment-ratings-shipping 4/22/23/43/45 48.80% 0.256/0.059/0.051/0/0

user-web-cart-catalogue-payment 4/8/13/22/43 69.10% 0.257/0.13/0.073/0.06/0

ratings-shipping-user-web-payment 8/11/18/34/38 62.10% 0.14/0.098/0.055/0.048/0.038

cart-catalogue-web-ratings-payment 4/13/22/23/43 62.80% 0.255/0.073/0.06/0.049/0
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A.2 Service Entity Weight Attenuation

Table A.3: Individual accuracies in the scenario suite using the service attenuation with division.
The rank has 49 entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart 23 56.90% 0.05

2f1s

cart 7/23 73.80% 0.117/0.049

catalogue 4 95.90% 0.257 catalogue 4/17 83.40% 0.258/0.067

user 11 81.30% 0.106 user 11/- 41.50% 0.089/0

web 17 69.40% 0.055 web 17/- 35.80% 0.054/0

2f2s

cart-catalogue 4/22 78.10% 0.262/0.062

3f1s

cart 6/23 74.90% 0.118/0.049

payment-ratings 35/37 30.70% 0.048/0.04 ratings 13/38 52.20% 0.071/0.035

shipping-user 9/11 84.20% 0.14/0.086 shipping 8 87.80% 0.139

web-cart 13/22 68.90% 0.071/0.059 user 11/-/- 28.30% 0.088/0/0

3f2s

cart-catalogue 4/7/22 83.00% 0.262/0.145/0.061

3f3s

cart-catalogue-payment 4/22/47 54.50% 0.26/0.061/0

payment-ratings 34/38 30.70% 0.048/0.036 ratings-shipping-user 8/11/38 66.00% 0.14/0.095/0.034

shipping-user 9/11 84.20% 0.139/0.089 web-cart-catalogue 4/13/22 78.90% 0.256/0.073/0.059

web-cart 3/13/22 79.60% 0.246/0.07/0.057 payment-shipping-ratings 9/34/38 49.40% 0.14/0.048/0.035

4f1s

cart 6/23/- 50.50% 0.136/0.057/0

4f2s

cart-catalogue 4/7/16/22 81.20% 0.258/0.145/0.068/0.061

catalogue 4/16 84.40% 0.224/0.059 payment-ratings 13/34/37 47.40% 0.076/0.05/0.038

ratings 14/38 51.20% 0.07/0.033 shipping-user 9/11/- 56.80% 0.135/0.083/0

web 17/-/-/- 19.00% 0.054/0/0/0 web-cart 3/6/13/21 84.40% 0.256/0.196/0.072/0.06

4f3s

cart-catalogue-payment 4/7/22/47 64.10% 0.261/0.144/0.061/0

4f4s

cart-catalogue-payment-ratings 4/22/23/47 55.80% 0.259/0.06/0.051/0

ratings-shipping-user 10/11/13/38 68.90% 0.135/0.104/0.071/0.034 shipping-user-web-cart 8/13/22/46 59.50% 0.121/0.072/0.059/0

web-cart-catalogue 4/13/22 84.40% 0.255/0.072/0.059 payment-web-catalogue-user 4/8/13/47 68.40% 0.257/0.128/0.073/0

payment-shipping-user 8/11/34 68.80% 0.141/0.097/0.049 cart-ratings-shipping-payment 22/23/46/47 33.50% 0.058/0.047/0/0

5f1s

cart 7/22/44/- 41.70% 0.141/0.059/0/0

5f2s

cart-catalogue 4/7/17/22/44 67.60% 0.171/0.149/0.07/0.063/0

shipping 8 87.80% 0.143 payment-ratings 13/34/37 47.40% 0.076/0.051/0.039

user 11/-/-/- 21.70% 0.089/0/0/0 shipping-user 9/11/- 56.80% 0.136/0.097/0

web 17/-/-/- 19.00% 0.055/0/0/0 web-cart 3/6/13/22 83.90% 0.245/0.188/0.07/0.057

5f3s

cart-catalogue-payment 4/6/21/23/47 66.10% 0.231/0.125/0.06/0.053/0

5f4s

cart-catalogue-payment-ratings 4/6/21/23/43 64.40% 0.262/0.145/0.062/0.049/0

ratings-shipping-user 9/11/13/37 69.90% 0.14/0.091/0.074/0.038 shipping-user-web-cart 8/13/22/46 59.50% 0.12/0.072/0.059/0

web-cart-catalogue 4/7/13/22 86.90% 0.258/0.142/0.073/0.06 payment-shipping-user-cart 8/22/46/47 41.10% 0.124/0.058/0/0

payment-shipping-ratings 8/34/38 50.10% 0.139/0.048/0.037 catalogue-ratings-web-cart 4/13/18/22/23 74.10% 0.256/0.073/0.067/0.06/0.048

5f5s

cart-catalogue-payment-ratings-shipping 4/22/23/46/47 46.60% 0.256/0.059/0.051/0/0

user-web-cart-catalogue-payment 4/8/13/22/47 67.40% 0.257/0.13/0.073/0.06/0

ratings-shipping-user-web-payment 8/11/18/34/38 62.10% 0.14/0.098/0.055/0.048/0.038

cart-catalogue-web-ratings-payment 4/13/22/23/47 61.00% 0.255/0.073/0.06/0.049/0
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Table A.4: Individual accuracies in the scenario suite using the service attenuation with average.
The rank has 49 entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart 22 58.40% 0.05

2f1s

cart 3/22 78.40% 0.117/0.049

catalogue 1 100.00% 0.257 catalogue 1/12 90.60% 0.258/0.067

user 4 95.50% 0.106 user 5/- 47.50% 0.089/0

web 13 77.00% 0.055 web 13/- 39.30% 0.054/0

2f2s

cart-catalogue 1/20 81.90% 0.262/0.062

3f1s

cart 2/22 79.40% 0.118/0.049

payment-ratings 33/36 32.70% 0.048/0.04 ratings 7/38 57.00% 0.071/0.035

shipping-user 3/5 96.20% 0.14/0.086 shipping 3 97.40% 0.139

web-cart 10/21 72.50% 0.071/0.059 user 5/-/- 32.20% 0.088/0/0

3f2s

cart-catalogue 1/2/20 88.40% 0.262/0.145/0.061

3f3s

cart-catalogue-payment 1/20/40 62.00% 0.26/0.061/0

payment-ratings 30/38 33.70% 0.048/0.036 ratings-shipping-user 3/4/38 73.50% 0.14/0.095/0.034

shipping-user 3/5 96.20% 0.139/0.089 web-cart-catalogue 1/9/20 83.90% 0.256/0.073/0.059

web-cart 1/10/21 82.70% 0.246/0.07/0.057 payment-shipping-ratings 3/28/38 56.50% 0.14/0.048/0.035

4f1s

cart 2/22/- 53.40% 0.136/0.057/0

4f2s

cart-catalogue 1/2/11/20 87.90% 0.258/0.145/0.068/0.061

catalogue 1/11 91.60% 0.224/0.059 payment-ratings 7/32/36 52.30% 0.076/0.05/0.038

ratings 9/38 55.00% 0.07/0.033 shipping-user 3/5/- 64.60% 0.135/0.083/0

web 13/-/-/- 20.40% 0.054/0/0/0 web-cart 1/2/10/19 88.90% 0.256/0.196/0.072/0.06

4f3s

cart-catalogue-payment 1/2/20/40 71.90% 0.261/0.144/0.061/0

4f4s

cart-catalogue-payment-ratings 1/20/23/40 61.30% 0.259/0.06/0.051/0

ratings-shipping-user 3/4/8/38 77.80% 0.135/0.104/0.071/0.034 shipping-user-web-cart 4/10/21/42 65.30% 0.121/0.072/0.059/0

web-cart-catalogue 1/9/20 88.80% 0.255/0.072/0.059 payment-web-catalogue-user 1/3/9/40 77.60% 0.257/0.128/0.073/0

payment-shipping-user 3/4/29 79.90% 0.141/0.097/0.049 cart-ratings-shipping-payment 21/23/40/42 39.60% 0.058/0.047/0/0

5f1s

cart 2/20/44/- 44.60% 0.141/0.059/0/0

5f2s

cart-catalogue 1/2/12/20/44 72.80% 0.171/0.149/0.07/0.063/0

shipping 3 97.40% 0.143 payment-ratings 7/28/36 55.10% 0.076/0.051/0.039

user 4/-/-/- 25.20% 0.089/0/0/0 shipping-user 3/4/- 65.40% 0.136/0.097/0

web 13/-/-/- 20.50% 0.055/0/0/0 web-cart 1/2/10/21 87.80% 0.245/0.188/0.07/0.057

5f3s

cart-catalogue-payment 1/2/12/21/40 74.10% 0.231/0.125/0.06/0.053/0

5f4s

cart-catalogue-payment-ratings 1/2/19/23/40 70.10% 0.262/0.145/0.062/0.049/0

ratings-shipping-user 3/5/7/36 78.90% 0.14/0.091/0.074/0.038 shipping-user-web-cart 3/10/21/42 65.80% 0.12/0.072/0.059/0

web-cart-catalogue 1/2/9/20 91.70% 0.258/0.142/0.073/0.06 payment-shipping-user-cart 3/21/40/42 49.90% 0.124/0.058/0/0

payment-shipping-ratings 3/30/37 55.80% 0.139/0.048/0.037 catalogue-ratings-web-cart 1/9/14/20/23 78.70% 0.256/0.073/0.067/0.06/0.048

5f5s

cart-catalogue-payment-ratings-shipping 1/20/23/40/42 52.70% 0.256/0.059/0.051/0/0

user-web-cart-catalogue-payment 1/3/9/20/40 75.50% 0.257/0.13/0.073/0.06/0

ratings-shipping-user-web-payment 3/4/14/29/37 70.40% 0.14/0.098/0.055/0.048/0.038

cart-catalogue-web-ratings-payment 1/9/20/23/40 67.00% 0.255/0.073/0.06/0.049/0
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Table A.5: Individual accuracies in the scenario suite using the service attenuation with maximum.
The rank has 49 entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart 23 56.90% 0.05

2f1s

cart 4/23 76.90% 0.117/0.049

catalogue 1 100.00% 0.257 catalogue 1/18 84.40% 0.258/0.067

user 7 89.50% 0.106 user 7/- 45.70% 0.089/0

web 16 70.90% 0.055 web 16/- 36.30% 0.054/0

2f2s

cart-catalogue 1/22 80.20% 0.262/0.062

3f1s

cart 3/23 78.00% 0.118/0.049

payment-ratings 34/38 29.90% 0.048/0.04 ratings 10/39 53.80% 0.071/0.035

shipping-user 4/7 93.60% 0.14/0.086 shipping 4 95.80% 0.139

web-cart 13/22 68.70% 0.071/0.059 user 7/-/- 31.10% 0.088/0/0

3f2s

cart-catalogue 1/3/22 87.20% 0.262/0.145/0.061

3f3s

cart-catalogue-payment 1/22/47 55.90% 0.26/0.061/0

payment-ratings 32/39 30.90% 0.048/0.036 ratings-shipping-user 4/7/39 70.70% 0.14/0.095/0.034

shipping-user 4/7 93.60% 0.139/0.089 web-cart-catalogue 1/13/22 80.10% 0.256/0.073/0.059

web-cart 1/13/22 80.10% 0.246/0.07/0.057 payment-shipping-ratings 4/32/39 53.00% 0.14/0.048/0.035

4f1s

cart 3/23/- 52.70% 0.136/0.057/0

4f2s

cart-catalogue 1/3/17/22 83.80% 0.258/0.145/0.068/0.061

catalogue 1/17 85.40% 0.224/0.059 payment-ratings 10/33/38 48.80% 0.076/0.05/0.038

ratings 11/39 52.70% 0.07/0.033 shipping-user 4/7/- 63.00% 0.135/0.083/0

web 16/-/-/- 19.00% 0.054/0/0/0 web-cart 1/3/13/21 86.40% 0.256/0.196/0.072/0.06

4f3s

cart-catalogue-payment 1/3/22/47 67.20% 0.261/0.144/0.061/0

4f4s

cart-catalogue-payment-ratings 1/22/24/47 56.20% 0.259/0.06/0.051/0

ratings-shipping-user 4/7/10/39 74.80% 0.135/0.104/0.071/0.034 shipping-user-web-cart 5/13/22/38 65.20% 0.121/0.072/0.059/0

web-cart-catalogue 1/13/22 85.90% 0.255/0.072/0.059 payment-web-catalogue-user 1/5/13/47 70.90% 0.257/0.128/0.073/0

payment-shipping-user 4/7/32 75.40% 0.141/0.097/0.049 cart-ratings-shipping-payment 22/24/38/47 37.10% 0.058/0.047/0/0

5f1s

cart 3/22/44/- 43.80% 0.141/0.059/0/0

5f2s

cart-catalogue 1/3/18/22/44 69.80% 0.171/0.149/0.07/0.063/0

shipping 4 95.80% 0.143 payment-ratings 10/32/38 49.50% 0.076/0.051/0.039

user 7/-/-/- 23.80% 0.089/0/0/0 shipping-user 4/7/- 63.00% 0.136/0.097/0

web 16/-/-/- 19.00% 0.055/0/0/0 web-cart 1/3/13/22 85.90% 0.245/0.188/0.07/0.057

5f3s

cart-catalogue-payment 1/3/18/22/47 68.20% 0.231/0.125/0.06/0.053/0

5f4s

cart-catalogue-payment-ratings 1/3/21/24/47 65.90% 0.262/0.145/0.062/0.049/0

ratings-shipping-user 4/7/9/38 75.90% 0.14/0.091/0.074/0.038 shipping-user-web-cart 5/13/22/38 65.20% 0.12/0.072/0.059/0

web-cart-catalogue 1/3/13/22 89.30% 0.258/0.142/0.073/0.06 payment-shipping-user-cart 5/22/38/47 46.90% 0.124/0.058/0/0

payment-shipping-ratings 4/32/39 53.00% 0.139/0.048/0.037 catalogue-ratings-web-cart 1/13/19/22/24 73.90% 0.256/0.073/0.067/0.06/0.048

5f5s

cart-catalogue-payment-ratings-shipping 1/22/24/38/47 50.30% 0.256/0.059/0.051/0/0

user-web-cart-catalogue-payment 1/5/13/22/47 69.40% 0.257/0.13/0.073/0.06/0

ratings-shipping-user-web-payment 4/7/17/33/39 65.30% 0.14/0.098/0.055/0.048/0.038

cart-catalogue-web-ratings-payment 1/13/22/24/47 61.30% 0.255/0.073/0.06/0.049/0
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A.3 Ranking Ties

Table A.6: Individual accuracies in the scenario suite using the best-case tie-breaking strategy.
The rank has 49 entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart 22 58.40% 0.05

2f1s

cart 3/22 78.40% 0.117/0.049

catalogue 1 100.00% 0.257 catalogue 1/11 91.60% 0.258/0.067

user 4 95.50% 0.106 user 5/- 47.50% 0.089/0

web 13 77.00% 0.055 web 13/- 39.30% 0.054/0

2f2s

cart-catalogue 1/20 81.90% 0.262/0.062

3f1s

cart 2/22 79.40% 0.118/0.049

payment-ratings 33/36 32.70% 0.048/0.04 ratings 6/38 58.00% 0.071/0.035

shipping-user 3/5 96.20% 0.14/0.086 shipping 3 97.40% 0.139

web-cart 10/21 72.50% 0.071/0.059 user 5/-/- 32.20% 0.088/0/0

3f2s

cart-catalogue 1/2/20 88.40% 0.262/0.145/0.061

3f3s

cart-catalogue-payment 1/20/38 62.00% 0.26/0.061/0

payment-ratings 28/38 35.70% 0.048/0.036 ratings-shipping-user 3/4/38 73.50% 0.14/0.095/0.034

shipping-user 3/5 96.20% 0.139/0.089 web-cart-catalogue 1/9/20 83.90% 0.256/0.073/0.059

web-cart 1/10/21 82.70% 0.246/0.07/0.057 payment-shipping-ratings 3/26/38 57.90% 0.14/0.048/0.035

4f1s

cart 2/22/- 53.40% 0.136/0.057/0

4f2s

cart-catalogue 1/2/10/20 88.40% 0.258/0.145/0.068/0.061

catalogue 1/10 92.70% 0.224/0.059 payment-ratings 6/31/36 53.70% 0.076/0.05/0.038

ratings 8/38 56.00% 0.07/0.033 shipping-user 3/5/- 64.60% 0.135/0.083/0

web 13/-/-/- 20.40% 0.054/0/0/0 web-cart 1/2/10/19 88.90% 0.256/0.196/0.072/0.06

4f3s

cart-catalogue-payment 1/2/20/38 73.00% 0.261/0.144/0.061/0

4f4s

cart-catalogue-payment-ratings 1/20/23/38 62.40% 0.259/0.06/0.051/0

ratings-shipping-user 3/4/7/38 78,3% 0.135/0.104/0.071/0.034 shipping-user-web-cart 4/10/21/38 67.50% 0.121/0.072/0.059/0

web-cart-catalogue 1/9/20 88.80% 0.255/0.072/0.059 payment-web-catalogue-user 1/3/9/38 78.70% 0.257/0.128/0.073/0

payment-shipping-user 3/4/27 81.30% 0.141/0.097/0.049 cart-ratings-shipping-payment 21/23/38/38 42.90% 0.058/0.047/0/0

5f1s

cart 2/20/38/- 47.80% 0.141/0.059/0/0

5f2s

cart-catalogue 1/2/11/20/38 75.90% 0.171/0.149/0.07/0.063/0

shipping 3 97.40% 0.143 payment-ratings 6/26/36 57.20% 0.076/0.051/0.039

user 4/-/-/- 25.20% 0.089/0/0/0 shipping-user 3/4/- 65.40% 0.136/0.097/0

web 13/-/-/- 20.50% 0.055/0/0/0 web-cart 1/2/10/21 87.80% 0.245/0.188/0.07/0.057

5f3s

cart-catalogue-payment 1/2/11/21/38 75.40% 0.231/0.125/0.06/0.053/0

5f4s

cart-catalogue-payment-ratings 1/2/19/23/38 71.00% 0.262/0.145/0.062/0.049/0

ratings-shipping-user 3/5/6/36 79.40% 0.14/0.091/0.074/0.038 shipping-user-web-cart 3/10/21/38 68.00% 0.12/0.072/0.059/0

web-cart-catalogue 1/2/9/20 91.70% 0.258/0.142/0.073/0.06 payment-shipping-user-cart 3/21/38/38 53.10% 0.124/0.058/0/0

payment-shipping-ratings 3/28/37 57.20% 0.139/0.048/0.037 catalogue-ratings-web-cart 1/9/13/20/23 79.10% 0.256/0.073/0.067/0.06/0.048

5f5s

cart-catalogue-payment-ratings-shipping 1/20/23/38/38 55.40% 0.256/0.059/0.051/0/0

user-web-cart-catalogue-payment 1/3/9/20/38 76.40% 0.257/0.13/0.073/0.06/0

ratings-shipping-user-web-payment 3/4/14/28/37 70.90% 0.14/0.098/0.055/0.048/0.038

cart-catalogue-web-ratings-payment 1/9/20/23/38 67.90% 0.255/0.073/0.06/0.049/0
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Table A.7: Individual accuracies in the scenario suite using the worst-case tie-breaking strategy.
The rank has 49 entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart 22 58.40% 0.05

2f1s

cart 3/22 78.40% 0.117/0.049

catalogue 1 100.00% 0.257 catalogue 1/16 86.40% 0.258/0.067

user 4 95.50% 0.106 user 5/- 47.50% 0.089/0

web 13 77.00% 0.055 web 13/- 39.30% 0.054/0

2f2s

cart-catalogue 1/20 81.90% 0.262/0.062

3f1s

cart 2/22 79.40% 0.118/0.049

payment-ratings 34/37 30.60% 0.048/0.04 ratings 8/39 55.00% 0.071/0.035

shipping-user 3/5 96.20% 0.14/0.086 shipping 3 97.40% 0.139

web-cart 10/21 72.50% 0.071/0.059 user 5/-/- 32.20% 0.088/0/0

3f2s

cart-catalogue 1/2/20 88.40% 0.262/0.145/0.061

3f3s

cart-catalogue-payment 1/20/49 55.60% 0.26/0.061/0

payment-ratings 34/39 28.90% 0.048/0.036 ratings-shipping-user 3/4/39 72.80% 0.14/0.095/0.034

shipping-user 3/5 96.20% 0.139/0.089 web-cart-catalogue 1/9/20 83.90% 0.256/0.073/0.059

web-cart 1/10/21 82.70% 0.246/0.07/0.057 payment-shipping-ratings 3/33/39 52.30% 0.14/0.048/0.035

4f1s

cart 2/22/- 53.40% 0.136/0.057/0

4f2s

cart-catalogue 1/2/15/20 85.80% 0.258/0.145/0.068/0.061

catalogue 1/15 87.50% 0.224/0.059 payment-ratings 8/33/37 50.20% 0.076/0.05/0.038

ratings 10/39 53.90% 0.07/0.033 shipping-user 3/5/- 64.60% 0.135/0.083/0

web 13/-/-/- 20.40% 0.054/0/0/0 web-cart 1/2/10/19 88.90% 0.256/0.196/0.072/0.06

4f3s

cart-catalogue-payment 1/2/20/49 67.10% 0.261/0.144/0.061/0

4f4s

cart-catalogue-payment-ratings 1/20/24/49 55.90% 0.259/0.06/0.051/0

ratings-shipping-user 3/4/9/39 76.70% 0.135/0.104/0.071/0.034 shipping-user-web-cart 4/10/21/49 61.50% 0.121/0.072/0.059/0

web-cart-catalogue 1/9/20 88.80% 0.255/0.072/0.059 payment-web-catalogue-user 1/3/9/49 72.70% 0.257/0.128/0.073/0

payment-shipping-user 3/4/33 77.10% 0.141/0.097/0.049 cart-ratings-shipping-payment 21/24/49/49 30.50% 0.058/0.047/0/0

5f1s

cart 2/20/49/- 41.90% 0.141/0.059/0/0

5f2s

cart-catalogue 1/2/15/20/49 68.90% 0.171/0.149/0.07/0.063/0

shipping 3 97.40% 0.143 payment-ratings 8/33/37 50.20% 0.076/0.051/0.039

user 4/-/-/- 25.20% 0.089/0/0/0 shipping-user 3/4/- 65.40% 0.136/0.097/0

web 13/-/-/- 20.50% 0.055/0/0/0 web-cart 1/2/10/21 87.80% 0.245/0.188/0.07/0.057

5f3s

cart-catalogue-payment 1/2/16/21/49 68.40% 0.231/0.125/0.06/0.053/0

5f4s

cart-catalogue-payment-ratings 1/2/19/24/49 65.70% 0.262/0.145/0.062/0.049/0

ratings-shipping-user 3/5/7/37 78.40% 0.14/0.091/0.074/0.038 shipping-user-web-cart 3/10/21/49 62.00% 0.12/0.072/0.059/0

web-cart-catalogue 1/2/9/20 91.70% 0.258/0.142/0.073/0.06 payment-shipping-user-cart 3/21/49/49 41.30% 0.124/0.058/0/0

payment-shipping-ratings 3/33/38 53.00% 0.139/0.048/0.037 catalogue-ratings-web-cart 1/9/18/20/24 78.70% 0.256/0.073/0.067/0.06/0.048

5f5s

cart-catalogue-payment-ratings-shipping 1/20/24/49/49 45.30% 0.256/0.059/0.051/0/0

user-web-cart-catalogue-payment 1/3/9/20/49 71.50% 0.257/0.13/0.073/0.06/0

ratings-shipping-user-web-payment 3/4/14/33/38 68.30% 0.14/0.098/0.055/0.048/0.038

cart-catalogue-web-ratings-payment 1/9/20/24/49 62.60% 0.255/0.073/0.06/0.049/0
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Table A.8: Individual accuracies in the scenario suite using the average-case tie-breaking strategy.
The rank has 49 entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart 22 58.40% 0.05

2f1s

cart 3/22 78.40% 0.117/0.049

catalogue 1 100.00% 0.257 catalogue 1/14 88.50% 0.258/0.067

user 4 95.50% 0.106 user 5/- 47.50% 0.089/0

web 13 77.00% 0.055 web 13/- 39.30% 0.054/0

2f2s

cart-catalogue 1/20 81.90% 0.262/0.062

3f1s

cart 2/22 79.40% 0.118/0.049

payment-ratings 34/37 32.70% 0.048/0.04 ratings 7/39 56.00% 0.071/0.035

shipping-user 3/5 96.20% 0.14/0.086 shipping 3 97.40% 0.139

web-cart 10/21 72.50% 0.071/0.059 user 5/-/- 32.20% 0.088/0/0

3f2s

cart-catalogue 1/2/20 88.40% 0.262/0.145/0.061

3f3s

cart-catalogue-payment 1/20/44 59.10% 0.26/0.061/0

payment-ratings 31/39 31.60% 0.048/0.036 ratings-shipping-user 3/4/39 72.80% 0.14/0.095/0.034

shipping-user 3/5 96.20% 0.139/0.089 web-cart-catalogue 1/9/20 83.90% 0.256/0.073/0.059

web-cart 1/10/21 82.70% 0.246/0.07/0.057 payment-shipping-ratings 3/30/39 54.40% 0.14/0.048/0.035

4f1s

cart 2/22/- 53.40% 0.136/0.057/0

4f2s

cart-catalogue 1/2/13/20 86.80% 0.258/0.145/0.068/0.061

catalogue 1/13 91.60% 0.224/0.059 payment-ratings 7/32/37 51.60% 0.076/0.05/0.038

ratings 9/39 55.00% 0.07/0.033 shipping-user 3/5/- 64.60% 0.135/0.083/0

web 13/-/-/- 20.40% 0.054/0/0/0 web-cart 1/2/10/19 88.90% 0.256/0.196/0.072/0.06

4f3s

cart-catalogue-payment 1/2/20/44 69.80% 0.261/0.144/0.061/0

4f4s

cart-catalogue-payment-ratings 1/20/24/44 58.60% 0.259/0.06/0.051/0

ratings-shipping-user 3/4/8/39 77.80% 0.135/0.104/0.071/0.034 shipping-user-web-cart 4/10/21/44 64.20% 0.121/0.072/0.059/0

web-cart-catalogue 1/9/20 88.80% 0.255/0.072/0.059 payment-web-catalogue-user 1/3/9/44 75.40% 0.257/0.128/0.073/0

payment-shipping-user 3/4/30 79.20% 0.141/0.097/0.049 cart-ratings-shipping-payment 21/24/44/44 35.90% 0.058/0.047/0/0

5f1s

cart 2/20/44/- 44.60% 0.141/0.059/0/0

5f2s

cart-catalogue 1/2/14/20/44 72.00% 0.171/0.149/0.07/0.063/0

shipping 3 97.40% 0.143 payment-ratings 7/30/03 53.00% 0.076/0.051/0.039

user 4/-/-/- 25.20% 0.089/0/0/0 shipping-user 3/4/- 65.40% 0.136/0.097/0

web 13/-/-/- 20.50% 0.055/0/0/0 web-cart 1/2/10/21 87.80% 0.245/0.188/0.07/0.057

5f3s

cart-catalogue-payment 1/2/14/21/40 71.50% 0.231/0.125/0.06/0.053/0

5f4s

cart-catalogue-payment-ratings 1/2/19/24/44 67.90% 0.262/0.145/0.062/0.049/0

ratings-shipping-user 3/5/7/37 78.40% 0.14/0.091/0.074/0.038 shipping-user-web-cart 3/10/21/44 64.70% 0.12/0.072/0.059/0

web-cart-catalogue 1/2/9/20 91.70% 0.258/0.142/0.073/0.06 payment-shipping-user-cart 3/21/44/44 46.70% 0.124/0.058/0/0

payment-shipping-ratings 3/31/38 54.40% 0.139/0.048/0.037 catalogue-ratings-web-cart 1/9/16/20/24 77.40% 0.256/0.073/0.067/0.06/0.048

5f5s

cart-catalogue-payment-ratings-shipping 1/20/24/44/44 49.70% 0.256/0.059/0.051/0/0

user-web-cart-catalogue-payment 1/3/9/20/44 73.70% 0.257/0.13/0.073/0.06/0

ratings-shipping-user-web-payment 3/4/14/31/38 69.10% 0.14/0.098/0.055/0.048/0.038

cart-catalogue-web-ratings-payment 1/9/20/24/44 64.80% 0.255/0.073/0.06/0.049/0
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A.4 Method Entity Percentage

Table A.9: Individual accuracies in the scenario suite using 75% of services with endpoints as
method invocations. The rank has 30 entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart 12 64.90% 0.026

2f1s

cart 7/12 74.80% 0.058/0.025

catalogue 4 93.10% 0.153 catalogue 4/9 85.90% 0.154/0.042

user - 2.60% 0 user -/- 2.50% 0/0

web - 3.40% 0 web -/- 3.60% 0/0

2f2s

cart-catalogue 4/11 82.00% 0.159/0.039

3f1s

cart 7/12 74.80% 0.059/0.025

payment-ratings 18/19 43.40% 0.033/0.028 ratings 11/20 53.80% 0.047/0.023

shipping-user 9/- 38.90% 0.092/0 shipping 8 79.40% 0.091

web-cart 11/- 36.00% 0.038/0 user -/-/- 2.60% 0/0/0

3f2s

cart-catalogue 4/7/11 84.10% 0.16/0.089/0.039

3f3s

cart-catalogue-payment 4/11/28 57.70% 0.158/0.038/0

payment-ratings 16/20 44.80% 0.033/0.025 ratings-shipping-user 8/20/- 40.10% 0.094/0.023/0

shipping-user 9/- 38.90% 0.092/0 web-cart-catalogue 4/11/- 56.00% 0.153/0.037/0

web-cart 3/11/- 57.10% 0.149/0.036/0 payment-shipping-ratings 9/17/20 55.00% 0.093/0.033/0.024

4f1s

cart 7/12/- 50.90% 0.07/0.03/0

4f2s

cart-catalogue 4/7/9/11 84.10% 0.156/0.089/0.043/0.039

catalogue 4/9 85.90% 0.114/0.031 payment-ratings 11/17/19 54.00% 0.052/0.034/0.026

ratings 12/20 52.10% 0.046/0.022 shipping-user 9/-/- 26.80% 0.087/0/0

web -/-/-/- 3.90% 0/0/0/0 web-cart 3/6/11/- 66.00% 0.161/0.124/0.039/0

4f3s

cart-catalogue-payment 4/7/11/28 65.40% 0.159/0.089/0.039/0

4f4s

cart-catalogue-payment-ratings 4/11/12/28 61.00% 0.157/0.038/0.033/0

ratings-shipping-user 10/11/20/- 46.70% 0.089/0.047/0.024/0 shipping-user-web-cart 11/25/-/- 23.80% 0.039/0/0/0

web-cart-catalogue 4/11/- 66.80% 0.152/0.037/0 payment-web-catalogue-user 4/28/-/- 27.30% 0.154/0/0/0

payment-shipping-user 8/16/- 44.70% 0.092/0.033/0 cart-ratings-shipping-payment 11/12/25/28 41.40% 0.037/0.3/0/0

5f1s

cart 7/11/29/- 41.00% 0.075/0.032/0/0

5f2s

cart-catalogue 4/7/9/11/29 68.80% 0.1/0.88/0.043/0.038/0

shipping 8 79.40% 0.1 payment-ratings 11/16/19 55.20% 0.053/0.035/0.027

user -/-/-/- 2.70% 0/0/0/0 shipping-user 9/-/- 26.90% 0.09/0/0

web -/-/-/- 3.90% 0/0/0/0 web-cart 3/6/11/30 65.80% 0.148/0.114/0.036/0

5f3s

cart-catalogue-payment 4/7/9/12/28 68.60% 0.12/0.066/0.033/0.029/0

5f4s

cart-catalogue-payment-ratings 4/6/11/12/28 67.80% 0.159/0.089/0.039/0.031/0

ratings-shipping-user 9/11/19/- 48.40% 0.095/0.051/0.026/0 shipping-user-web-cart 11/25/-/- 23.80% 0.038/0/0/0

web-cart-catalogue 4/7/11/- 71.80% 0.155/0.087/0.038/0 payment-shipping-user-cart 11/25/28/- 25.00% 0.047/0/0/0

payment-shipping-ratings 8/16/20 57.30% 0.089/0.032/0.025 catalogue-ratings-web-cart 4/9/11/12/- 64.60% 0.153/0.042/0.037/0.03/0

5f5s

cart-catalogue-payment-ratings-shipping 4/11/12/25/28 53.00% 0.153/0.037/0.032/0/0

user-web-cart-catalogue-payment 4/11/28/-/- 36.20% 0.154/0.038/0/0/0

ratings-shipping-user-web-payment 8/17/20/-/- 36.10% 0.092/0.033/0.036/0/0

cart-catalogue-web-ratings-payment 4/11/12/28/- 49.70% 0.153/0.037/0.031/0/0
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Table A.10: Individual accuracies in the scenario suite using 50% of services with endpoints as
method invocations. The rank has 20 entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart 11 51.20% 0.026

2f1s

cart 7/11 63.30% 0.058/0.025

catalogue 4 89.50% 0.153 catalogue 4/9 78.20% 0.154/0.042

user - 3.30% 0 user -/- 3.20% 0/0

web - 5.30% 0 web -/- 5.60% 0/0

2f2s

cart-catalogue 4/10 74.80% 0.159/0.039

3f1s

cart 7/11 63.30% 0.059/0.025

payment-ratings 15/- 17.40% 0.033/0 ratings -/- 4.70% 0/0

shipping-user -/- 3.50% 0/0 shipping - 3.80% 0

web-cart 10/- 31.20% 0.038/0 user -/-/- 3.40% 0/0/0

3f2s

cart-catalogue 4/7/10 76.80% 0.16/0.089/0.039

3f3s

cart-catalogue-payment 4/10/18 54.30% 0.158/0.038/0

payment-ratings 13/- 22.40% 0.032/0 ratings-shipping-user -/-/- 4.20% 0/0/0

shipping-user -/- 3.60% 0/0 web-cart-catalogue 4/10/- 51.90% 0.153/0.037/0

web-cart 3/10/- 53.60% 0.149/0.036/0 payment-shipping-ratings 14/-/- 14.90% 0.033/0/0

4f1s

cart 7/11/- 43.80% 0.07/0.03/0

4f2s

cart-catalogue 4/7/9/10 76.20% 0.156/0.088/0.043/0.039

catalogue 4/9 78.20% 0.114/0.031 payment-ratings 14/-/- 15.00% 0.034/0/0

ratings -/- 4.70% 0/0 shipping-user -/-/- 3.60% 0/0/0

web -/-/-/- 6.30% 0/0/0/0 web-cart 3/6/10/- 62.00% 0.161/0.124/0.039/0

4f3s

cart-catalogue-payment 4/7/10/18 61.00% 0.159/0.089/0.039/0

4f4s

cart-catalogue-payment-ratings 4/10/18/- 42.40% 0.157/0.038/0/0

ratings-shipping-user -/-/-/- 4.80% 0/0/0/0 shipping-user-web-cart 10/-/-/- 17.30% 0.039/0/0/0

web-cart-catalogue 4/10/- 63.70% 0.152/0.037/0 payment-web-catalogue-user 4/18/-/- 28.60% 0.154/0/0/0

payment-shipping-user 13/-/- 16.10% 0.033/0/0 cart-ratings-shipping-payment 10/18/-/- 19.10% 0.037/0/0/0

5f1s

cart 7/10/19/- 37.40% 0.075/0.032/0/0

5f2s

cart-catalogue 4/7/9/10/19 63.40% 0.1/0.088/0.043/0.038/0

shipping - 3.80% 0 payment-ratings 13/-/- 16.80% 0.035/0/0

user -/-/-/- 3.60% 0/0/0/0 shipping-user -/-/- 3.70% 0/0/0

web -/-/-/- 6.30% 0/0/0/0 web-cart 3/6/10/- 62.00% 0.148/0.114/0.036/0

5f3s

cart-catalogue-payment 4/7/9/11/18 63.00% 0.12/0.066/0.033/0.029/0

5f4s

cart-catalogue-payment-ratings 4/6/10/18/- 51.60% 0.159/0.089/0.039/0/0

ratings-shipping-user -/-/-/- 4.80% 0/0/0/0 shipping-user-web-cart 10/-/-/- 17.40% 0.038/0/0/0

web-cart-catalogue 4/7/10/- 68.20% 0.155/0.087/0.038/0 payment-shipping-user-cart 10/18/-/- 19.00% 0.037/0/0/0

payment-shipping-ratings 13/-/- 16.60% 0.032/0/0 catalogue-ratings-web-cart 4/9/10/-/- 46.90% 0.153/0.042/0.037/0/0

5f5s

cart-catalogue-payment-ratings-shipping 4/10/18/-/- 34.40% 0.153/0.037/0/0/0

user-web-cart-catalogue-payment 4/10/18/-/- 35.30% 0.154/0.038/0/0/0

ratings-shipping-user-web-payment 14/-/-/-/- 11.90% 0.033/0/0/0/0

cart-catalogue-web-ratings-payment 4/10/18/-/- 35.50% 0.153/0.037/0/0/0
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Table A.11: Individual accuracies in the scenario suite using 25% of services with endpoints as
method invocations. The rank has 17 entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart 11 45.30% 0.026

2f1s

cart 7/11 58.60% 0.058/0.025

catalogue 4 88.00% 0.153 catalogue 4/9 75.60% 0.154/0.042

user - 3.50% 0 user -/- 3.30% 0/0

web - 5.90% 0 web -/- 6.30% 0/0

2f2s

cart-catalogue 4/10 71.70% 0.159/0.039

3f1s

cart 7/11 58.60% 0.059/0.025

payment-ratings -/- 4.60% 0/0 ratings -/- 5.20% 0/0

shipping-user -/- 3.70% 0/0 shipping -/- 4.00% 0

web-cart 10/- 28.90% 0.038/0 user -/-/- 3.50% 0/0/0

3f2s

cart-catalogue 4/7/10 73.70% 0.16/0.089/0.039

3f3s

cart-catalogue-payment 4/10/- 48.20% 0.158/0.038/0

payment-ratings -/- 4.20% 0/0 ratings-shipping-user -/-/- 4.50% 0/0/0

shipping-user -/- 3.80% 0/0 web-cart-catalogue 4/10/- 50.00% 0.153/0.037/0

web-cart 3/10/- 52.00% 0.149/0.036/0 payment-shipping-ratings -/-/- 4.80% 0/0/0

4f1s

cart 7/11/- 40.90% 0.07/0.03/0

4f2s

cart-catalogue 4/7/9/10 72.90% 0.156/0.088/0.043/0.039

catalogue 4/9 75.60% 0.114/0.031 payment-ratings -/-/- 4.80% 0/0/0

ratings -/- 5.20% 0/0 shipping-user -/-/- 3.80% 0/0/0

web -/-/-/- 7.20% 0/0/0/0 web-cart 3/6/10/- 60.30% 0.161/0.124/0.039/0

4f3s

cart-catalogue-payment 4/7/10/- 55.60% 0.159/0.089/0.039/0

4f4s

cart-catalogue-payment-ratings 4/10/-/- 38.10% 0.157/0.038/0/0

ratings-shipping-user -/-/-/- 5.30% 0/0/0/0 shipping-user-web-cart 10/-/-/- 16.30% 0.039/0/0/0

web-cart-catalogue 4/10/- 62.20% 0.152/0.037/0 payment-web-catalogue-user 4/-/-/- 25.60% 0.154/0/0/0

payment-shipping-user -/-/- 4.00% 0/0/0 cart-ratings-shipping-payment 10/-/-/- 15.10% 0.037/0/0/0

5f1s

cart 7/10/17/- 35.80% 0.075/0.032/0/0

5f2s

cart-catalogue 4/7/9/10/17 61.10% 0.1/0.088/0.038/0

shipping - 4.00% 0 payment-ratings -/-/- 4.80% 0/0/0

user -/-/-/- 3.80% 0/0/0/0 shipping-user -/-/- 3.90% 0/0/0

web -/-/-/- 7.20% 0/0/0/0 web-cart 3/6/10/- 60.30% 0.148/0.114/0.036/0

5f3s

cart-catalogue-payment 4/7/9/11/- 57.70% 0.12/0.066/0.033/0.029/0

5f4s

cart-catalogue-payment-ratings 4/6/10/-/- 47.70% 0.159/0.089/0.039/0/0

ratings-shipping-user -/-/-/- 5.30% 0/0/0/0 shipping-user-web-cart 10/-/-/- 16.50% 0.038/0/0/0

web-cart-catalogue 4/7/10/- 66.70% 0.155/0.087/0.38/0 payment-shipping-user-cart 10/-/-/- 15.00% 0.037/0/0/0

payment-shipping-ratings -/-/- 4.70% 0/0/0 catalogue-ratings-web-cart 4/9/10/-/- 45.40% 0.153/0.042/0.037/0/0

5f5s

cart-catalogue-payment-ratings-shipping 4/10/-/-/- 31.00% 0.153/0.037/0/0/0

user-web-cart-catalogue-payment 4/10/-/-/- 32.10% 0.154/0.038/0/0/0

ratings-shipping-user-web-payment -/-/-/-/- 5.40% 0/0/0/0/0

cart-catalogue-web-ratings-payment 4/10/-/-/- 32.40% 0.153/0.037/0/0/0
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Table A.12: Individual accuracies in the scenario suite using 0% of services with endpoints as
method invocations. The rank has 8 entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart - 6.30% 0

2f1s

cart -/- 7.20% 0/0

catalogue - 12.50% 0 catalogue -/- 14.40% 0/0

user - 3.10% 0 user -/- 3.60% 0/0

web - 12.50% 0 web -/- 14.40% 0/0

2f2s

cart-catalogue -/- 12.10% 0/0

3f1s

cart -/- 7.20% 0/0

payment-ratings -/- 7.00% 0/0 ratings -/- 9.00% 0/0

shipping-user -/- 4.40% 0/0 shipping - 6.30% 0

web-cart -/- 11.00% 0/0 user -/-/- 4.30% 0/0/0

3f2s

cart-catalogue -/-/- 13.40% 0/0/0

3f3s

cart-catalogue-payment -/-/- 9.40% 0/0/0

payment-ratings -/- 5.90% 0/0 ratings-shipping-user -/-/- 8.40% 0/0/0

shipping-user -/- 5.20% 0/0 web-cart-catalogue -/-/- 14.00% 0/0/0

web-cart -/-/- 13.80% 0/0/0 payment-shipping-ratings -/-/- 8.90% 0/0/0

4f1s

cart -/-/- 8.50% 0/0/0

4f2s

cart-catalogue -/-/-/- 15.50% 0/0/0/0

catalogue -/- 14.40% 0/0 payment-ratings -/-/- 7.90% 0/0/0

ratings -/- 9.00% 0/0 shipping-user -/-/- 4.80% 0/0/0

web -/-/-/- 20.80% 0/0/0/0 web-cart -/-/-/- 16.40% 0/0/0/0

4f3s

cart-catalogue-payment -/-/-/- 11.10% 0/0/0/0

4f4s

cart-catalogue-payment-ratings -/-/-/- 13.00% 0/0/0/0

ratings-shipping-user -/-/-/- 10.80% 0/0/0/0 shipping-user-web-cart -/-/-/- 7.70% 0/0/0/0

web-cart-catalogue -/-/-/- 17.50% 0/0/0/0 payment-web-catalogue-user -/-/-/- 12.90% 0/0/0/0

payment-shipping-user -/-/- 6.10% 0/0/0 cart-ratings-shipping-payment -/-/-/- 11.70% 0/0/0/0

5f1s

cart -/-/-/- 13.00% 0/0/0/0

5f2s

cart-catalogue -/-/-/-/- 17.40% 0/0/0/0/0

shipping - 6.30% 0 payment-ratings -/-/- 7.90% 0/0/0

user -/-/-/- 5.20% 0/0/0/0 shipping-user -/-/- 5.30% 0/0/0

web -/-/-/- 20.80% 0/0/0/0 web-cart -/-/-/- 16.40% 0/0/0/0

5f3s

cart-catalogue-payment -/-/-/-/- 16.90% 0/0/0/0/0

5f4s

cart-catalogue-payment-ratings -/-/-/-/- 17.10% 0/0/0/0/0

ratings-shipping-user -/-/-/- 11.30% 0/0/0/0 shipping-user-web-cart -/-/-/- 12.70% 0/0/0/0

web-cart-catalogue -/-/-/-/- 21.70% 0/0/0/0/0 payment-shipping-user-cart -/-/-/- 9.00% 0/0/0/0

payment-shipping-ratings -/-/- 8.40% 0/0/0 catalogue-ratings-web-cart -/-/-/-/- 22.10% 0/0/0/0/0

5f5s

cart-catalogue-payment-ratings-shipping -/-/-/-/- 13.90% 0/0/0/0/0

user-web-cart-catalogue-payment -/-/-/-/- 19.10% 0/0/0/0/0

ratings-shipping-user-web-payment -/-/-/-/- 15.20% 0/0/0/0/0

cart-catalogue-web-ratings-payment -/-/-/-/- 17.50% 0/0/0/0/0
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Table A.13: Individual accuracies in the scenario suite targeting service entities with no method
invocations. The rank has 8 entities.

Category Combination Entities Ranking Accuracy Entities SFL Value Category Combination Entities Ranking Accuracy Entities SFL Value

1f1s

cart 5 50.00% 0.119

2f1s

cart 5 50.00% 0.117

catalogue 1 100.00% 0.294 catalogue 1 100.00% 0.295

user 7 25.00% 0.139 user 7 25.00% 0.127

web 1 100.00% 0.287 web 1 100.00% 0.277

2f2s

cart-catalogue 1/4 85.70% 0.299/0.148

3f1s

cart 5 50.00% 0.117

payment-ratings 4/6 52.70% 0.191/0.149 ratings 4 62.50% 0.182

shipping-user 6/7 33.00% 0.156/0.124 shipping 5 50.00% 0.172

web-cart 2/4 79.50% 0.283/0.231 user 7 25.00% 0.126

3f2s

cart-catalogue 1/5 78.60% 0.299/0.147

3f3s

cart-catalogue-payment 1/5/7 63.50% 0.297/0.145/0.012

payment-ratings 4/7 45.50% 0.189/0.105 ratings-shipping-user 4/5/7 51.00% 0.183/0.156/0.132

shipping-user 5/7 39.30% 0.154/0.127 web-cart-catalogue 1/2/5 88.90% 0.292/0.286/0.142

web-cart 2/4 90.30% 0.276/0.225 payment-shipping-ratings 4/5/6 56.50% 0.182/0.156/0.147

4f1s

cart 5 50.00% 0.136

4f2s

cart-catalogue 1/5 78.60% 0.296/0.147

catalogue 1 100.00% 0.258 payment-ratings 4/7 45.50% 0.192/0.108

ratings 4 62.50% 0.177 shipping-user 6/7 33.00% 0.15/0.121

web 1 100.00% 0.279 web-cart 2/4 79.50% 0.286/0.236

4f3s

cart-catalogue-payment 1/5/7 63.50% 0.298/0.147/0.012

4f4s

cart-catalogue-payment-ratings 1/3/5/7 73.10% 0.296/0.286/0.144/0.012

ratings-shipping-user 4/6/7 46.20% 0.18/0.151/0.138 shipping-user-web-cart 2/4/5/8 61.40% 0.284/0.233/0.144/0.005

web-cart-catalogue 1/2/5 88.90% 0.29/0.286/0.14 payment-web-catalogue-user 1/2/4/7 80.80% 0.293/0.289/0.152/0.012

payment-shipping-user 5/6/7 42.10% 0.157/0.135/0.107 cart-ratings-shipping-payment 3/4/7/8 49.90% 0.245/0.227/0.012/0.005

5f1s

cart 5 50.00% 0.141

5f2s

cart-catalogue 3/5 66.10% 0.218/0.151

shipping 5 50.00% 0.177 payment-ratings 4/7 45.50% 0.192/0.11

user 7 25.00% 0.126 shipping-user 5/7 39.30% 0.151/0.132

web 1 100.00% 0.287 web-cart 2/4 79.50% 0.275/0.224

5f3s

cart-catalogue-payment 2/5/7 59.30% 0.265/0.126/0.016

5f4s

cart-catalogue-payment-ratings 1/3/4/7 77.30% 0.3/0.284/0.147/0.012

ratings-shipping-user 4/5/7 51.00% 0.188/0.156/0.129 shipping-user-web-cart 2/4/5/8 61.40% 0.281/0.232/0.144/0.005

web-cart-catalogue 1/2/5 88.90% 0.295/0.29/0.144 payment-shipping-user-cart 4/5/7/8 43.20% 0.228/0.147/0.012/0.005

payment-shipping-ratings 4/5/7 51.00% 0.188/0.157/0.104 catalogue-ratings-web-cart 1/2/3/5 95.00% 0.292/0.288/0.279/0.143

5f5s

cart-catalogue-payment-ratings-shipping 1/3/5/7/8 63.50% 0.292/0.285/0.142/0.012/0.005

user-web-cart-catalogue-payment 1/2/4/5/7 82.30% 0.293/0.289/0.154/0.144/0.012

ratings-shipping-user-web-payment 1/4/5/6/7 69.60% 0.29/0.188/0.174/0.135/0.106

cart-catalogue-web-ratings-payment 1/2/3/5/7 86.00% 0.292/0.288/0.28/0.142/0.012



Appendix B

Most Accurate Configuration
Individual Scenarios Execution Times

Table B.1: Individual execution times (in seconds) in the most accurate scenario suite (service
weight attenuation with average).

Category Combination Execution Time (s) Category Combination Execution Time (s)

1f1s

cart 5.2879

2f1s

cart 4.7905

catalogue 6.4979 catalogue 7.4642

user 7.8031 user 7.7746

web 8.7980 web 6.6950

2f2s

cart-catalogue 6.5107

3f1s

cart 4.4619

payment-ratings 7.8597 ratings 6.9475

shipping-user 6.8757 shipping 7.6175

web-cart 6.9324 user 8.5373

3f2s

cart-catalogue 8.0874

3f3s

cart-catalogue-payment 6.9980

payment-ratings 6.7925 ratings-shipping-user 7.2054

shipping-user 7.3114 web-cart-catalogue 6.2890

web-cart 8.9644 payment-shipping-ratings 8.9848

4f1s

cart 4.7856

4f2s

cart-catalogue 6.0035

catalogue 4.7722 payment-ratings 7.3988

ratings 6.6124 shipping-user 7.2630

web 6.8019 web-cart 8.0032

4f3s

cart-catalogue-payment 7.3888

4f4s

cart-catalogue-payment-ratings 6.2888

ratings-shipping-user 6.6583 shipping-user-web-cart 6.8577

web-cart-catalogue 6.8975 payment-web-catalogue-user 7.0032

payment-shipping-user 7.1780 cart-ratings-shipping-payment 6.4100

5f1s

cart 4.8807

5f2s

cart-catalogue 5.9315

shipping 7.3563 payment-ratings 9.3037

user 6.2665 shipping-user 7.5007

web 7.4484 web-cart 6.6604

5f3s

cart-catalogue-payment 5.0214

5f4s

cart-catalogue-payment-ratings 7.1980

ratings-shipping-user 12.1451 shipping-user-web-cart 7.0452

web-cart-catalogue 7.7170 payment-shipping-user-cart 7.2863

payment-shipping-ratings 8.7974 catalogue-ratings-web-cart 6.9070

5f5s

cart-catalogue-payment-ratings-shipping 6.5735

user-web-cart-catalogue-payment 6.7103

ratings-shipping-user-web-payment 8.4100

cart-catalogue-web-ratings-payment 6.1931
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