
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Designing and building a
microservices-based time series

forecasting system

João Ruano Neto Veiga de Macedo

Mestrado em Engenharia Informática e Computação

Supervisors: Jácome Miguel Costa da Cunha (FEUP) and Francisco Amorim (LTPlabs)

July 25, 2022

© João Ruano Neto Veiga de Macedo, 2022

Designing and building a microservices-based time series
forecasting system

João Ruano Neto Veiga de Macedo

Mestrado em Engenharia Informática e Computação

July 25, 2022

Abstract

Time series analysis and forecasting are widely used techniques in business optimization and an-
alytics, as enterprises periodically record data points of an increasing variety of internal metrics.
Categorizing and organising a large number of correlated input time series and forecasting these
metrics into the future are processes often used to inform an organization’s decision making pro-
cess.

The emerging paradigm of microservices-based architectures aims to decompose systems into
decoupled, single-responsibility components analogous to business capabilities. For time series
analysis and forecasting the main benefits of such a paradigm would be horizontal scalability
through service replication and the organizational impact of maintainability and code reusability
in the context of LTPlabs, a Portuguese analytical-driven management consultancy company.

In this work, we propose the applicability of a microservices architecture decomposition strat-
egy to a Time Series Forecasting solution employing univariate, ensemble, and hierarchical fore-
casting models.

A dataflow driven analysis for service extraction was used to decompose the system. The
communication was redesigned to adhere to an event-based paradigm. Additional adjustments
were made to avoid documented microservices anti-patterns.

We used a microservices assessment framework supported by execution time, computational
cost, and forecasting accuracy metrics for comparative analysis of an implemented prototype with
the pre-decomposition system.

The decomposition approach produced the desired outcomes, as the execution time was low-
ered by over 50% through independent service replication, while the costs and forecasting error
metrics remained comparable.

Keywords: Time-series forecasting, Time-series analysis, Microservices, Monolith decomposi-
tion

i

Agradecimentos

Quem me acompanhou nestes anos que me formaram ficará sempre nas minhas memórias. Quer
nas maiores decisões como nos mais simples momentos do quotidiano, relembro as palavras de
sabedoria, apoio, e carinho, dadas tão generosamente ao longo dos últimos cinco anos. Resta-me
escrever os meus breves agradecimentos a algumas dessas pessoas, sempre pequenos ao lado das
marcas que deixaram em mim.

Ao Francisco Amorim, por toda a mentoria e amizade, por cada revisão e conversa, e por tudo
o que me ensinou, sempre com a calma, confiança e sensatez que o caracterizam;

Ao Professor Jácome Cunha, pelo apoio e disponibilidade ao longo deste percurso, e por
sempre me desafiar a ir mais além, nunca esquecendo o pragmatismo e rigor;

Às pessoas incríveis que tive a oportunidade de conhecer nestes seis meses na LTPlabs, com
quem já guardo memórias desde a mesa do Avis aos Picos da Europa; ao João Alves, por me
lembrar de jogar com as minhas forças sem deixar de trabalhar nas minhas fraquezas;

À minha família, os constantes apoiantes do meu percurso académico que já perfaz duas dé-
cadas; à minha irmã Rita, o meu porto seguro, ao meu irmão Miguel, o meu amigo e professor
mais antigo, e aos meus pais Teresa e Rui, a quem devo tanto do que sou;

Aos meus amigos, por estes anos de tanto crescimento e vivências partilhadas,

Obrigado.

João Macedo

ii

“La vida no es la que uno vivió sino la que uno recuerda y como la recuerda para contarla”

Gabriel García Márquez

iii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Document Structure . 3

2 Literature Review 5
2.1 Microservices Architecture . 5

2.1.1 Refactoring Monoliths . 7
2.1.2 Data Concerns . 8
2.1.3 Communication . 8

2.2 Time Series Forecasting . 9
2.2.1 Univariate forecasting models . 10
2.2.2 Ensemble Models . 11
2.2.3 Hierarchical Forecasting . 12
2.2.4 Global Models . 13

2.3 Microservices-based Time-Series Analysis . 13

3 Problem Statement 15
3.1 Current approach . 16
3.2 Requirements . 19

3.2.1 Main workflows . 20
3.2.2 Scalability . 21
3.2.3 Organisational requirements . 21

3.3 Supporting factors . 22
3.3.1 Preexisting infrastructure . 22
3.3.2 Validation Data . 22

3.4 Proposed solution . 23

4 Design and Implementation 24
4.1 Service Extraction . 24

4.1.1 Dataflow-Driven Decomposition . 24
4.1.2 Candidate microservices . 25
4.1.3 Extracted services . 28

4.2 Organisational impact . 29
4.2.1 Service template . 29
4.2.2 Event Schema . 32

4.3 Service integration . 32
4.4 Diagnostic Workflow Mapping . 33

iv

CONTENTS v

4.4.1 Data disaggregation . 34
4.4.2 Univariate Models . 35
4.4.3 Data aggregation . 35
4.4.4 Ensemble Models . 36
4.4.5 Hierarchical Forecasting . 36

5 Evaluation 37
5.1 Experimental design . 37
5.2 Results and Analysis . 38

5.2.1 Overhead . 38
5.2.2 Scalability . 39
5.2.3 Forecasting Metrics . 41

5.3 Discussion . 43
5.3.1 Functional suitability . 43
5.3.2 Performance efficiency . 43
5.3.3 Reliability . 44
5.3.4 Maintainability . 44
5.3.5 Cost . 45
5.3.6 Process related . 46

5.4 Final notes . 47

6 Conclusions 48
6.1 Future work . 49

References 50

A Sequence diagram 55

B Error metrics comparison 57

List of Figures

2.1 Architectural Model for Development of Time-Series Forecasting as a Service Ap-
plication (adapted from Uzun et al. [63]) . 14

3.1 Current solution’s Dataflow diagram . 17
3.2 Hierarchical aggregation of time series (adapted from Hyndman and Athanasopou-

los [31]) . 18
3.3 Grouped and hierarchical aggregation of time series (adapted from Hyndman and

Athanasopoulos [31]) . 18
3.4 Pre-decomposition execution time of different components 19

4.1 Purified Dataflow graph . 26
4.2 Candidate microservices . 27
4.3 Service interaction diagram . 30
4.4 Service template . 31
4.5 Number of time series per aggregation . 34

5.1 Execution time of components . 39
5.2 Queued messages, 200 input time series . 40
5.3 Queued messages, 350 input time series . 40
5.4 Allocated Machines (r5.xlarge) . 45
5.5 Total instance execution time (r5.xlarge) . 46
5.6 Cost approximation . 46

A.1 Proposed sequence diagram . 56

vi

List of Tables

5.1 Univariate models forecast error metrics (Beverage Industry) 42
5.2 Hirearchical and Ensemble forecast error metrics summary (Beverage Industry) . 42
5.3 Univariate models forecast error metrics (Electronics Retailer) 42
5.4 Hirearchical and Ensemble forecast error metrics summary (Electronics Retailer) 43

B.1 Beverage Industry univariate forecast error metrics 58
B.2 Beverage Industry Ensemble and Hierarchical forecast error metric comparisons . 58
B.3 Electronics Retailer univariate forecast error metrics 59
B.4 Electronics Retailer Ensemble and Hierarchical forecast error metric comparisons 60

vii

Abbreviations

TSA Time Series Analysis
MSA Microservices-based Architecture
SaaS Software as a Service
TSF Time Series Forecasting
SOA Service Oriented Architecture
API Application Program Interface
SKU Stock-Keeping Units
CQRS Command Query Responsibility Segregation
MA Moving average
AR Autoregression
ARIMA Autoregression Integrated Moving Average
CRISP-DM Cross Industry Standard Process for Data Mining
TSFM Pre-decomposition Time-series forecasting module
GBM Gradient Boosting Machine
DFD Dataflow Diagram
AMQ Asynchronous Message Queue
AMQP Asynchronous Message Queue Protocol

viii

Chapter 1

Introduction

Organizations are collecting increasingly large amounts of time-stamped observations of various

internal metrics, structured as Time Series data, such as product sales and production rates. This

data structure is characterized by a sequence of values indexed in time. The applicability of Time

Series Analysis (TSA) and Forecasting (TSF) [59] is of high interest to a broad range of fields, both

in academic and business contexts. For the successful application of TSA and TSF techniques,

manual calculations are not suitable, requiring the interaction of an analyst with a computer system

[46].

Structuring the multiple techniques in an integrated system is therefore of interest to organiza-

tions and the field of software architecture. From an architectural viewpoint, the requirements for

these systems are the ability to fulfil different parallel workflows, allow horizontal scalability of

individual TSA and TSF techniques, and evolve by including new techniques. The current answer

for these requirements is microservices-based architectures (MSA) that emerged from the needs

of the industry and just recently are being increasingly studied by academia [9].

MSAs are a recent development on the Service Oriented Architecture (SOA) paradigm, gener-

ically consisting of practices aiming to isolate computational logic in independently deployable,

single-responsibility contexts. Often framed around business logic, the granularity of the imple-

mented services should be as fine as possible while remaining analogous to business capabilities.

Therefore, this paradigm is relevant for the software engineering industry as it motivates code

reusability and improves readability, maintainability, and horizontal scalability through service

replication [49]. From a technological perspective, recent releases of tooling for containerization,

service discovery, monitoring, container orchestration, and other aspects of the current understand-

ing of a mature microservices-based architecture have hastened development and allowed for the

management of ever-smaller independent services [32].

To facilitate the use of the evolving techniques included in these areas and maintain com-

petitiveness, organizations are shifting from in-house custom tooling to relying on Software as a

Service (SaaS) alternatives, outsourcing the responsibility of the computational logic to third par-

ties [58]. This shift creates the need for SaaS solutions that support the application of a diversity

of possibly useful techniques, supporting new feature development and ease of integration.

1

Introduction 2

To respond to these needs, we propose following the principles of microservices-based archi-

tecture design to create a flexible set of independently deployable, finely granular TSA and TSF

services.

Context

In the current industry landscape, the analysis and forecasting of these time-ordered data struc-

tures are highly relevant for Business Intelligence and Business Analytics goals, respectively. The

ability to predict the evolution of the time series beyond a forecasting horizon allows organizations

to look into the future, informing present decisions and creating value for the organization.

For example, predicting future product sales allows for prevention of stock-off periods, opti-

mization of product allocation and transportation, and the application of Lean Production practices

informed by the upstream demand predictions. Even without considering the applications of TSF

in other industry contexts, such as service-demand prediction or financial market forecasting, the

case of sales data analysis and prediction is in itself context-dependent, as Sales data time-series

can be extremely heterogeneous between stock-keeping units (SKU) [8]. Many TSF systems are

implemented case by case after a previous step of model fitting, evaluation, and selection for each

SKU, or at most standardized through meta-learning and ensemble techniques.

Modern programming language package-management systems include in their listed libraries

implementations of some versions of TSA and TSF techniques (e.g., CRAN for R [29], DarTS

for Python [27]), allowing researchers to conveniently apply the techniques needed to extract the

target insights.

Organizations working on their specific contexts have the ability and the motivation to create

specific tooling for their needs. In the consulting industry however, as is the case of LTPlabs, there

is a need to handle heterogeneous time series data from different clients and contexts, with distinct

requirements.

This work was conducted within LTPlabs, an INESC-TEC (Institute for Systems and Com-

puter Engineering, Technology and Science) spin-off advanced-analytics consultancy company

[1]. The validation of our proposed design was conducted with empirical data from two anonymized

clients in distinct industries, providing a non-context-specific analysis.

1.1 Motivation

An example of a mature SaaS solution for Time series forecasting is Amazon Forecast [4], built on

top of distinct services belonging to the company’s enterprise software ecosystem. Although this

could be considered a firm implementation of the practices of microservices architecture design,

these services do not compartmentalize specifically the TSA and TSF-related tasks.

These are implemented either in a monolithic fashion through AWS SageMaker in the case of

TSF and data preparation tasks or through a proprietary state machine design through the “AWS

1.2 Objectives 3

Step Functions forecasting automation workflow” for the TSF tasks. These tasks include the non-

expandable processes of fitting, evaluating, and forecasting the limited selection of models (i.e.,

CNN-QR, DeepAR+, Prophet, NPTS, ARIMA, and ETS), integrated only internally through the

proprietary, non-transparent forecasting algorithms [2].

We identified a single design proposal for an MSA-based time series forecasting system, in

the relatively concise lecture notes by Uzun et al., for the stated purpose of this dissertation [63].

Citing the authors:

“One of the future plans is to extend the architectural model with new services that

potentially could accumulate other often used methods when working with time-series

data” [63, chap. 5.2 Future Research]

We will attempt to build upon the design by decomposing a current monolithic solution for

TSF through a data-driven approach, using event sourcing, allowing for more complex techniques

including Ensemble and Hierarchical Forecasting. This decomposition aims to extend the pro-

posed design’s functionality while improving the scalability of the current monolithic solution.

1.2 Objectives

The central objective of this dissertation is to design and implement a microservices-based archi-

tecture design, allowing different diagnostic and deployment-focused workflows through a flexible

set of independently deployable, finely granular TSA and TSF services.

We will explore various alternative strategies for service decomposition and apply the most

suitable for our context to define service boundaries. The implementation will be done iteratively

through an ordered list of services to be extracted. It will also consider the reusability of the

developed components in the context of an internal organizational shift to a Microservice-based

architecture paradigm.

To validate the design and implementation of the MSA system, we draw qualitative and quan-

titative comparisons between a prototype of our proposal and the pre-decomposition diagnostic

solution.

Using the previously mentioned anonymized LTPlabs’ clients’ data, forecasting accuracy met-

rics, execution time, and computational resource usage, along with the assessment framework for

microservices proposed by Auer et al. [7] we will compare the original monolithic application

with the set of developed microservices.

1.3 Document Structure

The current chapter 1 provides an overview of the future complete dissertation, including an intro-

duction, context, motivation, objectives, and this present sub-section.

Chapter 2 documents the literature review conducted for the purpose of this work, including

an analysis of MSAs, TSF techniques, and a joint analysis of the terms.

Introduction 4

In Chapter 3 we detail the current monolithic approach for time series analysis and describe the

main workflows and system requirements. We give additional insight into the preexisting factors

favouring the implementation of the new approach.

Chapter 4 follows the process of the service extraction and defines the microservices created

and how the functional requirements are met by the presented proposed design.

Chapter 5 measures the outcomes of the decomposition approach by comparing metrics gath-

ered from multiple executions of the original and decomposed solution.

Chapter 6 concludes the present work and includes suggestions for future research on the

application of a MSA for time series forecasting.

Chapter 2

Literature Review

This section analyzes the current literature from academic sources and industry practitioners on

the two knowledge areas relevant to this work, the Microservices Architectural style and TSF

methods.

A separate initial analysis is presented for both areas, followed by a short review of recent work

combining them. The separate analysis provides a review of each field restricted by the scope

of our base design, as the extension of literature on time-series analysis in particular demands

it. We include the time series techniques relevant to this work and the relevant principles and

areas of concern of MSAs to guarantee that the proposed design can evolve with the continuous

development of new TSA and TSF techniques, adapting to future research.

In the last subsection, we analyzed the currently limited literature on MSA designs for TSF.

2.1 Microservices Architecture

The use of the term microservices dates back to May 2011, from a software architecture workshop

held near Venice, Italy [36]. The principles later encapsulated as microservices were already in

use by industry professionals. Adrian Cockcroft had previously described a similar approach used

at Netflix as a fine-grained SOA [18], expanding in its principles, benefits, and anti-patterns in

November 2010 [16]. Soon after these ideas were presented by James Lewis at the 2012 edition of

the 33rd Degree Conference in Krakow [35], the use of the term “Microservices” was cemented

by the same group of practitioners present in the original 2011 workshop.

The defining features of microservices and how they differ from SOA remained in discussion

until long after its inception. This separation was later tackled by Olaf Zimmermann in 2016

[70] when he defined in this study seven microservice tenets recurrent in the field. Through these

themes, microservices can be broadly described as:

1. Single-responsibility units that encapsulate data and processing logic, exposing fine-grained

interfaces remotely, independently deployed;

5

Literature Review 6

2. Conceptualized by Business-driven development practices and pattern languages;

3. Following Cloud-native application design (e.g., isolated state, distribution, elasticity, auto-

mated management, loose coupling);

4. Allowing multiple computing and storage paradigms, and polyglot services;

5. Deployed with Lightweight containers

6. Practicing continuous delivery and decentralization during service deployment

7. Employing light and automated approaches for holistic management (DevOps)

Also tackled in this study were the contrasting definitions of microservices prevalent at the

time of its publication, comparing them with the existing definitions of SOA. The two explored

definitions include Lewis and Fowler’s nine characteristics of microservices [36] and Newman’s

seven principles [49]. The author analyzed these definitions through a comparative mapping of

the ideas present in Lewis and Fowler’s characteristics and Newman’s principles. Following this,

Zimmermann further compares these definitions with SOA pendants identified through a review

of the literature available at the time, including books [24][23] and practitioner’s publications

[21][39][48][71].

The author concludes that the analyzed definition supports the idea that Microservices is a

specific implementation of SOA, representing an evolutionary and complementary view to the

Service orientation paradigm prevalent in the early 2000s. Specifically, the concepts of “business

orientation, polyglot programming in multiple paradigms and languages, and design for failure”

are included in SOA and transferable to MSAs. At the same time, the latter approach emphasizes

decentralization and automation and independent service deployment. In the following year to

Zimmermann’s publication, the development of microservice architectures was detailed by Drag-

oni et al. [18], framing them as the second iteration of SOA.

Zimmermann also critiques the standard definition of microservices analogous to internal or-

ganizational contexts, following Conway’s law on system design. He asserts that it has limited

use for practitioners, as this view easily violates the stated single-responsibility characteristic of

the independent modules [70]. In 2019, Zhang et al. conducted a practitioner’s survey to identify

the differences between the envisioned benefits and challenges, and the reality of implementation

considering the actual costs and benefits in practice, determining the industry’s perceived pains.

Here, the surveyed practitioners identified an inverse of Conway’s law, as the decomposition of

the system influenced the organizational structure [69].

The benefits of componentization via services, as outlined by practitioners in this study, were

independent upgradeability, scaling, development, testing, and deployment [69]. These benefits

connect to the pain of “chaotic independence”, where true independence between services is not

adequately realized, leading to changes or new features affecting multiple services, and inappro-

priate boundaries or service versions create difficulties in testing. This pain tends to be more

2.1 Microservices Architecture 7

predominant when services are over fine-grained. We will explore these concepts in the section

2.1.1.

A practice identified among the practitioners surveyed in this study was to “Compromise with

database decomposition”. Most practitioners did not decompose their original database when mi-

grating to MSA, despite their awareness that this contributes to properly decoupling the microser-

vices [69]. Database decomposition contributes to the pain of “Data Inconsistency”, as a single

transaction can be much more complex to handle in a decentralized data management approach

when compared to the centralized alternative. We will further research these aspects in the section

“Data Concerns” 2.1.2.

Also in this study is the analysis of the practice of “Choosing communication protocol”, where

HTTP Restful API, RPC, and Lightweight messaging were the common design choices, where the

Ecosystem’s maturity, the activity of its community, and the documentation were the most cited

selection criteria for technology selection [69]. From this, Zhang et al. identified the pain of

“Complexity of API management”, where the complexity of consistently designing, managing,

and documenting the APIs provided by the multiple microservices hinders and slows down devel-

opment. We will explore the literature on communication patterns in the section “Communication”

2.1.3.

2.1.1 Refactoring Monoliths

The growth of MSA-related publications since 2015 [25] has led to refactoring efforts from mono-

lithic architectures to microservices across the industry.

By applying refactoring strategies, microservices’ practices have successfully tackled transi-

tions from monolithic systems by gradually implementing new features or refactoring parts of the

system, integrating them, and avoiding the need to develop an entirely new one from the start. [17]

To date, various software industry players moved from a monolithic paradigm to microser-

vices, such as Google and eBay, Netflix [42]. The recent popularity of this flexible architectural

design inevitably led to heterogeneity between implementation decisions and adopted patterns

[11]. Taibi and Lenarduzzi contributed to this view by identifying harmful, frequent practices

when implementing MSAs, defining the characteristics these systems must possess to achieve the

perceived benefits [61].

A key aspect of migrating to MSA is extracting services from the system. In 2017, Mazlami et

al. defined a formal methodology for service extraction, contrary to the preexisting informal ones

[42]. After a number of different approaches were proposed, in 2021, Kirby et al. identified three

distinct types of service relationships in the service extraction literature [33]. Structural relation-

ships are defined through static or dynamic code analysis, including method calls, data dependen-

cies, and shared resources. Semantic relationships identify elements based on business domain

and developer naming conventions, for instance, class name similarity. Evolutionary relationships

mine information on code repositories, identifying possible services that can be maintained and

developed by a team through commit or contributor similarity.

Literature Review 8

For the purpose of this work, the Dataflow Driven analysis for service extraction proposed by

Chen et al. [15] will be used, as we are working in a very data-driven domain. This approach

involves creating a Dataflow diagram (e.g. Figure 3.1) and applying certain rules to simplify it and

transform it into a Decomposable purified dataflow diagram from where the services are extracted.

The application of these rules is detailed further for our use case in section 4.1.1.

2.1.2 Data Concerns

Of particular relevance for this work is the issue of data sharing concerns between microservices.

“Shared persistence” was identified by Taibi et al. as a technical MSA anti-pattern characterized

by distinct services accessing the same relational database. The solutions proposed by the authors

are creating independent databases for each service, a shared database with a set of private tables

for each service, and a private database schema for each service [62]. A recent mapping of data

management solutions was conducted by Ntentos et al. [50].

In 2020, Munonye and Martinek compared five distinct data string patterns in MSA, including

a shared database (anti-)pattern, three variations of the per-service database pattern, and the Com-

mand Query Responsibility Segregation (CQRS)/ Event Sourcing pattern [47]. Also compared

in this work is the use of either a Relational Database Management System or a Document-Store

Database. In this work, we will assume transferability between the findings drawn from the use of

the latter and its umbrella category, key-values store NoSQL databases.

Before analyzing the findings of this comparative analysis, we will highlight the characteristics

of the CQRS/Event Sourcing pattern. Using Richardson’s microservices.io project’s definition

[54], CQRS is a response to the need to perform queries retrieving data split between services.

In this pattern, a read-only view of the split microservices’ data allowing the execution of the

intended queries is managed by a service subscribing to the relevant events in the case of event-

driven designs. Also referring the Richardson’s microservices.io project [55], Event Sourcing

is a pattern applicable only in conjunction with the CQRS pattern, used to maintain atomicity

of Database transactions. For the implementation of this pattern, through the CQRS interface

service, we define business entities as a sequence of entity state-changing events that are added

to an appended-only list, representing the entity. When querying the state of the entity, the list of

state-changing events is replayed. Both CQRS and Event Sourcing are explored in more depth in

Richardson’s book “Microservices patterns: with examples in Java” [56].

Returning to the findings of Munonye and Martinek [47], we highlight the better performance

exhibited by Document-store options when compared to Relational Database Management Sys-

tems and the better performance of CQRS/Event Sourcing when compared both to the single

Database (anti-)pattern and the database per-service pattern.

2.1.3 Communication

Communication between services is a key aspect of the design choices taken when migrating to a

microservices-based system. Transforming a simple function call into a network-level interaction

2.2 Time Series Forecasting 9

transfers complexity from within the distinct logic components to the way they collaborate with

each other [43]. Only through collaboration can a microservices-based system satisfy a business

need. The two main patterns followed to structure the communications are orchestration and

choreography.

The choreography pattern is achieved when no unit controls the end-to-end workflow of a

business process that encompasses various services. This is often achieved through the use of an

Asynchronous message queue with a publisher-subscriber system, implemented through a mes-

sage broker such as Apache Qpid or RabbitMQ. Here, services subscribe to the types of events

they need to fulfil their responsibility and publish events informing the system of state changes

[56]. The advantages of choreography are the very loose coupling and the low chattiness, where

data is exchanged only when there are state changes. At the same time, the weaknesses include

poor process visibility, a more complex design, weak atomicity when dealing with cross-cutting

data concerns, and the undetermined response time inherent to the process’s eventual complete-

ness in case of a service failure, guaranteed by the non-acknowledgement and eventual requeuing

of the consumed event.

The orchestration pattern entails the existence of a composite microservice, the non indepen-

dently deployable “Orchestrator”, invoking a set of atomic Microservices informed by an internal

representation of the complete processes workflow. Here, atomic microservices do not invoke each

other, as the orchestrator always manages this. Usually, these calls are made in a request-response

way through REST Endpoints [56]. Compared to choreography, this achieves clearer process visi-

bility, a simpler design, stronger atomicity, and a more predictable response time. The trade-off is

the tighter coupling of services, particularly the orchestrator, as a main point of failure for the sat-

isfaction of the business need and the higher chattiness as there is data exchange between services

at each of the workflow steps.

It is often the case that microservices architectures manage one single business entity. In these

cases, implementing the workflow through orchestration is much easier than through choreogra-

phy. However, this limits the evolution of the system, as changes to the model are of increasing

complexity [13].

2.2 Time Series Forecasting

Time series forecasting is of high interest for many real-world problems, where we often find

characteristics of non-linearity. As an example, in the case of sales forecasting, sudden unexpected

stock-off periods, jumps in demand caused by the application of non-periodic promotions, or

the simple chaos inherent to human purchasing behaviour. Naive and classical techniques often

assume that the target series are linear and stationary, while machine-learning techniques can often

model more complex behaviour. In section 2.2.1 we explore the forecasting models relevant for

this work.

In the following sections 2.2.2 and 2.2.3 we also explore aggregation techniques, informed by

the problem domain, for the purpose of increasing information density in the target time series.

Literature Review 10

2.2.1 Univariate forecasting models

Univariate models for forecasting attempt to predict a single target time series, while multivariate

models may include multiple target time series, simultaneously predicting their evolution. In this

section, we will explore a variety of univariate models with different advantages, ordered by their

complexity. Less complex models tend to be more explainable and less resource-intensive, and

should therefore be prioritized when achieving similarly accurate outputs.

2.2.1.1 Naive Models

Naive models utilize simple heuristics for generating fast predictions with very few computational

resources. Baseline predictions include the Naive Drift Model, joining the first point of the Time

series and the last known with a straight line and extending it into the future, the Naive Mean

Model, which always predicts the mean value of the series, and the Naive Seasonal Model, al-

ways predicting the historical value from a predefined number of time steps before the target time

[31]. Naive models generate essential baseline predictions, validating, by comparison, the more

complex models.

2.2.1.2 Classical Models

Classical models encompase non-machine-learning models for TSF. Of relevance for our design

proposal are Exponential Smoothing, moving average (MA), autoregression (AR), and AR inte-

grated MA (ARIMA) models.

A predecessor to Exponential Smoothing models is the Simple Moving Average model. In this

model, the prediction is the average of a predefined number of past observations before the target.

Exponential smoothing models build upon this concept. For prediction of the target observation,

exponential smoothing models attribute exponentially diminishing weights to past observations.

The Simple Exponential Smoothing assumes that the time series has no trend or seasonality. By

additionally modelling the trend of the time series and the seasonality component, we reach the

reference for explainable exponential smoothing methods, Holt-Winters’ Exponential Smoothing,

also called triple exponential smoothing [66].

AR models predict the evolution of the series only from a set of values of the sequence called

lags, constituting a rolling window capturing the information in the time series in a recursive

fashion. This family of models is classified as “long memory” as every prediction of a timestep is

a combination of the ever-diminishing effect of the training window’s observations into the past.

Moving Average (MA) models are very similar to AR-type models but predict the values of the

target timesteps by a function of the error factor of the predictions done to past observations by the

model. Initializing with a naive model such as the Naive Mean Model, MA models capture ever-

increasing information about the observations until the current timestep. For this reason, these

models are called “short memory” models [6].

The current standard, achieving similar results with significantly less complexity than AR or

MA models, are ARIMA models that balance a set of MA and AR terms in their predictions.

2.2 Time Series Forecasting 11

ARIMA models assume that the time series is stationary, although this can be achieved through

iterative differentiating processes, transforming the original sequence into the sequence of differ-

ences between consecutive terms [31]. This process is called Integration. ARIMA-based models

have been extensively studied in literature [60], and the ever-growing family of ARIMA models

include Seasonal ARIMA, considering seasonality, VARIMA, its multivariate counterpart, as well

as many other variations.

2.2.1.3 Machine Learning Models

While the functioning of machine learning models is beyond the scope of this work, their recently

growing relevance in both the industry and academia leads to a need to accommodate for their

inclusion in our design proposal. This demands a high-level understanding of their requirements

and outputs for proper integration in the architecture.

Regression Models used for TSF include various extensively researched algorithms, such as

Random Forest [19], Linear Regression [20], and Gradient Boosting Machines [5] (GBM).

Neural networks can also be used for TSF, incorporating either convolutional layers for input

dimensionality reduction, recurrent layers for iterative scanning of the series by a window, or

an attention-based model aggregating temporal features through learned weights [20]. Current

implementation industry standards of this type of model for TSF include DeepAR [57], NBEATS

[51], and Temporal Fusion Transformers [37].

2.2.2 Ensemble Models

Joining predictive approaches has been shown to be relevant for increasing the accuracy of predic-

tions drawn from the available data for the specific case of time series data [26]. The most studied

combination-based models for this objective are Ensemble models. These models are used to

combine the predictions of simpler base models to achieve better predictions. The advantages

of ensemble learning include improvement of robustness and quality of the forecast and lower

variance in predictor performance [68].

Polikar provided a non-time-series specific overview of the use of ensemble-based systems

for decision-making, listing five reasons for the use of these techniques [52]. (1st) Because good

performance on training data does not directly entail a good generalization performance, the use of

multiple models reduces the risk of a non-representative predictor. (2nd) When there is too much

data, dividing it between models for training and then combining their outputs for prediction is

often a more efficient approach. (3rd) When there is too little data, training various models with

different overlapping subsets of the total data, an approach named “bagging”, has been proven to

be an effective technique. (4th) When the system or decision boundary is too complex to model

through simple techniques, an aggregation of simple techniques can often represent the system

better. (5th) Data Fusion is used when there are multiple heterogeneous data sources, with distinct

sets of features requiring different models for each.

Literature Review 12

Recent proposals of ensemble models applied to TSF include an evolutionary model for com-

bining Artificial Neural Network predictions by Zameer et al. [68], and an extremal optimization

and Support Vector Regression Machine model combining a set of Long Short Term Memory

Neural Networks predictions by Chen et al. [14], both used for wind-power-related forecasting.

2.2.3 Hierarchical Forecasting

Data hierarchies are often inherent to the problem domain when attempting to forecast a set of

time series for real-world applications. As an example, a set of historical records of product sales

in multiple stores could be aggregated by total store sales, SKU across stores, or product category.

This data structure is referred to as Hierarchical time series [38].

Fliedner outlined the two classic approaches to achieve consistent Hierarchical time series

forecasting [22]. When forecasting the individual time series variables and the derived hierarchi-

cally aggregate time series, consistency is guaranteed when the sum of the predictions of individual

time series equals the direct aggregate prediction, and the disaggregation of the direct aggregate

prediction by the relative weight of its component time series matches with the individual predic-

tions. This is not guaranteed by general TSF techniques, although it can later be achieved through

a reconciliation step.

There are various strategies for directly creating a fully consistent hierarchical structure by

using “bottom-up”, “top-down”, and “middle-out” approaches or by eventually reaching consis-

tency by using a reconciliation strategy for the different hierarchy levels. “Bottom-up” approaches

generate the aggregate predictions solely from the sum of its lower-level components, while “top-

down” disaggregates the higher hierarchical level predictions to achieve lower-level predictions.

Viswanathan et al. identified that the Bottom-up approach outperforms the Top-down ap-

proach only when the aggregation has few sub-component series and when the inter-order intervals

have low variation [64]. This is of particular importance in the field of business-to-business sales

forecasting, as there are often infrequent occurrences of non-zero values representing a “lumpy”

demand profile at the lowest aggregation level. “Middle-out” approaches combine “bottom-up”

and “top-down” approaches, forecasting at a middle level of the hierarchy, aggregating for higher

levels, and disaggregating for lower levels.

Reconciliation methods place no restrictions under the base forecasting process, applied to all

levels of aggregation. As an example, Hyndman et al. suggested in 2010 the use of a regression

model to mutate the different level’s predictions, achieving consistency [30]. The current state-of-

art method in Hierarchical time series forecasting or grouped time series reconciliation, proposed

in 2019 by Wickramasuriya et al., is trace minimization [64]. The authors showed that this ap-

proach generates forecasts at least as good as the base ones and should be preferred to bottom-up

or top-down approaches, as these only make use of a limited amount of the available information.

2.3 Microservices-based Time-Series Analysis 13

2.2.4 Global Models

In TSF, a global model is one trained in multiple time series in order to generalize the learning

process for the studied domain. This approach avoids the computationally expensive process of

selecting and parametrizing a model for each of the target time series. While most of the TSF

research to date has considered each time series as an individual data-set for training and testing,

these models work under the premise that the multiple series with which it is trained are “related”

in some way [28].

Hewamalage et al. compared Recurrent Neural Networks (RNN), Feed-Forward Neural Net-

works, Pooled Regression, and Light GBM (LGBM) as global forecasting models, demonstrating

that the models with more complex modelling capabilities such as RNNs and LGBMs are good

candidates for difficult prediction scenarios, such as data-sets containing heterogeneous or short

time series [28].

Montero-Manso and Hyndman empirically showed that global and local forecasting methods

are equally general [45], supporting the recent widespread success of global methods in compara-

tive competition scenarios [40][41]. Additionally, the simplification achieved from having a single

model to train allows for the application of increasingly complex models. This is of particular rel-

evance as complex machine learning models such as deep networks are further researched outside

of the specific field of TSF.

2.3 Microservices-based Time-Series Analysis

Finally, after we identified various synergies between the problem domain of time series analysis

and MSAs, a literature analysis was conducted in the cross-section of these terms. The concise

lecture notes of Uzun et al. [63] stand as the most relevant example of a design proposal for a

MSA time series forecasting application.

Bellow, the proposed design includes four distinct microservices: A Dataset-collection ser-

vice; a Dataset-management service; a Dataset-processing service; a Model-management service,

and a Data-analysis service.

The objective of this work was to develop an architectural design for expandable and maintain-

able systems for TSA and TSF. The authors opted to redesign the system in a microservices-based

architecture, as the monolithic solution proved to be difficult to evolve for the inclusion of new

TSA techniques.

The communication between services is invocation-based, mediated through REST API End-

points exposed by each service while keeping a choreography-based approach. While the authors

show a clear improvement in development effort when employing the proposed system in com-

parison to Amazon Forecast Service and Manual Forecasting, they failed to provide evidence on

the ease of evolution of the system when new desired functionalities do not fit in one of the de-

scribed services. We note the partial adhesion to the outlined microservices tenets [70] and strong

coupling between various services and the “Dataset-Management Service” in particular.

Literature Review 14

Figure 2.1: Architectural Model for Development of Time-Series Forecasting as a Service Appli-
cation (adapted from Uzun et al. [63])

Chapter 3

Problem Statement

Within the context of analytics consultancy, designing software solutions that stand independent

of the business context of the clients is a differentiating factor. Driven by the “boutique” nature

of LTPlabs’ approach, the current ad hoc development approaches, particularly in the scope of

forecasting consultancy projects, extends the time-to-delivery of analytics solutions.

While delivering tailored solutions to specific clients is a crucial feature of the value proposi-

tion of a project, the adoption of standardised approaches and reusability of components previously

developed for similar analytical processes is a strategic technological objective of the company.

The internal process most targeted by this standardisation approach is the pre-project diagnos-

tic phase. During a diagnostic phase, LTPlabs receives data from potential clients’ operations and

delivers improvement suggestions within a two-week time window. The heavier time constraints

of this phase, when compared to a possible subsequent project, are the main driving forces behind

the development of standardised solutions by the in-house Data Science team.

In the scope of time series forecasting applications, mostly applied to sales and production

data, the current diagnostic solution reflects a set of business capabilities focusing on defining the

best models and model parameters for subsets of a hierarchical and grouped time-series dataset.

In the following section 3.1, we will explore in detail this solution, as it provides the starting

point for iterative service decomposition. The decomposition effort of this monolithic application

guided by the most up-to-date academic publications on the field of microservices architectures

and the comparative analysis with the current approach through the assessment framework [7]

proposed by Auer et al. are the main contributions of this work.

This decomposition effort is additionally driven by LTPlabs’ long-term technological goal to

move to a microservices-based development paradigm. Because of this, we will aim for the def-

inition of domain-agnostic templates, processes and services for applicability outside forecasting

workflows. The future reusability of the microservices extracted from the time-series forecasting

diagnostic solution for subsequent forecasting project deployments is also a priority, as we aim to

save the models trained during the first workflow for prediction generation.

15

Problem Statement 16

Also discussed in this section are the identified preconditions for monolith to microservices

migration, as this adoption is supported not only by the preexisting solution but also by already

in-use cloud infrastructure, development operations practices, and validation data.

3.1 Current approach

The current solution for empowering the typical diagnostic process of time-series analysis within

LTPlabs’ projects is the “Time-series forecasting module” (TSFM). This module can be defined

by a sequential set of operations applied to an input hierarchical and grouped time-series dataset,

following the Cross-Industry Standard Process for Data Mining (CRISP-DM) [67] methodology.

These hierarchies are introduced as identifier parameters for each time series and, as an example,

often represent SKU categories or individual retail locations.

The complete workflow of this solution is illustrated in Figure 3.1 as a Dataflow Diagram

(DFD) [15].

Loading and analysis
In an initial phase, this solution consumes the information of the whole dataset to extract cross-

time-series insights from it. The TSFM creates from the input data an entity we will refer to as

a Grouped Dataset. This entity contains not only the most disaggregated time seriesin what will

be henceforth named the “bottom” dataset but also multiple aggregations of these individual time

series, informed by the identifier parameters. These aggregations always include the “top” dataset,

containing one single time series aggregating the values of all “bottom” time series.

Additional datasets represent partial aggregations by the several identifiers and their intersec-

tion in the case of non-hierarchical parameters. An example by Hyndman and Athanasopoulos

[31], where Figure 3.2 represents aggregations respecting the hierarchical constraints, and Figure

3.3 represents non-strictly-hierarchical aggregations, as the bottom time series can be aggregated

by the X and Y or A and B groupings, separately.

Following this aggregation during the instantiation of the Grouped Dataset, the extracted in-

sights from the entire data include classifying each time series by the ABC, XYZ [12], and SEIL

classification of forecasting potential [10] categories. This classification can be applied in a rolling

manner to the individual time series, producing insights into the evolution of the categories over

the historical reporting period. Outlier detection is also performed at this stage.

Univariate Forecasting
After this step, the TSFM performs the following stage of the CRSIP-DM methodology. It

applies the modelling phase to the individual time series across all datasets. The modelling phase

comprises the preparation of the train and test sets and definition of a set of backtesting time

windows referred to as folds, and the selection of an algorithm and its hyper-parameters. In the

case of the TSFM, the first part is done at a Grouped Dataset level. Folds and the train-test split

are defined in the initial parameterisation of the Grouped Dataset instance, as model fitting should

3.1 Current approach 17

Figure 3.1: Current solution’s Dataflow diagram

be done with the similarly time-located folds for every time series. This restriction derives from

the later need to evaluate the models per fold across time series.

The following steps, algorithm and parameter selection, are made in a sequential fashion by

Problem Statement 18

Figure 3.2: Hierarchical aggregation of time series (adapted from Hyndman and Athanasopoulos
[31])

Figure 3.3: Grouped and hierarchical aggregation of time series (adapted from Hyndman and
Athanasopoulos [31])

the TSFM, in consecutive independent function calls for each time series. A set of univariate

time series forecasting models is parameterisable, including simple Naive models, statistical mod-

els including ARIMA and Exponential smoothing and Croston’s method, and complex machine-

learning models such as Neural network autoregression. All the models are fitted and applied once

for each fold, producing a set of overlapping historical forecasts for backtesting purposes.

3.2 Requirements 19

This phase has the most impact on the module’s execution time, as the processing time lin-

early increases with the size of the Grouped Dataset. This is evident when analysing Figure 3.4,

representing the execution time of each step of the process for a set of benchmark inputs. An

intermediate evaluation step is performed for all produced historical forecasts, as is needed for the

following business capabilities reflected by the TSFM, ensemble model application and hierarchi-

cal forecasting.

Ensemble Forecasting
Ensemble models, as discussed in section 2.2.2, join the predictions created by the univari-

ate models, either by combining them linearly through a weighted average of contributions based

on their evaluations or by combining them in a non-linear fashion by the application of machine

learning models such as GBM. The fitting of the machine-learning ensemble models is done with

all the historical forecasts of test folds of a subset of the time series. This subset can be defined

by the aforementioned classifications (i.e. ABC, XYZ, SEIL) or by the inputted identifier param-

eters. The ensemble models are fitted per parameterised aggregation, targeting each hierarchical

aggregation individually.

Hierarchical Forecasting
After a new evaluation step for the newly created ensemble models, a set of hierarchical fore-

casts is created for the entirety of the grouped dataset through “top-down” prediction deaggrega-

tion and “bottom-up” prediction aggregation methods as discussed in section 2.2.3.

50 100 150 200

0

1,000

2,000

3,000

4,000

Number of time series

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Dataset Loading
Dataset Analysis

Univariate
Ensemble

Hierarchical
Evaluation

Storing Dataset

Figure 3.4: Pre-decomposition execution time of different components

3.2 Requirements

In this section we present the requirements of the decomposed system, including the pre-decomposition

functional requirements and the microservices-specific objectives.

Problem Statement 20

The main motivations behind the migration towards a microservices-based architecture span

three main areas: reusability of service functionality for multiple workflows (section 3.2.1), inde-

pendent scalability of the extracted services to lower execution time and allow for larger dataset

processing (section 3.2.2), and integration of the migration in a wider organisational shift towards

a data-driven microservices architecture paradigm (section 3.2.3).

3.2.1 Main workflows

The functional requirements of the proposed design are the eventual support for the two already

mentioned workflows, diagnostic and deployment, representing the main high-level functionalities

encompassed in LTPlabs’ time series forecasting bounded context.

While the decomposition target will be solely the diagnostic solution, we aim to allow for the

reusability of the defined services for the deployment workflow, as they share functionality and

access the same subset of business entities.

Diagnostic
The diagnostic workflow follows the structure employed by the solution previously explored,

followed by a manual model selection step done by the project team allocated to a client. This

human choice step aims to interpret the forecasting results within the framework of constraints

and goals of the specific client and project. In summary, the workflow counts with the following

steps:

1. Manual Parametrisation

2. Aggregate time series datasets creation

3. Grouped Dataset level analysis

4. Univariate forecasting (for each time series)

(a) Historical forecast creation (for each model)

i. Fitting (for each backtesting window)

ii. Predicting (for each backtesting window)

(b) Save trained models

5. Univariate forecast evaluation

6. Ensemble model forecasting (for each time-series subset)

(a) Historical forecast creation

i. Fitting (for each backtesting window)

ii. Predicting (for each backtesting window)

(b) Save trained models

7. Ensemble forecast evaluation

8. Hierarchical forecasting

(a) Top-down

(b) Bottom-up

9. Hierarchical forecast evaluation

10. Forecast and evaluation visualisation

3.2 Requirements 21

11. Informed manual model selection

Deployment
The deployment workflow aims to generate up-to-date forecasts for a client’s Enterprise re-

source planning software or a stand-alone dashboard. To that effect, regularly scheduled diag-

nostic runs are performed to keep the models updated and for manual model re-selection when

needed. From these diagnostic runs, the saved fitted models are used to generate the presented

predictions. The generation of the predictions follows the structure below.

1. Parametrisation from the diagnostic’s output

2. Aggregate time series dataset update

3. Univariate model forecasting (for each time series)

4. Ensemble model forecasting (for each time series)

5. Hierarchical forecasting

6. Forecast visualisation

3.2.2 Scalability

As demonstrated by the execution metrics of the current diagnostic solution detailed in section

3.1, its applicability within the time constraints of the analytics consulting diagnostic process is

limited by the size of the dataset, as shown by Figure 3.4.

By guaranteeing independent scalability of the highly parallelisable univariate prediction step,

where the generation of predictions for each time series is independent of each other, the mi-

gration to a MSA promises to reduce execution time by allowing for more allocation of cloud

resources, supported by an event-driven, asynchronous communication structure, load balancing,

and autoscaling.

Additionally, independent scalability of the ensemble model forecasting step would allow for

parallel fitting of these models to different subsets of the Grouped Dataset time series. For this

purpose, these requirements should inform the decisions taken when defining service boundaries.

3.2.3 Organisational requirements

The shift to a MSA paradigm goes beyond the bounded context of time-series forecasting within

LTPlabs. For certain design decisions, the wider applicability to other analytical workflow pro-

cesses of the designed components is desirable, as its re-utilisation within the organisation justifies

the increased development costs and complexity associated with distributed systems and will even-

tually drive more development efforts on said components, leading to a more robust solution.

Setting development standards for microservice creation and integration at a larger organisa-

tional level is a key motivation of the proposed design.

In section 4.2, we further discuss design choices, including the creation of a common mi-

croservice template, the standardisation of event creation through versioned schemas adhering to

CloudEvents specifications [3], the integration with preexisting infrastructure mentioned in section

Problem Statement 22

3.3, and the creation of a software development kit for service integration with an asynchronous

message queue.

Finally, the CQRS-based Command and Query services aim to be a generic interface for saving

state changes and rebuilding business entities through interaction with an event-store database.

3.3 Supporting factors

Several preexisting technologies and practices within the organisation allow for the iterative migra-

tion to a MSA. These were indicative of the technological maturity of LTPlabs and indispensable

for supporting the development of the solution proposed.

Furthermore, leveraging several clients’ anonymised sales data and the heterogeneous nature

of these datasets facilitates the testing and validation of the designed system and allows for the

creation of benchmarks to draw comparisons between the TSFM and the proposed design.

3.3.1 Preexisting infrastructure

By applying the microservice tenets outlined by Zimmermann [70], discussed in section 2.1, we

can identify preexisting conditions within the technological infrastructure of LTPlabs that con-

tribute to the success of this migration.

For tenet six, practising continuous delivery and decentralisation during service deployment,

the company’s relationship with the clients already entails this practice, supported by already used

technologies such as Kubernetes, Helm, and a mature AWS-based cloud infrastructure. By em-

ploying container registry through AWS’ ECR (Elastic Container Registry) and deployment via

AWS’ EKS (Elastic Kubernetes Service), the deployment of the built microservices and the sup-

porting infrastructure is facilitated and made independent. Additional deployments facilitated by

this cloud-native infrastructure include an asynchronous message queue for inter-service com-

munication (RabbitMQ), a file storage system for the Grouped Dataset entity (AWS’ S3), and a

key-value store database for event sourcing (AWS’ DynamoDB).

For tenet seven, employing light and automated approaches for holistic management, we lever-

aged LTPlabs’ GitLab pipelines for automating service redeployment and various observability

platforms such as Rancher for Kubernetes cluster management, Prometheus for microservice

monitoring and Grafana for aggregating service metrics, to manage the added complexity from

distributed nature of the system.

3.3.2 Validation Data

LTPlabs clients for which time series forecasting projects are currently deployed are of different

industries and scales. Diagnostic time series forecasting workflows were conducted for an even

wider selection of clients.

We will utilise two of these datasets, anonymised, in order to validate the proposed design

with time-series data of varying sizes, both in time span and in the number of time series. The

3.4 Proposed solution 23

datasets also have different hierarchical structures, with a varying number of time series identifier

parameters and, therefore, a varying number of aggregations.

3.4 Proposed solution

As mentioned in section 1.2, our design proposal will consist of an event-based TSA system,

following the principles of the microservices architectural pattern, allowing for simple iterative

addition of functionality through service creation. This system must sustain both occasional model

fitting and regular parametrised predictive workflows.

These services should partially be extracted from the current monolithic solution used for TSF

model fitting, evaluation, and selection. The extraction and definition of these services will follow

a Dataflow-Driven approach as defined by Chen et al. [15]. The literature in service extraction

when refactoring monolithic systems is explored in section 2.1.1.

Our design will make use of the CQRS/Event Sourcing pattern for data management across

services. To achieve CQRS, we will isolate the interaction with the chosen data storage solution

through a pair of mediator services for commands and queries separately. Applying Event Sourc-

ing implies the definition of a set of business entities comprising an ordered append-only list of

events subscribed by the CQRS command service.

The state of these business entities, relevant to the workflows used for validation, will then be

derived from replaying the listed events by the query service. We focus on the industry-adopted

responses to the data management complexity in MSAs in section 2.1.2.

The proposed system should follow the more decoupled approach of event-based inter-service

communication while still defining REST endpoints mapped to event types: this approach guaran-

tees message and documentation standardisation and possible invocation-based interactions when

needed. Additionally, we aim to apply the choreography pattern in opposition to orchestration to

further decouple the services. These alternatives and their characteristics are analysed in section

2.1.3.

Finally, we will validate the design by implementing it and running similarly parametrised

diagnostic workflows with real-world client data in both the original TSFM and a prototype of the

the proposed decomposed MSA design. The outcomes of these comparisons will be interpreted in

light of the microservices assessment framework proposed by Auer et al., based on the ISO/IEC

25010 quality model [7].

Chapter 4

Design and Implementation

In this chapter, we will discuss the approach applied for service extraction, the design choices

guided by the broader organisational shift towards microservices architectures, the events pub-

lished by each service, and the mapping of the diagnostic workflow to ensure the fulfilment of the

functional requirements.

4.1 Service Extraction

This section details the service decomposition process, guided initially by the “Dataflow-Driven”

approach proposed by Chen et al. [15] to identify fine-grained candidate microservices. We define

a set of coarser-grained services better aligned with the business logic by aggregating and gen-

eralising them from the identified candidates. Based on the requirements detailed in section 3.2,

the outcome list of services will be ordered by migration priority to inform the iterative migration

process.

4.1.1 Dataflow-Driven Decomposition

Employing the approach further discussed in section 2.1.1, we applied two transformations to the

DFD representing the original design in Figure 3.1.

The first transformation step creates a “Purified DFD”, a more data-focused representation of

the workflow from the DFD. For this, data stores and external entities were first excluded, and

operations and data entities were gradually refined to conform to the defined rules 1 and 2 [15,

Section III, A. From Traditional DFD to Purified DFD]:

Rule 1. (...) operations need to be detailed enough to represent all the individual

data processing activities in the original business logic, while the data representation

related to an operation should keep the semantic granularities of input and output data

without further splits.

24

4.1 Service Extraction 25

Rule 2. (...) operations should be normative verbs or verb phrases that can reflect the

semantic meaning of the corresponding data processing activities, while data should

be named using semantically meaningful nouns or noun phrases that occurred in the

original business logic.

The application of this process resulted in the diagram in Figure 4.1. As an example, the

“Evaluate” operation was derived from process five in Figure 3.1, and replicated for each upstream

operation to simplify its representation.

The second transformation step was applied to the Purified DFD to create a “Decomposable

DFD”, a decomposition-friendly dataflow representation. For this, we applied the following rules

cited from the original work [15, Section III, B. - From Purified DFD to Decomposable DFD]:

Rule 3. (...) each operation node needs to be adjusted to have one output data only.

Rule 4. (...) each data node needs to be adjusted to have one type of precedent

operation at most.

Rule 5. (...) after applying Rule 3 and 4, the same operations with the same type of

output data need to be combined into one operation with its output data. Since it is

usually difficult to keep the same semantic meaning of the output data after combina-

tion, it would be needed to name the combined output data with an abstract semantic

concept.

From the resulting Decomposable diagram, the candidate microservices are extracted by iden-

tifying the operation-output-data modules. The Decomposable diagram, as well as the numbered

microservices candidates, are included in Figure 4.2. An example of the application of the rule

three was the separation of the “Forecast Ensemble” operation in two operations, “Fit Ensemble”

and “Ensemble Predict”.

The candidate microservices labelled green (i.e. 10, 11, 12) are identified as possibly gener-

alisable for uses outside this project’s scope within the organisation and will be further discussed

in section 4.1.2. The resulting service candidates exhibit a fine granularity and will be further

aggregated into the final services list in the following section.

4.1.2 Candidate microservices

We identify a set of “ready-for-extraction” candidates within the extracted candidates. The Save

Model and Join Predictions candidates (10 and 11) can be generalised as Command and Query

services, following the CQRS pattern [47].

Model saving will therefore represent a state change in the system. We apply a similar prin-

ciple to the publication of backtesting predictions, saved as append-only state-changing events by

the Command Service. The Historical univariate prediction list will then act as a Business Entity

created at query time by a generic Query Service. Joining Predictions and publishing the final

business entity will therefore be its responsibility.

Design and Implementation 26

Figure 4.1: Purified Dataflow graph

By identifying the Grouped Dataset as a common business entity in the organisation, we can

also consider the visualisation service as independent from the target system. The ability for

consulting project teams to visualise the predicted test folds, the backtesting folds predictions,

4.1 Service Extraction 27

Figure 4.2: Candidate microservices

and the error metrics associated with them map a business capability that extends beyond the

current implementation, able to contribute directly to ongoing forecasting projects. Therefore, this

Design and Implementation 28

visualisation will be extracted as a service we named Forecasting Dashboard.

For the migration’s high parallelisation goals, we can identify the ability to consume individ-

ual time series in opposition to the current sequential approach as a necessary outcome. As such,

we will define as a service boundary the dataflow between candidates 3 and 4. We also chose to

aggregate candidates 4 and 5 into a single Univariate Prediction service to reduce the interdepen-

dency of these components, as they would both need to maintain internal representations of the

models and perform sequential calls to each other to generate multiple instances of fitted models

and forecasts for each of the parametrised backtesting windows. This option avoids the Cyclic

dependency antipattern described by Taibi et al. [62].

Applying the same principles to the generation of ensemble forecasts, we will aggregate the

candidate services 7 and 8 into an Ensemble Prediction service, responsible for managing ensem-

ble forecasting models, named Ensemble Prediction service. Candidate service 9 generates the

aggregated and disaggregated hierarchical predictions at a grouped dataset level without saving

fitted models. As such, its model representations are already exclusive to it. We will name this

service Hierarchical Prediction service.

Candidates numbered 1, 2 and 3 all perform trivial functions to the initially loaded sales infor-

mation, creating, analysing and disaggregating the individual time series to be forecasted, respec-

tively. We will aggregate them to reduce complexity and the aggregated service will be called the

TS Load service.

Finally, the candidate service 6, representing the functionality of evaluating the generated

backtesting and test forecasts, will be included in the candidates downstream in the dataflow for

simplification, as its scalability is tied with them. The three upstream components consuming

evaluated predictions are the already defined Ensemble Prediction service, Hierarchical Predic-

tion service and the Forecasting Dashboard. To reduce the number of services mirroring this

component, as the visualisation is downstream from the prediction services, the Forecasting Dash-

board does not need to include this capability.

4.1.3 Extracted services

The services identified in the previous section were the CQRS Command and Query services, the

Time-series Load Service, the Univariate Prediction service, the Ensemble Prediction service, the

Hierarchical Prediction service and the Forecasting Dashboard.

To order these services by migration priority, we first considered the impact of individual

service extraction on the scalability requirements.

For extracting the Univariate Prediction service, including the set of functionalities scaling

most in terms of run time (section 3.1), and validating its scalability-specific features such as

autoscaling and the event-driven design, we found it necessary first to extract the TS Load service,

generating individual time-series publication events to be consumed by the Univariate Prediction

service.

After the implementation of these two services, for the further integration workflow, the Com-

mand service was created to save the state-changing events already generated by the TS Load and

4.2 Organisational impact 29

Univariate Prediction services. The Query service was then implemented to recreate the aggre-

gated time-series predictions for reintegration with the Grouped Dataset.

We opted for extracting the visualisation Forecasting Dashboard at this point for the validation

of the generated predictions. The Ensemble and Hierarchical Prediction services are the final tar-

gets for migration in that order, as the ensemble model training and forecasting can be parallelised

when distinct groupings of time-series backtesting predictions are used for training different in-

stances.

The final list of services, ordered by migration priority, is as follows:

1. TS Load service

2. Univariate Prediction service

3. Command service

4. Query service

5. Forecasting Dashboard

6. Ensemble Prediction service

7. Hierarchical Prediction service

A simplified diagram of communication strategies between the services is included in Figure

4.3. The communication between the services will be further detailed in section 4.3.

4.2 Organisational impact

The objectives discussed in section 3.2.3 were already present in the decisions of the previous sec-

tion 4.1.3, in particular when defining the extraction of the generic Command and Query services

and the Forecasting Dashboard.

The organisational objectives in other aspects of the designed system were also considered

when designing a standard Microservice template and defining the event schemas for inter-service

collaboration and event versioning.

4.2.1 Service template

The template was created to accelerate service development, manage automatic deployment, ser-

vice configuration, logging, Asynchronous Message Queue (AMQ) connection, event subscrip-

tion, event to endpoint mapping, metrics publishing, and documentation of the service boundaries

through FastAPI [53] endpoints utilising CloudEvent [3] schemas.

The service template was containerised through Docker for automatic deployment, and a

pipeline for image updating and publishing to AWS’ ECR was created. Additionally, AWS’ EKS

was used for container management, pulling the latest images automatically.

Design and Implementation 30

Figure 4.3: Service interaction diagram

For service configuration, Helm was used for creating a unified Configuration Map (con-

figMap) [65] for each service, deployed by the AWS ECR to the images in the cluster. Logging is

configured by the “Logging” file depicted in Figure 4.4 and can be managed easily across services

by updating the configMap. This configMap does not, however, include the CloudEvent schemas

further discussed in section 4.2.2.

An AMQ Protocol (AMQP) specific package used for connection with LTPlabs’ RabbitMQ

Cluster was also developed and included in the deployment workflow of the service template. This

package remains separated from the service template as it can be updated for all services simul-

taneously if there is a need to migrate to another communication protocol. The package includes

connection and channel pooling for threaded handling of multiple events and queue creation and

subscriptions through the “RabbitMQ” configuration file, depicted in Figure 4.4.

4.2 Organisational impact 31

When it receives a subscribed event, it issues a callback to a function parametrised by the

service template. This function maps the event to an API endpoint based on its routing key and

the “Endpoint Mapping” configuration file.

The REST endpoints implemented with FastAPI are metered by Prometheus and parse the in-

formation based on the generated CloudEvent classes. They can also be used directly, decoupling

the services from the chosen communication solution, and acting as configurable input and out-

put points for the overarching workflow, as is the case with the Time-Series Load service and the

Forecasting Dashboard, which both expose REST endpoints to outside the system for interaction,

for input and output respectively.

Finally, the documentation of the service boundaries is achieved through a combination of the

CloudEvent schemas detailed in section 4.2.2 and the OpenAPI Specification used by FastAPI.

This was done to avoid the pain of “Complexity of API management” identified by Zhang et al.

[69].

RabbitMQ LTPlabs SDK

Endpoint
router

(Consume
callback)

Logging
Configuration Parsing
Fast API Prometeus
...

LTP CookieCutter Template

Endpoints

internal/
external/

Outgoing events

Incoming events

Configuration files

RabbitMQ Endpoint
Mapping Service CloudEvent

schema

Cloud event Generator *

*https://github.com/michaelawyu/cloudevents-generator

<CloudEvent_name>

Attributes

Data

Figure 4.4: Service template

Design and Implementation 32

4.2.2 Event Schema

The Events to be created represent the publication of the data aggregations described by the De-

composed DFD. They are used to generate a package of versioned class files representing the

events described in the schema. The generation of this package is done through a CloudEvent

generator python application [44]. This package is also automatically pulled by the pipeline used

for image updating.

In this schema, we can define an event attribute’s type, default value, boundaries, description,

and if it is required or not. This schema also guarantees the definition of the base attributes required

by the CloudEvent specification (i.e. id, source, type and specversion),

Defining events in a standardised way within LTPlabs improves the ability to migrate other

business capabilities to MSA outside of the scope of this implementation. This is also relevant for

the Command and Query services as the event schema also acts as the schema of the aggregations

stored in the DynamoDB event store.

4.3 Service integration

In this section, we will define the events published by each service based on the data aggregations

present in the Decomposable DFD Figure 4.2.

TS Load service
Responsible for components 1, 2 and 3, this service publishes the Grouped Dataset, the indi-

vidual time series and the time series classifications.

Each generated time series is published as a NewTS event. We aggregated the Grouped Dataset

and the classifications into a single NewDataset event containing the classifications of each indi-

vidual time-series referenced by ID and the reference to the Grouped Dataset object, stored in

AWS’ S3 and not shared by an event because of the AMQP’s and DynamoDB’s size constraints.

Univariate Prediction service
The Univariate Prediction service aggregates components 4 and 5, therefore being responsible

for publishing the fitted models to be saved by the Command service and the backtesting predic-

tions for the training folds. The models are mapped to a NewModelUV event, and the backtesting

predictions are saved with the trained model, referencing it by id, to a NewForecast event.

Command service
The Command service captures events and saves them, not publishing any by consequence.

Query service
The query service publishes the lists of time-series backtesting forecasts for a subset of the

time-series selected by a classification attributed by the Time-series load service and configured

by each individual Ensemble Prediction service.

4.4 Diagnostic Workflow Mapping 33

It first recreates the Grouped Dataset by replaying the events stored by the Command service,

saving it again to AWS S3, and publishes an EnsembleDataset event referencing it and the name

of the Ensemble. It also publishes in the same way a Grouped Dataset aggregating all Univariate

and Ensemble predictions for the final hierarchical forecasting step. This constitutes the Hierar-

chicalDataset event.

Forecasting Dashboard
The forecasting dashboard only consumes Grouped Dataset publications and visually displays

the information to a user. As such, it does not publish any event.

Ensemble Prediction service
Similarly to the Univariate Prediction service, the Ensemble Prediction service aggregates the

model fitting operations and the backtesting predictions generation. Because of this, it should

publish the fitted models as NewModelEns events and the respective backtesting predictions as

NewForecastEns events.

In addition, as the Ensemble Prediction service holds the configuration of the different subsets

of time-series to train with based on the classifications attributed by the event, its responsible

for issuing EnsembleSet events with the IDs of the time-series to train with to be aggregated by

the Command service. This event is issued after the service consumes the NewDataset event,

published by the TS Load service.

Hierarchical Prediction service
This service only publishes the generated and evaluated predictions by issuing evaluated Hier-

archical forecasts for the test folds as NewForecastHier events.

4.4 Diagnostic Workflow Mapping

We start this section by introducing the sequence diagram pictured in Figure A.1 in Appendix A

mapping the complete diagnostic workflow to the envisioned services.

The designed workflow was implemented in an iterative way, ordered by the priorities defined

in section 4.3, with the state of the implementation at the point of the results discussed in this doc-

ument being the disaggregation of all services except for the Ensemble and Hierarchical Prediction

services, that remain aggregated in a single service, integrated with the rest of the infrastructure

through the microservices template.

The Diagnostic Workflow mapping discussed in the following sections will be the imple-

mented one and not the fully realised design. In Chapters 5 and 6, we will consider this limi-

tation. It restricts the independent scalability of the Ensemble prediction service and, therefore,

the training of ensemble models on different subsets of the forecasted time series in parallel.

With this in mind, when comparing the monolithic solution with the MSA-based prototype,

we will train all ensemble models with all the individually forecasted time series.

Design and Implementation 34

4.4.1 Data disaggregation

The data deaggregation portion of the workflow for triggering the following parallelised prediction

steps was the main contribution of this work to the responsibilities of the Time-Series Load service.

After the generation of the aggregate series from the input “bottom” series based on the hier-

archical indexes, the service classifies all of the original and generated series. This classification is

sent to the ensemble service in the NewDataset event. This event also propagates the configuration

of desired models to the Ensemble Prediction service, while the individual NewTimeseries events

propagate the configuration of desired Univariate Prediction models.

The NewDataset event references the IDs of the The NewTimeseries events and the stored

Grouped Dataset, as this information would bring the size of the event over the recommended limit

of RabbitMQ messages of 128 Megabytes and for large datasets over the theoretical maximum

limit of 2 Gigabytes. With the NewTimeSeries events also containing the time series indexes, it is

possible to reaggregate the Grouped Dataset from the information collected in the event store.

A key variable impacting the scalability at this workflow stage is the number of hierarchical

indices, as they define the number of aggregations and, therefore, the total number of series to be

forecasted. Of particular impact are the non-strictly hierarchical aggregations (e.g. purchases of a

specific client), as they massively increase the number of time series forecasted.

This impact can be seen in Figure 4.5, where 2000, 4000 and 6000 individual bottom time-

series were selected randomly from a test dataset. Note that the number of time series loaded to

the bottom aggregation level is usually slightly lower than the number of selected time series as

many series lack the minimum requirements for forecasting (e.g. all zero values).

20
00

40
00

60
00

0

5,000

10,000

15,000

20,000

Number of input time series

N
um

be
ro

ff
or

ec
as

te
d

tim
e

se
ri

es

bottom client hier1 hier2 hier3 hier3.capacity hier1-client hier2-client hier3-client

Figure 4.5: Number of time series per aggregation

4.4 Diagnostic Workflow Mapping 35

Referenced in orange are all the original time series and aggregations generated by the strictly

hierarchical indices, and in blue are those generated by the client grouping.

This increase in the run-time of the current solution is due to the scalability limitations of the

Univariate Prediction models, discussed in the next section. In further comparisons, we will limit

these aggregations to ease the current system’s deployment. Still, we note this shows a clear need

for independent scalability of the univariate prediction models for this use case.

4.4.2 Univariate Models

While the current solution allows for the parametrisation of multiple sets of hyperparameters for

each parametrised type of model discussed in section 3.1, the prototype of the proposed design

does not, as it attempts to streamline the process of performing hyperparameter tunning on a set of

configured ranges and an error metric to be minimised, only saving the best model of each type.

At the point of result gathering, the model types parameterisable in the Univariate Prediction

service were the NaiveDrift, NaiveSeasonal, NaiveMean, Exponential smoothing, and AutoArima,

implemented through the DarTS [27]. These models differ from the monolithic approach, which

uses the R programming CRAN models [29]. Naive Seasonal is only applied if a seasonal com-

ponent is found within the individual time series. This choice was made to avoid the antipattern

“Too many technologies” identified by D. Taibi et al. [62].

4.4.3 Data aggregation

The query service first receives a NewDataset event and a group of EnsembleSet events. These

messages are requests for Grouped Dataset generation, as these services request information from

the Query service. This request-response interaction is asynchronous, and any replica of the En-

semble Prediction service can receive the response, subscribed to by a shared queue, and initialise

the fitting and backtesting of the ensemble models. This further reduces the interdependency of

the Ensemble Prediction service and the Query service.

For rebuilding the hierarchical Dataset, there is a need to line up all backtesting windows of

each model of all forecasted time series for ensemble model training. These windows can differ

between series as different models have different minimum requirements for predictions. For

example, autoARIMA needs a minimum of thirty observations to define the lag order and the

degree of differencing hyperparameters.

The aggregation structure is maintained by saving the non-forecasted Grouped Dataset to S3

as a base for the reconstruction. This base is populated by the latest predicted backtesting windows

saved in the DynamoDB event store by date.

Again, as the size of the Grouped Dataset far surpasses the theoretical maximum RabbitMQ

message size, the reaggregated Grouped Dataset is stored in S3, and a reference to it is sent in the

EnsembleDataset event.

Design and Implementation 36

4.4.4 Ensemble Models

All instances of the Ensemble Prediction service contain the parametrisation of the subgroups for

Ensemble training. The hyperparameters of the models applied to all subgroups are parametrised

in the TS Load service and sent in the NewDataset event, mirroring the behaviour of the Univariate

Prediction service.

In response to the consumption of this event, the Ensemble Prediction service sends one En-

sembleSet event for each subgrouping, containing the subgroup’s name for later reference and

the IDs of all NewTimeseries events of time-series included in the grouping. The name of the

subgrouping is propagated by the Query service to the generated EnsembleDataset event, used

to reference the models to be fitted when this event is consumed by an instance of the Ensemble

Prediction service.

The aforementioned Grouped Dataset aggregated by the Query service is then used to train all

parametrised models. The ideal number of Ensemble Prediction service replicas will therefore be

the number of parametrised subgroups.

By allowing for the parametrisation of multiple cross-client subsets of time series and design-

ing a reusable system for the use of multiple clients, this would allow for the inclusion of Global

ensemble models after service extraction, discussed in section 2.2.4.

As discussed in section 4.4, the extraction of the Ensemble Prediction service was not yet

complete at the point of result gathering.

The models parametrised in both the TSFM and the proposed solution for Ensemble Learning

for the comparisons referenced in the results chapter 5 were a Generalised Linear Model (GLM),

a Gradient Boosting Machine (GBM), both from the H2O library [34], and a simple linear model

aggregating predictions by minimising the sum of absolute errors (SAE) (equation 4.1):

SAE =
n

∑
t=1

|Ft −At | (4.1)

4.4.5 Hierarchical Forecasting

The NewDataset event is additionally subscribed by the Query service, which generates a Hier-

archicalDataset event. This process is similar to the generation of the EnsembleDataset event.

Using as a base the Grouped Dataset hierarchical structure stored in S3 by the TS Load service

and triggered by the consumption of the NewDataset event, the Query service waits for all the

time-series backtesting window forecasts of the univariate and ensemble models and reaggregates

them, sending the new object’s reference in the aforementioned HierarchicalDataset event.

This event is consumed by the Hierarchical Prediction service, triggering the generation of all

possible top-down and bottom-up hierarchical forecasts referenced in section 2.2.3. The current

prototype publishes the final Grouped Dataset at the end of this step after evaluating all forecasts,

completing the analysis to be visualised in the forecasting dashboard.

Chapter 5

Evaluation

This chapter will detail the results gathered from testing the original solution and the proposed

design. The prototype used for collecting the following metrics was at the sixth migration step of

the list defined in section 4.1.3. As such, we will focus our analysis on the execution time results,

forecasting error metrics and cost, not considering the ability to parallelise the training of multiple

ensemble models for different subsets of time series.

We aim to show the value gained from a partial extraction and discuss the increased adaptabil-

ity of the proposed solution to include new techniques in time series forecasting.

5.1 Experimental design

We compared the pre-decomposition solution running in AWS EKS with three allocated CPU

cores and 7Gb of RAM, parametrised to use up to three threads for parallel computation, with

an instance of the proposed design using three, six and twelve replicas of the Univariate Pre-

diction Service. As with the Command Service, the Univariate Prediction service replicas are

parametrised with one CPU core and just 700Mb of RAM. In contrast, the other services that han-

dle the full Grouped Dataset are deployed with a limit of 7Gb of RAM. By this parametrisation,

we hope to approximate the computing resource usage of the compared solutions.

Diagnostic workflows for two different datasets were executed for both solutions. For simplic-

ity, all workflows were parametrised to generate predictions for ten backtesting windows, with a

forecasting horizon of five for each of them.

To compare the prototype with the original approach, we parametrised the latter with the R

CRAN models ARIMA, ETS (Error trend seasonality), and SES (exponential smoothing), two

naive rolling mean models with different sizes of training windows, and a naive seasonal model,

while the former includes Naive Drift, Naive Seasonal, Naive Mean, Exponential smoothing, and

AutoARIMA, implemented through the DarTS [27] Python library.

37

Evaluation 38

To validate the design proposal, we used two different datasets. The first refers to a Portuguese

Beverage producer’s business-to-business sales data, and the second refers to an Electronics re-

tailer’s business-to-consumer sales data.

5.2 Results and Analysis

In this section we detail the overhead, execution time and forecasting results gathered from both

systems for the validation datasets. We first used the dataset relating to business-to-business sales

of products in the beverages category from an industry-leading Portuguese producer to highlight

the overhead introduced by the decomposition. We used increasingly larger subsets of this dataset

to compare the execution time of the current solution and the proposed design.

For execution time and forecast error metrics comparisons we also used the second dataset,

comparing the results both between the two systems and the two datasets.

5.2.1 Overhead

Results
The following graphs in Figure 5.1 detail the execution time comparison of the different

dataflow components for 100, 150, and 200 input time series.

We note that the impact of the Loading and analysis and Hierarchical Forecasting components

on the total execution time of the diagnostic workflow is minimal. As we can see in Figure 5.1,

the Univariate Forecasting and Ensemble Forecasting steps take multiple minutes to hours for

completion while the other two components are executed in a matter of seconds.

Analysis
Through these results, we can see the overhead introduced by the distributed design across all

execution components. The time taken to train the univariate models and generate the respective

backtesting forecasts is increased by 55%, 35% and 65% in the 100, 150 and 200 time series

benchmarks, respectively. The use of a different model library and the addition of hyperparameter

tunning may have also played a role in this increase in execution time with a base configuration.

The overhead on the Loading and Analysis component can be attributed to the time to publish

all individual time series messages. This overhead is minimal compared to the rest of the execution

but represents a tenfold increase in the execution time of the component.

We expected similar execution times in the Ensemble and Hierarchical forecasting components

as the prototype still counts with a single pre-decomposition module for both techniques. We at-

tribute the decrease to the lower number of generated univariate forecasts and the non-deterministic

nature of the previous forecasting techniques.

5.2 Results and Analysis 39

Univariate Forecasting

0

2,000

4,000

6,000

10
0

10
0

15
0

15
0

20
0

20
0

Number of input time-series

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Ensemble Forecasting

0

200

400

600

800

10
0

10
0

15
0

15
0

20
0

20
0

Number of input time-series

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
) Original Solution

Microservices Solution

Loading and analysis

0

10

20

30

10
0

10
0

15
0

15
0

20
0

20
0

Number of input time-series

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Hierarchical Forecasting

0

10

20

30

10
0

10
0

15
0

15
0

20
0

20
0

Number of input time-series

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Figure 5.1: Execution time of components

5.2.2 Scalability

Results
As one of the systems’ requirements is independent service scalability, we explored the exe-

cution of the prototype with a different number of replicas of the Univariate Prediction service to

tackle the most time-consuming task. For this, we detail in the Figure 5.2 the progression of total

queued messages in the asynchronous message queue. We note the addition of an indicator of the

execution time of the pre-decomposition solution parametrised for parallelisation of model fitting

with three threads, for a closer comparison with a base execution of the decomposed system with

three single threaded instances of the Univariate Prediction service.

We then executed the workflow for 350 input time series with similar parametrisation for a

different dataset, containing sales data of a client in the Electronics retail sector, with many more

Evaluation 40

0 1,000 2,000 3,000 4,000 5,000 6,000

500

1,000

1,500

2,000

Execution seconds

To
ta

lq
ue

ue
d

M
es

sa
ge

s
3 UV service replicas
6 UV service replicas

12 UV service replicas
12 UV & 3 Command service replicas

Original execution time (3 threads)

Figure 5.2: Queued messages, 200 input time series

aggregations but time series much smaller in length. Here, although many more “bottom” time

series are produced, the length of the time series is not enough to fit the AutoARIMA model. The

comparison of the executions of both datasets is detailed in Figure 5.3. All of the executions in

this graph were done with six replicas of the Univariate Prediction service.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

2,000

4,000

6,000

8,000

Execution seconds

To
ta

lq
ue

ue
d

M
es

sa
ge

s

Beverage Producer (BP)
Electronics Retailer (ER)

ER - 3 Command service replicas
BP original execution time
ER original execution time

Figure 5.3: Queued messages, 350 input time series

Analysis
Analysing Figure 5.2, we can see the expected halving of execution time from three to six

replicas, reducing the response time to below the current solution’s benchmark and overcoming

the overhead of the added complexity. In opposition, the redoubling to twelve instances of the

Univariate Predictor did not reproduce this result.

The increased slope at the start of the three and six replica instances is due to the time-series

messages consumed at the beginning of the workflow by the Command service. The Univariate

5.2 Results and Analysis 41

Prediction service also produces one forecast event per model per time series to be consumed by

the Command Service.

The inverse slope change in the prototype’s twelve instance version was caused by the Com-

mand service consuming fewer NewForecastUV events than the ones created. Once the Univariate

Prediction service instances finish consuming all NewTS events, the Command service consumes

the NewForecast and NewModleUV events left in its queue quickly.

The implemented architecture allows for the replication of the Consume service to overcome

this new bottleneck. As detailed in the figure, by scaling the number of instances of the Command

service to three replicas, we can overcome this bottleneck and reach the expected 50% decrease in

execution time compared to the six instances of the Univariate Prediction service.

Analysing Figure 5.3 we can see that the Command service bottleneck already with only six

Univariate Prediction service replicas. As such, we see again a need to scale the Command service.

This is due to the forecasts of the microservices architecture being produced much quicker for

the second dataset, as its individual time series have less values than in the first dataset. We note

that comparing the execution time with the original solution is only informative as the decom-

posed alternative generates fewer forecasts. With this, we show that the individual scalability of

components offered by the microservices architecture is better at tackling varying workloads.

5.2.3 Forecasting Metrics

Results
We gathered error metrics for the multiple executed runs, and we drew comparisons of the ones

generated in the executions detailed in Figure 5.3. These metrics are used to validate the design,

as the differences of implementation of the univariate forecasting models difficults direct compar-

isons. Still, through the parametrisation detailed in section 5.1 we expected to reach comparable

error metrics for the execution of both solutions.

From the many error metrics collected, we chose to analyse the Mean absolute percentage

error (MAPE) (equation 5.1) and bias (equation 5.2), as these are the most often used decision

metrics for demand planning and in LTPlabs’ context of analytics consultancy.

MAPE =
1
n

n

∑
t=1

|At −Ft

At
| (5.1)

Bias =
1
n

n

∑
t=1

Ft −At

At
(5.2)

These metrics are the mean of the errors of the predictions done for all “bottom” dataset time

series, with a gap of one between the last training observation’s date and the target value’s date, in

the last three backtesting windows.

We present the results gathered from the individual Univariate models in tables 5.1 for the

Beverage industry dataset and in table 5.3 for the Electronics retail sales data. The appendix B

contains these results in full.

Evaluation 42

We further aggregated the Hierarchical and Ensemble Model error metrics into the table 5.2

for the Beverage industry dataset and table 5.4 for the Electronics retail dataset. In these tables,

“Average Change” details the difference between the average error metrics of all trained models by

the original solution and the MSA prototype. For the Bias metric, the average change details the

difference between the absolute values of the average Bias. As such, for both metrics, a negative

value represents an improvement.

Models (MSA) MAPE Bias Models (Original) MAPE Bias

Naive
Models

NaiveMean 0.751 0.178
naive_mean_last_1 0.634 0.014
naive_mean_last_3 0.636 0.001

NaiveDrift 0.695 -0.053
NaiveSeasonal 0.596 0.066 seasonal_naive_12 0.31 0.063

Classical
Models

ExponentialSmoothing 0.544 0.037
ses 0.601 0.020
ets 0.491 0.047

AutoARIMA 0.655 0.027 arima 0.414 0.062

Table 5.1: Univariate models forecast error metrics (Beverage Industry)

Hierarchical Forecasts Ensemble Forecasts

Mean Change Models Improved Mean Change Models Improved

MAPE 0.157 4/18 0.189 0/3
Bias (absolute value) 0.033 4/18 0.012 1/3

Table 5.2: Hirearchical and Ensemble forecast error metrics summary (Beverage Industry)

Models (MSA) MAPE Bias Models (Original) MAPE Bias

Naive
Models

NaiveMean 0.871 0.116
naive_mean_last_1 0.938 0.113
naive_mean_last_3 0.920 0.159

NaiveDrift 0.813 0.116
NaiveSeasonal 0.809 0.205 seasonal_naive_12 1.040 0.175

Classical
Models

ExponentialSmoothing 0.818 0.158
ses 0.999 0.249
ets 1.005 0.292

AutoARIMA None None arima 0.925 0.030

Table 5.3: Univariate models forecast error metrics (Electronics Retailer)

Analysis
The analysed aggregated results for the executions of the solutions for MAPE and Bias show

different outcomes for each of the used datasets. The MSA system showed worse results than the

5.3 Discussion 43

Hierarchical Forecasts Ensemble Forecasts

Mean change Models improved Mean change Models improved

MAPE -0.164 37/40 0.023 3/3
Bias (absolute value) -0.262 20/40 -0.128 3/3

Table 5.4: Hirearchical and Ensemble forecast error metrics summary (Electronics Retailer)

original pre-decomposition solution in the target error metrics for the Beverage Industry dataset

and an improvement in the Electronics retail benchmark.

A full comparison of the forecasting results for both larger and more variate datasets has to

be done to obtain a complete picture of the forecasting performance of the solutions. Still, from

the present comparisons, we argue that the functional requirements were met by the decomposed

prototype, as it generates comparable predictions to the original solution.

5.3 Discussion

In this section, we will analyse our proposed design, the original monolithic solution, applying the

assessment framework proposed by Auer et al. [7], exploring the alternatives under the categories

of “Functional suitability”, “Performance efficiency”, “Reliability”, “Maintainability”, “Cost” and

“Process related”.

5.3.1 Functional suitability

When comparing the solutions, we can define the system’s requirements using the included time

series forecasting techniques.

By this measure, we can identify in the current approach and, by extension, in the proposed

design, the inclusion of techniques not foreseen in the proposal by Uzun et al. [63]. These are

Ensemble and Hierarchical forecasting.

Although not present in the prototype, the proposed design also allows for the definition of

global models to be trained across datasets, building on the capabilities of the current solution.

Finally, we also expect the future mapping of the deployment workflow detailed in section 3.2.1

to the same set of services as the ones defined for the diagnostic workflow in section 3.2.1. This

requirement is not yet fulfilled and will be further discussed in section 5.3.4.

In section 5.2.3, the forecasting results were shown to be comparable to the ones generated by

the original solution. This indicates that the new solution fulfills the same functionality.

5.3.2 Performance efficiency

The performance efficiency comparison focuses on hard metrics, gathered from the original solu-

tion and developed prototype.

Evaluation 44

The graph 5.2 shows the ability of the system to better adapt to “Time Behaviour” require-

ments. The system’s response time is lowered by replicating its individually deployed compo-

nents. This individual scalability of services allows the system to comply with the sporadic nature

of the mapped workflows, adapting its resource utilisation through an autoscaler.

The proposed prototype does allocate more cloud resources from the overhead seen in Fig-

ure 5.1, and even more when scaling its components for the mentioned benefits. This is further

addressed in section 5.3.5.

5.3.3 Reliability

While the individual service instances of the prototype have a lower mean time between failures

than the original system, caused by the complexity added by the decomposition efforts, the fault

tolerance of the design, through Kubernetes orchestration, allows for still high availability.

The decomposition also introduced the ability for the system to maintain a distributed state

resilient to individual service shutdowns, completing the workflow when possible. At the same

time, the previous solution had to be executed from the start in case of failure.

This is also relevant for Cloud computing costs as it allows the deployment in spot instances
1. In contrast, the previous solution required the use of a server stable for the total duration of the

diagnostic workflow, which often takes more than 12 hours. Spot instances significantly reduce

the cost of the infrastructure (Figure 5.6).

5.3.4 Maintainability

The modularity of decomposed system increases code complexity by the addition of the template

code and AMQP interface SDK (Figure 4.4), while within the time series specific tasks within

them, it reduces code complexity, as we strip down dependencies used for non needed functionality

in the extraction targets.

This common scaffold for implementing new microservices is highly reusable and standardises

deployment and testing pipelines. The microservices themselves, in particular, the Command and

Query services and the Forecasting dashboard, are applicable outside the context of the developed

prototype.

The analyzability of the developed system is less than the original as it increases the number

of independent executions, adding the complexity of the interaction between them. Even still,

observability focused technologies (i.e., Prometheus, Loki, and Grafana) polling data from both

the FastAPI endpoints and the AMQP instance were used to combat this issue, as well as to gather

the results presented in section 5.2.2.

In terms of modifiability and changeability, adopting an event-driven asynchronous commu-

nication pattern for internal communications reduces coupling between services and allows for

the seamless inclusion of new services, encapsulating new time series forecasting techniques. By

1Spot instances differ from On-Demand instances by utilising unused capacity of the Cloud provider’s machines at
a discount. The main drawback is the possibility of instance interruption, as the allocated capacity can be reclaimed by
the provider when needed

5.3 Discussion 45

subscribing to the routing keys of the relevant events and mapping them to their endpoints, a new

event can be added to the workflow independently. Additionally, using the endpoints directly

allows for easy testing, independent of the chosen message broker.

5.3.5 Cost

The development of the proposed system was done entirely in the context of this work. The effort

of this development was in addition to the development costs of the original solution. Adding to

this, the deployment costs of the new solution were also higher, as the coordination of a higher

number of services introduces more complexity to the also developed deployment pipeline.

To draw comparisons of the infrastructure costs associated with both solutions, we simplified

the cost structure by focusing solely on the costs of execution of the services, as the storage

solution costs (DynamoDB and S3) and supporting infrastructure are either negligible or similar

between the solutions.

Using as a baseline AWS’s Elastic Compute Cloud R5 instances already used by LTPlabs, with

4 CPU cores and 32 GB of RAM, the graph in Figure 5.4 shows the number of needed machines

by resource for the different executions presented in Figure 5.2.

3UV 6UV 12UV 3Command Original

0

1

2

3

4

1.75

2.5

4.5

0.750.74 0.81 0.98

0.22

Executions

N
um

be
ro

fM
ac

hi
ne

s

CPU Needs
RAM Needs

Figure 5.4: Allocated Machines (r5.xlarge)

The graph in Figure 5.5 details the execution time of the diagnostic workflow for the Beverage

industry, multiplied by the number of allocated machines in Figure 5.4. We can see an improve-

ment in the use of resources in the executions with more replicas and less total instance execution

time.

The graph in figure 5.6 details a cost approximation of the mentioned executions, again only

considering the resource allocation for the microservices themselves. For this, we considered the

cost of 0.254$ per hour of use of an instance. We additionally detail the costs with the added

consideration that the decomposed system allows for the use of spot instances. At the time of

writing, this represented for LTPlabs a cost-saving of 60% for this type of instance.

Evaluation 46

3UV 6UV 12UV 3Command Original

4,000

6,000

8,000

10,000

10,998.75

7,350
6,547.5

3,267.75

Executions

To
ta

le
xe

cu
tio

n
se

co
nd

s

Figure 5.5: Total instance execution time (r5.xlarge)

3UV 6UV 12UV 3Command Original

0.2

0.4

0.6

0.8 0.78

0.52
0.46

0.23

0.31

0.21 0.18

Executions

C
os

t(
$)

On-demand
Spot Instances

Figure 5.6: Cost approximation

We again note the simplifications made to the cost structure when analysing these results.

Still, we can conclude that the prices of the executions are comparable, especially when using spot

instances. The measured costs easily fall within the acceptable range for LTPlabs’ context, and the

reduced response time offsets any additional costs by reducing the individual Diagnostic project’s

lead times and associated development efforts.

5.3.6 Process related

In the category of process-related impacts, we highlight improvements in data management and

the lowering of the diagnostic and deployment lead times.

5.4 Final notes 47

By centralising the time series information across multiple projects, the management of this

sensitive data can be standardised through AWS Identity and Access Management. Additionally,

with the ability to extract cross-client insights with the now possible inclusion of global models

detailed in section 2.2.4, LTPlabs may be able to generate more accurate time-series forecasts for

its clients.

These lead times for diagnostic and deployment projects match the execution workflows de-

tailed in section 3.2.1. With the reduced response time of the developed prototype, the Consulting

project teams can generate forecasts quicker and iterate faster through different parametrisations,

reducing the time to delivery of error metrics. Future deployment projects’ lead time would also be

reduced by the future mapping of this workflow to the implemented services, reusing the models

trained in the diagnostic project.

5.4 Final notes

We propose that the objective of implementing a microservices-based architecture design was

reached. As the prototype is still not fully realised, the continuous benefit of an iterative decom-

position approach was also made evident by comparing the gathered metrics from the pre and

post-decomposition solutions.

Even still, the increased costs of adoption, deployment, and maintenance, driven by the added

complexity, should be considered before the migration of the current LTPlabs workflows to the

new solution.

We stress the ability to extend the current prototype by including different forecasting models

in the Univariate Prediction service and creating other services for multivariate approaches.

Chapter 6

Conclusions

Microservice architectures are inherently tied to their application in industry, as service boundaries

are often defined by the set of business capabilities within a bounded context. Through this work,

we aim to detail the impacts of a transition to this paradigm, informing industry practitioners of

the followed approach and the measured and perceived outcomes.

In search of scalability of the monolithic solution for time series analysis and forecasting

used by LTPlabs, we applied a decomposition technique, defined services and service boundaries,

created a prototype of the design, and validated the approach through the comparisons presented

in chapter 5.

This solution’s shift to a microservices-based paradigm targets workflows often used within

LTPlabs. Still, it was undertaken under the broader context of an organizational transition toward

this paradigm. Creating standardized templates, event definition, and reusable services facilitated

this change.

The applied decomposition technique proved to enable individual scalability of components

as expected, reducing the execution time based on the available resources and the autoscaler con-

figuration. With this, we were able to cut the execution time by more than 50%, as analysed in

section 5.2.2, with comparable costs.

The execution time overhead added by the network level communication, new tooling for mon-

itoring, and the added grouped dataset reconstruction step are negligible compared to the possible

response time decrease gained by allocating more Cloud resources. The added infrastructure costs

were reduced using spot instances, as shown in section 5.3.5.

The added extensibility of the system by creating new services representing more advanced

forecasting techniques is of note, particularly when considering the tailor-made character of LT-

Plabs’ value offer. Adding services to represent specific client needs, such as Causal, Probabilistic,

and Multivariate Forecasting, is easier in the proposed design. By defining these particular needs

as new services, new developments can be reused in similar future projects or used to upgrade

ongoing deployments.

48

6.1 Future work 49

6.1 Future work

For further analysis of the current approach’s suitability as a fully validated Microservices-based

time series forecasting module, more univariate models should be included, and metrics should be

generated for larger datasets.

Additional expansion should also be conducted by integrating more multivariate forecasting

techniques. Monitoring this solution’s development efforts would validate the gain in expansibility

of the microservices-based solution.

The prototype is also still limited in input dataset size as it uses pandas data frames to internally

represent the time series information. This limits the size by the allocation of RAM to the process,

as the data frames are loaded into memory. We suggest processing the data in chunks or using

the Dask API in place of pandas to scale to larger datasets. The collection of metrics to compare

performance between these two alternatives would be a welcomed addition to this work.

References

[1] Ltp labs - about us, 2019. https://ltplabs.com/about-ltplabs/.

[2] Improving forecast accuracy with machine learning - architecture
overview, 2020. https://docs.aws.amazon.com/solutions/
latest/improving-forecast-accuracy-with-machine-learning/
architecture-overview.html.

[3] Cloudevents - a specification for describing event data in a common way, 2022. https:
//cloudevents.io/.

[4] Time series forecasting - amazon forecasting, 2022. https://aws.amazon.com/
forecast/.

[5] AGAPITOS, A., BRABAZON, A., AND O’NEILL, M. Regularised gradient boosting for
financial time-series modelling. Computational Management Science 14, 3 (2017), 367–391.

[6] ALFARES, H. K., AND NAZEERUDDIN, M. Electric load forecasting: Literature survey and
classification of methods. International Journal of Systems Science 33, 1 (2002), 23–34.

[7] AUER, F., LENARDUZZI, V., FELDERER, M., AND TAIBI, D. From monolithic systems to
microservices: An assessment framework. Information and Software Technology 137 (2021),
106600.

[8] BERRY, L. R., HELMAN, P., AND WEST, M. Probabilistic forecasting of heterogeneous
consumer transaction–sales time series. International Journal of Forecasting 36, 2 (2020),
552–569.

[9] BOGNER, J., FRITZSCH, J., WAGNER, S., AND ZIMMERMANN, A. Microservices in in-
dustry: Insights into technologies, characteristics, and software quality. In 2019 IEEE Inter-
national Conference on Software Architecture Companion (ICSA-C), IEEE.

[10] BOYLAN, J. E., SYNTETOS, A. A., AND KARAKOSTAS, G. C. Classification for forecast-
ing and stock control: a case study. Journal of the operational research society 59, 4 (2008),
473–481.

[11] BROWN, K., AND WOOLF, B. Implementation patterns for microservices architectures. In
Proceedings of the 23rd Conference on Pattern Languages of Programs, pp. 1–35.

[12] BULINSKI, J., WASZKIEWICZ, C., AND BURACZEWSKI, P. Utilization of abc/xyz analysis
in stock planning in the enterprise. Annals of Warsaw University of Life Sciences-SGGW.
Agriculture, 61 Agric. Forest Eng. (2013).

50

https://ltplabs.com/about-ltplabs/
https://docs.aws.amazon.com/solutions/latest/improving-forecast-accuracy-with-machine-learning/architecture-overview.html
https://docs.aws.amazon.com/solutions/latest/improving-forecast-accuracy-with-machine-learning/architecture-overview.html
https://docs.aws.amazon.com/solutions/latest/improving-forecast-accuracy-with-machine-learning/architecture-overview.html
https://cloudevents.io/
https://cloudevents.io/
https://aws.amazon.com/forecast/
https://aws.amazon.com/forecast/

REFERENCES 51

[13] CERNY, T., DONAHOO, M. J., AND TRNKA, M. Contextual understanding of microservice
architecture: Current and future directions. Applied Computing Review 17, 4 (2017), 29–45.

[14] CHEN, J., ZENG, G.-Q., ZHOU, W., DU, W., AND LU, K.-D. Wind speed forecasting
using nonlinear-learning ensemble of deep learning time series prediction and extremal op-
timization. Energy Conversion and Management 165 (2018), 681–695.

[15] CHEN, R., LI, S., AND LI, Z. From monolith to microservices: A dataflow-driven approach.
In 2017 24th Asia-Pacific Software Engineering Conference (APSEC) (2017), IEEE, pp. 466–
475.

[16] COCKCROFT, A. Netflix in the cloud, 2010.

[17] DE LAURETIS, L. From monolithic architecture to microservices architecture. In 2019 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE.

[18] DRAGONI, N., GIALLORENZO, S., LAFUENTE, A. L., MAZZARA, M., MONTESI, F.,
MUSTAFIN, R., AND SAFINA, L. Microservices: Yesterday, Today, and Tomorrow. Springer
International Publishing, 2017, pp. 195–216.

[19] DUDEK, G. Short-Term Load Forecasting Using Random Forests. Springer International
Publishing, 2015, pp. 821–828.

[20] DUDEK, G. Pattern-based local linear regression models for short-term load forecasting.
Electric Power Systems Research 130 (2016), 139–147.

[21] EDWARDS, M. Service component architecture (sca), 2011. http://www.
oasis-opencsa.org/sca.

[22] FLIEDNER, G. Hierarchical forecasting: issues and use guidelines. Industrial Management
Data Systems 101, 1 (2001), 5–12.

[23] FLOWER, M. Patterns of Enterprise Application Architecture. Pearson Education, Inc.,
Boston, MA, USA, 2002.

[24] FOWLER, M. Patterns of Enterprise Application Architecture: Pattern Enterpr Applica Arch.
Addison-Wesley, 2012.

[25] FRANCESCO, P. D., MALAVOLTA, I., AND LAGO, P. Research on architecting microser-
vices: Trends, focus, and potential for industrial adoption. In 2017 IEEE International Con-
ference on Software Architecture (ICSA), IEEE.

[26] HAJIRAHIMI, Z., AND KHASHEI, M. Hybrid structures in time series modeling and fore-
casting: A review. Engineering Applications of Artificial Intelligence 86 (2019), 83–106.

[27] HERZEN, J., LÄSSIG, F., PIAZZETTA, S. G., NEUER, T., TAFTI, L., RAILLE, G., POT-
TELBERGH, T. V., PASIEKA, M., SKRODZKI, A., HUGUENIN, N., DUMONAL, M., KOŚ-
CISZ, J., BADER, D., GUSSET, F., BENHEDDI, M., WILLIAMSON, C., KOSINSKI, M.,
PETRIK, M., AND GROSCH, G. Darts: User-friendly modern machine learning for time
series.

[28] HEWAMALAGE, H., BERGMEIR, C., AND BANDARA, K. Global models for time series
forecasting: A simulation study.

http://www.oasis-opencsa.org/sca
http://www.oasis-opencsa.org/sca

REFERENCES 52

[29] HYNDMAN, R. Cran task view: Time series analysis, 2022. https://cran.
r-project.org/web/views/TimeSeries.html.

[30] HYNDMAN, R. J., AHMED, R. A., ATHANASOPOULOS, G., AND SHANG, H. L. Optimal
combination forecasts for hierarchical time series. Computational Statistics Data Analysis
55, 9 (2011), 2579–2589.

[31] HYNDMAN, R. J., AND ATHANASOPOULOS, G. Forecasting: principles and practice.
OTexts, 2018.

[32] JAMSHIDI, P., PAHL, C., MENDONCA, N. C., LEWIS, J., AND TILKOV, S. Microservices:
The journey so far and challenges ahead. IEEE Software 35, 3 (2018), 24–35.

[33] KIRBY, L. J., BOERSTRA, E., ANDERSON, Z. J., AND RUBIN, J. Weighing the evidence:
On relationship types in microservice extraction. In 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC), IEEE.

[34] LEDELL, E., AND POIRIER, S. H2o automl: Scalable automatic machine learning. In
Proceedings of the AutoML Workshop at ICML (2020), vol. 2020.

[35] LEWIS, J. Micro services – java the unix way, 2012.

[36] LEWIS, J., AND FOWLER, M. Microservices - a definition of this new architectural term,
2014. https://martinfowler.com/articles/microservices.html.

[37] LIM, B., ARIK, S. O., LOEFF, N., AND PFISTER, T. Temporal fusion transformers for
interpretable multi-horizon time series forecasting, 2020.

[38] LIU, Z., YAN, Y., AND HAUSKRECHT, M. A flexible forecasting framework for hierarchical
time series with seasonal patterns. In The 41st International ACM SIGIR Conference on
Research Development in Information Retrieval, ACM.

[39] MACKENZIE, C. M., LASKEY, K., MCCABE, F., BROWN, P. F., METZ, R., AND HAMIL-
TON, B. A. Reference model for service oriented architecture 1.0. OASIS standard 12, S 18
(2006).

[40] MAKRIDAKIS, S., SPILIOTIS, E., AND ASSIMAKOPOULOS, V. The m4 competition:
100,000 time series and 61 forecasting methods. International Journal of Forecasting 36,
1 (2020), 54–74.

[41] MAKRIDAKIS, S., SPILIOTIS, E., AND ASSIMAKOPOULOS, V. M5 accuracy competition:
Results, findings, and conclusions. International Journal of Forecasting (2022).

[42] MAZLAMI, G., CITO, J., AND LEITNER, P. Extraction of microservices from monolithic
software architectures. In 2017 IEEE International Conference on Web Services (ICWS),
IEEE, pp. 524–531.

[43] MEGARGEL, A., POSKITT, C. M., AND SHANKARARAMAN, V. Microservices orchestra-
tion vs. choreography: A decision framework. In 2021 IEEE 25th International Enterprise
Distributed Object Computing Conference (EDOC), IEEE.

[44] MICHAELAWYU. Cloudevents generator, 2019. https://github.com/michaelawyu/
cloudevents-generator.

https://cran.r-project.org/web/views/TimeSeries.html
https://cran.r-project.org/web/views/TimeSeries.html
https://martinfowler.com/articles/microservices.html
https://github.com/michaelawyu/cloudevents-generator
https://github.com/michaelawyu/cloudevents-generator

REFERENCES 53

[45] MONTERO-MANSO, P., AND HYNDMAN, R. J. Principles and algorithms for forecasting
groups of time series: Locality and globality. International Journal of Forecasting 37, 4
(2021), 1632–1653.

[46] MONTGOMERY, D. C., JENNINGS, C. L., AND KULAHCI, M. Introduction to time series
analysis and forecasting. John Wiley Sons, 2015.

[47] MUNONYE, K., MARTINEK, P., AND IEEE. Evaluation of data storage patterns in microser-
vices archicture. 2020 Ieee 15th International Conference of System of Systems Engineering
(Sose 2020) (2020), 373–380.

[48] MURER, S., AND HAGEN, C. Fifteen years of service-oriented architecture at credit suisse.
IEEE Software 31, 6 (2014), 9–15.

[49] NEWMAN, S. Building microservices. " O’Reilly Media, Inc.", 2021.

[50] NTENTOS, E., ZDUN, U., PLAKIDAS, K., SCHALL, D., LI, F., AND MEIXNER, S. Sup-
porting architectural decision making on data management in microservice architectures. In
European Conference on Software Architecture, Springer, pp. 20–36.

[51] ORESHKIN, B. N., CARPOV, D., CHAPADOS, N., AND BENGIO, Y. N-beats: Neural basis
expansion analysis for interpretable time series forecasting, 2020.

[52] POLIKAR, R. Ensemble based systems in decision making. IEEE Circuits and Systems
Magazine 6, 3 (2006), 21–45.

[53] RAMÍREZ, S., ET AL. Fastapi framework. Github, https://github. com/tiangolo/fastapi
(2020).

[54] RICHARDSON, C. Microservices pattern: Command query responsibility segregation (cqrs),
2017. http://microservices.io/patterns/data/cqrs.html.

[55] RICHARDSON, C. Microservices pattern: Event sourcing, 2017. http://
microservices.io/patterns/data/event-sourcing.html.

[56] RICHARDSON, C. Microservices patterns: with examples in Java. Simon and Schuster,
2018.

[57] SALINAS, D., FLUNKERT, V., AND GASTHAUS, J. Deepar: Probabilistic forecasting with
autoregressive recurrent networks, 2019.

[58] SARAH, A., LEE, K., KIM, H., AND IEEE. Lstm model to forecast time series for ec2
cloud price. 2018 16th Ieee Int Conf on Dependable, Autonom and Secure Comp, 16th
Ieee Int Conf on Pervas Intelligence and Comp, 4th Ieee Int Conf on Big Data Intelligence
and Comp, 3rd Ieee Cyber Sci and Technol Congress (Dasc/Picom/Datacom/Cyberscitech)
(2018), 1085–1088.

[59] SHASHA, D. E., AND ZHU, Y. High performance discovery in time series: techniques and
case studies. Springer Science Business Media, 2004.

[60] SHUMWAY, R. H., AND STOFFER, D. S. ARIMA Models. Springer International Publishing,
2017, pp. 75–163.

http://microservices.io/patterns/data/cqrs.html
http://microservices.io/patterns/data/event-sourcing.html
http://microservices.io/patterns/data/event-sourcing.html

REFERENCES 54

[61] TAIBI, D., LENARDUZZI, V., AND PAHL, C. Processes, motivations, and issues for migrat-
ing to microservices architectures: An empirical investigation. IEEE Cloud Computing 4, 5
(2017), 22–32.

[62] TAIBI, D., LENARDUZZI, V., AND PAHL, C. Microservices Anti-patterns: A Taxonomy.
Springer International Publishing, 2020, pp. 111–128.

[63] UZUN, I., LOBACHEV, I., GALL, L., AND KHARCHENKO, V. Agile architectural model
for development of time-series forecasting as a service applications. In International Sci-
entific Conference “Intellectual Systems of Decision Making and Problem of Computational
Intelligence” (2021), Springer, pp. 128–147.

[64] VISWANATHAN, S., WIDIARTA, H., AND PIPLANI, R. Forecasting aggregate time series
with intermittent subaggregate components: top-down versus bottom-up forecasting. IMA
Journal of Management Mathematics 19, 3 (2007), 275–287.

[65] VOHRA, D. Using configmaps. In Kubernetes Management Design Patterns. Springer, 2017,
pp. 257–277.

[66] WINTERS, P. R. Forecasting sales by exponentially weighted moving averages. Manage-
ment science 6, 3 (1960), 324–342.

[67] WIRTH, R., AND HIPP, J. Crisp-dm: Towards a standard process model for data mining. In
Proceedings of the 4th international conference on the practical applications of knowledge
discovery and data mining (2000), vol. 1, Manchester, pp. 29–40.

[68] ZAMEER, A., ARSHAD, J., KHAN, A., AND RAJA, M. A. Z. Intelligent and robust pre-
diction of short term wind power using genetic programming based ensemble of neural net-
works. Energy Conversion and Management 134 (2017), 361–372.

[69] ZHANG, H., LI, S., JIA, Z., ZHONG, C., AND ZHANG, C. Microservice architecture in re-
ality: An industrial inquiry. In 2019 IEEE International Conference on Software Architecture
(ICSA), IEEE.

[70] ZIMMERMANN, O. Microservices tenets. Computer Science - Research and Development
32, 3-4 (2017), 301–310.

[71] ZIMMERMANN, O., MILINSKI, S., CRAES, M., AND OELLERMANN, F. Second genera-
tion web services-oriented architecture in production in the finance industry. In Companion
to the 19th annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, pp. 283–289.

Appendix A

Sequence diagram

In this appendix, we include for reference the sequence diagram mapping the diagnostic workflow

of LTPlabs’s time series forecasting solution to the decomposed MSA design. The services de-

tailed operate in a publisher-subscriber model through AMQP, and rely on AWS’ S3 to share large

aggregations of data.

55

Sequence diagram 56

Figure A.1: Proposed sequence diagram

Appendix B

Error metrics comparison

Error metrics were collected from the forecasts for the test folds created by both the pre and post-

decomposition systems. These error metrics were compared between both approaches for two

representative datasets, a Portuguese Beverage producer and an Electronics retailer.

These datasets contain 350 individually labeled hierarchical time series but differ in levels of

aggregation and time-series length, and forecastability.

From a broader subset of metrics gathered, this appendix details the Mean absolute percentage

error (MAPE) and Bias of the predictions generated with ten backtesting folds for the individual

Univariate forecasting models.

NaiveDrift, NaiveSeasonal, NaiveMean, Exponential smoothing, and AutoArima, implemented

through the DarTS [27] were used for the decomposed MSA solution.

Naive mean with different time windows, seasonal naive, Simple Exponential Smoothing

(SES), Exponential smoothing state space (ETS), and Arima were used for the original solution

with R CRAN models [29].

Additionally, we detail the change in MAPE and in the absolute value of Bias for the ensemble

and hierarchical forecasts from the original solution to the implemented microservices solution for

each of the datasets.

We note that these metrics are only measured for the predictions with a gap of one, meaning

the models are trained with all observations before the up to the month of the predicted values

from which the aggregated metrics were gathered. The ten forecasted backtesting windows were

used for the ensemble model training, but only the three last ones were used for this evaluation.

The present evaluation is only done at the level of the disaggregated time series and, as such, only

includes top-done hierarchical forecasts.

Note that for the Electronics retailer, no forecasts were generated by the AutoARIMA model

as it requires a minimum of 30 observations for fitting, which was not met for this dataset.

57

Error metrics comparison 58

Models (MSA) MAPE Bias Models (Original) MAPE Bias

Naive
Models

NaiveMean 0.751 0.178
naive_mean_last_1 0.634 0.014
naive_mean_last_3 0.636 0.001

NaiveDrift 0.695 -0.05312
NaiveSeasonal 0.596 0.066 seasonal_naive_12 0.31 0.063

Classical
Models

ExponentialSmoothing 0.544 0.037
ses 0.601 0.020
ets 0.491 0.047

AutoARIMA 0.655 0.027 arima 0.414 0.062

Table B.1: Beverage Industry univariate forecast error metrics

Models MAPE change Bias change

Hierarchical
forecasts

tdfp_hier2_cliente 0.272 0.019

tdfp_hier1_cliente 0.281 0.018

tdma_hier3_cliente 0.273 0.011
tdfp_hier1 0.279 0.027

tdfp_hier3_capacidade 0.305 0.107

tdfp_cliente 0.260 -0.013
tdfp_hier3 0.270 0.081
tdfp_top 0.198 -0.027
tdma_hier2_cliente 0.227 0.019
tdma_hier1_cliente 0.212 0.018
tdma_cliente 0.093 -0.013
tdma_hier3_capacidade 0.014 0.106
tdma_hier3 -0.016 0.081
tdma_hier2 -0.037 0.077
tdma_hier1 -0.084 0.027
tdma_top -0.296 -0.036

Ensemble
forecasts

ens_lin_auto_all 0.159 -0.004
gbm_all 0.276 0.006
glm_all 0.133 0.034

Table B.2: Beverage Industry Ensemble and Hierarchical forecast error metric comparisons

Error metrics comparison 59

Models (MSA) MAPE Bias Models (Original) MAPE Bias

Naive
Models

NaiveMean 0.871 0.116
naive_mean_last_1 0.938 0.113
naive_mean_last_3 0.920 0.159

NaiveDrift 0.813 0.116
NaiveSeasonal 0.809 0.205 seasonal_naive_12 1.040 0.175

Classical
Models

ExponentialSmoothing 0.818 0.158
ses 0.999 0.249
ets 1.005 0.292

AutoARIMA None None arima 0.925 0.030

Table B.3: Electronics Retailer univariate forecast error metrics

Error metrics comparison 60

Models MAPE change Bias change

Hierarchical
forecasts

tdfp_un_base_id_store_id 0.032 0.059

tdfp_brand_id -0.126 0.145

tdfp_cat_id_brand_id -0.025 0.181
tdfp_subcat_id_store_id 0.073 0.128

tdfp_un_id_brand_id -0.031 0.157

tdma_subcat_id_store_id -0.018 0.040
tdfp_brand_id_store_id -0.242 -0.116
tdfp_un_id_brand_id_store_id -0.258 -0.136
tdfp_un_base_id_brand_id -0.090 0.121
tdma_un_id_brand_id_store_id -0.264 -0.141
tdfp_cat_id_brand_id_store_id -0.234 -0.095
tdma_brand_id_store_id -0.251 -0.128
tdma_cat_id_brand_id_store_id -0.239 -0.097
tdfp_subcat_id_brand_id_store_id -0.236 -0.123
tdma_subcat_id_brand_id_store_id -0.238 -0.124
tdma_brand_id -0.280 -0.033
tdma_subcat_id_brand_id -0.252 -0.115
tdma_un_id_store_id -0.226 -0.035
tdma_un_id_brand_id -0.196 -0.075
tdfp_sku -0.255 0.074
tdfp_un_id_store_id -0.147 0.082
tdma_cat_id_store_id -0.216 -0.041
tdfp_un_base_id -0.026 0.158
tdma_cat_id_brand_id -0.196 -0.052
tdfp_cat_id_store_id -0.134 0.072
tdma_store_id -0.063 0.085
tdma_un_base_id_brand_id -0.241 -0.112
tdfp_store_id 0.209 0.412
tdfp_top -0.198 0.101
tdma_subcat_id -0.208 0.010
tdfp_un_id -0.188 0.194
tdfp_cat_id -0.187 0.195
tdfp_subcat_id -0.003 0.196
tdma_sku -0.310 -0.038
tdma_un_base_id -0.182 -0.006
tdma_cat_id -0.309 -0.013
tdma_un_id -0.312 -0.014
tdma_top -0.353 -0.111

Ensemble
forecasts

gbm_all -0.260 -0.115
glm_all -0.360 -0.262
ens_lin_auto_all -0.166 -0.007

Table B.4: Electronics Retailer Ensemble and Hierarchical forecast error metric comparisons

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Document Structure

	2 Literature Review
	2.1 Microservices Architecture
	2.1.1 Refactoring Monoliths
	2.1.2 Data Concerns
	2.1.3 Communication

	2.2 Time Series Forecasting
	2.2.1 Univariate forecasting models
	2.2.2 Ensemble Models
	2.2.3 Hierarchical Forecasting
	2.2.4 Global Models

	2.3 Microservices-based Time-Series Analysis

	3 Problem Statement
	3.1 Current approach
	3.2 Requirements
	3.2.1 Main workflows
	3.2.2 Scalability
	3.2.3 Organisational requirements

	3.3 Supporting factors
	3.3.1 Preexisting infrastructure
	3.3.2 Validation Data

	3.4 Proposed solution

	4 Design and Implementation
	4.1 Service Extraction
	4.1.1 Dataflow-Driven Decomposition
	4.1.2 Candidate microservices
	4.1.3 Extracted services

	4.2 Organisational impact
	4.2.1 Service template
	4.2.2 Event Schema

	4.3 Service integration
	4.4 Diagnostic Workflow Mapping
	4.4.1 Data disaggregation
	4.4.2 Univariate Models
	4.4.3 Data aggregation
	4.4.4 Ensemble Models
	4.4.5 Hierarchical Forecasting

	5 Evaluation
	5.1 Experimental design
	5.2 Results and Analysis
	5.2.1 Overhead
	5.2.2 Scalability
	5.2.3 Forecasting Metrics

	5.3 Discussion
	5.3.1 Functional suitability
	5.3.2 Performance efficiency
	5.3.3 Reliability
	5.3.4 Maintainability
	5.3.5 Cost
	5.3.6 Process related

	5.4 Final notes

	6 Conclusions
	6.1 Future work

	References
	A Sequence diagram
	B Error metrics comparison

