
Universidade do Minho
Escola de Engenharia

Hugo Afonso da Gião

LPBlocks - A Block-based Language for Linear
Programming

February, 2022

Universidade do Minho
Escola de Engenharia

Hugo Afonso da Gião

LPBlocks - A Block-based Language for Linear
Programming

Master’s Dissertation

Master’s in Informatics Engineering

Work supervised by

Jácome Cunha

Rui Pereira

February, 2022

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do Minho.

,

(Location) (Date)

(Hugo Afonso da Gião)

Despacho RT - 31 /2019 - Anexo 3

Declaração a incluir na Tese de Doutoramento (ou equivalente) ou no trabalho de Mestrado

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as

regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e

direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições

não previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM

da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição
CC BY

https://creativecommons.org/licenses/by/4.0/

Acknowledgements

I would like to thank the Univesity of Minho and HASLab/INESC TEC, my advisors Jácome Cunha and

Rui Pereira for offering their guidance and experience, as well as all the volunteers that participated in our

study and every person that helped in this project.

iii

Abstract

Linear programming is a mathematical optimization technique used in numerous fields including math-

ematics, economics, and computer science, with numerous industrial contexts, including solving optimiza-

tion problems such as planning routes, allocating resources, and creating schedules. As a result of its wide

breadth of applications, a considerable amount of its user base lacks programming knowledge and expe-

rience and thus often resorts to using graphical software such as Microsoft Excel. However, despite its

popularity amongst less technical users, the methodologies used by these tools are often ad-hoc and prone

to errors.

Block-based languages have been successfully used to aid novice programmers and even children in

programming. Thus, we created a block-based programming language termed LPBlocks that allows users

to create linear programming models using data contained in spreadsheets. This language guides the users

to write syntactically and semantically correct programs and thus aids them in a way that current languages

do not. We have also implemented a web application where users can define linear programming models,

reactively see their mathematical representation and execute them to obtain the optimization values for

the variables defined by the users.

To assess the applicability of LPBlocks we used it to successfully express numerous and varied linear

programming problems. Furthermore, we designed and ran a qualitative empirical study to understand the

experience our tool and language brings to users from various backgrounds. Although we see differences

amongst the users, most of them were able to model several problems using LPBlocks.

Keywords: Linear programming, Operations research, Optimization, Block-based languages, Visual lan-

guages, Blockly

iv

Resumo

Programação linear é um conjunto de técnicas de otimização matemática utilizada em várias áreas estas

incluem matemática, economia, ciências da computação e usos em contextos industriais, incluindo pla-

near rotas, alocar recursos e planear horários. Como resulta das suas aplicações variadas uma grande

quantidade dos seus utilizadores não possuem conhecimentos de programação e por isso utilizam soft-

ware gráfico como o Microsoft Excel. Apesar da sua popularidade este software utiliza metodologias ad-hoc

e propicias a erros.

As linguagem de programação por blocos tem surgido nos últimos anos com o intuito de ajudar pro-

gramadores iniciantes, tendo mesmo aplicações no ensino de crianças. Sendo assim nos criamos uma

linguagem de programação pro blocos que utiliza dados contidos em folhas de calculo para criar mode-

los de programação linear chamada LPBlocks. Esta linguagem guia utilizadores na criação de modelos

semanticamente e sintaticamente corretos.

Para avaliar a validade de LPBlocks nos implementamos vários problemas utilizando a mesma. Pos-

teriormente implementamos esta linguagem e utilizamo-la num estudo com utilizadores de vários níveis

de experiência. Depois utilizamos a informação recolhida durante o estudo para avaliar LPBlocks e propor

melhorias.

Palavras-chave: Programação linear, Investigação operacional, Linguagens de blocos, Linguagens vi-

suais, Blockly …

v

Contents

List of Figures ix

List of Tables xi

Listings xii

List of Algorithms xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Our Approach . 2

1.3 Research questions . 2

1.4 Contributions . 3

1.5 Document organization . 3

2 State of the art 5

2.1 Formulating a linear programming problem . 5

2.2 Operations research tooling . 7

2.2.1 Excel . 7

2.2.2 SAS/OR . 9

2.2.3 NCSS . 9

2.2.4 MATLAB . 10

2.2.5 LINGO and What’sBest! . 12

2.2.6 Summary and comparisons . 12

2.3 Projects involving visual languages and linear programming 15

2.3.1 A graphics interface for linear programming 15

2.3.2 Creating a GUI Solver for Linear Programming Models in MATLAB 16

2.3.3 gLPS: A graphical tool for the definition and manipulation of linear problems . 16

2.3.4 Two-variable Linear Programming: A Graphical Tool with mathematica 18

2.3.5 Conclusions . 19

2.4 Frameworks and notable visual languages projects 20

vi

CONTENTS

2.4.1 Blockly . 20

2.4.2 BlockPy . 20

2.4.3 MIT app Inventor . 21

3 A block-based language for linear programming 23

3.1 Data structure . 23

3.2 Blocks . 24

3.3 Defining variables . 25

3.4 Defining constraints . 26

3.5 Defining the objective function . 27

4 Implementation and architecture 29

4.1 Web application . 29

4.1.1 Features . 31

4.1.2 Compilation process . 34

4.2 Spreadsheet reading service . 38

4.3 Optimization service . 39

5 Language applicability 41

5.1 Vegetable mixture . 41

5.2 Fruit canning plants . 42

5.3 Machine allocation . 43

5.4 Pharmaceutical company . 45

5.5 Computer manufacturing . 46

5.6 Satellite launching . 47

5.7 Cargo allocation . 48

5.8 Threats to validity . 48

6 Empirical evaluation 50

6.1 Design . 50

6.2 Instrumentation . 51

6.3 Execution . 51

6.4 Data collection . 52

6.4.1 Background data . 52

6.4.2 Sessions . 53

6.4.3 Participants feedback . 57

6.5 Analysis and conclusions . 57

6.6 Threats to validity . 60

7 Conclusions and future work 61

vii

CONTENTS

7.1 Conclusions . 61

7.2 Future work . 62

Bibliography 63

Appendices 66

A Example spreadsheet data in JSON format 66

B LPBlocks study form participant background questions 68

C LPBlocks study form user feedback 71

viii

List of Figures

2.1 Results outputted from the solver into the spreadsheet. 8

2.2 Adding variables, constraints and defining the objective in the Excel solver. 8

2.3 Example of an Excel linear programming report . 9

2.4 Linear programming problem solving in NCSS . 11

2.5 Lingo user interface . 13

2.6 Energy problem represented in LPFORM . 16

2.7 LpSolver graphical interface creating a formulation with output for all iterations 17

2.8 LpSolver graphical interface with final solution output 17

2.9 LpSolver graphical solution . 18

2.10 gLPS graphical interface . 18

2.11 GUI linear programming interface for MATLAB . 19

2.12 A simple Blockly program. 20

2.13 Hello World program using the BlockPy interface . 21

2.14 Mit app Inventor user interface. 22

3.1 Input data for the running example problem . 23

3.2 Building blocks for LPBlocks . 24

3.3 Creating an example matrix variable . 25

3.4 Defining constraints for the cargoes weight . 26

3.5 Defining constraints for the weight capacity . 27

3.6 Objective function for the running example . 28

4.1 Component diagram for our application . 30

4.2 Our web application interface . 31

4.3 Loading data in our application . 32

4.4 Dynamic model generation in our application . 33

4.5 LPBlocks dynamic error messages . 35

4.6 Defining constraints - second example from Chapter 3 36

4.7 Input data for the running example problem . 39

5.1 Definition of the vegetable mixture problem using LPBlocks 42

ix

LIST OF FIGURES

5.2 Fruit canning plant example modeled using LPBlocks 43

5.3 Machine allocation problem in LPBlocks . 44

5.4 Drug manufacturing problem in LPBlocks . 45

5.5 Computer manufacturing problem in LPBlocks . 46

5.6 Satelite launching problem in LPBlocks . 47

5.7 Cargo allocation problem in LPBlocks . 49

x

List of Tables

2.1 Data for the given problem . 6

2.2 Different solutions comparison cost . 14

2.3 Different solutions comparison when it comes to User interface 14

2.4 Different solutions comparison when it comes to features 15

2.5 Different solutions comparison when it comes to ease of use 15

6.1 Participants background gathered from the survey . 53

6.2 Participants feedback gathered from the survey . 58

xi

Listings

4.1 Input for the Solver API . 38

A.1 Spreadsheet data in JSON format . 66

xii

List of Algorithms

4.1 Expand sum expression . 37

4.2 Expand each expression . 37

4.3 Generate sumproduct . 37

4.6 Find column data . 38

4.4 Find index columns . 39

4.5 Find column indexes . 40

xiii

C
h
a
p
te

r

1
Introduction

This chapter introduces the context of this thesis work and the problem we address (Subsection 1.1). In

Subsection 1.2 we expand on our solution to the given problem. Further in Subsection 1.3 we propose

several questions that we intend on answering within this work. Then in Subsection 1.4 we showcase

relevant contributions from this work and in Subsection 1.5 we describe the organization of the remainder

of this document.

1.1 Motivation

Linear programming is a mathematical optimization technique used to find the best possible outcomes

in problems specified by linear specification constraints. It originated as a discipline during the 1940s

as an effort to tackle complex problems associated with wartime operations. These methods have since

found uses in many areas in fields such as mathematics, computer science, business, economics, and

engineering and problems such as planning, routing, scheduling, assignment, and design [23].

The versatility of linear programming in formulating all sorts of problems lends itself useful in many

industrial contexts from schedule optimization to route planning. Since many of its users have little to no

programming or technical knowledge, visual software such as Microsoft Excel is often the preferred tool

when it comes to specifying and solving this type of problem [11].

Despite its widespread use, end users still face many obstacles when trying to define linear program-

ming models in existing tools since they often require some knowledge of programming to achieve desired

outcomes. This is the case of tools such as MATLAB1 or SAS/OR2, and various libraries such as Google

OR-Tools3 or PuLP4. Spreadsheet software such as Excel allows users to formulate and solve both linear
1https://www.mathworks.com/products/matlab.html
2https://www.sas.com/en_us/software/or.html
3https://developers.google.com/optimization
4https://pypi.org/project/PuLP/

1

https://www.mathworks.com/products/matlab.html
https://www.sas.com/en_us/software/or.html
https://developers.google.com/optimization
https://pypi.org/project/PuLP/

CHAPTER 1. INTRODUCTION

and non-linear optimization problems using algorithms such as simplex, generalized reduced gradient, and

evolutionary algorithms [20]. Users with less technical background will probably find it easier to use this

kind of software. However, similarly to other Excel tasks this methodology is also ad-hoc and could cause

problems to novice users due to input errors at the moment of defining variables as well as other errors in

the spreadsheet building process due to its lack of methodology. Some of the underlying problems include

adding constraints and optimization function from the spreadsheet to the solver, the difficulty in visualizing

the complete model, not being able to define constraints by its columns, the inability to call variables by

name instead of its cell position, and lack of an interactive model and building process. Other visual tools

often use spreadsheet or spreadsheet-like software with the methodologies and problems that come with

that, learning linear programming also comes with some difficulties that have been previously mitigated

with the use of technology [6].

Some works have used visual languages to tackle aspects of linear programming, however, the majority

of them focus on the educational and teaching of mathematical aspects of linear programming [12, 19].

The few existing projects focusing on the applied side of linear programming tend to be several decades

old and have dated and unappealing interfaces and do not make use of recent advances in the field of

visual languages and human-centered computing [13, 21].

1.2 Our Approach

Numerous projects have applied visual languages to various fields of computing, generally focused on

increasing accessibility of novice and non-technical users as well as teaching. A considerable amount of

these languages use the Blockly framework for their implementation [17]. These languages include BlockPy

[3], a web-based platform that lets the user write and run Python code using a block-based language, and

Scratch [15], a block-based visual programming language and educational tool mostly targeted at children.

Our approach involved creating a block-based language which we titled LPBlocks that lets users create

linear programming formulations. We also implemented a highly reactive web interface possessing numer-

ous features such as dynamic compilation, error messages, the ability to load data from spreadsheets, and

run the created models. Beyond our technical work, we also performed a study to evaluate the applicability

of the language and a qualitative empirical study to understand how users interact with the language and

tool.

This project comes as the sequence of a project aiming at the creation of visual language for the

systematic creation of spreadsheets [16], initially we planned on integrating our language with the tool

created by the authors but eventually decided that creating a web interface would be preferable for less

technical users and the integration with Excel was not a critical aspect of our work.

1.3 Research questions

Considering our motivation and goals our thesis aims to answer the following questions:

2

CHAPTER 1. INTRODUCTION

• RQ1 - Can we use block-based languages to represent linear programming formulations.

Currently the tools used in both education and industry to create linear programming models either

require pre-existing programming knowledge, use ad-hoc methodologies, or cannot be used for

formulating general models. Since linear programming has several uses, improving its process for

less technical users could be beneficial in improving their productivity and capabilities.

• RQ2 - Will using a block-based language and environment allow end users to express linear pro-

gramming models.

We intend to evaluate the created language and environment assessing the experience of users

with different backgrounds.

1.4 Contributions

With this work we make the following contributions:

• A visual, block-based language capable of expressing linear programming problems termed LP-

Blocks.

• A web application that allows users to build, debug and run linear programming models using

LPBlocks.

The source code is available at https://github.com/h4g0/blockly-spaces and the web appli-

cation at https://lpblocks.herokuapp.com/.

The scientific publications associated with our work are the following:

• Linear Programming Meets Block-based Languages

Hugo Gião, Rui Pereira, Jácome Cunha

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’21) [9]

• Towards a Block-based Language for Linear Programming

Hugo Gião, Rui Pereira, Jácome Cunha

12𝑡ℎ National Symposium of Informatics (INForum’21) [10]

1.5 Document organization

To present our work, the document is organized as follows:

• Chapter 2 describes the state of the art when it comes to end-user tooling for linear programming,

visual and block-based languages, and projects that bridge visual languages and linear program-

ming.

3

https://github.com/h4g0/blockly-spaces
https://lpblocks.herokuapp.com/

CHAPTER 1. INTRODUCTION

• Chapter 3 showcases LPBlocks, a block-based language capable of expressing linear programming

models. We explain how the data is received, the different blocks, and how to use them.

• Chapter 4 elaborates on the implementation details and compilation process for our language. We

also showcase the interface of the tool we have implemented and its features.

• Chapter 5 discusses the applicability of our language by using it to solve a selection of problems

taken from class notes and operations research textbooks.

• Chapter 6 presents an empirical study we executed in which the users after a brief tutorial solved

several linear programming problems using our tool and then answered a survey where they shared

their experiences.

• Chapter 7 analyzes the results of our work and proposes some possible improvements and contin-

uation to this project.

4

C
h
a
p
te

r

2
State of the art

To give a small introduction to linear programming we start with Section 2.1, where we showcase the

process of formulating a given linear programming problem using mathematical notation.

We then expose a variety of tools related to our work. To do so we started by researching capable and

some of the more user-friendly tools for operations research and linear programming purposes (Section

2.2). These tools are not necessarily the most popular and widely used in industry for the purposes above

stated and are not necessarily the most widely used since the more programmatic methodology is often

preferred. In the same Section, after exposing the different solutions and some of their methodologies, we

proceed to do a comparison and comment on which would be the most appropriate for different user bases

according to different aspects such as price and features and then discuss some of their shortcomings

and possible solutions.

Then in Section 2.3 we present some works that apply visual languages and human-centered comput-

ing to the field of linear programming. The projects approached in this Section focus on both educational

and industrial applications of linear programming. Some of them aim to help novice users use and learn

linear programming and others aim at seasoned users.

In Section 2.4 we present some existing visual languages projects. These projects tackle various devel-

opment and computing areas such as data science, application creation, and spreadsheet manipulating

with applications in both enterprise and education markets. We present such works as they are related to

our solution, which is a visual language.

2.1 Formulating a linear programming problem

There are many steps involved in the linear programming workflow, the first of them being understanding

the problem at hand, what value does the user want to know and what this value depends upon. The

next steps include defining the decision variables according to the problem, writing an objective function,

5

CHAPTER 2. STATE OF THE ART

defining the constraints, writing the constraints in terms of decision variables, and adding non-negativity

to the constraints [1].

In this Section, we will use an example taken from an operations research textbook [5] to illustrate

the process of creating linear programming formulations using mathematical notation. In this problem,

a manufacturer of freeze-dried vegetable mixtures needs to respect certain requirements when it comes

to each mixture composition. Each mixture is to be composed of beans, corn, broccoli, cabbage, and

potatoes. The mixture needs to contain (by weight) at most 40% beans and at most 32% potatoes. The

mixture should contain at least 5 grams of iron, 36 grams of phosphorus, and 28 grams of calcium. The

nutrients in each vegetable and the costs can be seen in Table 2.1.

Vegetables Iron Phosphorus Calcium Cost per pound
Beans 0.5 10 200 20
Corn 0.5 20 280 18
Broccoli 1.2 40 800 32
Cabbage 0.3 30 420 28
Potatoes 0.4 50 360 16

Table 2.1: Data for the given problem

The first step to model this problem as a linear programming one is to create a set of variables that

can be used to express the restrictions and objective described. We create the variables 𝑥1, 𝑥2, 𝑥3, 𝑥4,

and 𝑥5 as the number of pounds of beans, corn, broccoli, cabbage, and potatoes in each mixture. After

creating the variables we create the following constraints:

• The percentage of beans in the mixture must be less than 40% of the total and the percentage

of potatoes less than 32%. Since the total weight of the mixture is represented as the sum of the

variables we get the following constraints in mathematical notation:

𝑥1 <= 0.4(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5) (2.1)

𝑥5 <= 0.4(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5) (2.2)

• To achieve the required level of nutrients, for each of the nutrients (iron, phosphorus, and calcium,

respectively) we need to take into account the amount of each of them in the different vegetables

and use this information to generate the following constraints:

0.5𝑥1, +0.5𝑥2 + 1.2𝑥3 + 0.3𝑥4 + 0.4𝑥5 > 5000 (2.3)

10𝑥1, +20𝑥2 + 40𝑥3 + 30𝑥4 + 50𝑥5 > 36000 (2.4)

200𝑥1, +280𝑥2 + 800𝑥3 + 420𝑥4 + 360𝑥5 > 28000 (2.5)

• We also need to guarantee non-negativity by specifying that each of our variables is greater than 0.

6

CHAPTER 2. STATE OF THE ART

𝑥1 >= 0 (2.6)

𝑥2 >= 0 (2.7)

𝑥3 >= 0 (2.8)

𝑥4 >= 0 (2.9)

𝑥5 >= 0 (2.10)

Finally we define our objective function. Since our goal is to minimize costs and since the cost of the

mixture is given by the sum each of our variables multiplied by its cost per pound we get the following

objective:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (20𝑥1 + 18𝑥2 + 32𝑥3 + 28𝑥4 + 16𝑥5) (2.11)

All these equations can then be expressed in a linear programming solver to get the solution for each

of the variables, thus giving the final solution. In the following Sections we describe some of the existing

tools to do so.

2.2 Operations research tooling

2.2.1 Excel

Microsoft Excel1 is a spreadsheet software developed byMicrosoft with support for various platforms such

as Windows, macOS, Android, and iOS. It includes many features related to manipulating and analyzing

spreadsheets as well as various features related to business, engineering, and data analytics. Excel is

closed source and paid for all users except students2.

Excel allows for formulating and solving linear programming problems using its add-in solver. Using

Excel for this task comes with some caveat, namely the methodology used for adding the constraints,

variables, and the objective is ad-hoc, its interface not being user friendly, not having predefined templates

for specific use cases and the solver not being native to Excel.

To be able to solve linear programming problems in Excel users need to follow several steps involved

in downloading the solver add-in.

Having the solver add-in installed we can move to the next step. For demonstration purposes we will

be using a tablet manufacturing example. This problem states that a tablet manufacturer has to optimize

the production of two tablet models to maximize profits. This example was sourced from youtube [14].

To solve this problem we first define the problem variables, constraints, and optimization function

inside an Excel spreadsheet as seen in Figure 2.1.A In this case, we define the requirements in terms of
1https://office.live.com/start/excel.aspx
2https://www.microsoft.com/en-us/microsoft-365/p/excel/cfq7ttc0k7dx?activetab=pivot%

3aoverviewtab

7

https://office.live.com/start/excel.aspx
https://www.microsoft.com/en-us/microsoft-365/p/excel/cfq7ttc0k7dx?activetab=pivot%3aoverviewtab
https://www.microsoft.com/en-us/microsoft-365/p/excel/cfq7ttc0k7dx?activetab=pivot%3aoverviewtab

CHAPTER 2. STATE OF THE ART

Labour hours, Chip sets and Electronic components for each of the models as well as their availability.

We then define two variables, one called Pro Model units and another called Mini Model units, indicating

the number of units of each model to be produced. After we define the number of units for each of the

requirements as the requirements for each of the model multiplied by the number of produced units, we

then define the constant Unit Profit for both models and the objective function Total profit defined as being

the sumproduct of each of the units with its profit.

B

A

Figure 2.1: Results outputted from the solver into the spreadsheet.

After defining the problem inside the Excel spreadsheet we open the solver add-in. We then are

prompted with a window in which we add the different variables, constants, objective function and choose

from one of the three available solvers as seen in Figure 2.2.

Figure 2.2: Adding variables, constraints and defining the objective in the Excel solver.

8

CHAPTER 2. STATE OF THE ART

After solving our problem the Excel solver add-in outputs both the solutions seen in Figure 2.1.B and

a report detailing the problem specification as well as some of the steps and details about the algorithm

used, seen in Figure 2.3.

Figure 2.3: Example of an Excel linear programming report

2.2.2 SAS/OR

The SAS/OR software allows the use of various state of the art optimization, simulation, and scheduling

algorithms and software. User interfaces and functionalities vary greatly for the different SAS/OR features
3. For some tasks such as Mathematical optimization users have access to a algebraic language, however

SAS/OR provides users with a graphical interface for some specific optimization tasks such as Discrete

event simulation and Project and resource scheduling. This software also boasts state of the art and

optimized parallel algorithms.

This software is used across various industries and companies such as Nestlé, Volvo, and Honda.

SAS/OR is paid and closed source with a free trying period and discounted or free for educational pur-

poses4.

2.2.3 NCSS

NCSS is a statistical and graphical program with linear and mixed integer programming capabilities. It

uses Tableau or Bounds for data visualization and analysis5. The NCCSS software has many use cases

and features for operations research, including solving linear programming and being equipped to solve

more specific problems such as Mixed Integer Programming, Assignment, Maximum Flow

To solve linear programming problems using the NCSS software users must define the variables in a

spreadsheet as seen in figure 2.4a, and subsequently indicate to the solver which are the columns that

represent the variables, constraints, and logic as seen in 2.4b. When compared with Excel, NCSS uses

a more structured approach seeing that all variables, logic columns and constraints must be defined in

specific columns and does not require that the users build the model by selecting the data in the file using

the mouse. The reports seen in 2.4c generated by the solver are similar to the ones generated by Excel.
3https://www.sas.com/pt_pt/software/or.html#m=features
4https://www.sas.com/pt_pt/software/how-to-buy/request-price-quote.html
5https://www.ncss.com/software/ncss/operations-research-in-ncss/#Technical

9

 https://www.sas.com/pt_pt/software/or.html#m=features
https://www.sas.com/pt_pt/software/how-to-buy/request-price-quote.html
https://www.ncss.com/software/ncss/operations-research-in-ncss/#Technical

CHAPTER 2. STATE OF THE ART

Despite improving on the Excel methodology, the NCSS methodology could be improved with a more

interactive and user-friendly approach to the problem definition.

Pricing wise NCSS is paid for all users but possesses a free trial6. This software is also closed source.

2.2.4 MATLAB

MATLAB is a software tool supporting a visual environment created for iterative analysis and design process

and a programming language that expresses matrices and arrays directly as well as a live editor and the

capability to output text, graphics, and formatted notebooks7. The main appeal behind MATLAB stands

from it requiring lower configuration and setup compared to other programming environments. Other

factors distinguishingMATLAB from the alternatives stand from its performance, state of the art algorithms

and scalability, its ease of integration, and industry-focused features such as its support for model-based

design and easy deployment with business systems. One of its biggest setbacks stands from its pricing,

at time of writing it does not have any free tier, MATLAB is closed source as well7.

Users can use MATLAB to model and solve linear programming problems using the 𝑙𝑖𝑛𝑝𝑟𝑜𝑔 function.

Users can use this function by expressing both variables and constants in a matrix form. As an example,

the following inequalities constraint

𝑥 (1) + 𝑥 (3) ≤ 2 (2.12)

𝑥 (1) + 𝑥 (2)/4 ≤ 1 (2.13)

𝑥 (1) − 𝑥 (2) ≤ 2 (2.14)

−𝑥 (1)/4 − 𝑥 (2) ≤ 1 (2.15)

−𝑥 (1) − 𝑥 (2) ≤ −1 (2.16)

−𝑥 (1) + 𝑥 (2) ≤ 2 (2.17)

can be expressed in MATLAB in the following way:

1 A = [1 1

2 1 1/4

3 1 -1

4 -1/4 -1

5 -1 -1

6 -1 1];

7

8 b = [2 1 2 1 -1 2];

After defining the inequalities constraints, the next step is to define the objective function. For this

example, the following function will be used:

−𝑥 (1) − 𝑥 (2)/3 (2.18)

6https://www.ncss.com/online-store/
7 https://www.mathworks.com/products/matlab.html

10

https://www.ncss.com/online-store/
https://www.mathworks.com/products/matlab.html

CHAPTER 2. STATE OF THE ART

(a) Problem construction inside the spreadsheet

(b) Adding the problem to the solver

(c) Solver output

Figure 2.4: Linear programming problem solving in NCSS

Defined in MATLAB:

1 f = [-1 -1/3];

After defining the inequalities and objective function the next step is to call the 𝑙𝑖𝑛𝑝𝑟𝑜𝑔 function:

11

CHAPTER 2. STATE OF THE ART

1 x = linprog(f,A,b)

We then get the optimal solution found by the solver:

1 x = 2 x 1

2 0.6667

3 1.3333

The 𝑙𝑖𝑛𝑝𝑟𝑜𝑔 function accepts equality constraints; as an example the 𝑥 (1)+𝑥 (2)/4 = 1/2 constraint

can be added to our model:

1 Aeq = [1 1/4];

2 beq = 1/2;

3

4 x = linprog(f,A,b,Aeq,beq)

The 𝑙𝑖𝑛𝑝𝑟𝑜𝑔 function can accept lower and upper bound constraints and different solver algorithms

and parameters. MATLAB contains more advanced features such as modeling problems that can be for-

mulated in a problem-based approach and more complete outputs.

2.2.5 LINGO and What’sBest!

LINGO and What’sBest! are two tools created by the LINDO SYSTEMS INC to solve linear programming

problems using data contained in spreadsheets. These tools constitute two different approaches to solve

this problem. While LINGO uses the data in spreadsheets and uses an SQL like language to express the

problem and call the solver, What’sBest! defines the problem inside an Excel spreadsheet and calls the

solver using a GUI.

What’sBest! offers users a form layout within spreadsheets where users can define variables, con-

straints, and optimization functions, to finalize the problem definition and call the solver. Users then use

the GUI provided by the Excel add-in to define the different variables, constraints, and functions in the

spreadsheet cells as well as choosing the optimization solver and different report options8.

LINGO, whose snapshots of the user interface can be seen in 2.5, is an optimization modeling software

for linear, nonlinear, and integer programming. Lingo is a comprehensive tool designed to make solving

various optimization problems simpler, faster, and more efficient. This tool provides an integrated package

comprising a powerful language capable of expressing various optimization models, editing problems, and

fast solvers. LINGO allows for reading data from spreadsheet files using its SQL like language9.

2.2.6 Summary and comparisons

In this Section we summarize the findings and compare the different solutions according to five different

categories:
8https://www.lindo.com/index.php/products/what-sbest-and-excel-optimization
9https://www.lindo.com/index.php/products/lingo-and-optimization-modeling

12

CHAPTER 2. STATE OF THE ART

Figure 2.5: Lingo user interface

• Cost: We compare the different tools according to their pricing for both enterprise, education, and

student users.

• Code availability: This metric compares the different tooling according to the availability of their

code to the general public.

• User interface: In this category we compare the user interfaces available for each of the different

tools and the tasks end users can accomplish using them.

• Ease of use: This metric is used to compare the ease of use of the solutions.

• Features: We use this metric to compare the applications in terms of available features.

Looking at Table 2.2 we can see that all of the tools above carry costs for enterprise users, however all

of them have free trials, Excel and SAS/OR are free for students and all of the others are heavily discounted

for students.

13

CHAPTER 2. STATE OF THE ART

Excel Paid with free trial and free student tier
SAS/OR Paid with free trial and free student tier

NCSS
Paid with free trial and discounts for education and government
use

MATLAB
Paid with heavy discounts for home, education and student users
and free trial

Lingo and What’sBest! Paid with free trial with education discounts

Table 2.2: Different solutions comparison cost

When it comes to user interfaces users have different options according to their needs. One can see in

Tables 2.3, 2.4 and 2.5 that tools such as Excel, NCSS, and What’sBest! would make a better choice for

users with little to no programming experience wanting to solve linear programming problems. For more

experienced users wanting more freedom and capabilities when solving linear programming problems

tools such as MATLAB, Lingo and SAS/OR would be a preferable choice and for users wanting to solve

more advanced optimization problems, SAS/OR or MATLAB would be the tooling of choice.

However, despite the array of features offered by the different solutions and the availability of user

interfaces for select tasks, there are still improvements that could be made in the usability, flexibility, and

reliability of these interfaces. More notably various interfaces used for linear programming tasks such

as the ones used in Excel, NCSS, and What’sBest! assume that users know the various steps involved

in linear programming problem solving. The Excel tool has some downsides with its approach since its

methodology involves a considerable amount of pointing, clicking and dragging and does not provide users

with easy visualization of the model being built. Other tools such as NCSS and What’sBest! improve on

the scenario by having the references to the cells done manually. However none of the previous tools have

proactive measures to avoid user errors such as interactively showing the different constraints, variables,

and optimization as the model is being constructed. Some of the more useful tools such as Excel lack

some more advanced features such as more advanced solvers and options.

Excel Excel has a user interface for linear programming and most tasks

SAS/OR
Possesses a graphical user interface for some operations research
tasks, but linear programming can only be done using their alge-
braic language

NCSS Yes similar to Excel
MATLAB Like SAS/OR has some GUI, but not for linear programming
Lingo and What’sBest! Yes very similar to Excel

Table 2.3: Different solutions comparison when it comes to User interface

14

CHAPTER 2. STATE OF THE ART

Excel
Numerous features with many spreadsheet related uses; lacking in
terms of operations research related features when compared with
the other solutions few linear programming solvers and options

SAS/OR Numerous optimization and operations research features

NCSS
Numerous features related to linear and mixed integer program-
ming; various solvers and options

MATLAB
Numerous operations research features and a wide array of tools
and a general purpose programming language

Lingo and What’sBest! Numerous linear and mixed integer tools

Table 2.4: Different solutions comparison when it comes to features

Excel
Relatively easy to use for seasoned Excel users; requires the instal-
lation of additional add-ins and lacks a coherent interface

SAS/OR
Some optimization tasks are accessible to end users but others
such as linear programming require some knowledge of mathe-
matical notations and some programming

NCSS
Process very similar to Excel with a better and less prone to errors
interface

MATLAB

Some tasks can be accomplished without programming but simi-
larly to SAS/OR requires programming knowledge for others such
as linear programming; however users with a mathematical back-
ground should be familiar with significant portions of the syntax.

Lingo and What’sBest!
The difficulty level of Lingo can be positioned between SAS/OR
and Excel and What’sBest! has a similar workflow to Excel.

Table 2.5: Different solutions comparison when it comes to ease of use

2.3 Projects involving visual languages and linear

programming

2.3.1 A graphics interface for linear programming

In previous works researchers introduced an interface for a software system that guides users when graphi-

cally building linear programming models instead of using a mathematical formulation [13]. Their interface

(seen in Figure 2.6) boasts multiple features such as hierarchical decomposition, multiple model repre-

sentations, alternative formulation approaches, the use of model templates, and database and model

management features.

The authors identified the following steps to solve a linear programming problem: investigation, model

formulation, data management, algorithmic solution and report generation and analysis. In their work the

authors discuss only the first four stages. The first step, problem investigation, is due to the nature of the

task being done manually. In their solution LPFORM, the second step being the model formulation in an

15

CHAPTER 2. STATE OF THE ART

Figure 2.6: Energy problem represented in LPFORM

algebraic language, is automated. The third step involves human input, this being necessary to input, store,

and retrieve data from a relational database. The fourth step, solving the model, is done automatically.

2.3.2 Creating a GUI Solver for Linear Programming Models in MATLAB

Researchers have introduced LpSolver, a Graphical User Interface (GUI) for linear programming problems

using MATLAB [22]. Their solution was created for classroom-sized problems and boasts features such as

computing expressions with symbolic variables and fractions and allowing the users to trace the optimiza-

tion process.

When building models using the LpSolver users have access to a graphical interface seen in Figures

2.7,2.8 and 2.9 where they can input the data manually or load the data from a previously created file.

However, users are discouraged to use LpSolver to solve problems with more than 50 constraints or 100

variables. Users can also save the created model and have access to different algorithms for solving the

problem, this includes the Simplex Method, the Big-M Method, the Two-Phase Method, and the Dual-

Simplex Method.

2.3.3 gLPS: A graphical tool for the definition and manipulation of linear

problems

Collaud and Pasquier-Boltuck introduced gLPS (graphical Linear Programming System) [7]. This tool allows

users to express linear problems using graphical objects (circles for restrictions, squares for variables, etc.)

networked according to specific rules to form a model. The major strength of gLPS is grounded on it being

able to express linear programming models belonging to a wide array of domains. gLPS is not only a

16

CHAPTER 2. STATE OF THE ART

Figure 2.7: LpSolver graphical interface creating a formulation with output for all iterations

Figure 2.8: LpSolver graphical interface with final solution output

modeling language but also an integrated software system for the creation, modification, and running of

linear programming models.

Contrary to other projects presented in this Subsection gLPS was created for experts capable of formu-

lating linear programming models algebraically. The author’s name LPForm (Subsection 2.3.1) as being

one language focused on improving linear programming for non-experts. The symbolism used by gLPS is

a direct translation of the algebraic notation, a choice whose authors assert restricts the potential users

of gLPS. The authors justify this choice by claiming that this notation would be a more natural approach

17

CHAPTER 2. STATE OF THE ART

Figure 2.9: LpSolver graphical solution

to operations research specialists. When creating a restriction using gLPS, users are presented with an in-

terface as seen in Figure 2.10. Using this interface one can drag, drop, and connect different components

to create a linear programming model.

Figure 2.10: gLPS graphical interface

2.3.4 Two-variable Linear Programming: A Graphical Tool with

mathematica

Previous work introduced GLP-Tool, a graphical interface designed to help users to understand fundamental

concepts of linear programming [19]. The author’s goal is to leverage active learning to increase student

18

CHAPTER 2. STATE OF THE ART

engagement during the learning process. This tool is a dynamic, interactive, and visual tool that allows

solving user-defined linear programming problems with two variables. In particular, the user can explore

different objective functions and constraint sets, obtain graphical and numerical information on optimal

solutions and intuitively perform post-optimal and sensitivity analysis. The author’s focus is clearly on

education and teaching the mathematical component behind linear programming and the author justifies

some of their choices on classroom requirements.

The interface shown in Figure 2.11 lets the users input the objective and constraints by using selection

and sliding inputs, it allows for the definition of non-negativity by choosing the option in the variable,

choosing the values of the constants using a sliding option as well as the variables in the objective and

constraints. Users can also choose to maximize or minimize the objective. Users can then visualize the

feasible area and solution.

Figure 2.11: GUI linear programming interface for MATLAB

2.3.5 Conclusions

Overall we found that the projects referenced in this Section either have a mathematical approach to linear

programming and its methods and do not offer business-focused features like Excel does by allowing

users to work with data to create the formulations. This is seen in Subsections 2.11 and 2.3.2. Or despite

focusing on similar goals to us, their projects possess outdated and not very intuitive interfaces, this is

seen in Subsections 2.3.1 and 2.3.3.

Considering the above we believe that taking inspiration from projects that use block-based languages

for various other computing tasks could be useful to tackle our problem.

19

CHAPTER 2. STATE OF THE ART

2.4 Frameworks and notable visual languages projects

2.4.1 Blockly

Blockly (whose interface can be seen in Figure 2.12) is a google created library created to build visual

applications that output syntactically correct code. This library is written in pure JavaScript, is 100% client-

side and without server-side dependencies, can be used with all major browsers, and is highly customizable

and extendable10.

Various projects have been built using this technology, having found success particularly in the educa-

tional space. These applications include Blockly Games11, code.org12, MIT App Inventor13 and BlockPy14.

The creation of this library was greatly influential to the field of visual programming languages, not

only due to the projects that were built using it, but as well as the insights gained into the difficulties

and mistakes made when creating visual programming languages [8] which can be helpful in any project

involving block-based languages.

Figure 2.12: A simple Blockly program.

2.4.2 BlockPy

The BlockPy (whose interface can be seen in Figure 2.13) project is a web-based, open-access Python

programming environment made for introductory programming and data science education. This project
10https://developers.google.com/blockly
11https://blockly.games/
12https://code.org/
13https://appinventor.mit.edu/
14https://think.cs.vt.edu/blockpy/

20

https://developers.google.com/blockly
https://blockly.games/
https://code.org/
https://appinventor.mit.edu/
https://think.cs.vt.edu/blockpy/

CHAPTER 2. STATE OF THE ART

came about due to the increasing need that professionals and non-computer science students feel to

learn computer science related skills and due to the contextualization of introductory computer science

education focusing mostly on game design and media computation thus alienating potential learners due

to a perceived pointlessness to their professional activity. Since data science skills such as data processing

are widely needed across a variety of fields the subject is more appealing to users from business or other

technical fields wanting to change careers than other computing fields [3].

Figure 2.13: Hello World program using the BlockPy interface

The choice of Python for this educational tool was because of its explicit syntax, strong support for

data science libraries such as pandas, Matplotlib, and scikit-learn. Despite its ease of use when compared

with other computer languages, using an intermediate visual language was an improvement for the users

of the study. This was found to improve the usability of the language for novice programmers. One feature

that distinguishes BlockPy from other projects allowing users to program in Python using visual languages

is the possibility of freely oping between text and visual programming. This feature was found to improve

the transition process between the two types of languages [2].

Accessibility is one of BlockPy’s project goals. For this reason BlockPy is an easily accessible web-

based platform, all of its code is open source and leverages an array of open-source libraries. The visual

language portion of this project was done using the Blockly library [3].

2.4.3 MIT app Inventor

The MIT App Inventor, whose user interface can be seen in figure 2.14, is an educational platform that

uses android app development to teach introductory computer science concepts. This concept was born

from the observation that smartphones play an intrinsic role in our everyday lives. However the majority

of people do not understand how the technology they use works. This project tries to solve this problem

by providing a more user-friendly approach to building smartphone apps. The interface uses a drag and

drop approach for different components and the Blockly library for the program logic [18].

This project’s contributions to the user interface and visual programming fields stem from the real-

world context and applications instead of more traditional programming aspects such as loops, arrays,

21

CHAPTER 2. STATE OF THE ART

Figure 2.14: Mit app Inventor user interface.

operators, and conditionals [18].

22

C
h
a
p
te

r

3
A block-based language for linear programming

In this Chapter we introduce our proposed language LPBlocks. We will describe how LPBlocks processes

the data, which blocks were designed, and how to define the variables, constraints, and linear programming

model’s objective. Additionally, to make it easier for the reader to understand the language constructs and

format, we will use a running example featured in a Master of Business Administration (MBA) exam [4]. This

example problem aims to increase the profit of deliveries by airplanes. The problem statement provides

values for the weight and space capacity of three different airplane’s compartments (front, rear, and center)

and maximum values for the weight, volume, and profit for four different cargoes (C1, C2, C3, and C4) as

seen in Figure 3.1.

Figure 3.1: Input data for the running example problem

3.1 Data structure

Our language requires the input data to follow a specific structure. This structure allows for the definition

of index columns (as seen highlighted in red in Figure 3.1). These are used to reference values and iterate

over the data columns (in the blue columns of the same Figure) this being always associated with one

index column. To distinguish between the two we assume that the data columns addressed by a given

index column appear in the spreadsheet immediately after the said index column, and that different sets

of index and data columns are separated by an column filled with the character # as can be seen in the

23

CHAPTER 3. A BLOCK-BASED LANGUAGE FOR LINEAR PROGRAMMING

Figure (fourth column). In this case there are two sets, the first being for the three plane compartments

and the second for the four types of cargo.

3.2 Blocks

The building blocks of the linear programming language we propose can be seen in Figure 3.2. LPBlocks

includes:

• Variable blocks (seen in Figure 3.2.A): Blocks for creating single, column and matrix variables.

• Operation block (seen in Figure 3.2.B): A block to construct an individual constraint or the objective.

• Building blocks (seen in Figure 3.2.C): These blocks include two nesting blocks for the Variables

and Constraints, a nesting block to add an individual Constraint to a Constraints block,

and an Objective block to define the objective function.

• Value blocks (seen in Figure 3.2.D): A set of value blocks to access the variables created before.

A

C

D

B
1

2

3

1

2

3

4

1

2

3

4

5

Figure 3.2: Building blocks for LPBlocks

24

CHAPTER 3. A BLOCK-BASED LANGUAGE FOR LINEAR PROGRAMMING

3.3 Defining variables

To define a mathematical linear programming model, considering our running example, one would start

by creating a set of variables iterating over the the airplane sections and the cargoes as shown in Figure

3.3.C (we refer to the problem’s original website for a more common variable naming). Since this is a very

common scenario, LPBlocks includes a construct that can be used to define all these variables which we

call a matrix. In Figure 3.3.B we use such a construct to create the variables for the running example.

In the example, we use a matrix variable block to create a new 𝑁 × 𝑀 matrix variable named

CompartmentCargo, with 𝑁 being equal to the length of the column Compartment and𝑀 to the length

of the column Cargo with these columns serving as its indexes.

A

B

C

Figure 3.3: Creating an example matrix variable

LPBlocks offers several options to define new variables, using the blocks seen in Figure 3.2.A respec-

tively:

• single variables through its name (as seen in Figure 3.2.A.1);

• column variables defining its name and an index column for which the variable will be iterated and

accessed (as seen in Figure 3.2.A.2);

• matrix variables that take a name and two index columns for which they can be iterated and those

values accessed ((as seen in Figure 3.2.A.3) and used in Figure 3.3.B).

The process of generating the model variables is dependent on which variable blocks we used:

• For the single variable block, a variable is generated with the chosen name.

• For column variable blocks, an array of variables is created.

• For matrix variables blocks, a matrix of variables is created (as shown in Figure 3.3.B).

25

CHAPTER 3. A BLOCK-BASED LANGUAGE FOR LINEAR PROGRAMMING

3.4 Defining constraints

The second step to define the mathematical model would be to create a set of constraints, using the

variables created before, and encoding the restrictions of the underlying problem. A constraint of the

running example is that one “cannot pack more of each of the four cargoes than their available quantity”.

The mathematical encoding would be as shown in Figure 3.4. There are four constraints, one for each

cargo. For each constraint, the left-hand side of the inequality displays the sum of variables referring to

the corresponding cargo (e.g. C1 for the first constraint) and for the three different airplane sections. On

the right-hand side one would write the cargo weight limit.

Figure 3.4: Defining constraints for the cargoes weight

The first constraint in Figure 3.4 is defined in our language by using: i) an operation block with

the inequality sign <=; ii) a variable block with the option CompartmentCargo and indexes sum

and each; iii) a column block with the option Weight and index each. Since the constraints block

only appears after the variables block the compiler knows the index values for both the column and

variable used and thus can generate the correct constraints which in this case are also expressed in Figure

3.4.

In LPBlocks, each constraint is defined by dragging a constraint block inside the constraints block

(second and third blocks from the top in Figure 3.2.C) and then using the value blocks (blocks in

Figure 3.2.D) and operation blocks (blocks following the constraint block in Figure 3.2.B) to express

the constraints. In our language, operation blocks represent relations between blocks and are used

to express several operations including arithmetic operations and inequalities. The value blocks can

represent:

• Columns;

• Previously defined variables;

26

CHAPTER 3. A BLOCK-BASED LANGUAGE FOR LINEAR PROGRAMMING

• Numbers.

The variables can be accessed using the analogous matrix variable value block to the matrix

variable creation block used for its creation. As an example when a user creates a variable using

a matrix variable creation block (seen in Figure 3.3) a user can only access the created variable using a

matrix variable value block (as seen in Figure 3.4).

Our solution includes other features such as allowing for the expression of sums and iterations by

selecting the option each for iterations and sum for sums. This can be seen in Figure 3.4 where the user

selects the option each to generate an iteration of the column Compartment and the option sum for

generating sums of the column Cargo.

Another example constraint can be expressed in natural language as “the volume (space) capacity of

each compartment must be respected”. This constraint (in Figure 3.5.A) uses X (multiplication) and <=

operation blocks and value blocks to express the more complex constraints. This constraint differs

from the previous ones since the use of the X operation block leads to the generation of sumproduct

constraints instead of sum. For this constraint, our compiler generates the linear programming constraints

featured in Figure 3.5.

Figure 3.5: Defining constraints for the weight capacity

3.5 Defining the objective function

The final step in a linear programming model is the definition of an objective function. For our running

example, one intends to maximize the profit of the airplane usage.

To define the objective function users must connect the objective block and the constraints

block together and use several value and operation blocks.

In the example seen in Figure 3.6.A the objective function is created by using an operation block

with value <=, a column block with option Profit, and a variable block with the matrix variable

27

CHAPTER 3. A BLOCK-BASED LANGUAGE FOR LINEAR PROGRAMMING

Figure 3.6: Objective function for the running example

Compartment-Cargo. The objective function generated by this statement is the one featured in Figure 3.6

which would be the one written in a mathematical model.

28

C
h
a
p
te

r

4
Implementation and architecture

To allow LPBlocks to be used we created a web application that lets users interact with the language and

use it with their own datasets. When using our tool users can load data from spreadsheets, interact with the

data and create linear programming formulations using our language, visualize the model being created

in real-time and errors being committed during the construction process and finally run the model and get

the results of running the created model by a solver.

Our implementation possesses three main components: the first is a web application, used to provide

the user access to our language, and with an interface to select the data, build and run the models. The

other components are APIs used by the web application. The second component is a Rest API to read

spreadsheet files and the third a Rest API to run the model and get a solution. A component diagram with

the architecture of our implementation can be seen in Figure 4.1.

4.1 Web application

For the users to be able to access our language we created a web application that allows users to build

linear programming models using our language seen in Figure 4.2.F and Figure 4.2.G. The data loaded

from a spreadsheet can be seen in Figure 4.2.E. The users can also run the model and get the results as

can be visualized in Figure 4.2.D. Figure 4.2.A, B and C illustrates the mathematical representation of the

model created in section G of the same figure.

We chose React and react-blockly since it was well suited for the highly dynamic data generated when

the users load data from spreadsheets, create and run the model. The Web application was built using

various web technologies. The blocks and workspace were implemented using the react-blockly library1.
1https://www.npmjs.com/package/react-blockly

29

https://www.npmjs.com/package/react-blockly

CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

Figure 4.1: Component diagram for our application

The interface was built using Typescript2, React3 and Redux4. Our goal was to create a highly dynamic

and interactive way for users to build their models and to do so we used the previously referred libraries. We

decided to use Typescript for this project since it offers better reliability when compared to plain JavaScript

especially when it comes to tasks related to generating the linear programming formulation.

Because of performance issues and to guarantee near-instantaneous feedback for the user when

creating the models in the block-based language, we tried to do most of the computing in the front-end

since this allows for lower communication costs. It was possible to convert the visual model built by

the user to the mathematical formulation, since the code generation component of our LPBlocks Blockly

implementation was built by us. The running of the model by a solver and the reading of data from the

spreadsheets is done on the backend. This was done to better existing libraries in Node.js when compared

to libraries that run in the browser. The communication between the Web Application and the services are

done using the Rest protocol.
2https://www.typescriptlang.org/
3https://reactjs.org/
4https://redux.js.org/

30

https://www.typescriptlang.org/
https://reactjs.org/
https://redux.js.org/

CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

A

B

C

D

E

F

G

Figure 4.2: Our web application interface

4.1.1 Features

Load and visualize data from spreadsheets One of the features of our interface is the ability that

the users have to use spreadsheets to load the data used to build new models. This feature can be used

to reuse the model created with compatible data.

As seen in Section 3.1 the data used to build the model is extracted from a compatible spreadsheet

and the data is then shown in Figure 4.2.E. The data can be used in the workplace when building the

model as seen in Figure 4.2.G.

Dynamic model generation Being able to visualize the generated mathematical linear programming

formulation is crucial for users learning how to use our language and to add a layer of safety between

the model creation in our language and the execution of the generated model. Users have the ability to

visualize the data loaded from spreadsheets using the process show in Figure 4.3, during this process the

user first selects a file by clicking in the appropriate button (this is show in Figure 4.3.A), then selecting

the file (shown in Figure 4.3.B) and then can visualize the data as seen in Figure 4.3.C. To further improve

this process users can visualize the model being created in the workspace (in Figure 4.2.G) using our

language in its mathematical formulation (in Figure 4.2.A, Figure 4.2.B and Figure 4.2.C). This feature is

also useful for experimentation since users can observe the impact of each change in the workplace in the

resulting model and thus can correct possible mistakes and achieve better efficiency when building their

models.

The dynamic generation feature can be seen in Figure 4.4 in various steps of building the model.

In Figure 4.4.A the user created a column variable and can expand on the variables generated by

hovering with the mouse the list of generated variables (in the section seen in Figure 4.2.A). The user then

31

CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

A

B

C

Figure 4.3: Loading data in our application

created the constraints (in Figure 4.4.B and Figure 4.4.C) and the constraints generated by our tool can

be seen in real-time. In Figure 4.2.D the user added the objective and in Figure 4.4.E the user ran the

model and received the results.

32

CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

B

A

C

D

E

Figure 4.4: Dynamic model generation in our application

Error messages Another feature of our tool is the addition of dynamic error checking and messages,

our goal with this feature is to help novice and more experienced users debug the constructed models as

well as helping users learn our language and catch mistakes commonly associated with creating linear

programming models and in using block-based languages. LPBlocks offers the following error messages:

• Column with the given name already exists (Figure 4.5a): This error is given when the user

attempts to create a variable with a name already used for an existing column. When outputting

this message the variable generated by our model is colored red and the user can visualize more

information about the error by hovering the mouse above the given variable.

• Missing inequation in constraint (Figure 4.5b): This error is given when a user attempts to

create a constraint without using an operation block with an inequation option.

• More than one inequation in constraint (Figure 4.5c): This error is generated when the user

attempts to create a constraint with two or more inequalities. This error is shown by highlighting the

constraints associated with this attempt in red with a more descriptive message appearing when

the user hovers the constraints.

• Null values in expression (Figure 4.5d): This message is given when an expression contains

Null values.

33

CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

• Variable multiplication (Figure 4.5e): This error is generated when the user attempts to multiply

two variables together. This message consists of a red highlight of the affected expressions with a

more descriptive message consisting of the names of the variables that the user is attempting to

multiply.

• Empty fields (Figure 4.5f): This error is outputted when the user did not select the field in a

selectable block.

• Inequation in objective (Figure 4.5g): Given when the user attempts to use an inequation when

creating the objective.

• Each used in objective (Figure 4.5h): When the user attempts to use the option each in an

objective.

4.1.2 Compilation process

In this Subsection, we elaborate on the different aspects of the compilation process used to generate the

linear programming mathematical formulations from our language. In Paragraph 4.1.2 we explain how

the variables are generated from a block statement and the data coming from a spreadsheet. We then, in

Paragraph 4.1.2, explain how we generate the constraints and the objective function.

Generating variables To generate the variables into our internal representation when reading a variable

block, our compilation process consists in reading the name of the given variable and depending on the

blocks used we either: i) stop there for a single variable block, (ii)) read the variables index columns.

The compiler then sets the variable name as a key to a list with the index columns used to create the vari-

ables as its value. The individual variables created with various iterations are computed when necessary.

The process of computing the variables when given their name consists in retrieving the index columns

array for the given variable, and calculating all possible permutations for the contents of the columns. An

example of the outcome of this process can be visualized in Figure 3.3, in which the it was used a Matrix

Variable block to define the variable and our compiler then iterates over both the columns passed as

the input to generate the variables.

Generating the constraints and objective The process of generating the constraints is not as for-

ward as for generating the variables since creating the constraints in our language involves more blocks and

complex operations that support polymorphism such as operation blocks with the X option. The first

step to compute a constraint from our language to the mathematical formulation is to compute the value

blocks, the output of the value blocks is dependent on the block used and its options and requires

that information relative to some of the operations passes from the value blocks to the operation

blocks, this information consists in indications for generating sums and iterations. To do so when access-

ing a particular value of a given column or variable we represent the value in our internal representation.

34

CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

(a) Column with the given name already exists

(b) Missing inequation in constraint

(c) More than one inequation in constraint

(d) Null values in expression

(e) Variable multiplication

(f) Empty fields

(g) Inequation in objective

(h) Each used in objective

Figure 4.5: LPBlocks dynamic error messages

If the user selects sum or each our internal representation contains indications that the user selected this

option in the position of the index column for the value selected. We expand the each operation at the

moment of parsing the inequation. This is due to the possibility that an iteration is applied to more than

one variable or column and when this happens the compiler generates a single iteration. We expand the

sum when parsing an operation or the objective since this operation can be used in more than one context

that changes its meaning such as using it as part of a operation block with the option X to create a

sumproduct (as seen in Figure 3.4) of two columns or one column and one variable. Figure 4.6 showcases

the compilation process of block that uses an each and sum operation.

After compiling the value blocks to their respective location, sum, or iterations of a column or

variable, we then compile the different operation blocks. The compilation of the operation blocks

differs from the given operations: for the inequalities we first retrieve the different each indication and

35

CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

Generate base expression from blocks

Expand each expressions

Expand sum expressions

+

Figure 4.6: Defining constraints - second example from Chapter 3

use them to generate the multiple constraints as seen in Algorithm 4.2 by first treating them as a set

and generating constraints for all the permutations of the given columns. When generating the operation

performed using the X option, the operation computed is dependent on the input given. Thus, if we are

given either single values on both sides or a single value on one side and multiple values on the other, the

single value is multiplied by each of the multiple values. When multiplying both values generated with the

option sum a sumproduct as seen in Algorithm 4.3 operation is generated. We opted for this option relative

to doing a multiplication since we considered that it would be the most intuitive for our target audience.

36

CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

For the + and - operation options we use the first input as the left side statement and the second as the

right side statement. When a sum is not expanded as a sumproduct operation; it is replaced by a sum of

the different values of the given index column as seen in Algorithm 4.1. The way we compile the objective

is similar to the constraints, differentiating in not allowing for the use of each in value blocks and

inequalities in the operation blocks.

Algorithm 4.1 Expand sum expression

1: function expand_sum_expression(𝑒𝑥𝑝𝑟)
2: 𝑉𝑎𝑙𝑢𝑒𝑠𝑠𝑢𝑚 ← 𝑓 𝑖𝑛𝑑𝑠 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠
3: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟 ← 𝑒𝑥𝑝𝑟
4: for 𝑣𝑎𝑙𝑢𝑒 𝑜 𝑓 𝑣𝑎𝑙𝑢𝑒𝑒𝑎𝑐ℎ do
5: 𝑐𝑜𝑙𝑣𝑎𝑙𝑢𝑒 ← 𝑔𝑒𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑑𝑎𝑡𝑎 𝑓 𝑜𝑟 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑎𝑙𝑢𝑒
6: 𝑠𝑢𝑚𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ← []
7: for 𝑐𝑒𝑙𝑙 𝑜 𝑓 𝑐𝑜𝑙𝑣𝑎𝑙𝑢𝑒 do
8: 𝑠𝑢𝑚𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 .𝑎𝑑𝑑 (𝑐𝑒𝑙𝑙)
9: end for

10: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟 ← 𝑛𝑒𝑤𝑒𝑥𝑝𝑟 .𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (”𝑠𝑢𝑚” + 𝑣𝑎𝑙𝑢𝑒, 𝑠𝑢𝑚𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 . 𝑗𝑜𝑖𝑛(” + ”)))
11: end for

return 𝑛𝑒𝑤𝑒𝑥𝑝𝑟
12: end function

Algorithm 4.2 Expand each expression

1: function expand_each_expression(𝑒𝑥𝑝𝑟)
2: 𝑉𝑎𝑙𝑢𝑒𝑠𝑒𝑎𝑐ℎ ← 𝑓 𝑖𝑛𝑑𝑠 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑎𝑐ℎ 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠
3: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠 ← []
4: for 𝑣𝑎𝑙𝑢𝑒 𝑜 𝑓 𝑣𝑎𝑙𝑢𝑒𝑒𝑎𝑐ℎ do
5: 𝑐𝑜𝑙𝑣𝑎𝑙𝑢𝑒 ← 𝑔𝑒𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑑𝑎𝑡𝑎 𝑓 𝑜𝑟 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑎𝑙𝑢𝑒
6: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠 .𝑎𝑑𝑑 (𝑒𝑥𝑝𝑟 .𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (”𝑒𝑎𝑐ℎ” + 𝑣𝑎𝑙𝑢𝑒, 𝑐𝑒𝑙𝑙))
7: end for

return 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠
8: end function

Algorithm 4.3 Generate sumproduct

1: function generate_sumproduct(𝑒𝑥𝑝𝑟,)
2: 𝑉𝑎𝑙𝑢𝑒𝑠𝑒𝑎𝑐ℎ ← 𝑓 𝑖𝑛𝑑𝑠 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑎𝑐ℎ 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠
3: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠 ← []
4: for 𝑣𝑎𝑙𝑢𝑒 𝑜 𝑓 𝑣𝑎𝑙𝑢𝑒𝑒𝑎𝑐ℎ do
5: 𝑐𝑜𝑙𝑣𝑎𝑙𝑢𝑒 ← 𝑔𝑒𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑑𝑎𝑡𝑎 𝑓 𝑜𝑟 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑎𝑙𝑢𝑒
6: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠 .𝑎𝑑𝑑 (𝑒𝑥𝑝𝑟 .𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (”𝑒𝑎𝑐ℎ” + 𝑣𝑎𝑙𝑢𝑒, 𝑐𝑒𝑙𝑙))
7: end for

return 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠
8: end function

37

CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

4.2 Spreadsheet reading service

This service was created as a Rest API using Express.js5 that accepts the upload of a given spreadsheet

file and then reads it using the node-xlsx6 library and sends back the contents of spreadsheet in JSON

format as seen in Appendix A.

To translate the data in the spreadsheet into our internal representation used to generate the con-

straints (this process can be seen in Figure 4.7) we load the data from the file into memory in the JSON

format. Subsequently, we parse the JSON data into our internal representation. This process comprises

the following steps:

• Finding the index columns as seen in Algorithm 4.4: we do this by iterating over the list of columns

names and selecting the first column and the first ones after an “Empty” column as seen in Algo-

rithm 4.4

• Finding the indexes for each column as seen in Algorithm 4.5: to do this we iterate over the column

names and set each column index column as the previous index column.

• Finding the column data as seen in Algorithm 4.6: to do this task we first iterate over the column

names and set the data of the column to its contents in the JSON readings.

Listing 4.1: Input for the Solver API

1 {

2 model: `Maximize

3 obj: + 0.6 x1 + 0.5 x2

4 Subject To

5 cons1: + x1 <= 1

6 cons2: + 3 x1 + x2 <= 2

7 End`

8 }

Algorithm 4.6 Find column data

1: function find_column_data(𝑐𝑜𝑙𝑠)
2: 𝑐𝑜𝑙𝑢𝑚𝑛𝑑𝑎𝑡𝑎 ← 𝑀𝑎𝑝 < 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑠𝑡𝑟𝑖𝑛𝑔 > ()
3: for 𝑐𝑜𝑙 𝑜 𝑓 𝑐𝑜𝑙𝑠 do
4: 𝑐𝑜𝑙𝑢𝑚𝑛𝑑𝑎𝑡𝑎 ← 𝑐𝑜𝑙𝑠 [𝑐𝑜𝑙]
5: end for

return 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥𝑒𝑠
6: end function

5https://expressjs.com/
6https://www.npmjs.com/package/node-xlsx

38

https://expressjs.com/
https://www.npmjs.com/package/node-xlsx

CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

Parsing

Read spreadsheet in Json
format

Figure 4.7: Input data for the running example problem

Algorithm 4.4 Find index columns

1: function find_indexes(𝑐𝑜𝑙𝑠)
2: 𝑖𝑛𝑑𝑒𝑥𝑐𝑜𝑙𝑠 ← []
3: 𝑖𝑛𝑑𝑒𝑥 ← 𝑇𝑟𝑢𝑒
4: for col of colnames do
5: if 𝑖𝑛𝑑𝑒𝑥 == 𝑇𝑟𝑢𝑒 then
6: 𝑖𝑛𝑑𝑒𝑥𝑐𝑜𝑙𝑠+ = 𝑐𝑜𝑙
7: 𝑖𝑛𝑑𝑒𝑥 ← 𝐹𝑎𝑙𝑠𝑒
8: end if
9: if 𝑐𝑜𝑙 == ”𝐸𝑚𝑝𝑡𝑦” then

10: 𝑖𝑛𝑑𝑒𝑥 ← 𝑇𝑟𝑢𝑒
11: end if
12: end for

return 𝑖𝑛𝑑𝑒𝑥𝑐𝑜𝑙𝑠
13: end function

4.3 Optimization service

The optimization service uses Express.js once again to create a Rest API. This API receives a JSON struc-

ture that includes the model in a format that the solver can run. The API then runs the model using

the clp-wasm7 library and sends the output back. This library is a port of the COIN-OR linear program-

ming solver to WebAssembly. To use this service we also transform the formulation in our web application

internal structure to the format seen in Listing 4.1.

7https://www.npmjs.com/package/clp-wasm

39

https://www.npmjs.com/package/clp-wasm

CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

Algorithm 4.5 Find column indexes

1: function find_column_indexes(𝑐𝑜𝑙𝑠)
2: 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥𝑒𝑠 ← 𝑀𝑎𝑝 < 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑠𝑡𝑟𝑖𝑛𝑔 > ()
3: 𝑖𝑛𝑑𝑒𝑥 ← 𝑇𝑟𝑢𝑒
4: 𝑖𝑛𝑑𝑒𝑥𝑐𝑜𝑙𝑢𝑚𝑛 ← ””
5: for 𝑐𝑜𝑙 𝑜 𝑓 𝑐𝑜𝑙𝑠 do
6: if 𝑖𝑛𝑑𝑒𝑥 == 𝑇𝑟𝑢𝑒 then
7: 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥𝑒𝑠 [𝑐𝑜𝑙] = 𝑖𝑛𝑑𝑒𝑥
8: 𝑖𝑛𝑑𝑒𝑥 ← 𝐹𝑎𝑙𝑠𝑒
9: end if

10: if 𝑐𝑜𝑙 == ”𝐸𝑚𝑝𝑡𝑦” then
11: 𝑖𝑛𝑑𝑒𝑥 ← 𝑇𝑟𝑢𝑒
12: end if
13: end for

return 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥𝑒𝑠
14: end function

40

C
h
a
p
te

r

5
Language applicability

In this chapter we intend to illustrate the applicability of our language to a broad set of examples. Doing so

gives us some assurance that our language could be used as a replacement of other linear programming

tools, still allowing users to solve their problems. We present a set of linear programming problems mostly

taken from an MBA exam [4] and from an Operations Research textbook [5], and their modeling using

LPBlocks. Our goal when choosing those problems was to have a set of problems representative of different

linear programming workloads, difficulty levels and size, that would allow us to test and assess some

possible shortcomings of LPBlocks.

5.1 Vegetable mixture

This example shown in Figure 5.1 comes from the operations research textbook [5]. In this example,

a manufacturer of freeze-dried vegetables aims at reducing production costs while adhering to various

nutrition criteria and guidelines. We are given nutritional data for each of the vegetables as well as their

cost per pound in the tabular data shown in Figure 5.1. We have a maximum percentage for certain

vegetables and lower bounds for certain nutrients.

Since our goal is to find the ratio of each vegetable that goes into the mixture, we created a column

variable named Mixture that takes as its input the column Vegetable. For the constraints we start

by creating constraints imposing limits of 40% (represented by the multiplication of 0.4) for beans and 32%

for potatoes (represented by the multiplication of 0.32). The following three constraints define the lower

bounds for the given nutrients. The objective is to minimize the cost per pound of the mixture.

41

CHAPTER 5. LANGUAGE APPLICABILITY

LPBlocks

Constraints

Objective

Generates

Figure 5.1: Definition of the vegetable mixture problem using LPBlocks

5.2 Fruit canning plants

In this example taken from an MBA exam [4] and shown in Figure 5.2 we are given information associated

with different suppliers and fruit canning plants with the goal of maximizing its profits. The information

includes shipping, labor and operating costs, buying prices and maximum production capacities. Despite

not being in the spreadsheet, the problem definition states that the selling price for each tonne is $50.

To generate the formulation we create a matrix variable with indexes Supplier and Plant. The

constraints for this problem are straightforward and can be generically specified, this consisting of the

upper bounds for the supply and capacity for each of the plants. The objective function is more complex

since it needs to take into account the selling price and all the costs to represent the profit.

42

CHAPTER 5. LANGUAGE APPLICABILITY

LPBlocks

Generates

Constraints

Objective

Figure 5.2: Fruit canning plant example modeled using LPBlocks

5.3 Machine allocation

In the problem shown in Figure 5.3 (taken from [4]) the goal is to maximize a factory’s profit by allocating

the production of different goods among two machines. In this problem we are given information about

each product’s profitability, use of floor space and manufacturing time in minutes taken by each machine.

We are also given other rolls related to the machines down time, the total floor space of 50𝑚2, the time of

a work week of 35 hours, the ratios of which some products have to be produced relatively to others and

that Product 1 can only be manufactured in the second machine.

43

CHAPTER 5. LANGUAGE APPLICABILITY

LPBlocks

Generates

Constraints

Objective

Figure 5.3: Machine allocation problem in LPBlocks

In this example we create column variables for each machine taking the Product column as the

index as opposed to previous examples where we created matrix variables. In this model we did not

create a matrix variable as could be assumed due to the fact that the values for the machines are

not used as index columns. Using them for defining a matrix variable would imply that at least one

of the variables is referenced doing so and would offer nothing in terms of iterability and generalization. In

terms of constraints we use the first constraint to express that the maximum floor space use is 50𝑚2. If

LPBlocks supported matrices as data input we could express this constraint in a less verbose manner. In

the second constraint we express that the production of 2 is the same as 3. In constraints three and four

we take into account the downtime of 5% for machine x and 7% for y by modeling that the total running

44

CHAPTER 5. LANGUAGE APPLICABILITY

time of each machine must be lower or equal to 95% and 93% of the total work week. The objective aims

to maximize the profit and takes into account that Product 1 can only be manufactured in the second

machine to create the objective function. Alternatively we could add a constraint to express that machine

x produces 0 units of product 1 and use a generic approach to create the constraint.

5.4 Pharmaceutical company

This problem was taken from an Excel optimization tutorial1 and seen in Figure 5.4. Our goal in this

problem is to reduce the manufacturing costs associated with a given medicine. The data that we are

given consists in three packages of the same medicine. The quantity of medicine per vial for each type of

drug is also given. We also have information about the price per package and total needed in milligrams

by the patients. In this model the variables are the quantity of each of the packages, the constraint is that

the total amount produced of the drugs in milligrams must be higher or equal than the total requested by

the patients. The objective is to minimize the production costs of the packages.

LPBlocks

Generates

Constraints

Objective

Figure 5.4: Drug manufacturing problem in LPBlocks

1www.exceltactics.com/using-solver-to-optimize-solutions-to-costing-problems-in-excel

45

www.exceltactics.com/using-solver-to-optimize-solutions-to-costing-problems-in-excel

CHAPTER 5. LANGUAGE APPLICABILITY

To represent the variables we create a column variablewith the index Drugs and called this variable

Dose. To represent our constraint we use an operation block with the option <=. This block’s first

input is another operation block with the option 𝑋 , in this block we fit a variable block with index

𝑠𝑢𝑚 and a column block with index 𝑠𝑢𝑚. Using this blocks represent a sumproduct operation between

the variables Dose and the column Vial_mg. The second input of the operation block operation

block is a column block representing value Total of the column Need. The objective was created by

doing a sumproduct of column Price and the variables Dose.

5.5 Computer manufacturing

In the problem shown in Figure 5.5 (taken from [4]),a computer manufacturer needs to decide the quanti-

ties of each of two computer models to manufacture. For this we are given two components necessary to

manufacture a computer model, this being Materials and Labor. We also get for each of the components

the costs for the manufacture of one model A and for one model B, and we also get the available quantity

of each of these components. The data also include the computer models’ profit associated with each of

them. Our constraint in this problem is to guarantee the resources used do not surpass their values. The

objective is to maximize profits.

LPBlocks

Generates

Constraints

Objective

Figure 5.5: Computer manufacturing problem in LPBlocks

46

CHAPTER 5. LANGUAGE APPLICABILITY

To represent this problem we first start with the variables. For this we start by creating a column

variable named Production with the column Models as its index. Doing it allows us to create a

variable for each of the two models. To create the constraint we use operation blocks with the 𝑋

option and value blocks with the 𝑒𝑎𝑐ℎ option as the index of column Available and the variable

Production to multiply the units produced by the costs Labor and Materials.

5.6 Satellite launching

LPBlocks

Generates

Objective

Constraints

Figure 5.6: Satelite launching problem in LPBlocks

This problem was taken from an operations research textbook [5]. In this problem, we did not use

spreadsheet data for our formulation. For this problem we know that a company has two payloads (T1

and T2) and wants to calculate the number of satellites that carry each payload. We also have access to

47

CHAPTER 5. LANGUAGE APPLICABILITY

other information such as the success rate of satellites carrying payload T1 and T2 and the profit for each

successful payload transportation.

We define two single variables in LPBlocks for our variables. The constraints express various

launch success rates, launch times, and maximum launches for each of the loads. The objective is to

maximize the profit for the loads.

5.7 Cargo allocation

This is the example used for presenting the language in previous chapters and can be observed in Figure

5.7. To recall our goal in this problem is to maximize a shipping plane’s profit by allocating four types of

cargo amongst three plane sections.

The variable created is a matrix variable that takes the index columns Compartment and

Cargo as its input.

For the constraints, the first three relate to space, volume, and weight capacity limitations. LPBlocks

shines in these three constraints in the sense that when compared with writing a standard mathematical

specification we need to write considerably less specification as doing it in our language allows us to

write a generic specification of the constraint we want to represent and the compiler can generate the

associated constraints in the mathematical notation. The last constraint related to balancing the plane’s

cargo in the different sections had to be done manually since LPBlocks does not possess a block capable of

representing multiple equalities using a single block. We considered adding this block to our language but

found that this specific use case was not prevalent to a level warranting adding the block. The objective

function aims to maximize profits by calculating the sumproduct of the Profit with the sum of our

variables elements indexed by the given Profit element.

5.8 Threats to validity

The main point of objection to the results of this Chapter come from the reduced number of problems

used and to the fact that those problems could have been chosen to better fit our language and possible

lack of coverage. To mitigate this we source our problems from different sources and strive to include

problems that would use different features of our language, represent different use cases and have varying

difficulty levels. The number of sources used could also be higher but despite only having problems from

three different sources two of those sources were used in teaching in linear programming and purposely

contained problems of different difficulties.

48

CHAPTER 5. LANGUAGE APPLICABILITY

Generates

Constraints

LPBlocks

Objective

Figure 5.7: Cargo allocation problem in LPBlocks

49

C
h
a
p
te

r

6
Empirical evaluation

We intend to assess if our language and tool can be used by people with little or even no linear program-

ming experience. We want to understand how people react to its features and how users from different

backgrounds interact with our language, tool and the concepts behind it. Thus, in this chapter we showcase

an empirical study we designed and ran.

6.1 Design

As said previously our aim is to observe the experience that different users have when using our tool to

solve a plethora of problems and to collect their reactions and feedback.

To achieve the desired outcome in this study we planned on doing hour-long sessions with each of the

participants. During each of the sessions we plan on doing an initial introduction to linear programming

and how our language can be used to model linear programming problems. We then introduce our tool

and its features. After doing so we solve a demo exercise in front of the user, followed by a joint exercise

where the user solves the problem with possibly extensive help from us and two individual exercises where

the user solves the problem with our input only when necessary.

Beyond solving the problems we created an individual follow-up questionnaire about their experience

with our language and tool, prior experience and education, and other basic information such as age and

gender. The questionnaire can be seen in Appendix B for questions related to the users background and

Appending C for user feedback.

Since the goal of this study is to get qualitative feedback from users and to see their difficulties and

assess our solution viability with different types of users, we aim to have participants from different back-

grounds and with different levels of experience with linear programming. Thus, we contacted via email and

word of mouth possible participants with diverging academic and professional experiences.

50

CHAPTER 6. EMPIRICAL EVALUATION

6.2 Instrumentation

During the session, we use several problems taken from the book and class notes referenced in Chapter

5 and whose datasets in a spreadsheet format can be found at https://drive.google.com/drive/

folders/1SAle03APg4JZefFIleS3-1hYGJ3gURI. We use a web implementation of our tool that can

be found at https://lpblocks.herokuapp.com.

We used the same set of problems in all our sessions and those where:

• Vegetable mixture - We used a portion of the problem seen in Section 5.1 containing only con-

straints retaining the maximum ratio of beans in the mixture and the absolute content of iron in

the mixture. We used this problem as the tutorial problem. We decided to use this problem as the

introductory problem since it showed a balance of complexity and relatability with the number of

features of our tool shown during its resolution.

• Fruit canning plants - We used this problem as presented in Section 5.2 to use as a joint exercise.

This exercise is arguably more complex than the ones to be solved more independently by the user

but allows the user to experience most of the features needed for solving the future exercises.

• Pharmaceutical company - This problem is the first individual problem that the participants are

asked to solve. This problem introduced in Section 5.4 is notably simpler than the previous problem

and its simplicity lets the user focus on some of the core features of our tool and has the added

benefit of decreasing the fear and intimidation for users less familiar with linear programming.

• Computermanufacturer - This problem seen in Section 5.5 is the last of the individual problems.

It is more complex than the first of the individual problems but allows the participants to put into

practice various of our language features such as sumproducts between variables and columns and

the use of the each option, requiring a more thorough thinking process for the interpretation and

expression of the constraints in our language.

6.3 Execution

To find participants for our study we contacted people in our circles as well and student groups of relevant

subjects as said in Section 6.1. Our goal was to have a diverse group of participants and in our case that

entailed increasing the efforts to acquire participants from non-computing backgrounds. Overall we were

able to find 7 participants. Of this group 4 of the participants had a higher education degree in a computing

field and were either currently Master or Ph.D. students. The other 3 had no computing degree, one of them

worked in industrial engineering consulting and the other 2 work entailed doing web marketing, customer

service, and logistics for e-commerce companies. All participants had at least a bachelor’s degree and all

participants from the computing background were male and from the business background were female.

51

https://drive.google.com/drive/folders/1SAle03APg4JZefFIleS3-1hYGJ3gURI
https://drive.google.com/drive/folders/1SAle03APg4JZefFIleS3-1hYGJ3gURI
https://lpblocks.herokuapp.com

CHAPTER 6. EMPIRICAL EVALUATION

The study was conducted with each participant at a time, in a think-allowed setting, using a video-

conference software.

The first step when starting the session was to ask participants to download the datasets for the

session. Afterwards, we gave a briefing on linear programming and some of its uses and some of the

difficulties associated with its use. After doing so we introduce our solution, explain that the results of the

study will be anonymous, and reassure the participants that our goals are to collect qualitative feedback

about our tool, that our tool has a learning curve and that we are not passing any judgment on the

participants.

After our introduction we start with the tutorial which is composed of an explanation and introduction

to our language. This includes how the data is loaded from spreadsheets and its representation in the tool

and our language blocks and their uses. We also give an explanation of some aspects of the compilation

process and some of the caveats of our tools, we explain to the participant how to navigate our interface

and finally do a live demonstration of one linear programming model creation using our tool. During this

process, especially during the live demo, we encourage the participants to ask as many questions as they

need.

Our next step after the tutorial is to let the user solve one of our problems. To do so we ask participants

to share their screen and then after an explanation of the problem and data we guide the user on how

to solve the problem using our solution. During this step we allow the user to do some exploration and to

solve as much of the problem as he can.

Following the joint exercise, we start the first evaluation exercise. Both evaluation exercises are easier

than the explanation exercise, the first one being easier than the second. After explaining the problem and

data we allow the users to do as much as they can, only intervening when the user asks for help or it is

necessary to avoid the user going on a wrong path. We then do the second problem similarly.

After solving the problems we ask the user for any feedback and proceed to end the session and direct

them to the form.

6.4 Data collection

In this section we present the data collected from the forms: in Subsection 6.4.1 the portion relating to the

participants background and in Subsection 6.4.3 the results relating to the feedback given by the users.

In Subsection 6.4.2 we describe the individual session with each user.

6.4.1 Background data

In this subsection, we present the background information about the participants of our study. The ques-

tions in the form relating to the subject are available in Appendix B.

From the information in Table 6.1 (whose questions can be seen in Appendix B), we were able to

52

CHAPTER 6. EMPIRICAL EVALUATION

observe that our participants have an age distribution predominantly between 21-24 and 25-35. The dis-

tribution is split evenly between those two groups, beyond those we had one person over the age of 35 .

In terms of gender we have 4 males and 3 females. In terms of academic background, we have 4 people

with a computing background, 2 people with a business background, and 1 person with both a business

and engineering background . In terms of degree, all our participants had post-secondary degrees, having

slightly more participants with a Masters than with Bachelors and none with Ph.D.. When it comes to prior

experience with linear programming we had 4 persons who took college classes and 3 persons with no

experience at all.

Participant Age Gender Degree Years of
university

Education
field

Linear programming experience Linear program-
ming tools

1 25-35 Male Master 8 Computing Took college classes Programming tools
2 25-35 Male Master 8 Computing Took college classes Excel
3 25-35 Male Master 5 Computing Took college classes Programming tools,

Other visual tools
such as GAMS

4 21-24 Male Bachelor 5 Computing Took college classes Programming tools,
Excel

5 more than 35 Female Master 6 Engineering
and Busi-
ness

None None

6 21-24 Female Master 5 Business None None
7 21-24 Female Bachelor 3 Business None Excel

Table 6.1: Participants background gathered from the survey

6.4.2 Sessions

In this subsection we describe the sessions with the different participants.

Participant 1 During the tutorial the participant was able to understand the language and our goals,

despite special emphasis had to be made when explaining the data and variables. The participant was

proactive and was able to solve a considerable portion of the joint exercise. The participant also demon-

strated interest in our tool and language.

Relatively to the first individual problem, the participant tried to maximize the objective instead of

minimizing. This error could have been made since the user might not have understood that our goal with

this problem was not to increase the profit but to decrease production costs since the participant might

have been more accustomed to maximization problems. Other than that the user did not need considerable

amounts of help.

When solving the second problem the user had some difficulties distinguishing between the option

sum and each in the constraints and objectives. This user did demonstrate more difficulty in solving this

problem than the previous one especially on how to express the costs in our language, but with some help

the user was able to get to the correct solution.

53

CHAPTER 6. EMPIRICAL EVALUATION

Overall the user had a positive reaction to our tool and was able to do a good portion of the exercises

and we felt that the user understood the core of our language and tool and that with some more experience

would be able to achieve mastery of our tool.

Participant 2 During the language presentation the subject found himself interested in the language

and its features, this being demonstrated by the subject asking several questions.

When doing the first demonstration problem the user did have some difficulties on where to place the

blocks. After the initial error, he was able to understand the logic behind the variable creation. Other prob-

lems subsequent during the demonstration were related to differences between each and sum, confusion

between sum values from one column or variable, and using the operation block with the value +.

This was solved. Despite some initial confusion, the participant was able to understand the language.

During the first exercise, the major difficulty was representing the production in milligrams as the

sumproduct of the vial quantity and the produced vials. The user was able to get the answer and understand

the reasoning with some help.

The main difficulty in the second problem was using two constraints, one for the labor and the another

for the materials instead of using an each for both. The user ended up understanding the logic behind

the model and did the rest of the model by himself.

Overall we found that the user understood the core concepts of our language and with some training

could become proficient in using it.

Participant 3 The participant was attentive and asked several questions when watching the tutorial.

When doing the first exercise the user was proactive and was able to solve a significant portion of it.

Some difficulties involved the use of each and the use of columns and variables.

When doing the second exercise the user was able to solve the problem on his own, the biggest problem

being in using the correct block for addressing variables and discerning between column and variables

blocks.

When doing the third exercise the user experienced some confusion between the use of each and

sum, but was able to solve the exercise.

After our session, he manifested interest in our tool and gave some of his opinions related to our tool

such as adding more solver options and exporting data to Excel files.

Participant 4 The participant was interested in the language and tool and asked several questions. Dur-

ing the example exercise, the participant asked questions about block positioning and language features,

particularly about the sumproduct operation.

During the joint exercises, the user was proactive and found some initial difficulties when trying to

represent the constraints and objectives in our language but ended up being able to continue with some

help. The main problems were related to understanding how the data correlated with the desired goal of

the constraints and objectives. This might be related to the user not using linear programming regularly.

54

CHAPTER 6. EMPIRICAL EVALUATION

In the first exercise, there were some difficulties in creating the variables, particularly in creating 3

variables since the user tried to use 3 column variable blocks to create 3 variables, after visualizing

the formulation generated by our tool we were able to understand the correct way to build the model.

Understanding how to represent the constraints with the data took some tries but with some guidance and

visualizing the output the user got to the correct answer. For the constraints, the user was able to create

them correctly by visualizing the result, error messages and some trial and error.

In the second exercise the participant’s main difficulty was in representing the variables. The rest of

the model took some trial and error but with minor guidance and output visualization, the user was able

to get to the solution. The user did do a manual sumproduct instead of using the sumproduct operation

but that was a result of the trial and error process. With more practice, the user might gain some dexterity

with the tool.

6.4.2.1 Participant 5

During the tutorial the participant was able to understand the purpose of our language and tool, although

special emphasis had to be made when explaining the data and variables. Despite not being from a

computing background this participant also had an engineering background and understood some of the

concepts that our solution tackles, however, the user did demonstrate some skepticism to our language

and its complexity for non-technical users.

When doing the tutorial the user did not ask as many questions as the previous ones but did ask some.

We tried to explain the concepts and how our tool could be used and the user seemed to understand the

language’s purpose. The user did complement the interface and the features, but did feel intimidated by

our tool and doubted her ability to solve problems such as the tutorial problem without our help. In response

we reassured that after doing an exercise with us and gaining some experience the tool becomes easier

and more intuitive.

During the solving of the joint exercise we allow the user to try to understand the problem and ask any

questions and give her input. Some of the difficulties the user had were in understanding the differences

between the blocks for variable access and variable creation. We answered that and were able to convey

their functions. Some of the operations such as sumproducts were not obvious. The user at the end of

this exercise expressed some doubts about the virtue of our tool for users without any prior programming

experience and admitted that despite her prior programming experience in one or two classes in college

she still had difficulties understanding and working with our language.

During the first individual problem the user was able to create the variables, understanding themapping

of our language to the mathematical formulation and how to write the expression was something that did

not occur naturally but after the initial awkwardness and further explanation, the user was able to get over

those hurdles. And once again understanding the differences between variables and columns and how the

constraint in the natural language would be expressed in terms of data were only possible with some help

and further explanations, but the user was able to get there on her own afterward.

55

CHAPTER 6. EMPIRICAL EVALUATION

We were not able to do the last problem due to time constraints since we had planned on doing a

one-hour session but by the time we finished solving the first individual problem the time was almost over

and the user could not continue.

6.4.2.2 Participant 6

The user was interested during the presentation and during the demonstration exercise, where we gave

special emphasis to explaining clearly the uses of linear programming and optimization. However, the

participant did manifest some level of fear related to using our tool. Some of this previous hesitation had

to do with the user not having a strong mathematical background. Despite the hesitation, the user did

manifest some excitement with our tool and despite not doing any optimization in her line of work, she

currently does use Excel for tasks related to marketing and business in general, including keeping track of

stocks and inventory and interacting with logistics software.

We did most of the joint exercise with this participant, but we saw that during the explanation the

user was interested in the different features of our language. She was able to understand some of the

solutions we created and the logic behind it. She also showed some appreciation for the interface with

special relevance for the dynamic features, data visualization, and blocks.

During the first individual problem the user showed some initial difficulty understanding what variable

to create, but after explaining the purpose of the problem again and some trial and error with different

blocks the user was able to get to the correct solution. For creating the constraint, understanding where to

use the inequation was an initial problem, but was quickly corrected with some explanation. Creating the

sumproduct was the harder part and both the blocks and which column and variable blocks and options to

use require some extensive explanation. In the end, the user got to the solution and was able to understand

the logic behind the use. For creating the objective the user still needed help but was able to get to the

solution faster than for the constraint.

When doing the last problem the user faced some difficulties when understanding the problem and

creating the variable, this time the blocks were not an issue. For the constraints, there were still issues

of blocks such as trying to use the wrong variable block to access a variable and a considerable

amount of help was needed for the user to solve the problem, but, eventually, she did and there was some

improvement compared with the first problem especially in understanding the blocks and how they were

used. After solving this exercise the user expressed her liking for the interface and the blocks. She also

affirmed liking the block-based language and made some comments about possible improvements such

as improving the distinction between the constraint and variable value blocks.

6.4.2.3 Participant 7

When introducing the language the participant demonstrated interest in our solution, since she had work

experience with Excel and found it to have some potential, however since the user did have little to no prior

experience with linear programming the user felt intimidated by it at first. We made a special emphasis on

56

CHAPTER 6. EMPIRICAL EVALUATION

explaining what linear programming entails and in explaining its components and how they relate to our

language. The user during the presentation and tool showcase also expressed her liking for the interface

and the language aesthetics and how the data was displayed.

We did most of the joint exercise with this participant, but we saw that during the explanation the user

was receptive to the different features of our language and was able to understand the solution we created

and the logic behind it.

During the first exercise, there was some difficulty in choosing which variable to use, but after re

explaining the problem and how variables are created the user was able to get to the correct block, and

using our visualization features the user was assured she made the correct choice. There were also some

difficulties in representing the value in milligrams from the variable created and the value in milligrams for

each vial, but the user was able to eventually understand how to do it, although with some help. The user

was able to get the value in the spreadsheet to represent the total necessary medication in milligrams.

The user was able to get the objective after some trial and help.

During the second problem, the user was able to get the variable and part of the constraints. Once

again the user needed help in doing the sumproduct and there was still some confusion in using the

variable and column block and some help was warranted to achieve the correct solution. Also, some

help was necessary to get to the objective but the user was able to solve portions of the problem. Despite

the lack of previous experience with linear programming the user still appreciated the tool and was able to

understand some concepts especially using our visualization and dynamic features. She also gave some

advice consisting especially in improving the differentiation between variable and column blocks.

When creating the constraints there was still some confusion on how columns and variables were used,

but with some help she was able to get to the correct answer.

6.4.3 Participants feedback

During the survey we asked for feedback about our tool from the users as well as some ideas and possible

improvements that the users might believe would benefit our tool. To do so we added the questions in

Appending C to our survey, for which the results can be seen in Table 6.2. The details about the questions

asked are in Appendix C.

6.5 Analysis and conclusions

In this section, we present some conclusions and critical analysis related to the data gathered from our

survey and the sessions and their implication on our work and possible future paths, changes, and appli-

cations.

According to the data gathered from our sessions and survey, we can separate our participants into two

different groups, one being the users 1 to 4 or the users with a computing background and 5 to 7 or the

users with a business background. By coincidence, the computing group was all male and the business

57

CHAPTER 6. EMPIRICAL EVALUATION

Participant Other tools Positive aspects Negative aspects
1 Better usability. Usability; Performance;
2 This tool has a strong visual

component. Although Ex-
cel is algorithmically “more
complete”

UX is nice. Drag and
drop works well. Also nice
shortcuts: delete, ctrl+c
ctrl+v. Constraints and Ob-
jective ”sub-windows”are
useful to understand if
the inequations match the
user’s reasoning.

Took me a while to un-
derstand the difference
between “light-blue” vari-
able block and “light-blue”
column block. Each and
sum are also a little
confusing at first (but
the previously mentioned
sub-windows help fixing
mistakes).

3 Easy to learn interface,
good visual aid (in the for-
mula section - we can com-
pare what the blocks trans-
late to in terms of mathe-
matical equations)

Easy to learn interface,
good visual aid (in the for-
mula section - we can com-
pare what the blocks trans-
late to in terms of mathe-
matical equations). No in-
stallation needed is a plus.

No option export to file. For
bigger problems / harder
to solve problems, the lack
of alternative solvers could
result in not being able to
solve the problem.

4 Is not drag and drop like
this app.

Simpler Is not intuitive to beginners

5 Easy to use, to grasp and
get together.

Terms of the buttons. De-
pending on the client if
he doesn’t have the right
knowledge it will be difficult
to think in a problem solv-
ing logic.

6 Visualy atractive; Well orga-
nized; All the information is
well explained when build-
ing the model.

The operations ordering is
confusing.

7 Very intuitive, easy to use,
visualy appelative and well
organized. We can visualize
the model being created

The order of the operations
is not very intuitive.

Table 6.2: Participants feedback gathered from the survey

group all female, the computing group had on average more years of higher education and probably due

to their field of study had prior experience with linear programming. Age-wise the differences were not

starling.

From our sessions, we were able to gather that all the participants were interested in our tool and inter-

face and across the board (although possibly due to selection bias) asked various questions. The questions

were different according to the user background, being slightly more technical in nature from the comput-

ing group. We also found that users universally liked the interface and how the data was accessible. This

58

CHAPTER 6. EMPIRICAL EVALUATION

included the business group where the participants particularly enjoyed having all the data, workspace and

mathematical formulation in the same place. However, during the tutorial and introduction to our solution,

we found that the business group showed either skepticism for participant 5 or hesitation for participants

6 and 7. This was expected due to them not having experience in the field of linear programming.

In terms of actual dexterity and level of proficiency acquired when using our tool during this session

we can conclude that the computing group did considerably better than the business group. This was

evident by the considerably higher portion of the problems they were able to build and less input needed.

However we still found some difficulties that prevailed across the users of this group. We found that the

relation between the data and the specification in natural language was not a considerable problem for

this group except in some less obvious cases. We found that distinguishing between sum and each initially

might cause difficulties in some cases, but are quickly resolved after creating a couple of expressions

using these options. We also found in some cases that the users of this group did not use the language as

intended, but that quickly resolved it. Distinguishing between columns and variables was initially a problem

but was eventually solved. For this group, we also found that the dynamic compilation to the mathematical

formulation was of considerable help in learning our language.

When doing the exercises with the business group we found that the mastery of our tool acquired by

the users varied considerably. We found that user 7 did better than user 6 and that user 5 despite having

only done the first individual exercise. However, with this group, we found some common problems such as

misusing blocks, confusing variables, and columns, difficulties doing the operations such as sumproducts,

difficulties with block order, and how to construct mathematical operations using the blocks. We also

found that these users also had difficulties in interpreting the exercises and in understanding how the data

correlated with the goals of the problems, however, we found that as the session progressed their ability

to do so improved.

From the feedback gathered from the participants, seen in Table 6.2, we found that for the computing

group the negative aspects focus on our tool having some learning curve for beginners, the difficulty in

distinguishing between variable and column blocks. Other negative aspects for this group related to

the lack of features such as no options to export or import models and the lack of different solvers. The

positive aspects for this group were related to our interface features and usability such as the ability to

drag and drop, the ability to visualize the mathematical formulation being built in real-time, the ability to

visualize the data, our tool performance, and not requiring installation. When compared to other tools this

group found that it had better usability, the interface was easy to learn and was especially helpful due to

the dynamic compilation and errors allowing users to learn the language as they go along. The drag and

drop capabilities were also something that our application did better than the ones previously used by the

participants. The participants in this group had previously used programming tools, Excel and one of them

had used graphical software to encode linear programming programs.

The business group in the feedback questions expressed that the negative aspects were that the

language could be difficult for people who do not have experience in technical fields and that the order in

which blocks have to be inserted in the workplace to create an expression differs from the mathematics.

59

CHAPTER 6. EMPIRICAL EVALUATION

This group also found positive aspects in our language such as ease of use and starting building models,

the language being visually appealing, being able to see the model being built in real-time and our tool

being intuitive and well organized. These participants had no prior experience with other optimization tools.

Overall we found that some features of our tool such as a graphical interface that displays everything

needed by the user on a single page, the dynamic compilation, and errors were universally liked. We also

found that despite the users in the computing group having done better than the users in the business

group both ended our session with some knowledge on how to use our tool. Some of the challenges felt by

the participants were for the majority distinguishing between certain blocks such as columns and variables

and for users without a computing background, the block order to create expressions was not intuitive. We

feel that for the users with less experience in the field our tool can serve as an introductory experience to

linear programming and operations research and also feel that despite having solved only three problems

the users did improve in all groups and had positive reactions to LPBlocks.

6.6 Threats to validity

This study’s main threats validity stand from the number of participants and their relationship with the

research team and the number of problems used. When it comes to the participants the first threat is

the fact that the participants were known colleagues, students or acquaintances of the research team, to

mitigate this threat we insisted that the participants gave their true feedback and that the goal of the study

was to evaluate our tool with users. The second threat comes from the low number of participants, and

while we had only 7 participants they came from different backgrounds and feel that their experiences can

give us insights into how our tool works with users of different backgrounds and especially allow us to see

some of the difficulties felt by less technical users comparatively to more savvy ones.

When it comes to the problems, one threat could be the fact that the participants did not solve the

problems using Excel or another tool. Since we did not have time to find inexperienced users and train

them on how to solve optimization problems using Excel We mitigate this problem by having a group of

users from a computing background that had experience with other tools and could give us some insight

on how our tool compared to others. The participants also solved only three problems, while this is true

the problems varied in size and showcased most of LPBlocks features.

60

C
h
a
p
te

r

7
Conclusions and future work

In this chapter we present our final conclusions and answer the research questions asked in Chapter 1.

This is done in Section 7.1 and in Section 7.2 we present our expected future work.

7.1 Conclusions

Current tools for creating linear programming models often require previous programming knowledge or

use ad-hoc methodologies and lack some features that would benefit the less technical user. In our work

we were able to design a block-based language that can express those problems and create a tool that

coupled this language with various features to create an environment that lent itself to users of different

technical backgrounds.

We were able to successfully use LPBlocks to express numerous and varied linear programming prob-

lems in Chapter 5. Further, we took our implementation of LPBlocks, contacted possible participants of

different backgrounds, designed and ran a study to collect data referent to their experience with our tool

and language.

During this study, we were able to gather that some features were universally liked such as the dynamic

compilation and errors, drag and drop, the ability to see everything in one window, and the use of a block-

based language. We also found that some aspects of LPBlocks causemore problems such as differentiating

between column blocks and variable blocks, some of the logic behind the language and thinking

in terms of data to solve problems was not obvious for less technical users and some users would have

liked to see more features such as data loading and exporting and more solver options.

We now answer the research questions posed in Section 1.3:

• RQ1 - Can we use block-based languages to represent linear programming formulations?

61

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Yes, as seen in Chapter 5 LPBlocks can be used to represent numerous linear programming for-

mulations. While we do not have a formal proof that guarantees that our language can represent

all linear programming problems, by solving a diverse array of problems we have a reasonable

assurance that most problems could be solved using our LPBlocks.

• RQ2 - Will using a block-based language provide users an easier environment for linear program-

ming?

From our study we were able to conclude that users that had previously used Excel and other opti-

mization software compared ours favorably when it came to the graphical interface. However, not

all users in our study had experience with those tools and none of the users without a computing

background did. Despite the lack of comparison for those users, they did enjoy and benefit from

the graphical and block-based features of our tool, features that do not exist on most of the other

tools.

7.2 Future work

Our future work aims are to use the data gathered in Chapter 6 to continue improving our tool and language

from a user experience perspective and further test our tool using a higher number of participants. Taking

the previously said into account we defined the following tasks as possible future work:

1. Improving the differentiation of variable blocks and column blocks in LPBlocks. This could

be done by changing the color scheme used for those blocks and making it more similar to

the variable creation blocks for the variable blocks and to the index columns for the

column blocks.

2. Adding more features to our tool such as loading and exporting data and mode solver options.

3. Prompting the user with automatic suggestions and templates when building models.

4. Doing further research with a higher number of participants and more time dedicated to teaching

the language and some of the processes necessary to create linear programming models, especially

for users with less experience in the field.

62

Bibliography

[1] D. R. Anderson, D. J. Sweeney, T. A. Williams, J. D. Camm, and J. J. Cochran. Quantitative Methods

for Business. Ed. by C. Valentine. url: https://www.amazon.com/Quantitative-Methods-

Business-David-Anderson/dp/0840062346.

[2] A. C. Bart, E. Tilevich, C. A. Shaffer, and D. Kafura. “Position paper: From interest to usefulness

with BlockPy, a block-based, educational environment.” In: 2015 IEEE Blocks and Beyond Workshop

(Blocks and Beyond). 2015, pp. 87–89. doi: 10.1109/BLOCKS.2015.7369009.

[3] A. C. Bart, J. Tibau, E. Tilevich, C. A. Shaffer, and D. Kafura. “BlockPy: An Open Access Data-

Science Environment for Introductory Programmers.” In: Computer 50.5 (2017), pp. 18–26. doi:

10.1109/MC.2017.132.

[4] J. E. Beasley. Or-notes. url: http://people.brunel.ac.uk/~mastjjb/jeb/or/lpmore.

html.

[5] M. Carter and C. C. Price. Operations Research: A Practical Introduction. CRC Press, 2000. isbn:

9780849322563.

[6] M. Chikwature. Challenges faced by pupils in the learning of linear programming at ordinary level:

A case of a secondary school in Umguza District. 2018. url: http://liboasis.buse.ac.

zw : 8080 / xmlui / bitstream / handle / 123456789 / 10979 / chikwature - margaret -

curriculum.pdf?sequence=1&isAllowed=y.

[7] G. Collaud and J. Pasquier-Boltuck. “gLPS: A graphical tool for the definition and manipulation of

linear problems.” In: European Journal of Operational Research 72.2 (1994), pp. 277–286. issn:

0377-2217. doi: https : / / doi . org / 10 . 1016 / 0377 - 2217(94) 90309 - 3. url: https :

//www.sciencedirect.com/science/article/pii/0377221794903093.

[8] N. Fraser. “Ten things we’ve learned from Blockly.” In: 2015 IEEE Blocks and Beyond Workshop

(Blocks and Beyond). 2015, pp. 49–50. doi: 10.1109/BLOCKS.2015.7369000.

[9] H. D. Giao, J. Cunha, and R. Pereira. “Linear Programming Meets Block-based Languages.” In:

2021 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). Los Alami-

tos, CA, USA: IEEE Computer Society, Oct. 2021, pp. 1–3. doi: 10.1109/VL/HCC51201.2021.

9576449. url: https://doi.ieeecomputersociety.org/10.1109/VL/HCC51201.2021.

9576449.

63

https://www.amazon.com/Quantitative-Methods-Business-David-Anderson/dp/0840062346
https://www.amazon.com/Quantitative-Methods-Business-David-Anderson/dp/0840062346
https://doi.org/10.1109/BLOCKS.2015.7369009
https://doi.org/10.1109/MC.2017.132
http://people.brunel.ac.uk/~mastjjb/jeb/or/lpmore.html
http://people.brunel.ac.uk/~mastjjb/jeb/or/lpmore.html
http://liboasis.buse.ac.zw:8080/xmlui/bitstream/handle/123456789/10979/chikwature-margaret-curriculum.pdf?sequence=1&isAllowed=y
http://liboasis.buse.ac.zw:8080/xmlui/bitstream/handle/123456789/10979/chikwature-margaret-curriculum.pdf?sequence=1&isAllowed=y
http://liboasis.buse.ac.zw:8080/xmlui/bitstream/handle/123456789/10979/chikwature-margaret-curriculum.pdf?sequence=1&isAllowed=y
https://doi.org/https://doi.org/10.1016/0377-2217(94)90309-3
https://www.sciencedirect.com/science/article/pii/0377221794903093
https://www.sciencedirect.com/science/article/pii/0377221794903093
https://doi.org/10.1109/BLOCKS.2015.7369000
https://doi.org/10.1109/VL/HCC51201.2021.9576449
https://doi.org/10.1109/VL/HCC51201.2021.9576449
https://doi.ieeecomputersociety.org/10.1109/VL/HCC51201.2021.9576449
https://doi.ieeecomputersociety.org/10.1109/VL/HCC51201.2021.9576449

BIBLIOGRAPHY

[10] H. da Gião, J. Cunha, and R. Pereira. “Towards a Block-based Language for Linear Programming.”

In: 12𝑡ℎ National Symposium of Informatics (INForum’21). 2021, pp. 36–49.

[11] H. Guerrero. Excel Data Analysis: Modeling and Simulation. Springer, 2010. url: https://www.

springer.com/gp/book/9783642108341.

[12] V. Lazaridis, K. Paparrizos, N. Samaras, and A. Sifaleras. “Visual LinProg: A web-based educational

software for linear programming.” In: Comput. Appl. Eng. Educ. 15.1 (2007), pp. 1–14. doi: 10.

1002/cae.20084.

[13] P.-C. Ma, F. H. Murphy, and E. A. Stohr. “A Graphics Interface for Linear Programming.” In: Com-

mun. ACM 32.8 (Aug. 1989), pp. 996–1012. issn: 0001-0782. doi: 10.1145/65971.65978.

[14] M. Macarty. Linear Programming (LP) Optimization with Excel Solver. url: https://www.youtube.

com/watch?v=6xa1x_Iqjzg&ab_channel=MattMacarty.

[15] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. “The Scratch Programming

Language and Environment.” In: ACM Trans. Comput. Educ. 10.4 (Nov. 2010). doi: 10.1145/

1868358.1868363.

[16] J. Mendes, J. Cunha, F. Duarte, G. Engels, J. Saraiva, and S. Sauer. “Towards systematic spread-

sheet construction processes.” In: (2017). Ed. by S. Uchitel, A. Orso, and M. P. Robillard, pp. 356–

358. doi: 10.1109/ICSE-C.2017.141. url: https://doi.org/10.1109/ICSE-C.2017.141.

[17] E. Pasternak, R. Fenichel, and A. N. Marshall. “Tips for creating a block language with blockly.” In:

2017 IEEE Blocks and Beyond Workshop (B B). 2017, pp. 21–24. doi: 10.1109/BLOCKS.2017.

8120404.

[18] E. W. Patton, M. Tissenbaum, and F. Harunani. “MIT App Inventor: Objectives, Design, and De-

velopment.” In: Computational Thinking Education. Ed. by S.-C. Kong and H. Abelson. Singapore:

Springer Singapore, 2019, pp. 31–49. isbn: 978-981-13-6528-7. doi: 10.1007/978-981-13-

6528-7_3.

[19] J. Pereira and S. Fernandes. “Two-variable Linear Programming: A Graphical Tool with Mathemat-

ica.” In: SYMCOMP 2013 - 1st International Conference on Algebraic and Symbolic Computation.

Sept. 2013, pp. 159–173.

[20] D. Saleh and T. Latif. “Solving LProg Problems By Using Excel’s Solver.” In: Tikrit Journal of Pure

Sc. Vol. 14 (Mar. 2009).

[21] E. Senne, C. Lucas, and S. Taylor. “Towards an Intelligent Graphical Interface for Linear Program-

ming Modelling.” In: Journal of Intelligent Systems 6.1 (1996), pp. 63–94. doi: doi:10.1515/

JISYS.1996.6.1.63.

[22] L. Siaw Chong and C. Jia Xin. “Creating a GUI Solver for Linear Programming Models in MATLAB.”

In: Journal of Science and Technology 10.4 (Dec. 2018). url: https://publisher.uthm.edu.

my/ojs/index.php/JST/article/view/3653.

64

https://www.springer.com/gp/book/9783642108341
https://www.springer.com/gp/book/9783642108341
https://doi.org/10.1002/cae.20084
https://doi.org/10.1002/cae.20084
https://doi.org/10.1145/65971.65978
https://www.youtube.com/watch?v=6xa1x_Iqjzg&ab_channel=MattMacarty
https://www.youtube.com/watch?v=6xa1x_Iqjzg&ab_channel=MattMacarty
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1109/ICSE-C.2017.141
https://doi.org/10.1109/ICSE-C.2017.141
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1007/978-981-13-6528-7_3
https://doi.org/10.1007/978-981-13-6528-7_3
https://doi.org/doi:10.1515/JISYS.1996.6.1.63
https://doi.org/doi:10.1515/JISYS.1996.6.1.63
https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/3653
https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/3653

BIBLIOGRAPHY

[23] D. Solow. Linear Programming: Second edition. Dover Publications, 2014.

65

A
p
p
e
n
d
ix

A
Example spreadsheet data in JSON format

Listing A.1: Spreadsheet data in JSON format

1 {

2 [

3 {

4 Vegetables: 'Beans',

5 Iron: 0.5,

6 Phosphorus: 10,

7 Calcium: 200,

8 Cost_per_pound: 0.2

9 },

10 {

11 Vegetables: 'Corn',

12 Iron: 0.5,

13 Phosphorus: 20,

14 Calcium: 280,

15 Cost_per_pound: 0.18

16 },

17 {

18 Vegetables: 'Broccoli',

19 Iron: 1.2,

20 Phosphorus: 40,

21 Calcium: 800,

22 Cost_per_pound: 0.32

23 },

24 {

25 Vegetables: 'Cabbage',

26 Iron: 0.3,

27 Phosphorus: 30,

66

APPENDIX A. EXAMPLE SPREADSHEET DATA IN JSON FORMAT

28 Calcium: 420,

29 Cost_per_pound: 0.28

30 },

31 {

32 Vegetables: 'Potatoes',

33 Iron: 0.4,

34 Phosphorus: 50,

35 Calcium: 360,

36 Cost_per_pound: 0.16

37 }

38]

39 }

67

A
p
p
e
n
d
ix

B
LPBlocks study form participant background

questions

1. (Age) How old are you - In this question we give the participant the option to select one of the

following options:

a) Less than 18

b) 18-20

c) 21-24

d) 25-35

e) More than 35

f) Rather not answer

2. (Gender) What is your gender identity - In this question we give the participant the option to

choose one of the following options:

a) Male

b) Female

c) Other

d) Rather not answer

3. (Education degree) Highest degree - We allow the participant to choose form one of the fol-

lowing options:

a) Bellow High School

b) High School

68

APPENDIX B. LPBLOCKS STUDY FORM PARTICIPANT BACKGROUND QUESTIONS

c) Bachelor

d) Post-graduation

e) Master

f) PhD

4. (Years of university) Years of post-secondary education - We allow the participant to choose

one of the following options:

a) 0

b) 1

c) ...

d) 9

e) 10+

5. (Education field) Main fields of study - We allow the user to choose multiple of the following

options:

a) Computing (Computer Science, Informatics Engineering, Information systems, Information

Technology, etc…)

b) Life Science(Biology, Chemistry, etc...)

c) Engineering(Electrical Engineering, Mechanical Engineering, Civil Engineering, etc...)

d) Business(Economics, Business, Marketing, etc...)

e) Humanities(History, Languages, etc...)

f) Mathematics(Mathematics, Statistics)

g) Other: (fill in option)

6. (Linear programming experience) What’s your academic experience with linear pro-

gramming and operations research - We allow the particpants to choose from multiple of the

following options:

a) None

b) Took college classes

c) Degree in related field(ex Industrial engineering or statistics)

d) Professional experience

e) Other: (fill in otpion)

7. (Linear programming tools) Experience with optimization tools programming and oth-

erwise - We allow the participants to choose from mutiple of the following options:

69

APPENDIX B. LPBLOCKS STUDY FORM PARTICIPANT BACKGROUND QUESTIONS

a) Programming tools

b) Excel

c) Other visual tools such as GAMS

d) Other: (fill in option)

70

A
p
p
e
n
d
ix

C
LPBlocks study form user feedback

1. (Other tools) If you used any of the tools above how do those compare to ours - This is

a write in question.

2. (Positive aspects) What were in your opinion the positive aspects of our tool - This is a

write in question.

3. (Negative aspects) What where in your opinion the negative aspects of our tool - This

is a write in question.

71

	List of Figures
	List of Tables
	Listings
	List of Algorithms
	Introduction
	Motivation
	Our Approach
	Research questions
	Contributions
	Document organization

	State of the art
	Formulating a linear programming problem
	Operations research tooling
	Excel
	SAS/OR
	NCSS
	MATLAB
	LINGO and What'sBest!
	Summary and comparisons

	Projects involving visual languages and linear programming
	A graphics interface for linear programming
	Creating a GUI Solver for Linear Programming Models in MATLAB
	gLPS: A graphical tool for the definition and manipulation of linear problems
	Two-variable Linear Programming: A Graphical Tool with mathematica
	Conclusions

	Frameworks and notable visual languages projects
	Blockly
	BlockPy
	MIT app Inventor

	A block-based language for linear programming
	Data structure
	Blocks
	Defining variables
	Defining constraints
	Defining the objective function

	Implementation and architecture
	Web application
	Features
	Compilation process

	Spreadsheet reading service
	Optimization service

	Language applicability
	Vegetable mixture
	Fruit canning plants
	Machine allocation
	Pharmaceutical company
	Computer manufacturing
	Satellite launching
	Cargo allocation
	Threats to validity

	Empirical evaluation
	Design
	Instrumentation
	Execution
	Data collection
	Background data
	Sessions
	Participants feedback

	Analysis and conclusions
	Threats to validity

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Appendices
	Example spreadsheet data in JSON format
	LPBlocks study form participant background questions
	LPBlocks study form user feedback

