
Universidade do Minho
Escola de Engenharia

Francisco José Oliveira Freitas

Refactoring Java Monoliths into
Executable Microservice-Based Applications

December, 2021

Universidade do Minho
Escola de Engenharia

Francisco José Oliveira Freitas

Refactoring Java Monoliths into
Executable Microservice-Based Applications

Master dissertation
Integrated Master in Informatics Engineering

Dissertation supervised by:
Jácome Cunha
André Ferreira

December, 2021

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and good

practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

ii

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Acknowledgements

I would like to thank my supervisor Dr. Jácome Cunha and my co-supervisor Dr. André ferreira for all the

advice and continuous support during this last year.

I also want to thank INESTEC for the scholarship I was awarded that helped me to support my personal

costs during this last period.

A special thanks to my family who provided me with all the means that allowed me to get here today.

Without them, this would not have been possible.

Finally, I want to thank all my friends who were present in the most difficult moments and who provided

me with unforgettable moments during the last 5 years.

This work is supported by the national funds through the Portuguese Funding Agency (FCT - Fundação

para a Ciência e a Tecnologia, within project UIDB/50014/2020).

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do

Minho.

,
(Place) (Date)

(Francisco José Oliveira Freitas)

iv

Resumo

Refactoring de Monólitos em Java para Aplicações Baseadas
em Microsserviços Executáveis
Nos últimos anos assistiu-se a uma mudança drástica na forma como o software é desenvolvido. Os

projectos de software de grande escala estão a ser construídos através de uma composição flexível de

pequenos componentes possivelmente escritos em diferentes linguagens de programação e com os pro-

cessos de deploy independentes – as chamadas aplicações baseadas em microsserviços. Isto tem sido

motivado pelos desafios associados ao desenvolvimento, manutenção e evolução de grandes sistemas

de software, mas também pelo aparecimento da cloud e pela facilidade que trouxe em termos de esca-

labilidade horizontal, reutilização e flexibilidade na propriedade e no deploy. O crescimento dramático da

popularidade dos microsserviços levou várias empresas a aplicar grandes refactorings aos seus sistemas

de software. Contudo, esta é uma tarefa desafiante que pode demorar vários meses ou mesmo anos.

Esta dissertação propõe uma metodologia capaz de transformar automaticamente aplicações desen-

volvidas em Java sob uma arquitetura monolítica em aplicações baseadas em microserviços. A metodolo-

gia proposta é direccionada para as aplicações que tiram partido da técnica ORM para relacionar classes

com as entidades da base de dados, através de anotações no código fonte. A nossa abordagem recebe

como input o código fonte e uma proposta de microsserviços, e aplica técnicas de refactoring às classes

para tornar cada microsserviço independente. Esta metodologia cria uma API para cada chamada de mé-

todos de classes que se encontram noutros serviços, e as entidades da base de dados também sofrem

refactoring para serem incluídas no serviço correspondente. A metodologia proposta foi implementada

através da construção de uma ferramenta que suporta o refactoring de aplicações desenvolvidas em Java

Spring e que utilizam as anotações da JPA para o mapeamento entre as classes e as entidades.

Realizou-se um análise quantitativa e qualitativa em 120 projetos open-source aleatoriamente reco-

lhidos do GitHub. Na avaliação quantitativa procurou-se perceber a aplicabilidade da metodologia e na

analise qualitativa, através da execução de testes unitários, procurou-se avaliar se aplicação original e a

aplicação baseada em microserviços gerada são funcionalmente equivalentes.

Os resultados são promissores sendo a metodologia capaz de realizar o refactoring em 69% dos

projetos, sendo o resultado da execução dos testes unitários igual em ambas as versões dos projetos.

Palavras-chave: arquitetura de microsserviços, aplicações baseadas emmicrosserviços, decomposição

de monólitos, Java, refactoring

v

Abstract

Refactoring JavaMonoliths into ExecutableMicroservice-Based
Applications

In the last few years we have been seeing a drastic change in the way software is developed. Large-

scale software projects are being assembled by a flexible composition of many (small) components pos-

sibly written in different programming languages and with independent deploy processes – the so-called

microservice-based applications. This has been motivated by the challenges associated with the develop-

ment, maintenance, and evolution of large software systems, but also by the appearance of the cloud and

the ease it brought in terms of horizontal scaling, reusability and flexibility in ownership and deployment.

The dramatic growth in popularity of microservice-based applications has pushed several companies to

apply major refactorings to their software systems. However, this is a challenging task that may take

several months or even years.

This dissertation proposes a methodology to automatically evolve a Java monolithic application into

a microservice-based one. The proposed methodology is directed to the applications that take advantage

of the ORM technique to relate Java classes to database entities, through annotations in the source code.

The methodology receives as input the Java source code and a proposition of microservices and refactors

the original classes to make each microservice independent. The proposed methodology creates an API

for each method call to classes that are in other services. The database entities are also refactored to be

included in the corresponding service. The proposed methodology was implemented by building a tool

that supports the refactoring of Java Spring applications that use JPA annotations for mapping between

Java classes and database entities.

We performed a quantitative and qualitative analysis on 120 open-source projects randomly selected

from GitHub. In the quantitative evaluation we tried to understand the applicability of the methodology and

in the qualitative analysis, through the execution of unit tests, we tried to evaluate if the original application

and the application based on micro-services generated are functionally equivalent.

The results are promising, with the methodology being able to refactor 69% of the projects, with the

unit test results being the same in both versions of the projects.

Keywords: microservice architecture, microservice-based applications, monolithic decomposition,

Java, refactoring

vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Contributions . 2

1.2 Document Organization . 3

2 Background 4

2.1 Monoliths . 4

2.2 Microservices . 5

3 State of the Art 9

3.1 Manual Migration of Monoliths to Microservices 9

3.2 Source-code oriented solutions . 12

3.3 Model-based Solutions . 14

3.4 Summary . 15

4 A Methodology for Refactoring Java Monoliths into Microservice-Based Applica-

tions 17

4.1 restaurantServer . 18

4.2 Information Extraction . 20

4.2.1 Extraction of structural information . 20

4.2.2 Identify Microservice Dependencies . 23

4.3 Database Refactoring . 24

4.4 Code Refactoring . 34

5 MicroRefact - A tool for refactoring Java monoliths 38

vii

CONTENTS

5.1 Information Extraction . 38

5.1.1 Project Parsing . 39

5.1.2 Identification of Dependencies between Microservices 40

5.2 Database Refactoring . 41

5.3 Code Refactoring . 44

6 Evaluation 46

6.1 Project collection . 46

6.2 Setup . 47

6.2.1 Example . 49

6.3 Results . 51

6.4 Analysis . 52

6.4.1 Degree of complexity and size of the applications 52

6.4.2 Unrefactored projects . 52

6.4.3 Refactored projects with fewer classes than the original projects 54

6.4.4 Percentage of new classes and analysis 55

6.5 Threats to validity . 57

7 Conclusion 58

7.1 Future work . 58

Bibliography 60

Appendices

A Appendix 64

A.1 Dependencies of restaurantServer classes with classes that belong to different microser-

vices. 64

A.2 All restaurantServer transformations made by database refactoring phase 67

A.2.1 BillPosition - Dish . 67

A.2.2 RTable - Reservation & RTable - Bill . 70

B Appendix 2 75

B.1 Evaluation results from GitHub projects . 75

Annexes

viii

List of Figures

1 Proposed Migration Plan . 10

2 Strangler application pattern by Fowler . 11

3 Original communication between classes. 12

4 Communication after extraction of the methods from B to a cloud service. 13

5 Coupling criteria by Gysel et al., 2016 . 15

6 Overview of the proposed methodology . 18

7 Data transfer Object Pattern . 26

8 Replacing a database join operation with service calls 27

9 One-to-Many relationship between User and Reservation in monolithic application 29

10 Instance variables of the User class in monolithic application 29

11 Instance variables of the Reservation class in monolithic application 29

12 One-to-Many relationship between User and Reservation in microservice-based application 30

13 Instance variables of the User class in microservice-based application 30

14 Interface generated by the database refactoring . 31

15 Generated class that is responsible for the calls to the Reservation microservice 31

16 Generated class that exposes the API to handle Reservations 32

17 Generated class that processes and directs the request to the repository class 32

18 Using a service to wrap a database . 33

19 Overview of code refactoring . 35

20 Interaction between Billservice and RTableRepository in monolithic application 36

21 Interaction between Billservice and RTableRepository in microserices-based application . 37

22 Overall flow of MicroRefact . 39

23 Histogram of collected projects by class count . 47

24 Original unit test for creating a user in Online-medicine-shopping-ecommerce 49

25 Unit test for creating a user in Online-medicine-shopping-ecommerce 50

ix

LIST OF FIGURES

26 Box plot of percentage of new classes across the projects 51

27 Histogram of number of refactored projetcts by class count 53

28 Box plot for the percentage of new classes across ranges of classes 56

33 Generated class DishRequestImpl that is responsible for the calls to the Dish microservice 68

34 Generated class that exposes the API to handle Dishes 68

35 Generated class that processes and directs the request to the DishRepository class . . . 69

41 Generated class BillRequestImpl that is responsible for the calls to the Bill microservice . 71

42 Generated class ReservationRequestImpl that is responsible for the calls to the Reservation

microservice . 72

43 Generated class that exposes the API to handle Bills 72

44 Generated class that processes and directs the request to the BillRepository class . . . 73

45 Generated class that exposes the API to handle Reservations 73

46 Generated class that processes and directs the request to the ReservationRepository class 74

x

List of Tables

1 Microservices proposal for restaurantServer . 19

2 Dependencies between microservices . 24

3 Relationship between Entities . 25

4 Reasons for unrefactored . 52

xi

List of Listings

4.1 Information extracted from the AST about ReservationController class 21

4.2 List of classes that interact with ReservationController class 22

6.1 Number of classes in a project. 54

xii

1

Introduction

“The death of big software” has been announced by Andriole, 2017. This has been motivated by the

challenges associated with the development, maintenance, and evolution of large software systems, but

also by the appearance of the cloud and the ease it brought in terms of horizontal scaling, reusability

and flexibility in ownership and deployment. Therefore, in the last few years, there has been a dramatic

growth in the use of cloud computing leading to companies like Amazon, Microsoft and IBM creating their

cloud platforms providing various services for application development (Cito et al., 2015). Indeed, many

software systems are currently being developed as a set of loosely-coupled components, possibly written in

different programming languages, eventually deployed anywhere in the cloud, and communicating through

the internet, creating an architectural style usually termed microservices (S. Newman, 2015). These pieces

can be used to mix-and-match as to create new or even to evolve existing software (Andriole, 2017)

While microservices are not new, there is still much to investigate and therefore there are several

investigations ongoing to improve their understanding in an attempt to formalize processes associated

with them (Hamzehloui et al., 2019).

One of the main motivations of a microservice architecture is that it has the potential to increase the

flexibility and agility of software development as each service can be developed and deployed individually

using different technologies.

Although microservices are currently standard in industry, the fact is that there are still many applica-

tions that were (and still are) built as monoliths, that is, applications composed of all the core logic related

to the domain of the problem contained in a single process (S. Newman, 2015). However, applications

developed with this architecture, tend to grow in size as well as complexity, resulting in very complex

monolithic systems leading to the disadvantages, such as scalability and team organization, starting to

have more impact than the advantages of this paradigm, with the detection of bugs and the addition of

new features being more complicated (Chen et al., 2017).

The manual process of migrating monoliths to this new paradigm is complex and, depending on the

project’s complexity, may take months or even years to complete (Fritzsch et al., 2019; Mazzara et al.,

2018). The decomposition of software systems is one of the main struggles, and as shown in the work of

Fritzsch et al., 2019, none of the participants in the study was aware of automated techniques that could

1

CHAPTER 1. INTRODUCTION

assist the migration of a monolithic application to a microservice-based one. Migrating from a monolithic

application to a microservices architecture is a costly process and full of unique challenges, as each system

is itself unique with its own particularities (Kazanavicius & Mazeika, 2019), and this transition is mostly

dependent on the experience and knowledge of the systems by the experts (Pahl & Jamshidi, 2016). Thus,

the research community has been working on techniques and methodologies to aid in this migration, i.e.in

transforming a monolithic application into a microservice-based one, while preserving the semantics of

the original application (Chen et al., 2017; Gysel et al., 2016; Jin et al., 2021; Jin et al., 2018; Kamimura

et al., 2018; Mazlami et al., 2017). Moreover, several companies have also applied major refactorings of

their backend systems to transform their applications (Mazzara et al., 2018).

Most of the previous works are focused on the identification of the services, but lack the step of actually

refactoring the application to make it a microservice-based one. The works that propose refactoring the

application do not take into consideration issues such as the data decomposition of a monolithic system

and the user interface.

In this dissertation we propose a methodology to refactor monolithic applications developed in Java

which receives as input a list and composition of microservices. Our methodology analyzes the source

code and the services proposed and refactors the classes that have method calls to other classes that are

part of other services. Each of these calls is replaced by a call to a new method we automatically generate,

implementing a REST call to the original method which now is a different service. We also refactor the

database classes, applying patterns, as they may need to be spread by the different services too. We

create a tool, MicroRefact, as a proof of concept which supports the refactoring of applications developed

in Java Spring. To evaluate the applicability of our tool we did a quantitative evaluation, by measuring what

percentage of applications the tool is able to refactor. We also perform a qualitative evaluation where we

try to understand if the generated microservices-based application is functionally equal to the monolithic

one. The applications used in the evaluation were extracted from GitHub and their unit tests were used

for qualitative evaluation. The results obtained are promising, being the tool capable of producing results

in 69% of the applications. Moreover, the execution of the unit tests had the same result in the generated

application as in the original one for all applications.

1.1 Contributions

Our work has the following contributions to the area of migration to microservices:

• A methodology capable of refactoring a monolithic application into microservices and capable to

decompose the database for the services, being the user free to choose which microservices to

form.

• Implementation of a tool capable of applying the proposed methodology to Java Spring web ap-

plications that delivers to the user a microservices-based application functionally equivalent to the

2

1.2. DOCUMENT ORGANIZATION

original.

• An extensive study of 120 open source applications and the use of unit tests to validate refactoring.

During this work, we also published a scientific article (Freitas et al., 2021):

Francisco Freitas, André Ferreira, Jácome Cunha.

Refactoring Java Monoliths into Executable Microservice-Based Applications.

In 25𝑡ℎ Brazilian Symposium on Programming Languages, pp. 100–107, 2021.

New York, NY, USA: Association for Computing Machinery (ACM).

DOI: https://doi.org/10.1145/3475061.3475086.

1.2 Document Organization

The rest of this dissertation is structured as follows: Chapter 2 introduces the concepts of monolithic

architectures and microservices; Chapter 3 describes the current state of the art in the microservices mi-

gration process; Chapter 4 presents in detail the proposed methodology for refactoring monoliths; Chapter

5 describe the implementation of MicroRefact; Chapter 6 presents in detail our evaluation; in Chapter 7

we draw our conclusions and describe some possible future work.

3

https://doi.org/10.1145/3475061.3475086

2

Background

To migrate monolithic applications to microservices it is necessary to know both architectures and how

they work. In this chapter we present the core ideas of each architecture, their benefits and challenges.

2.1 Monoliths

This architecture is characterized by all functions are encapsulated in a single service, with the application

contained in a single process (Kazanavicius & Mazeika, 2019). It is an architecture strongly recommended

for new projects where the domain as well as the bounded context are not yet well defined. Over time,

applications tend to grow leading to increased complexity. An approach well recognized by developers to

mitigate the complexity inherent to application growth is to split applications over several layers (Fowler

et al., 2002).

Typically, an application is divided into three layers: the presentation layer that interacts with the

user or, through an API, exposes functionality; the business layer that contains all the business logic and

implements all the system’s functionality; the persistence layer that is responsible for making requests

to the database and, in applications developed with the object-oriented programming paradigm, mapping

classes to database tables. This layer usually only accesses a database that contains all the information

about the application.

This architecture has multiple advantages, for new projects and projects of short duration or low

complexity. It is simple to develop since the IDEs and other development tools are oriented to develop a

single application (Richardson, 2018) and code reuse is simplified compared to a distributed system since

the code already resides in the monolith (S. Newman, 2019). Also it is simple to test, the deployment

process is easy since there is only one component, and it is easy to scale horizontally using multiple

replicas of the system and a load balance to balance the load between the replicas (Kharenko, 2015).

However, as the size and complexity of the code grows it becomesmore difficult to resolve bugs and add

new features since it becomes so large that no developer can get a full understanding of the code, leading

to the mistakes when changes are made to the code, leaving the monolith even more complex resulting

in slower development cycles, eventually becoming a “big ball of mud” (Richardson, 2018). Regarding

4

2.2. MICROSERVICES

scalability, all components of the application are replicated although only some need more resources. As

for the deployment although simple, in each software upgrade the deployment of the entire application is

required. In terms of resilience, it is not very resilient to failure since a failure in one of the application

modules could result in the failure of the entire system.

In general, monolithic architectures are sufficient to handle a large set of problems when one intends

to decrease dependencies and keep coupling at a low level. However, the deployment, resiliency, and

flexibility are the big drawbacks when one wants to make some changes to the monoliths.

2.2 Microservices

There are several definitions of microservices, some use the word’s prefix and claim that services should

have a small number of lines of code (e.g. 100 lines), while others claim that a service should only take

two weeks to develop (Richardson, 2018).

S. Newman, 2019 describes microservices as services with independent deployment process that are

modeled around the business domain, that use the network to communicate with each other, and expose

their functionality through endpoints.

On the other hand, Fowler and Lewis, 2014 describe microservices as an application architecture

composed of a set of small services, each one having its own process, its own technology stack and its

own well-resolved set of tasks to execute, and each one being independent relatively to the process of

deployment and scalability, and with a well-defined bounded context. Fowler and Lewis, 2014 also affirm

a communication layer is needed between services because they are isolated and therefore typically each

service exposes its own API, which will receive HTTP requests and respond according to the logic defined

in the service

Although microservices are based on the SOA architectural style (Service Oriented Architecture), which

also divides the system into a set of services, they have significant differences. These differences include

the way data is manipulated, since in SOA there is a global data model and shared database, and com-

munication between services using protocols such as SOAP (Simple Object Access Protocol) and smart

pipes.

Advantages

The microservices architecture has multiple advantages over monolithic architectures. The advantages

are inherited from the characteristics of distributed systems adopted and from taking to the extreme the

philosophy of service-oriented architectures.

Enables the continuous delivery and deployment of large, complex applications.

Microservices follow the culture of devOps and enable continuous software delivery and integration (Richard-

son, 2018). In other words, they take advantage of automated pipelines responsible for performing tasks

5

CHAPTER 2. BACKGROUND

from automated testing to deploy to production, resulting in more frequent deploys since they are inde-

pendent and service-focused, causing less downtime and allowing easier identification of the source of

problems that reach production (S. Newman, 2015).

Maintenance

When a monolithic system becomes large and complex, the system comprehension curve for team mem-

bers who do not know the source code is proportional to its size, reflecting in a delay in the delivery of new

features and in the detection and resolution of bugs. However, a microservices architecture is composed

of several small services, which are potentially easier to maintain since there is no need for familiarization

with the whole system. Thus, the focus of the developers is on one or more services, being the process

of detecting bugs and adding new features more efficient than the monolithic application.

Scalability

In monolithic applications when a certain module needs to be scaled, the entire application has to be

scaled, reflecting a waste of computational resources since the other modules that compose the system

are stable. In contrast, microservices allow resource-focused scalability, i.e. if a service is being overloaded

with requests, it can be scaled horizontally, i.e. replicate the service, in a way that is transparent to all other

services. This way, only the services that need it are scaled, resulting in a considerable saving of resources

compared to a monolithic system. Due to the independence of service development, each service can be

implemented on the most suitable hardware, which is not possible in a monolithic architecture (Richardson,

2018).

Autonomy

Managing a large team is challenging, but with microservices this process can be simplified. Usually

large teams are divided into sub-teams and each of these is assigned at least one service. Each team

is responsible for developing and deploying its service. Since the services are independent, these teams

become autonomous because they do not depend on others to develop their service.

Heterogeneity of technologies

As mentioned before, the services are independent. The architecture of microservices does not have a

commitment to a technological stack, being each service developed with the most appropriate technology

as long as the contracts established between services are not affected, and there may be several tech-

nologies in the application’s technological stack. Technological heterogeneity promotes the use of new

technologies, and, in case of failure, one can always choose another one without putting the whole system

in question, which is impossible in a monolithic system.

6

2.2. MICROSERVICES

Fault tolerance

Dealing with failures is a key issue, especially in distributed systems. Microservices, by following a dis-

tributed system approach, have all the advantages associated with distributed systems regarding fault

handling and are able to limit faults in the application to certain services, which is not possible in a mono-

lithic system, where a fault can result in the collapse of the entire application. To mitigate failures in

microservices, design patterns such as timeouts, retry and circuit breaker (Kumar, 2020) are used.

Disadvantages

The disadvantages associated with microservices are also found in distributed systems.

Communication overhead

In a microservices architecture, services communicate with each other over the network, while in a mono-

lith the communication between components is in memory. Microservices can use two types of com-

munication: synchronous communication, usually HTTP communication in REST APIs; asynchronous

communication, typically rabbitMQ or ZeroMQ. These communications add a overhead that does not exist

in a monolithic application, and can increase the response time (Hubbell, 2020).

Tests

Performing tests, such as integration tests, becomes more complex because of the need to create stubs

of the remaining services to guarantee isolation of the fraction being tested from the rest of the system

(S. Newman, 2015).

Logs

Like testing, the process of debugging by various services in the application is also more complicated,

since the developer has to deal with the logs of the different services.

Deploy functionality across multiple services

Launching new functionality that spans different services requires careful coordination between the various

development teams, necessitating a plan based on the dependencies between services for the deployment

process. This process is different from that used in a monolithic applications since, in these, it is possible

to deliver updates of multiple components atomically (Richardson, 2018).

Granularity of services

One of the challenges of migrating to a microservices architecture is that there is no concrete, well-defined

algorithm for decomposing a system into services. To make things worse, if the decomposition of a system

7

CHAPTER 2. BACKGROUND

is done incorrectly, a distributed monolith will be built. A distributed monolith is a system in which sets of

services must perform the implementation process together. A distributed monolith has the disadvantages

of monolithic architecture and microservices architecture (Richardson, 2018).

8

3

State of the Art

The decomposition of systems into modules started to be explored by Parnas, 1972, who tried to demon-

strate that the efficiency of modularization of a system depends on the criteria used to divide the system.

Since then, functional decomposition has remained an important topic in software engineering. As

software systems grew and became more complex, there was a need to distribute the systems across

networked infrastructures such as web services and remote objects (Kamimura et al., 2018).

The main challenges of this decomposition are the manual and tedious work accompanied by the

difficulty in identifying the functional units given the need for a detailed analysis of several dimensions of

the software architecture, and the quality of the final result is often strongly linked to the experience and

knowledge of the specialist performing the decomposition (Kamimura et al., 2018).

In the next sections we describe several works discussing different kinds of decomposition of applica-

tions into microservices.

3.1 Manual Migration of Monoliths to Microservices

In this section we conduct a literature review of migration processes of monolithic architectures performed

manually by experts in large-scale projects. The aim is to identify knowledge about patterns and method-

ologies used with the objective of collecting useful information for the automation of the process.

Balalaie et al., 2018, in order to improve the migration planning process and combat the ad-hoc

approach, conducted a survey of design patterns through the analysis of industrial caliber application mi-

gration processes. In this work, an analysis of the entire migration process is performed, from architecture

identification to the deploy process.

Since a one-size-fits-allmethodology would not be functional, because each project has its own particu-

larities, Balalaie et al., 2018 adopted an approach called Situational Method Engineering (SME) (Henderson-

Sellers et al., 2014) , which allows adaptation of methods according to the specific situation (Balalaie et al.,

2018).

From the analysis and application of the SME resulted a repository with 15 patterns and, through a

case study, emerged a migration plan, Figure 1, able to handle the possible dependencies between the

9

CHAPTER 3. STATE OF THE ART

steps.

The identified patterns and the migration plan both have a significant impact on the work to be done

because they introduce best practices into the migration process.

Figure 1: Proposed Migration Plan

Source: (Balalaie et al., 2018)

Fowler, 2004 suggests an incremental migration, which consists of gradually building a new application

by extracting functionality from the monolith avoiding a big bang rewrite. Thus, the generated application

consists of a set of microservices that interact with the monolithic application. Over time, the number of

functionalities implemented by the monolith tends to decrease as they are migrated to microservices, until

the monolith disappears and becomes a microservice (Richardson, 2018). Fowler terms this pattern as

Strangler application.

The main advantage of an incremental migration is the beginning of the return on investment with the

first extraction of a service, since there is a partial migration of the monolith, which is not possible in a big

bang rewrite that only delivers benefits when it is complete.

A partial migration implies major modifications to the source code to make it possible for microser-

vices and monolith to interact, as well as maintain data consistency. To prevent extensive modifications

Richardson, 2018 presents three strategies to “strangle” the monolith following an incremental approach

which we now describe.

The first, implementation of new functionality through services, proposes adding new functionality to

the monolith by creating new services, preventing the monolith from growing, becoming more complex,

difficult to understand, and ungovernable over time (Richardson, 2018). For the new service to be able to

collaborate with the monolith, it is necessary to create adapters in both the monolith and the service that

use a mechanism for communication between processes, typically representational state transfer (REST).

The second, separation of frontend from backend, suggests the separation of the presentation layer

from the logic and database layers, which allows to develop, perform the deployment process, and scale

the two services independently. After the separation, the frontend service makes remote calls to the

backend. However, this is a partial solution since the backend remains complex.

The third, splitting the monolith by extracting functionality to services, proposes the decomposition of

the monolith by extracting features for services. By using this strategy the monolith tends to disappear over

10

3.1. MANUAL MIGRATION OF MONOLITHS TO MICROSERVICES

Figure 2: Strangler application pattern by Fowler

Source: Richardson, 2018

time and the number of microservices grows. To extract a feature it is imperative to make a vertical cut in

the monolith (Richardson, 2018), because it may have dependencies on all layers of the monolith, however

this task is not trivial. Problems such as splitting the domain model, breaking dependencies between

objects, and database refactoring appear, and their solutions are tightly coupled to the system being

migrated. Regarding domain model splitting and consequently breaking dependencies between objects,

based on Domain-driven design (Evans, 2004) , Richardson, 2018 suggests the use of the aggregate

pattern that replaces the direct reference between objects with a reference based on the primary key.

The replacement of the direct reference between objects by a reference based on the primary key plays

a central role in the solution we propose. For the refactoring of the database, in order to avoid major

changes in the code, he proposes a solution of Ambler and Sadalage, 2006 which consists in preserving

the original logical schema of the monolith for a transition period and using triggers for synchronization

between the original schema and the new schemas. Preserving the original schema of the monolith

significantly reduces the work that needs to be done immediately and over time the code can be migrated

to the new schema.

11

CHAPTER 3. STATE OF THE ART

3.2 Source-code oriented solutions

Since the main goal is to transform a monolithic application into a microservices-based application through

a process of refactoring the source code of the monolith, the analysis of source code oriented solutions

plays a central role in obtaining knowledge about existing refactoring techniques in the literature that could

be useful for our solution.

In order to mitigate the problems during the transition of applications to services in the cloud, Kwon

and Tilevich, 2013 propose Cloud Refactoring, a set of automated refactoring techniques, implemented in

the Eclipse IDE, that facilitate the process of transforming applications to support services in the cloud.

These techniques provide feature extraction for services, remote access to services, fault handling, and

replacement of client accessed services with equivalent services in the cloud.

To assist the decision of which features to migrate, Cloud Refactoring provides a tool that, through

coupling metrics, indicates which classes are the least coupled. For this it has two recommendation

mechanisms available: profile-based recommendation and cluster-based recommendation.

This tool allows the developer to have full control of the features that will be migrated by accepting as

input the set of methods or fields that are to be migrated, using proxys and interfaces, Figure 3 and 4, to

break dependencies between classes.

Figure 3: Original communication between classes.

Source: Kwon and Tilevich, 2013

To make the application resilient to failures, Cloud Refactoring provides three strategies with recog-

nized value: retry, active replication and passive replication. In addition, new strategies can be added

through a Fault Tolerance Description Language script (services in the cloudFTDL) (Edstrom & Tilevich,

2012).

Kwon and Tilevich, 2013’s work proposes a partial solution to the problem that is intended to be ad-

dressed since it transforms a monolithic application into an application with a SOA architecture. However

it presents some limitations: it uses classes as the atomic unit of identification and extraction of microser-

vices, making it impossible to segregate components of a class for several microservices; it does not allow

the full decomposition of the system into services since there may be strongly coupled classes; it does not

support bidirectional communication between client and server.

With the goal of proposing microservices, Kamimura et al., 2018 developed a method to identify

microservices through source code using SArF, a clustering algorithm proposed by Kobayashi et al., 2012.

The extraction process begins by identifying the endpoints of the application API, using the @Controller

12

3.2. SOURCE-CODE ORIENTED SOLUTIONS

Figure 4: Communication after extraction of the methods from B to a cloud service.

Source: Kwon and Tilevich, 2013

annotation that identifies the endpoints exposed in the REST API. Next, the classes responsible for defining

the persistence and processing of the data are identified through the@Entity and@Table annotations. Our

solution also uses the annotations to extract information that helps identify the role of the classes. In this

work of Kamimura et al., 2018 only a microservices proposal is performed, there is no extraction or

refactoring of the code. As opposed, our solution refactors the code.

Abdullah et al., 2019 propose an automatic method for decomposing the monolith into microservices

that aims to improve scalability and application performance through a black-box approach based on logs

and machine learning algorithms that do not require supervision. This method also helps identify the

most appropriate types of virtual machines for each microservice. The solution is based on to identifying

uniform resource identifiers (URIs) of a given monolithic application in order to form groups of URIs and

subsequently microservices. To do this, an analysis of the access logs is performed in order to collect the

size of the response document and response time for each request for URIs and then group them using

this information as criteria. Despite being a work in which there is an automatic decomposition of the

monolith, Abdullah et al., 2019 not address which refactoring techniques are used and neither how the

deploy process is done, giving preference to explaining the algorithm for selecting the most suitable virtual

machine for each microservice.

Brito et al., 2021 propose a methodology capable of identifying sets of components candidates to

form microservices automatically using topic modeling and clustering techniques. To do this, a lexical

extraction of all relevant terms is performed to identify what a given component represents in the context

of the project domain and an extraction of structural dependencies between components is performed

by analyzing an Abstract Syntax Tree (AST). Next, the Latent Dirichlet Allocation algorithm is applied (Blei

et al., 2003), to identify the most relevant k-topics in the source code. Finally, a graph is constructed based

13

CHAPTER 3. STATE OF THE ART

on the structural dependencies and the distribution of the k-topics by the components of the monolith with

the final objective of applying the Louvain algorithm, proposed by Blondel et al., 2008, on the graph with

the intention of grouping the components and consequently arriving at the microservices proposal. This

work has as one of its great advantages being one of the few source code oriented solutions that offers a

tool capable of identifying potential microservices, however this only supports projects developed in Java.

Asseldonk, 2021 tried to understand what effect have the use of various viewpoints of the system on

the decomposition of the monolith into microservices. For that he created a tool that generates a proposed

decomposition of monoliths developed in Python through the combination of static, dynamic and semantic

analysis. The tool extracts the semantic, static and dynamic dependencies from the application under

analysis and creates four edge-weighted graph, one for each type of dependencies and another in which

it combines all the dependencies. Then, for each graph the Louvain algorithm (Blondel et al., 2008) is

applied to find potential microservices. To compare the quality of the proposed microservices Asseldonk,

2021 uses metrics proposed by the work of Jin et al., 2021 regarding independence of functionality and

modularity. This work ends up going further than Brito et al., 2021 because it generates microservices

proposals based on several types of analysis.

3.3 Model-based Solutions

Model-based solutions allow the use of models to support migrations since models also represent a view

over the interactions between system’s components (Chen et al., 2017).

Gysel et al., 2016 propose a tool, Service Cutter, that through artifacts, such as use cases and domain

models, extracts coupling information that is represented by a graph. Weights are added to the edges

of the graph according to a set of prioritized criteria, in order to identify clusters of components, and

consequently good candidates for microservices. For this purpose, at this point, two clustering techniques

are available: Epidemic Label Propagation by Leung et al., 2009 and the Girvan and Newman, 2001

algorithm. The criteria available in the Service Cutter were obtained through a literature review and the

authors’ experience leading to the construction of a catalog with 16 coupling criteria, Figure 5, being these

divided into 4 categories. The Service Cutter presents a promising technique for migrating to microservices

but has some limitations: it is highly dependent on the quality of the software artifacts provided by the

user, and this fact has a direct impact on the solution; the artifacts have to be imported into the tool

through JSON files, leading to a conversion process that may result in degradation of the artifact quality.

Tyszberowicz et al., 2018 propose an approach based on a use case specification of the software

requirements and a functional decomposition of these requirements. Through tools such as easyCRC

(Tyszberowicz and Raman, 2007) and Text Analysis Online the nouns and verbs of the use case spec-

ifications are extracted in order to obtain information about the system operations as well as the state

variables. To organize the data obtained, a table is created in which the operations and their relation-

ship with the variables are stored. With the intention of proposing a decomposition in high cohesion and

14

3.4. SUMMARY

Figure 5: Coupling criteria by Gysel et al., 2016

Source: Gysel et al., 2016

low coupling components, through the operation/relationship table, a bipartite graph is built in which the

nodes represent state variables and operations. The edges of the graph connect operations to the state

variables they manipulate, with writes having a greater weight than reads. By visualizing the graph they

identify clusters of components, and consequently candidates for microservices. Finally, this approach

defines the API for each microservice and the stored data. The API is built by joining the operations that

edit the microservice state variables and the microservice operations invoked by others. For the database,

on the other hand, they follow the ideology of Yanaga, 2017 and Fowler and Lewis, 2014 which defend the

sharing of data between microservices, with the data from external microservices being available through

the API that contains it, not allowing any direct access to the database outside the service.

Like Service Cutter, this approach is highly dependent on the quality of input, yet it addresses issues

such as API and database that are vital to the our work.

3.4 Summary

Based on the research and analysis of the bibliography presented in the previous sections, we conclude

that there are already some works dedicated to the migration from monoliths to microservices. However,

most of these works focus on the identification of microservices and not on monolith refactoring process.

Instead, there is an indication of how the monolith should be decomposed. However, there are also some

works that propose a methodology accompanied by a tool that performs the refactoring process like “Cloud

Refactoring” and Abdullah et al., 2019’s work but both have some limitations. The “Cloud Refactoring”

cannot refactor classes that use parameter passing, serialization, and local resources such as databases

and disk files. On the other hand, Abdullah et al., 2019’s work uses dynamic analysis through the analysis

of access logs and this has some limitations: the first is the overhead on the system to collect execution

logs, which can be a problem on large scale systems; secondly, their approach is limited by the quality

and coverage of the test cases performed to execute and collect their logs. Creating tests in an incomplete

15

CHAPTER 3. STATE OF THE ART

manner and with inadequate coverage will also result in an inadequate microservices proposal (Brito et al.,

2021). Manual approach, despite being manual, introduce concepts and ideas that help in building an

automated approach for refactoringmonoliths into microservices. Since there are already several proposals

for identifying microservices, our focus is on the next step, i.e. refactoring the monolith. Our goal is to

propose a methodology for refactoring a monolithic application into a microservices-based application. We

intend to address problems such as database decomposition and communication between services. Since

our focus is on refactoring the monolith we do not address the identification of microservices problem,

instead our methodology receives as input a microservice proposal that can be generated manually or can

be generated by a tool for this purpose.

16

4

A Methodology for Refactoring Java Monoliths into
Microservice-Based Applications

Given the high complexity of creating a generalized solution for multiple languages and frameworks, we

reduced the scope to something more specific. In terms of web languages, PHP, JavaScript, Java, C#

and Python stand out. Despite being a widely used language, PHP has not had a significant adaptation in

the microservices world. In recent years, the JavaScript through frameworks such as Express has gained

notoriety in this world since it is used in projects of small and large dimensions, however, many of these

are already developed under a microservices architecture. Of the others, the Java stands out for being a

language that over the years has remained as one of the most used for web development and there are

numerous monolithic applications and therefore we chose to create a methodology to evolve monoliths

developed in Java. In this chapter, we describe the proposed methodology for refactoring monolithic

applications developed in Java into microservice-based applications.

The proposed methodology is directed to applications that take advantage of object-relational mapping

(ORM) technique, which converts the data between the database entities and Java classes. This technique,

in the Java language, can be applied through XML files or by annotations in the application’s source code.

The methodology is oriented to applications that use annotations to apply ORM technique. We chose this

subset of applications because the use of ORM through annotations is a modern technique and to keep

the focus of refactoring on the Java classes and avoid pre-processing configuration files for each project.

Furthermore, since the entities and the relationships between entities are defined in the source code,

through annotations, it is possible to decompose the database by microservices since the changes made

in the source code will directly impact the logical database schema. Figure 6 depicts an overview of the

steps that compose the refactoring process.

Our methodology receives, as input, the source code of the application under analysis and a set of

microservices, in which each microservice is described by the set of classes. Each class must belong to

just one microservice. Our methodology has as its output a microservices-based application that from the

functional point of view is the same as the monolithic application under analysis.

The methodology is divided into 3 phases, the Information Extraction, the Database Refactoring and

the Code Refactoring. In the Information Extraction phase, we extract the structural information from the

17

CHAPTER 4. A METHODOLOGY FOR REFACTORING JAVA MONOLITHS INTO MICROSERVICE-BASED
APPLICATIONS

Figure 6: Overview of the proposed methodology

source code of the project under analysis and combine it with the microservices proposal to identify the

dependencies between microservices. In the next phase, Database Refactoring, we use the structural in-

formation and the dependencies between microservices to identify entities, relationships between entities,

and to identify which relationships need refactoring, proceeding to the refactoring of those relationships. Fi-

nally, in Code Refactoring, we use the structural information and the dependencies between microservices

to analyze the class variables and the dependencies between classes. This analysis allows us to identify

and refactor the classes that have dependencies with classes that belong to different microservices. To

demonstrate what transformations our methodology makes to monolithic projects, we use as an example

a Java Spring application called restaurantServer1.

In the following sections we present the restaurantServer application and explain in detail each of

the phases of our methodology accompanied with examples of the transformations performed on the

monoliths.

4.1 restaurantServer

In this section we present the restaurantServer, a backend application for restaurant management. Al-

though it is a small project, we chose to use this application as example because it covers a large portion

of the cases we consider. Our goal is to present extracted examples from this application to demonstrate

what happens in each phase of our methodology, and to demonstrate the concrete modifications that

each phase of our methodology makes to monolithic applications. To achieve this we present examples

of interactions between classes in the original application and the same interactions in the generated

microservices based application.

To generate a microservices proposal for restaurantServer, to be used as input for our methodol-

ogy, we used the tool developed by Brito et al., 2021 available at https://github.com/miguelfbrito/

microservice-identification. Although the tool allows the customization of the input, we use the default

parameters. The microservices proposal generated by the tool is present in Table 1. The generated pro-

posal consists in 7 microservices and by the name of the classes we can understand what is the domain of

each microservice. The examples presented in this chapter will be based on this microservices proposal.

In the next section we present the first phase of our methodology, the Information Extraction .

1https://github.com/asledziewski/restaurantServer

18

https://github.com/miguelfbrito/microservice-identification
https://github.com/miguelfbrito/microservice-identification
https://github.com/asledziewski/restaurantServer

4.1. RESTAURANTSERVER

#Microservice Classesa

1

security.WebSecurityConfiguration
security.jwt.JwtAuthEntryPoint
security.jwt.JwtAuthTokenFilter
security.jwt.JwtProvider

2

security.service.UserDetailsServiceImpl
repository.UserRepository
entity.User
security.service.UserPrinciple
service.UserService
controller.UserController

3

entity.Bill
entity.BillPosition
service.BillService
controller.BillController
service.BillPositionService
controller.BillPositionController
repository.BillPositionRepository
repository.BillRepository

4

service.RTableService
entity.RTable
controller.RTableController
repository.RTableRepository

5

entity.Dish
RestaurantServerApplication
repository.DishRepository
service.DishService
controller.DishController

6

repository.ReservationRepository
entity.Reservation
service.ReservationService
controller.ReservationController

7

form.response.JwtResponse
email.MailService
controller.AuthController
entity.Role
repository.RoleRepository
form.LoginForm
form.SignUpForm

Table 1: Microservices proposal for restaurantServer

aAll classes have the prefix pl.edu.wat.wcy.pz.restaurantServer. in their qualified name

19

CHAPTER 4. A METHODOLOGY FOR REFACTORING JAVA MONOLITHS INTO MICROSERVICE-BASED
APPLICATIONS

4.2 Information Extraction

The building blocks of our methodology are the structural information and proposed microservices. Since

our methodology receives as part of the input a microservices proposal, which in practice is the decom-

position of the monolith classes by microservices, these classes may have interactions with classes that

belong to different microservices, i.e. have a dependency with a class that after refactoring will exist in a

different environment. It is these dependencies that we need to identify and refactor. Therefore, to identify

the dependencies between classes that belong to different microservices we need to extract information

from the application source code and cross-reference it with the microservices proposal.

In the Information Extraction phase, structural information is extracted from the source code and

dependencies between microservices are identified. Next, we describe how to obtain this information.

4.2.1 Extraction of structural information

Since the interactions between the classes are present in the structural information of the source code,

we extract it from the source code of the system under analysis.

We extract the structural information through the Abstract Syntax Tree (AST) of the application under

analysis. We chose to extract from AST because the class interactions are straightforward to obtain working

on the AST and because we obtain the information contained in each class, such as name, imports,

classes from which it extends, if applicable, implemented interfaces, annotations, variables, methods and

invoked methods which is information that we need to build the classes into their respective microservices.

To identify the classes that a class interacts with, we combine the list of invoked methods, the list of

implemented interfaces and the list of extends, which are returned by the AST. The Algorithm 1 presents

how the identification of classes which a class interacts with is performed. Receives as input a class𝐶 and

returns a class 𝐶 with the list of dependencies with other classes filled in. An iteration through the lists

mentioned above is performed to extract the names of the classes that class𝐶 interacts with. Throughout

the iteration, the classes’ names are stored in 𝐷𝑒𝑝𝐶 and finally the information contained in 𝐷𝑒𝑝𝐶 is

stored in C which results in the list of dependencies of𝐶 with other classes. The dependency list contains

the name of the classes from which the class invokes methods, the name of the interfaces it implements

and the name of the super class, if applicable.

20

4.2. INFORMATION EXTRACTION

Algorithm 1 Identification of classes where a class interacts with.
Input: 𝐶
Output: 𝐶
𝑖 = 0;
𝐷𝑒𝑝𝐶 = [];
𝑚𝑒𝑡ℎ𝑜𝑑𝑠 = 𝐶.𝑔𝑒𝑡𝐼𝑛𝑣𝑜𝑘𝑒𝑑_𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ();
𝑖𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒𝑠 = 𝐶.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒𝑠 ();
𝑒𝑥𝑡𝑒𝑛𝑑𝑠 = 𝐶.𝑔𝑒𝑡𝐸𝑥𝑡𝑒𝑛𝑑𝑠 ();
for (𝑖; 𝑖 < 𝑠𝑖𝑧𝑒 (𝑚𝑒𝑡ℎ𝑜𝑑𝑠); 𝑖 + +) do

if (𝑚𝑒𝑡ℎ𝑜𝑑𝑠 [𝑖] .𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑒 𝑛𝑜𝑡 𝑖𝑛 𝐷𝑒𝑝𝐶) then
𝐷𝑒𝑝𝐶 .𝑎𝑑𝑑 (𝑚𝑒𝑡ℎ𝑜𝑑𝑠 [𝑖] .𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑒);

end if
end for
𝑖 = 0;
for (𝑖; 𝑖 < 𝑠𝑖𝑧𝑒 (𝑖𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒𝑠); 𝑖 + +) do

if (𝑖𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒𝑠 [𝑖] .𝑛𝑎𝑚𝑒 𝑛𝑜𝑡 𝑖𝑛 𝐷𝑒𝑝𝐶) then
𝐷𝑒𝑝𝐶 .𝑎𝑑𝑑 (𝑖𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒𝑠 [𝑖] .𝑛𝑎𝑚𝑒);

end if
end for
𝑖 = 0;
for (𝑖; 𝑖 < 𝑠𝑖𝑧𝑒 (𝑒𝑥𝑡𝑒𝑛𝑑𝑠); 𝑖 + +) do

if (𝑒𝑥𝑡𝑒𝑛𝑑𝑠 [𝑖] .𝑛𝑎𝑚𝑒 𝑛𝑜𝑡 𝑖𝑛 𝐷𝑒𝑝𝐶) then
𝐷𝑒𝑝𝐶 .𝑎𝑑𝑑 (𝑒𝑥𝑡𝑒𝑛𝑑𝑠 [𝑖] .𝑛𝑎𝑚𝑒);

end if
end for
𝐶.𝑠𝑒𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 (𝐷𝑒𝑝𝐶);

For example, from the AST of restaurantServer the information extracted for the ReservationContro-
ller class is presented in Listing 4.1.

1 {"name": "pl.edu.wat.wcy.pz.restaurantServer.controller.
ReservationController",

2 "imports":["lombok.AllArgsConstructor", "org.springframework.http.
HttpStatus", "org.springframework.web.bind.annotation", "org.
springframework.web.server.ResponseStatusException", "pl.edu.wat.
wcy.pz.restaurantServer.entity.Reservation", "pl.edu.wat.wcy.pz.
restaurantServer.service.ReservationService", "java.text.
SimpleDateFormat","java.util.Collection", "java.util.Date","java.
util.Optional"],

3 "extendedTypes":[],
4 "implementedTypes":[],
5 "annotations":["@AllArgsConstructor","@RestController","@CrossOrigin

"],

21

CHAPTER 4. A METHODOLOGY FOR REFACTORING JAVA MONOLITHS INTO MICROSERVICE-BASED
APPLICATIONS

6 "instance_variables":[{"annotations":[], "modifier":"private ", "
identifier":[], "type":"ReservationService", "variable":"
reservationService", "lineBegin":20,"lineEnd":20}],

7 "myMethods":{"getReservationById":{...}, "addReservation":{...}, "
updateReservation":{...}, "getReservations":{...}, "
deleteReservation":{...}, "getCurrentReservations":{...}

8 },
9 "methodInvocations":[{"methodName":"getReservations","

targetClassName":"pl.edu.wat.wcy.pz.restaurantServer.service.
ReservationService"},{"methodName":"getCurrentReservations","
targetClassName":"pl.edu.wat.wcy.pz.restaurantServer.service.
ReservationService",{"methodName":"getReservationById","
targetClassName":"pl.edu.wat.wcy.pz.restaurantServer.service.
ResrvationService"},{"methodName":"getDate","targetClassName":"pl
.edu.wat.wcy.pz.restaurantServer.entity.Reservation"},{"
methodName": "setDateDays", "targetClassName":"pl.edu.wat.wcy.pz.
restaurantServer.entity.Reservation"},{ "methodName":"setDateTime
", "targetClassName":"pl.edu.wat.wcy.pz.restaurantServer.entity.
Reservation"},{"methodName":"addReservaion", "targetClassName":"
pl.edu.wat.wcy.pz.restaurantServer.service.ReservationService"},{
"methodName":"updateReservation","targetClassName":"pl.edu.wat.
wcy.pz.restaurantServer.service.ReservationService"},{"methodName
":"deleteReservationById","targetClassName":"pl.edu.wat.wcy.pz.
restaurantServer.service.ReservationService"

10 }]
11 }

Listing 4.1: Information extracted from the AST about ReservationController class

And after the identification of the classes which the class ReservationController interacts with,
the list presented in Listing 4.2 is added to the ReservationController.

1 {
2 "dependencies": ["pl.edu.wat.wcy.pz.restaurantServer.service.

ReservationService", "pl.edu.wat.wcy.pz.restaurantServer.entity.
Reservation"]

3 }

Listing 4.2: List of classes that interact with ReservationController class

This process is repeated for all classes of the monolith under analysis, and at the end of this process

all interactions between classes are known, which is fundamental to identify which of these interactions

are between classes of different microservices, which is the next step.

22

4.2. INFORMATION EXTRACTION

4.2.2 Identify Microservice Dependencies

We define dependencies between microservices as a reference to a certain non-primitive type that does not

belong to the microservice, i.e., if microservice A has a class that depends on data type T and microservice

B has the class of type T then A depends on B.

The process of identification of dependencies between microservices and the identification of depen-

dencies between classes from different microservices is presented in Algorithm 2. To obtain the depen-

dencies between microservices and the dependencies between classes of different microservices, we used

the proposed microservices,𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑐𝑖𝑐𝑒𝑠_𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 , by iterating over each microservice𝑚𝑠 to check

if the classes that belong to the dependency list of the classes that belong to𝑚𝑠 exist in the classes that

belong to𝑚𝑠. Through this comparison, we observe that the classes that are in the list of dependencies

of a class that belongs to𝑚𝑠 and that do not belong to𝑚𝑠 are classes that belong to another microservice

resulting in a dependency between microservices. When a dependency between microservices is detected,

a pair is added to 𝑑𝑒𝑝_𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒 to indicate which microservices are involved in the dependency and

the class name that class 𝑐 depends on is added to update the dependency list. At the end of the process,

the dependency list of each class only stores the dependencies with classes of other microservices.

Algorithm 2 Identification of dependencies between microservices
Input: 𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑐𝑖𝑐𝑒𝑠_𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 = [𝑚𝑠1,𝑚𝑠2, ...,𝑚𝑠𝑛],

𝐶𝑙𝑎𝑠𝑠𝑒𝑠 = [𝑐1, 𝑐2, ..., 𝑐𝑚],
Output: 𝑑𝑒𝑝_𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ⊲ List of dependencies between microservices
𝑑𝑒𝑝_𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝑠𝑒𝑡 ();
for (𝑖 = 0; 𝑖 < 𝑠𝑖𝑧𝑒 (𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠_𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙); 𝑖 + +) do

𝑚𝑠 = 𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠_𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 [𝑖];
for (𝑗 = 0; 𝑗 < 𝑠𝑖𝑧𝑒 (𝑚𝑠); 𝑗 + +) do

𝑐𝑙𝑎𝑠𝑠_𝑛𝑎𝑚𝑒 =𝑚𝑠 [𝑗];
𝑐 = 𝐶𝑙𝑎𝑠𝑠𝑒𝑠.𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑒 (𝑐𝑙𝑎𝑠𝑠_𝑛𝑎𝑚𝑒);
𝑑𝑒𝑝_𝑐𝑙𝑎𝑠𝑠_𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 = [];
𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠_𝑙𝑖𝑠𝑡 = 𝑐.𝑔𝑒𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 ();
for (𝑡 = 0; 𝑡 < 𝑠𝑖𝑧𝑒 (𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠_𝑙𝑖𝑠𝑡); 𝑡 + +) do

𝑑𝑒𝑝_𝑛𝑎𝑚𝑒 = 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠_𝑙𝑖𝑠𝑡 [𝑡];
if (𝑑𝑒𝑝_𝑛𝑎𝑚𝑒 not 𝑖𝑛 𝑚𝑠 && 𝑑𝑒𝑝_𝑛𝑎𝑚𝑒 not 𝑖𝑛 𝑑𝑒𝑝_𝑐𝑙𝑎𝑠𝑠_𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠) then

𝑑𝑒𝑝_𝑐𝑙𝑎𝑠𝑠_𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠.𝑎𝑑𝑑 (𝑑𝑒𝑝_𝑛𝑎𝑚𝑒);
for (𝑘 = 0; 𝑖 < 𝑠𝑖𝑧𝑒 (𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠_𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙);𝑘 + +) do

if 𝑑𝑒𝑝_𝑛𝑎𝑚𝑒 𝑖𝑛 𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠_𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 [𝑘] then
𝑑𝑒𝑝_𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒.𝑎𝑑𝑑 ((𝑖, 𝑘));

end if
end for

end if
end for
𝑐.𝑠𝑒𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 (𝑑𝑒𝑝_𝑐𝑙𝑎𝑠𝑠_𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠);

end for
end for

23

CHAPTER 4. A METHODOLOGY FOR REFACTORING JAVA MONOLITHS INTO MICROSERVICE-BASED
APPLICATIONS

Using as an example the proposed microservices for the restaurantServer presented in Table 1 and the

information obtained for the class ReservationController in the previous section, we can observe

that the classes which the ReservationController class depends on belong to the same microser-

vice as the ReservationController, so there is no dependency between microservices detected by
this class. Regarding the ReservationController dependencies list, it is empty since there are no

dependencies with classes of other microservices. For an overview of the proposed microservices and

restaurantServer we found 16 dependencies, presented in Table 2, between microservices. The list of

dependencies of each class with classes of other microservices can be observed in Appendix A.1, where

in bold is highlighted the analyzed class followed by the classes it depends on .

Microservice Depends on

1 2
2 6;7
3 4;5
4 3;6
5 2;4;7
6 2;4;7
7 1;2;6

Table 2: Dependencies between microservices

Since the composition of microservices given as input may not have followed any microservice identifi-

cation methodology, the composition of microservices proposed can have some incongruities. Sometimes

it is necessary to make some adjustments to the microservice proposal given as input. If the microservices

proposal indicates that an interface implemented by a class is in different microservices, we replicate the

interface and place the copy in the microservice where the implementing class belongs, since an interface

only provides the signature of the methods that a class must implement, not having a significant impact

on the microservice domain. On the other hand, regarding inheritance, our methodology does not allow

the super class and sub classes to be in different microservices because they have an “is a” relationship

and must belong to the same domain and therefore the same microservice.

4.3 Database Refactoring

One of the big challenges of migrating a monolithic system to microservices is database refactoring. Typ-

ically, each microservice has its own database which, from the perspective of migrating a monolithic

system to microservices, leads to the need to decompose the monolithic database into several databases.

The database decomposition is not a trivial process, so we have to consider issues such as transactional

integrity, referential integrity, joins and latency (S. Newman, 2019).

The database refactoring phase aims to identify entities, relationships between entities, and refactoring

the relationships between entities that belong to different microservices.

24

4.3. DATABASE REFACTORING

Having computed the structural information and the dependencies between classes from different

microservices, we can now refactor the application under analysis starting with the database. We use

the structural information extracted in the previous phase to identify the classes that are mapped as

entities and the relationships between the entities. We use the annotation list of each class to identify

the classes that are mapped as entities and through the annotations of the instance variables we identify

the relationships. Table 3 shows the entities and relationships present in restaurantServer. The logical

schema of the database is defined by 7 classes and 6 relationships.

Entity Relationship Entity

User Many-to-Many Role
User One-to-Many Reservation
Bill One-to-Many BillPosition

BillPosition Many-to-One Dish
Rtable One-to-Many Reservation
Rtable One-to-Many Bill

Table 3: Relationship between Entities

With the breakdown of the monolith into microservices, it is necessary to verify the integrity of the

relationships between entities. As we are in the scope of applications that take advantage of the use of

annotations to apply the ORM technique, when relationships between entities are identified, in terms of

code this translates into a dependency between classes that needs to be handled. By refactoring the

classes involved in the relationship we refactor the relationship of the database entities. Our methodology

maintains the relationships between entities that belong to different microservices, using foreign keys to

secure these relationships.

After a comprehensive and exhaustive review of the state of the art on migration patterns, we decided

to apply the following patterns for database refactoring:

• Data Transfer Object (DTO)

• Move Foreign-Key Relationship to Code

• Database Wrapping Service

Next, we present each pattern and in which scenarios they are applied through examples.

Data Transfer Object

The data transfer object pattern (DTO) is a distribution pattern used to reduce the number of calls when

working with remote interfaces. When working with remote interfaces (e.g web services), each service call

is an expensive operation. Indeed the majority of the cost of each call is associated with the round-trip

25

CHAPTER 4. A METHODOLOGY FOR REFACTORING JAVA MONOLITHS INTO MICROSERVICE-BASED
APPLICATIONS

time between the client and the server. Therefore the solution is to transfer more data within each call.

So the solution is to create a data transfer object that can hold all the data for the call. It needs to be

serializable to go across the connection. Usually it is used an assembler on the server side, as shown in

the Figure 7, to transfer data between the DTO and any domain objects. Another advantage associated

with this pattern is encapsulating the serialization mechanism for transferring data over the wire, keeping

this logic out of the rest of the code and also providing a clear point to change the serialization if desired

(Fowler et al., 2002).

How do we use it in the refactoring process.

When a relationship between entities that belong to different microservices is identified, it means that at

least one of the classes that are mapped as entities has an instance variable with the same data type

as the other entity/class involved in the relationship. As the entities/classes involved in the relationship

come to exist in different environments since they are in different microservices, one of the classes has

an instance variable with a data type unknown to its domain. We apply the DTO pattern to create this

data type. In this way, the unknown data type comes to exist, avoiding changes in the classes that have

references to this data type.

Figure 7: Data transfer Object Pattern

Source: Fowler, 2002

To demonstrate how this pattern is used we use the relationship between the classes User and

Reservation of restaurantServer. By the microservice proposal in Table 1 and the class dependencies

we verify that the User class depends on the Reservation class and the classes are in different mi-

croservices. The relationship between the User class and the Reservation class is characterized by

the User class having an instance variable of type list for Reservation. To create the Reservation
data type in the microservice that the User class belongs to, the DTO pattern is applied. This way the

User class remains unchanged and does not depend directly on the Reservation class that resides in
another microservice.

26

4.3. DATABASE REFACTORING

Move Foreign-Key Relationship to Code

The move foreign-key relationship to code pattern is a database decomposition pattern, and like its name

indicates, this pattern is used to move the foreign key from the database into the source code of the

application.

The relationships between entities are denoted by foreign-key relationships. Defining this relationship

in underlying database engine ensures data consistency and lets the database engine execute performance

optimizations to ensure that the join operation is as fast as possible. However, when one wants to split

the database and the entities involved in the relationship end up living in different schemas two problems

emerge: the join of information cannot be performed via database join and the data inconsistency is now

possible.

The move foreign-key relationship to code pattern resolves the first problem by moving the join of

information to code. By moving the join operation to the code, Figure 8, the database calls are replaced

by service calls and the primary key is used to filter the information that is retrieved.

This pattern incurs some performance costs because latency increases. We pass from a local SELECT

in the database to a SELECT in the one database, a service call and a SELECT in another database.

Figure 8: Replacing a database join operation with service calls

Source: S. Newman, 2019

How do we use it in the refactoring process.

We apply this pattern when we find relationships of the types One-to-One, Many-to-One, and One-to-Many

between entities that will belong to different microservices. To do that the first step is to remove the

annotation from source code which creates the relationship. This annotation is typically present in one of

the classes involved in the relationship. With the removal of the annotation that created the relationship,

the table that stored the foreign-key lost the column for that purpose.

27

CHAPTER 4. A METHODOLOGY FOR REFACTORING JAVA MONOLITHS INTO MICROSERVICE-BASED
APPLICATIONS

Next, we add an instance variable to the class that represents the other entity involved in the relation-

ship. We add this new variable to create a column in the table that is responsible for storing the foreign-key.

In this way, the table has the same attributes that it had before the database was split. Furthermore, this

new variable will be used as a filter to retrieve data from the database through SELECT.

As we already have the tables involved in the relationship with the right attributes and each one in

its schema, the next step is to identify the methods that manipulate the data that belongs to the other

microservice. A search for methods that have a reference to that data is made. These methods will then

have an internal service call to manipulate this data using the primary key as a parameter.

To create the service calls and to make the generated code loosely coupled the following steps are

performed:

• A interface is created where the signature of the identified methods is declared.

• A class is created that implements the interface created that is responsible for making the service

calls

• A variable of the type of the interface created is added to the class that is mapped as an entity.

Finally, to respond to the service calls it is necessary to create a API in the other microservice involved

in the relationship. To do that, we create a class where we define the resource paths for the requests,

another class for process the request and we add methods to data access object (DAO) for querying the

database. These methods added to the class DAO are for retrieving the information required by the services

call from the database.

To demonstrate the transformations made by this pattern we use the relationship between the class

User and the class Reservation. Figure 9 shows the One-to-Many relationship between User and

Reservation in the original application. We omit some attributes from Reservation because it has

no impact on the refactoring of the relationship. Both classes have the Entity annotation that indicates

that they are mapped as database entities and their instance variables are mapped as attributes. The

Reservation table has a foreign key that corresponds to the User's primary key. Moreover, both

classes have their respective Repository class that allows the manipulation of the data present in the

database.

In terms of code, Figure 10 and 11, the One-to-Many relationship is represented by the User class hav-
ing an instance variable of type list of Reservationwith OneToMany annotation and the Reservation
class having an instance variable to store a primary key of User.

Figure 12 gives an overview of the relationship between the User and Reservation after refactoring
and the transformations made as a result of the refactoring. One interface and one class were generated,

ReservationRequest and ReservationRequestImpl respectively, in the User's microservice,

which are responsible for making requests to the microservice where the Reservation information is

and, by applying the DTO pattern, it was also created a class called Reservation that has the same at-

tributes as the original Reservation class. In microservice #6, where the original Reservation class

28

4.3. DATABASE REFACTORING

Figure 9: One-to-Many relationship between User and Reservation in monolithic application

Figure 10: Instance variables of the User class
in monolithic application

Figure 11: Instance variables of the Reser-
vation class in monolithic application

belongs, the ReservationUserController and ReservationUserService classes were cre-

ated to receive the requests and to process the requests, respectively. Also, in the ReservationReposi-
tory class the setReservations and getReservations methods were added.

In terms of code, the class User, Figure 13, now has an instance variable of type ReservationRe-
quest and the instance variable list of Reservation that had the annotation OnetoMany now has

the annotation Transient which indicates that this information is not to be stored in the database. The

ReservationRequest interface, Figure 14, has the signature of setReservations and getReser-
vations methods that have as parameter the user id and the ReservationRequestImpl class,

Figure 15, implements the ReservationRequest interface and is responsible for calling the reservation

29

CHAPTER 4. A METHODOLOGY FOR REFACTORING JAVA MONOLITHS INTO MICROSERVICE-BASED
APPLICATIONS

Figure 12: One-to-Many relationship between User and Reservation in microservice-based application

microservice.

Figure 13: Instance variables of the User class in microservice-based application

30

4.3. DATABASE REFACTORING

Figure 14: Interface generated by the database refactoring

Figure 15: Generated class that is responsible for the calls to the Reservation microservice

In the Reservation microservice the ReservationUserController class, Figure 16, is cre-

ated, where we use the RestController and CrossOrigin annotations that indicate that this class

exposes an API, where we define the resource path for each method and where we annotate the methods

with PutMapping or GetMapping according to the type of operation they represent.

Finally, the class ReservationUserService, Figure 17, is created where the request is directed to
the Repository class where the getReservations and setReservationsmethods were declared
using the User id as a filter.

31

CHAPTER 4. A METHODOLOGY FOR REFACTORING JAVA MONOLITHS INTO MICROSERVICE-BASED
APPLICATIONS

Figure 16: Generated class that exposes the API to handle Reservations

Figure 17: Generated class that processes and directs the request to the repository class

The transformations made to the relationship between User and Reservation are the same for the
relationships BillPosition - Dish, Rtable - Reservation and Rtable - Bill. The BillPosi-
tion - Bill relationship did not need refactoring as the two classes belong to the same microservice. In
Appendix A.2 are all the transformations made by database refactoring.

32

4.3. DATABASE REFACTORING

Database Wrapping Service

The database wrapping service pattern is a coping pattern, used to add a service as wrapper of database

schema.

As Newman, 2019 says, when something is too complicated to handle, hiding the mess makes sense.

Sometimes breaking down the database of sensitive systems like banks and hospitals can lead to catas-

trophic consequences. One possible solution is to share the database across all microservices but it goes

against the principles of microservices - each microservice has its own data and loose coupling. The

database wrapping service pattern appears as a better solution and it is also seen as a stepping stone

to more fundamental changes, giving you time to break apart the schema underneath your API layer (S.

Newman, 2019). This pattern creates a new service to “hide” the database, Figure 18, providing an API

to access the data. In this way the services replace access to the database with requests to the service

that owns the database. This ensures the database schema is unchanged and the services exhibit low

coupling.

Figure 18: Using a service to wrap a database

Source: S. Newman, 2019

How do we use it in the refactoring process.

We apply this pattern when we find a Many-to-Many relationship between entities that will belong to different

microservices. In Many-to-Many relationships a “join table” is created, being formed by the two foreign

keys (i.e. copies of the primary keys of the entities involved). If we apply the move foreign-key relationship

to code pattern we would lose this table. Instead we apply this pattern and the relationship keeps intact.

We apply this pattern by extracting the classes that are mapped to the entities that are involved in

the relationship, and their respective DAO classes for a new service. This new service provides an API to

access the data stored in the database and, therefore, the services that need to access that data, replace

direct database calls with calls to the new service.

33

CHAPTER 4. A METHODOLOGY FOR REFACTORING JAVA MONOLITHS INTO MICROSERVICE-BASED
APPLICATIONS

To demonstrate how this pattern is applied we use the relationship between User and Role. By the
microservices proposal of table 1 we verify that the classes Role and User belong to different microser-

vices and by table 3 we verify that these classes have a Many-to-Many relationship. We create an extra

microservice to store the User and Role classes and their respective Repository classes to access the
database. This way the relationship between the entities is maintained and the refactoring process con-

tinues with this new microservice being added to the microservices proposal and the classes dependency

lists are recalculated taking into account this new scenario.

4.4 Code Refactoring

Having already refactored the classes that create the database logical schema, it is now necessary to

analyze the other classes. The code refactoring phase aims to refactor the classes that have method calls

to other classes that are part of other services. Each of these methods calls is replaced by a service call

that is responsible for call the original method in the microservice where the method belongs. Figure 19

illustrates an overview of the steps that compose the code refactoring phase.

The code refactoring process starts with the analysis of the variables of the classes. The information

about the variables is straightforwardly obtained from the structural information of the class. We analyze

the data type of each instance variable and we check if the data type is in the list of dependencies that

the class has with other microservices. If the data type of the instance variable under analysis is not in

the list of dependencies, it is not necessary to continue the refactoring process for this variable, because

it corresponds to a data type that exists in the microservice to which the class belongs or it is a primitive

data type of the language. However, if the data type is among the dependencies with other microservices

it is necessary to search for method invocations of the class that corresponds to the data type, because

these methods, with the decomposition of the monolith in microservices, will no longer be invoked locally,

they will be replaced by calls to the service that owns the data type and consequently the methods.

The identification of the invoked methods is also simple to obtain through structural information. Since

the identified methods may have as a parameter or return a data type that is present in the class’s list

of dependencies with other microservices, it is necessary to check the data type of the parameters and

the return. If in the parameters or in the return of the method we found data types that are in the list of

dependencies of the class with other microservices we apply the DTO pattern to create these data types

in the microservice. The reason for doing this is that the parameters and the method return will be sent

in the service call so they are data transfer objects.

After having the invoked methods identified and their parameters and returns checked, we can create

the service calls. We create the data type of the instance variable by creating an interface with the same

name as the data type. In this way the modifications made to the code will be transparent to the class

under analysis. The interface created contains the signature of all the invoked methods identified that will

become service calls. To define the service calls we create a class, termed Request, that implements

34

4.4. CODE REFACTORING

the interface created. This new class is responsible for making the remote service calls and therefore we

define the REST calls for each method in this class.

Finally, in the microservice that owns the class that corresponds to the data type that triggered the

whole refactoring process, a REST API is created that allows the invocation of the original methods.

Figure 19: Overview of code refactoring

In order to complete the code refactoring process it is necessary to check the data types of the local

variables, which are the variables created within each method. We check if the data type of the local

variables are in the list of dependencies with other microservices of the class under analysis. If the data

type of the local variables is in the list of dependencies we create the data type by applying the DTO pattern

and a search is made for invoked methods of the class that corresponds to the data type. We apply the DTO

pattern because these variables typically, when they are not of a language primitive type, are the result of

invoking a method of a class that has defined an instance variable. In fact, the refactoring of the instance

variables already applies the DTO pattern to create the return data type of the invoked methods which

corresponds, for the most part, to the local variables. To avoid creating classes that already exist when a

data type is created by applying the DTO pattern, this data type is removed from the list of dependencies

with other microservices of the class under analysis. The identified invoked methods of the local variables

are defined as service calls in the class generated by the DTO pattern application. As in the analysis of

the instance variables a REST API is created, in the microservice that owns the data type, that allows the

invocation of the original method.

To show the changes made by the code refactoring phase we use the dependency between the

BillService class and the RtableRepository class, as an example. The Figure 20 gives us an

overview of the interaction of the class BillService with the class RTableRepository in the mono-
lithic application. The BillService class has two instance variables, one of type BillRepository

35

CHAPTER 4. A METHODOLOGY FOR REFACTORING JAVA MONOLITHS INTO MICROSERVICE-BASED
APPLICATIONS

and another of type RTableRepository, and six methods: getBills, getBillById, addBill,
updateBill, deleteBill and getBillPositions.

Figure 20: Interaction between Billservice and RTableRepository in monolithic application

In the monolithic version the relationship between the BillService class and the RTableRepos-
itory class is characterized by the BillService class having an instance variable of type RTableRe-
pository and by invoking the findbyId method, which returns a RTable, from the RtableRepos-
itory class within the addBill method.

The relationship between the two classes and the invocation of the findById method after code

refactoring phase is presented in Figure 21. In the code refactoring phase an interface was created in

BillService's microservice called RTableRepository to represent this type in the microservice

where the findById method signature was declared since it is only this method that is invoked from the

original RTableRepository class. Besides that, it was created a class called RtableRepository-
Impl that is responsible for making the REST call to invoke the original method and a class called RTable
to represent the finById return type. In RTable'smicroservice a class called RtableRepository-
Controller is created where the REST API is defined and that invokes the findById method in the

original RTableRepository class.

All the transformations made by the code refactoring phase can be seen in https://github.com/

MicroRefact/restaurantServerMs where we provide the source code of the refactored application.

36

https://github.com/MicroRefact/restaurantServerMs
https://github.com/MicroRefact/restaurantServerMs

4.4. CODE REFACTORING

Figure 21: Interaction between Billservice and RTableRepository in microserices-based application

37

5

MicroRefact - A tool for refactoring Java monoliths

In this chapter we present the implementation of our tool, MicroRefact, which is a shell based-tool devel-

oped in Python that serves as a proof of concept to validate the methodology. The MicroRefact is designed

for Java applications, in particular for the Spring1 framework. Although the methodology indicates the

manipulation of data access objects the developed tool only supports applications that use the repository

pattern2 instead of the DAO pattern since the identification of these classes is straightforward through the

annotations and the identification of which entity the repository class refers to is directly obtained. Further-

more, both patterns have the same goal: to serve as an abstraction to persist the data so the methodology

covers both patterns.

Regarding the ORM, there are several ORM frameworks. MicroRefact supports the refactoring of

applications that use the Java Persistence API3 (JPA) to do the mapping. We decided cover JPA since

it describes a common interface to data persistence frameworks. The full implementation is available at

https://github.com/FranciscoFreitas45/MicroRefact. Figure 22 represents an overall flow of MicroRefact.

In the following sections we detail each part of MicroRefact.

5.1 Information Extraction

The information extraction phase is responsible for processing the input provided by the user in order

to identify the proposed microservices and extract information from the source code of the monolith.

MicroRefact receives as input a JSON file with the composition of the microservices and the path to the

source code of the monolith. The microservices are represented in the JSON file by documents in which

each document contains an array with the full name of the classes that form the microservice.

1https://spring.io/
2https://martinfowler.com/eaaCatalog/repository.html
3https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html

38

https://github.com/FranciscoFreitas45/MicroRefact
https://spring.io/
https://martinfowler.com/eaaCatalog/repository.html
https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html

5.1. INFORMATION EXTRACTION

Figure 22: Overall flow of MicroRefact

5.1.1 Project Parsing

In order to extract structural information from the source code of the software project under analysis, we

parsed the source code of the software project to an AST. For parsing we decided to use the Java Parser4

library since it is the most used parser for the Java language, having weekly releases.

The extraction of the structural information is performed through the following steps:

• Firstly, the Java Parser identifies the source root of the software project under analysis and from it,

for each java file, it creates a CompilationUnit. It is through the CompilationUnits that we will obtain

the structural information of each class.

• For each of the CompileUnits a class is identified, as well as its full qualified name, its range, its

declared constructors, its imports and its direct dependencies of inheritance and implementation.

4https://javaparser.org/

39

https://javaparser.org/

CHAPTER 5. MICROREFACT - A TOOL FOR REFACTORING JAVA MONOLITHS

• Next, a set of visitors are declared to extract the following information from the class: method

declarations (MethodDeclarationVisitor), annotations (AnnotationVisitor), variable declarations (Vari-

ableDeclaratorVisitor), mehtods calls (MethodCallExprVisitor) and instance variable declarations

(FieldDeclarationVisitor). The MethodDeclarationVisitor identifies all the methods declared in a

class. For each method it is identified its name, annotations, return type, the type of its parame-

ters, the local variables, its body and the methods called within it. AnnotationVisitor just identifies

annotations attached to a class. VariableDeclaratorVisitor identifies all variables both instance and

local. MethodCallExprVisitor is responsible to identify all the method calls from other classes. Field-

DeclarationVisitor is used to identify all the instance variables. For each instance variable its name,

annotations, type and modifier are identified. To create the dependency list for a class, we analyze

all the declared variables and methods. We identify the type of variables and the types of parame-

ters and method returns. Then, we generate a list with the names of the classes that a given class

depends on.

• An object is created to store the information identified and collected by the Java Parser for each

class. At the end of the identification and extraction process, the information about the classes of

the project under analysis is exported to a JSON file to be processed by the Python program, along

with a JSON file which contains the composition of the microservices.

5.1.2 Identification of Dependencies between Microservices

To identify the dependencies between classes that belong to different microservices we need to process

both JSON files, so these files are read by the Python program. A data structure is created to represent

the structural information of each class as well as to represent the microservices in the program.

For the data structure, we create a class called Class to represent a class and a class called Cluster

to represent a microservice. The class Class is responsible for storing the structural information of each

class. The Cluster class is composed by:

• A dictionary, where the key is the name of a class and the value is an object of type Class.

• A list for adding new classes to the microservice.

• The path to the folder where the microservice’s Java files are created.

The data structure created is composed of a list of Cluster that represents the number of microservices

into which the monolith has been decomposed and the compositions of the microservices.

The process of loading the structure begins by reading the JSON file that contains the composition

of the microservices. For each microservice a Cluster object is instantiated and for each class a Class

object is instantiated that is stored in the dictionary inside the Cluster object. The Class objects at this

stage do not yet have the structural information loaded. Next, to load the Class objects with the structural

40

5.2. DATABASE REFACTORING

information, the JSON file containing the structural information of all classes of the project under analysis is

read and, through setters the structure is loaded. While loading the structure it is checked if the proposed

decomposition of the monolith respects one of our assumptions i.e. if the super classes and the sub

classes belong to the same microservices. If it does not, the program throws an exception notifying the

user that there is a bad division of the monolith. Also, while loading the structure, some adaptations are

made to the microservices proposal, regarding the implementation of interfaces. It is checked if all the

interfaces that a given class implements are in the same microservice as the class. To achieve this, an

iteration over the list of interfaces that a given class implements is made and it is checked if the name

of the interfaces are key in the dictionary that represents the microservice that the class in analysis is

in. If they are not key, a copy of the Class object that represents the interface is made and added to the

dictionary that represents the microservice of the class under analysis. This assures that all the interfaces

that a class implements exist in the microservice.

After having the structure loaded and the microservices proposal validated, the dependencies between

the classes of different microservices are identified. This is accomplished by iterating over the dictionary,

contained in the Cluster, that contains the Class objects that represent the classes of the microservice,

and for each Class it is checked if the name of the classes that are in the list of dependencies of the

Class are keys in the dictionary that the Class under analysis belongs to. If it is not key the name of the

class that the Class depends on, is added to the list of dependencies with other microservices of the Class

through a setter method. This process is repeated for all objects Cluster, so all objects Class have a list of

dependencies with other microservices fulfilled.

5.2 Database Refactoring

With the data structure loaded, it is used to refactor the database of the software system under analysis.

This process begins with the identification of the classes that are mapped as entities by analyzing the

annotation list of each Class object. A search is made for the keyword Entity in the annotation list. For

each Class that is identified as an entity, the algorithm retrieves the list of instance variables to identify

relationships between entities. The relationships are denoted by keywords OneToMany, ManyToOne,
ManyToMany and OneToOne. An iteration through the list of instance variables is performed to check

whether the instance variables have in their annotation list one of the keywords that indicate a relationship.

If relationships are found, it is checked if the type of the instance variable, which has the annotation,

is in the list of dependencies with other microservices of the object Class under analysis. If the type of

the instance variable is not in the list of dependencies with other microservices of the Class, it means

that the classes involved in the relationship are in the same microservice and move on to analyze the

next instance variable. However, if it is, the refactoring follows different paths according to the relationship

identified. For the OneToMany, OneToOne and ManyToOne relationships a search is performed on the

list of methods of the Class object under review to identify methods that use the instance variable. We

41

CHAPTER 5. MICROREFACT - A TOOL FOR REFACTORING JAVA MONOLITHS

identify methods that use the type of the instance variable through the return type, or through parameters,

or in the declaration of variables. With the methods identified a list, named methods, is created and this

list will be used for the REST API definition.

For the application of the DTO pattern to create the type of the instance variable in the Cluster where

the Class under analysis belongs, the type of the instance variable is used to identify the position (index) in

the Cluster list, of the Cluster object that has in its dictionary a key with the same name as the type of the

variable. Then, the index and the type of the variable are used to do a get of the corresponding Class object

to make a clone of it, named ClassDepend. In this cloned object some changes are made in its attributes.

The prefix “DTO” is added to the qualified name of the ClassDepend, the annotation list associated with

the ClassDepend is cleared and an iteration through the instance variables of the ClassDepend object is

performed to identify possible types that do not exist in the Cluster that the Class under analysis is in.

The identified types are marked as “dragged” by the ClassDepend and the objects associated with these

types are cloned and stored together with the ClassDepend in the list of new classes of the Cluster object

to which Class belongs.

To apply the move foreign-key relationship to code pattern, two functions are created that are respon-

sible for creating the interface and the class that implements the interface, createInterface and create-

Class_callInterface, respectively. A class called MyInterface is also created to represent the interfaces

created and its attributes are the name, the method modifier, the signature of the methods and the im-

ports.

The createInterface function receives as one of its parameters the list of identified methods, methods.

The createInterface function extracts the signature from the identified methods and creates a MyInterface

object. The name given to the generated interfaces is composed of the type of the instance variable plus

the word Request (e.g. ClassXREQUEST). The function createClass_callInterface receives as one of the

inputs the generated MyInterface object and its goal is to create a class where the calls to the REST API

that will be created later are defined.

To make REST calls it is used the RestTemplate class from the org.springframework.web.client

package and therefore a variable of this type is added to the list of instance variables of the class to

be created. Next, the get of the signature of the methods present in the MyInterface is obtained and the

methods that are responsible for making REST calls are created. For the REST calls it is used two methods

from the RestTemplate, getForObject for methods that have a return type and put for methods where

the return type is void. We chose to use the putmethod instead of postForObject since most of the methods

are setters, i.e. there is no creation of new objects but rather an update of certain attributes.

After all the methods are declared an object of type Class is instantiated that contains the information

of this new class and is added to the list of new classes of the Cluster to which the class in analysis belongs

as well as the interface.

For the application of the move foreign-key relationship to code pattern to be complete, a REST API is

created. The list of identified methods (methods) is used to create an object of type Class, called Controller,

where the resource paths are defined. The Controller object’s annotation list is formed by the annotations

42

5.2. DATABASE REFACTORING

RestController and CrossOrigin because these are the annotations that create the REST API

and the imports list by org.springframework.web.bind.annotation.*, org.springframe-
work.beans.factory.annotation.Autowire and the import of the data type of the instance

variable under analysis. The list of instance variables is composed of a variable of type Service that will

be created next. For each method present in the list methods a method with the same name is created

and a resource path is defined as follows:

“ /type_of_the_instance_variable/{foreign-key}/name_of_Class_under_analysis/Name_of_method ”.

Each resource path has associated an Hypertext Transfer Protocol (HTTP) verb. Methods that have

return type have the GetMapping annotation because they are gets and those that do not have return

type have PutMapping annotation because they are puts.

Then another Class object is created, called Service, where the requests are processed. The Service

also uses the methods list to define the methods. The Service object’s annotation list is formed by the

annotation Service because this new class is responsible for providing the business functionalities. This

class aims to invoke the functions declared in the Repository class to query the database. The Service and

Controller objects are added to the list of new classes of Cluster to which the type of the instance variable

under analysis belongs.

Finally methods are added to the Repository class. For this the identification of the Class object that

represents Repository is carried out. For the identification we used regular expressions through the re.py5.

After the identification, the signature of the methods from the methods list is added with the addition of

a parameter to represent the foreign-key. These methods require the user, after refactoring the whole

application, to define the queries to the database.

For the ManyToMany relationship the refactoring is different. For the application of the database

wrapping service pattern, a search is made for the object Class that represents the Repository of the

Class under analysis. To identify this object Class we also use regular expressions. Next, the type of the

instance variable is used to identify the position (index) in the Cluster list, of the Cluster object that has in

its dictionary a key with the same name as the type of the variable. Then the index and variable type are

used to get the corresponding Class object and to identify the Repository corresponding to the object.

Next, a Cluster object is created in which the two objects that represent the entities and the two objects

that represent the respective Repositories are stored in its dictionary. When these objects are stored in the

new Cluster object, they are deleted from the dictionary of the Cluster object that they belonged to before.

Besides, it is also checked if the Class objects have classes marked as “dragged” and if so, a clone of

these objects is made and stored in the dictionary as well.

Then an iteration is made through the dictionaries of the Clusters where the objects belong to check

if the objects have interactions with other classes. If interactions are identified, the name of the object

it depends on is added to the list of dependencies with other services of the Class object that had the

interaction. Finally the Cluster object is added to the list of Cluster.

5https://docs.python.org/3/library/re.html

43

https://docs.python.org/3/library/re.html

CHAPTER 5. MICROREFACT - A TOOL FOR REFACTORING JAVA MONOLITHS

5.3 Code Refactoring

After the refactoring of the classes that define the database logical schema is finished, it is time to analyze

the other classes. For this purpose, two functions were created, code_refactoring_instance_var which is

responsible for analyzing the instance variables of each object Class and the code_refactoring_local_var

which is responsible for analyzing the local variables.

The code_refactoring_instance_var function starts with an iteration through the dictionary of each

Cluster to refactor the classes that do not form the database logical schema. These classes are identified

through the annotation list, i.e., if the annotation list does not contain the Entity annotation then it is a

class that will be analyzed by the function. For each analyzed Class, it is performed the get of instance

variables and for each instance variable it is checked if its type belongs to the list of dependencies with other

microservices of the Class under analysis. If the type of the instance variable does not belong to the list of

dependencies with other microservices, it means that the type of the variable exists in the microservice.

Otherwise, a search is executed in the list of invoked methods of the Class object under analysis, for the

methods invocation by the instance variable, and a list with the name of the identified methods is created,

called methodsInvocations. For each method present in methodsInvocations it is checked if its return

type or parameter types are among the dependencies with other microservices of the Class object under

analysis and if so the DTO pattern is applied. For this purpose, each parameter type and return type is

used to identify the position (index) in the Cluster list of the Cluster object that has in its dictionary a key

with the same name as the type. Then the index and type are used to get the corresponding Class object

to clone it.

To avoid adding a class to a microservice where it already exists, it is checked if the name of the cloned

object Class exists in the list of new classes of the Cluster to which the Class object in analysis belongs. If

it already exists the cloned object is destroyed, otherwise, the object’s annotation list is cleaned and it is

checked if the cloned object’s instance variables have dependencies. If they have dependencies, the Class

objects representing their types are cloned and are marked as “dragged” by the Class object representing

the DTO, and both the cloned objects marked as “dragged’ and the cloned object representing the DTO

are stored in the list of new classes of the Cluster to which the Class object under analysis belongs.

Next, an interface is created to represent the type of the instance variable that triggered the refactoring.

To achieve this, and to avoid replications, it is verified if already exists a MyInterface object with the name

of the type of the instance variable in the list of new classes of the Cluster which the object Class under

analysis belongs. If it already exists it means that already exists an interface that represents the type of

the instance variable and a class that implements the interface, and therefore only the methods that are

not yet declared in the interface are added. To do this, an iteration is performed over the identified invoked

methods and it is checked if they are already in the list of methods declared in the interface and if not,

their signature is added to the interface and they are added to the Class object that represents the class

which implements the interface. If it does not exist, a MyInterface object is instantiated with the name

of the instance variable where the identified invoked methods are added to the method list and a Class

44

5.3. CODE REFACTORING

object is instantiated that represents the class that implements the interface and will make the remote

invocations of the original methods. As in database refactoring, we also use the RestTemplate class for
HTTP requests. The MyInterface object and the Class object created are added to the list of new classes

of the Cluster to which the object Class in analysis belongs.

Finally, a REST API is created that allows the invocation of the original method. The process is similar

to database refactoring. It is verified if it already exists an object Class with the name of the Class object

that intends to create and if so, it is performed the get of this object and added to its method list the

methods present in the object MyInterface, generated in the previous step, that the Class does not have.

If a Class object with the same name does not exist, a Class object with that name is instantiated and

added to the list of new classes of the Cluster to which the orginal method belongs and all the methods

present in the MyInterface object are declared in this object.

In the code_refactoring_local_var function, like in code_refactoring_instance_var, an iteration over

each Cluster is executed and the Class objects that do not have the Entity annotation are analyzed, but
this function analyzes the local variables. For each class an iteration over the methods is performed to

check, for each method, if there are methods invoked from a class that does not belong to the Cluster. If

the invocation of methods from classes that do not belong to the Cluster is identified, it is verified if the

variable that makes the invocation is an instance variable and if it is the case it is not necessary to refactor

because it was done in the previous function. However, if it is not the case, the DTO pattern (Fowler et al.,

2002) is applied through the clone of the Class object that represents the type of the variable and their

“dragged” classes.

Finally, the information contained in each object Class is used to write Java files. The Class class has

a method called create, which generates a Java file with the class information. To do this, Python’s built-in

open function is used to create a file object and an iteration over all the fields in the Class is performed to

write them to the file using the write method of file object. A folder is created for each microservice where

the files are written.

45

6

Evaluation

In order to quantitatively assess the applicability of our methodology and qualitatively assess whether the

generated microservices-based applications are functionally equal to the original version we collected 120

projects from GitHub. In the qualitative evaluation we use the unit tests of the monolithic projects to

execute them in both versions of the application, the original and the microservices based one, and if the

result of the unit tests is the same in both applications we conclude that the applications are functionally

equal. In this chapter we describe this evaluation in detail.

6.1 Project collection

To evaluate the proposed methodology it is necessary to test it in several projects of different sizes and

complexity. To do this, we created a list of projects for which we executed the MicroRefact. We decided to

extract the projects from GitHub because it is the most popular platform for hosting source code and files.

We used the GitHub search API for code to find repositories that contained the terms org.spring-
framework.data.jpa and org.springframework.data.jpa.repository.JpaReposito-
ry, since these are very common terms in applications that use JPA annotations to do object relational

mapping and are terms exclusive to applications built with the Spring framework. The query used was as

follows:

https://api.github.com/search/code?q=org.springframework.data.jpa+org.springframework.data.jpa.

repository.JpaRepository+language:java

Since the GitHub search API limits each request to 1000 results and the query is to identify repositories

through code there are repeated results. Executing this query and after removing duplicate repositories, we

identified 686 repositories. To ensure that only monolithic applications are used, we only consider projects

with one ‘src’ folder. We also discard projects with less than 25 classes because they may represent “toy”

projects and we use filters to exclude demo and test projects using the following stop words: “release”,

“framework”, “learn”, “source”,“spring”, “study”, “demonstration”, “test”, “practice”. That reduced the

686 projects to 353. We decided to use about one third of the projects since we feel that one third

46

https://api.github.com/search/code?q=org.springframework.data.jpa+org.springframework.data.jpa.repository.JpaRepository+language:java
https://api.github.com/search/code?q=org.springframework.data.jpa+org.springframework.data.jpa.repository.JpaRepository+language:java

6.2. SETUP

is representative of the population and also because of time reasons. From the identified projects we

randomly selected 120 projects. The histogram of the projects collected by the number of classes is

presented in Figure 23. The biggest one has 1339 classes and the smallest 27 classes

Figure 23: Histogram of collected projects by class count

6.2 Setup

We implement the methodology presented by building MicroRefact. We use the tool to test the collected

projects to evaluate the percentage of projects that the tool is able to refactor and to evaluate from a

functional point of view if the generated microservices based application is equal to the original monolithic

application through unit tests of the monolithic application. The setup was divided in two parts: the first

part where it was necessary to obtain a microservices proposal for each of the collected projects and the

second part where it was necessary to adapt the unit tests to run on the microservices based version,

since they were designed for monolithic application.

To obtain a microservice proposal for each project collected, we used the tool developed by Brito

et al., 2021 available at https://github.com/miguelfbrito/microservice-identification. Although the tool

47

https://github.com/miguelfbrito/microservice-identification

CHAPTER 6. EVALUATION

allows the customization of the input, we use the default parameters. For each project the tool generates

several proposals for decomposition of the monolith and we always choose the one that reveals the greatest

value in the metrics that the tool uses to evaluate the proposed decomposition.

After running MicroRefact on the project under analysis, the result is analyzed. If successful, and if the

project has unit tests, these are run on the generatedmicroservices-based application. However, the testing

process has not been automated because, although the code generation is automated, it is necessary to

define SQL queries for the methods that were added to the Repository classes and because the unit

tests need some adjustments that depend on the context. Typically they are simple SELECT queries or

data UPDATE queries.

As the tests do not enter into the refactoring process, it was necessary to identify to whichmicroservices

the test classes should be transferred. This process was manual and had a detailed analysis of the test

classes as well as the domain of the generated microservices. In projects with a good design and developed

with good practices the test class name served to identify to which microservice it should be transferred. In

more disorganized projects it was done an analysis of the imports of the test class as well as the declared

variables in order to identify to which microservice it should belong. In addition, and given that the tests

were designed for monolithic application, it was necessary to adapt the tests for microservices. Among

the modifications made to the test classes are imports because the test classes contained references to

classes that do not belong to the microservice. These imports were replaced with imports that refer to

types created to replace the reference to classes that do not belong to the microservice, i.e. the DTO and

interfaces created.

The other change made was in tests that manipulate the database. As unit tests are designed for

monolithic application, there are unit tests that test the interactions between classes that are mapped as

database entities. In the unit tests where new records are inserted in the database tables, and as we are in

the scope of applications that use annotations to define the database logical schema, these create objects

and use the Repository classes to insert them. However the objects created have as attributes objects
that refer to other entities, so the objects that refer to other entities also have to be instantiated. In the

monolithic version when the test is run, insertions are made in all tables referring to the classes involved

in the test. However, in microservices and with database refactoring, the references to classes that are

mapped as entities that do not belong to the microservice have been replaced by DTOs with the same

name and therefore the unit tests create the objects through the instantiation of a DTO class except for

the entities that belong to the microservice that are created in the database. The objects created through

the instantiation of a DTO class exist in memory in the microservice where the unit test is executed but

the record corresponding to the object does not exist in the microservice database where the entity that is

represented by the DTO belongs, which causes methods like setters to fail. In addition there are also unit

tests where the creation of a record in the database is tested by instantiating an object and using setters

to set the values of other entities to null. In this way the test is focused only on the entity that belongs to

the microservice.

48

6.2. SETUP

6.2.1 Example

To illustrate the modifications made to the unit tests we use a practical example from one of the projects

present in the evaluation. Figure 24 shows a unit test for creating a User in the Online-medicine-shopping-

ecommerce1. The User class has the following instance variables: userId, emailId, firstName
,lastName, userAge, userGender, userPhoneNumber, userPassword, previousPassword1,
previousPassword2, createdDate role and userdAdress. Except for the last two variables, all
variables have primitive language types. However, role is of type Role which is a class that is mapped

as an entity and userAddress is of type Address which is also a class that is mapped as an entity

and both entities have a one-to-one relationship with User. The microservices proposal generated for

Online-medicine-shopping-ecommerce indicates that the User, Address and Role classes belong to

different microservices.

In this test a User object is instantiated that through setters sets the values for each attribute of the

object. The setters setRole and setUserAdress receive a null as input instead of an object. This test
as it is fails in the microservices based application because the relationship between User and Address
and User and Role has been refactored. The setters setRole and setUserAddress now call the

respective services to update the data. These calls have as parameter the primary key of the entities in

question, so when making a service call with null it results in a 404 not found error because the passage
of the primary key in the request is made through the URL.

Figure 24: Original unit test for creating a user in Online-medicine-shopping-ecommerce

1https://github.com/ariv98/Online-medicine-shopping-ecommerce

49

https://github.com/ariv98/Online-medicine-shopping-ecommerce

CHAPTER 6. EVALUATION

A possible solution is to instantiate objects of type Address and Role and set them in the User as

shown in Figure 25. However, these would be instantiated through DTO classes which would cause the

information stored in the objects not to exist in the Address'smicroservice database and in the Role's
microservice database, causing the setRole and setUserAddress methods to try to update records

that do not exist.

Figure 25: Unit test for creating a user in Online-medicine-shopping-ecommerce

We decided to adapt this solution for the cases of setters set null and we executed the unit test on

both versions of the project. To avoid having an object instantiated in a microservice and no corresponding

record in the database of the microservice that owns the entity, before running the unit test a record is

inserted in the database that will correspond to the object instantiated during the test run. This way, there

is a small adaptation in the test to simulate the monolith test environment in the microservices based

application

To run the microservices, we set the environment properties port and MySQL2 database connection

for each microservice. The remaining environment properties were copied from the monolithic version of

the project under analysis.

2https://www.mysql.com/

50

https://www.mysql.com/

6.3. RESULTS

6.3 Results

The results for each project can be found at Appendix B.1 . For each project the following data is pre-

sented: project name, number of classes of the monolithic version of the project, number of proposed

microservices (#PM), if a microservices based application was generated, the number of microservices

generated by refactoring (#MG), the number of classes of the microservices based version of the project

(#CAR), the number of relationships between entities refactored (#RR), the number of dependencies be-

tween classes of different microservices (#DR), percentage of new classes in the microservices-based

application (%NC),if the project has tests, the result of the test execution and the justification why the

refactoring failed, if applicable.

MicroRefact was able to refactor approximately 69% of the applications and within the universe of

refactored projects 33% have unit tests. We used the unit tests to evaluate the equity of the applications by

comparing the output of the tests in the two versions of the application with the input of unit tests being the

same in both versions. All the unit tests executed had the same output in both versions of the application,

which shows that the refactoring was successful.

The blox plot of the percentage of new classes in the projects is shown in Figure 26. The percentage

of generated classes for the projects is bound between -40 and 234 with the median around 73.

Figure 26: Box plot of percentage of new classes across the projects

51

CHAPTER 6. EVALUATION

6.4 Analysis

The dataset used for the study consists of projects with a wide range of class numbers and different

domains. Furthermore, there are projects where the percentage of new classes is negative, which seems

strange since the proposed methodology foresees the creation of classes. In this section we introduce a

more extensive analysis of the results obtained.

6.4.1 Degree of complexity and size of the applications

In this chapter we try to understand the impact of application size and complexity on the percentage of

refactored applications. A large percentage, approximately 41%, of the projects used in the evaluation are

projects where the range of classes is between 25 and 100. One might think that these projects are small

and or have a low degree of complexity. As the class range in which the most projects were refactored

was this range, one could think that the tool is not prepared for projects of great magnitude and high

complexity. However, we must understand the context of the study. Since we are using applications that

use annotations to apply the ORM technique, the number of classes in these projects tends to be smaller

than projects that do not use this technique because they do not need to declare classes to define DAO’s,

being these projects complex but with a low number of classes. Furthermore, as shown in Figure 27, the

tool was able to refactor projects in all ranges of class numbers, which shows that the tool is prepared to

support all degrees of complexity present in these projects.

6.4.2 Unrefactored projects

Regarding the unrefactored projects, there are different reasons why refactoring did not happen. Table 4

shows the reasons why projects were not refactored and the number of projects that fit into it.

Reason #Projects

Missing a repository class 18
Missing @id annotation 6
Use DAOs 10
@Id annotation in method instead of variable 1
Use other ORM frameworks 2

Table 4: Reasons for unrefactored

About 50% of the unrefactored projects are projects where the class Repository is missing. We

can divide the reason why refactoring fails due to the lack of the Repository class into two types:

the Repository class exists but in the microservices proposal it is in a different microservice than

the Entity class that the Repository class refers to; an Entity class exists that does not have a

corresponding Repository class. For the first case a different microservice proposal where the Entity

52

6.4. ANALYSIS

Figure 27: Histogram of number of refactored projetcts by class count

class and the corresponding Repository class are in the same microservice would solve the problem. In
the second case refactoring is not possible since there is an Entity class where there is no Repository
class that allows the retrieval of data from the database, which may be an error in the code or dead code.

We identify the Repository classes to apply the Move Foreign-Key Relationship to Code Pattern (S.

Newman, 2019) , because it implies adding methods to these classes so that the join is possible.

Another reason why refactoring was not possible is the lack of the Id annotation in classes that are

mapped to database entities. In the database refactoring phase it is necessary to identify the primary key

of the entities involved in the relationship that is under analysis because in the application of the Move

Foreign-Key Relationship to Code Pattern the primary key of one of the entities is used as a parameter in the

invocation of the REST API generated to filter the information retrieved during the join. The identification

of the primary key is accomplished through the Id annotation on the class instance variables. We also

cover the cases in which the class Entity under analysis is a sub class and in which the Id annotation

is in the super class, which means, if the Id annotation in the class Entity under analysis is not found

in one of the instance variables it is checked if in the super class from which the class Entity extends

there is the Id annotation in one of the instance variables. Without the identification of the primary key,

53

CHAPTER 6. EVALUATION

the refactoring is not possible, because the calls to the service to make the join of the data would not have

a filter, being able to access information that should not be accessed.

The use of DAOs by some projects together with Repository classes led to refactoring in these

projects failing, since some Entity classes have a corresponding Repository class and others have a
DAO class. MicroRefact only supports refactoring of Entity classes that have a corresponding Reposi-
tory class.

The other reasons why refactoring is not possible are also implementation reasons. MicroRefact only

searches for the primary key in instance variable annotations and only supports JPA annotations.

Overall, MicroRefact can be extended to support some of the cases where it failed, namely the use of

DAOs, other ORM frameworks and annotations on methods. The remaining cases cannot be included in

MicroRefact because they go against the proposed methodology because the lack of Id annotation on the
classes mapped as entities and the lack of Repository classes for some entities may compromise the

refactoring of the application.

6.4.3 Refactored projects with fewer classes than the original projects

First of all, we must understand how the class count of each project was made and how the percentage of

new classes in the project was calculated. For the class count of each project we used the find command,

Listing 6.1, from the shell with the -regex and -f options combined with the wc command with the -l

argument.

$ f i n d { p a t h _ t o _ p r o j e c t } − r e g e x . * j a v a − t ype f | wc − l

Listing 6.1: Number of classes in a project.

To calculate the percentage of new classes we use the following formula:

𝑃𝑁𝐶 =
100 ∗ (𝑁𝐶𝑀𝑆 − 𝑁𝐶𝑀)

𝑁𝐶𝑀

where PNC is the percentage of new classes, NCMS is the number of classes of the microservices based

application and NCM is the number of classes of the monolithic application.

Looking at the results it can be observed that in some projects the number of classes of the original

application is larger than the generated microservices based application. This happens because the tool

used to generate the microservices proposals sometimes does not use all the classes of the projects.

As it uses clustering techniques to group the classes by microservices, the classes that do not have

dependencies with other classes nor have dependent classes end up not being used in the microservices

proposal. Besides that, MicroRefact only handles at the classes that are in the microservices proposal.

Thus, the refactoring is performed based on the classes that are in the proposed microservices and it is

possible that the number of new classes created during refactoring is smaller than the number of classes

that are outside the microservices proposal reflecting in a negative percentage of new classes.

54

6.4. ANALYSIS

6.4.4 Percentage of new classes and analysis

In this section, we perform a correlation analysis between the number of classes generated, the number

of relationships between entities, and the number of dependencies between classes using some examples

to understand the impact these have in the number of new classes generated.

The wide range of the percentage of new classes in the generated applications could be justified by

the fact that the microservices proposal does not contemplate all the classes of the projects. However, we

decided to better understand the impact of the number of relationships between entities that need refac-

toring and the number of dependencies between classes of different microservices on the percentage of

new classes. First, it is necessary to understand how many classes are typically generated for each refac-

toring case. Starting with the relationships between entities, the relationships OneToMany, OneToOne,
and ManyToOne generate at least five classes: an interface (Request), a class that implements the

interface (RequestImpl), a class where the API is defined (Controller), another to process the re-
quest (Service) and a DTO class to represent the type of entity in the foreign microservices that if it has

dependencies are also reflected in the creation of more DTO classes, so the number of classes generated

may be greater than five, which happens in projects where there are several relationships between entities

from different microservices. In terms of the percentage of new classes, if we look at the classes that

trigger the refactoring, it is an addition of at least 250% (ratio 2.5) . On the other hand, the ManyToMany
relationship indirectly generates new classes, since it is the original classes that are dragged to the new

microservice, however, if the entities involved have another type of relationship with entities that belonged

to the same microservice these relationships end up being refactored leading to the generation of new

classes.

As for the dependencies at the source code level between classes of different microservices, at least

three classes are generated: an interface to represent the foreign type, a class that implements the inter-

face and makes the call to the service, and a class that creates the API that allows the invocation of the

original method. In addition, DTO classes can also be generated if the invoked methods have parameter

or return types that are foreign to the calling microservice resulting in a percentage of new class added of

at least 150% compared to the number of classes that trigger the refactoring (ratio 1.5).

The results of the percentage of new classes created in each project by the range of classes of the

project are presented in Figure 28. The projects that have a higher percentage of new classes are the

projects between 25 and 100 classes, which is expected because the addition of a class in these projects

causes a higher percentage of new classes because they are smaller projects. The percentage of new

classes tends to decrease along the class range. In the range from 325 classes to 400 there is an outlier

with a value close to 219% corresponding to the EUSURVEY3 project, which is justified by the high number

of dependencies between classes of different microservices (6949 dependencies).

The projects that present the highest percentage value of new classes are the projects where the re-

lationships between entities were refactored, which is also expected since it is in the database refactoring

3https://github.com/EUSurvey/EUSURVEY

55

https://github.com/EUSurvey/EUSURVEY

CHAPTER 6. EVALUATION

Figure 28: Box plot for the percentage of new classes across ranges of classes

where more classes are created. Several projects did not have relationships between entities refactored

because they are projects that do not use the annotations in the instance variables that denote the rela-

tionships,for example, Online_Movie_Ticket_System4 (111%) and zammc-manage5 (29%). Others projects

did not have relationships between entities because there are no relationships between entities of different

microservices, for example, mwebsvr6 (48%), which is translated into a lower percentage of new classes

relative to projects of the same dimension in which there was a refactoring of the relationships, for example,

Champik7 (197%), ProyectoUNAM8 (149%), and OA_system9 (125%) .

4https://github.com/samyumaddikunta/Online_Movie_Ticket_System
5https://github.com/SupermePower/zammc-manage
6https://github.com/YangLeeThomson/mwebsvr
7https://github.com/lionsdamajectim/Champink
8https://github.com/CocayUNAM/ProyectoUNAM
9https://github.com/wn150509/OA_system

56

https://github.com/samyumaddikunta/Online_Movie_Ticket_System
https://github.com/SupermePower/zammc-manage
https://github.com/YangLeeThomson/mwebsvr
https://github.com/lionsdamajectim/Champink
https://github.com/CocayUNAM/ProyectoUNAM
https://github.com/wn150509/OA_system

6.5. THREATS TO VALIDITY

6.5 Threats to validity

In this section we discuss the threats to the work presented.

A possible threat is related to the use of only open source applications in the evaluation. However, it

is common to find companies that make their code available. Nevertheless, it is possible that the results

may vary for proprietary software.

Other threat is the quality of the microservice proposals generated for the projects. The tool used

to generate microservice proposals does not guarantee that the decomposition it proposes is the best

possible. Furthermore, the developers did not perform an extensive study of how the number of topics

and the resolution directly affect the microservice proposal. Instead, they defined arbitrary ranges for

each parameter. However they evaluated the quality of the proposed solution by using the microservice

architecture metrics proposed by Jin et al., 2021 and the results were positive.

Another threat is the unit tests available by the projects. Some projects present no tests and others

present few tests. For the projects that do not present tests it was not possible to evaluate if from the func-

tional point of view the generated application is equal to the original. For the applications that present few

tests, these can be class-focused, not testing the interactions between classes, leaving several interactions

between classes of different microservices to be tested.

57

7

Conclusion

We present a methodology for refactoring original Java monolithic applications into microservices-based

applications. The proposed methodology is directed to the applications that take advantage of ORM tech-

nique to relate Java classes to database entities, in particular applications that make the mapping between

classes and entities through annotations in the source code which allows refactoring the database by refac-

toring the application source code.

The proposed methodology receives as input the source code of the application under analysis and

a set of microservices, in which each microservice is described by the set of classes that composes

that microservice. Each class must belong to just one microservice. Our methodology has as its output

a microservices-based application that from the functional point of view is the same as the monolithic

application under analysis.

We built a tool, MicroRefact, as a proof of concept, that supports Java Spring applications that use JPA

annotations for mapping between Java classes and database entities and performed a quantitative evalu-

ation where we tried to understand the applicability of the methodology and a qualitative evaluation where

we tried to understand if the microservice-based applications generated are functionally equivalent to the

original monolithic Java applications through the execution of unit tests provided by the monolithic appli-

cation. The evaluation was conducted against the collection of 120 open-source Java Spring applications

from GitHub.

The results show that 69% of the applications were automatically refactored. Regarding the qualitative

evaluation all tests performed had the same result in both versions of the application.

7.1 Future work

The work presented has some limitations and so there is potential for improvement and extension of the

work. Some points for improvement and future work are presented below:

• The methodology allows inheritance across different microservices, i.e. the super-class and sub-

classes being in different microservices in the microservice proposal received as input. Just as we

58

7.1. FUTURE WORK

do for interfaces, we could make a copy of the super-class and place it in the microservice where

the sub-class belongs.

• Extend the MicroRefact to applications that use XML files to map Java classes to database entities.

Although applications that use XML files can be converted to applications that use annotations there

is still a considerable amount of applications that use XML. Extending the methodology to support

these applications requires a thorough analysis of the XML files and the relationship they have with

Java classes.

• Extend MicroRefact to support other object-oriented languages like C# and Python. The methodol-

ogy covers the OOP concepts so it is possible to extend the developed tool to automatically refactor

projects developed in other object-oriented languages.

• Extend MicroRefact enabling the choice of the language to which one wants to migrate the microser-

vices. Sometimes what triggers the migration to microservices is the desire to change technology.

59

Bibliography

Abdullah, M., Iqbal, W., & Erradi, A. (2019). Unsupervised learning approach for web application auto-

decomposition into microservices. Journal of Systems and Software, 151, 243–257. https://doi.

org/https://doi.org/10.1016/j.jss.2019.02.031 (cit. on pp. 13, 15)

Ambler, S. W., & Sadalage, P. J. (2006). Refactoring databases: Evolutionary database design. Addison-

Wesley Professional. (Cit. on p. 11).

Andriole, S. J. (2017). The death of big software. Commun. ACM, 60(12), 29–32. https://doi.org/10.11

45/3152722 (cit. on p. 1)

Asseldonk, L. v. (2021). From a monolith to microservices: The effect of multi-view clustering (Doctoral

dissertation). Utrecht University. (Cit. on p. 14).

Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D. A., & Lynn, T. (2018). Microservices migration

patterns. Software: Practice and Experience, 48(11), 2019–2042. https://doi.org/https://doi.

org/10.1002/spe.2608 (cit. on pp. 9, 10)

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. J. Mach. Learn. Res., 3, 993–1022

(cit. on p. 13).

Blondel, V., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large

networks. Journal of Statistical Mechanics Theory and Experiment, 2008. https://doi.org/10.10

88/1742-5468/2008/10/P10008 (cit. on p. 14)

Brito, M., Cunha, J., & Saraiva, J. (2021). Identification of microservices from monolithic applications

through topic modelling. Proceedings of the 36th Annual ACM Symposium on Applied Computing,

1409–1418. https://doi.org/10.1145/3412841.3442016 (cit. on pp. 13, 14, 16, 18, 47)

Chen, R., Li, S., & Li, Z. (2017). From monolith to microservices: A dataflow-driven approach. 2017 24th

Asia-Pacific Software Engineering Conference (APSEC), 466–475. https : //doi . org /10 .1109

/APSEC.2017.53 (cit. on pp. 1, 2, 14)

Cito, J., Leitner, P., Fritz, T., & Gall, H. C. (2015). The making of cloud applications: An empirical study on

software development for the cloud. Proceedings of the 2015 10th Joint Meeting on Foundations

of Software Engineering, 393–403. https://doi.org/10.1145/2786805.2786826 (cit. on p. 1)

60

https://doi.org/https://doi.org/10.1016/j.jss.2019.02.031
https://doi.org/https://doi.org/10.1016/j.jss.2019.02.031
https://doi.org/10.1145/3152722
https://doi.org/10.1145/3152722
https://doi.org/https://doi.org/10.1002/spe.2608
https://doi.org/https://doi.org/10.1002/spe.2608
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1145/3412841.3442016
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1145/2786805.2786826

BIBLIOGRAPHY

Edstrom, J., & Tilevich, E. (2012). Reusable and extensible fault tolerance for restful applications. 2012

IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communi-

cations, 737–744. https://doi.org/10.1109/TrustCom.2012.244 (cit. on p. 12)

Evans, E. (2004). Domain-driven design: Tackling complexity in the heart of software. Addison-Wesley.

(Cit. on p. 11).

Fowler, M. (2002). Localdto [(Accessed on 10/02/2021)]. (Cit. on p. 26).

Fowler, M. (2004). Stranglerfigapplication [(Accessed on 11/20/2020)]. (Cit. on p. 10).

Fowler, M., & Lewis, J. (2014). Microservices [(Accessed on 11/30/2020)]. (Cit. on pp. 5, 15).

Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., & Stafford, R. (2002). Patterns of enterprise appli-

cation architecture. Addison-Wesley Professional. (Cit. on pp. 4, 26, 45).

Freitas, F., Ferreira, A., & Cunha, J. (2021). Refactoring java monoliths into executable microservice-based

applications. 25th Brazilian Symposium on Programming Languages, 100–107. https://doi.org/1

0.1145/3475061.3475086 (cit. on p. 3)

Fritzsch, J., Bogner, J., Wagner, S., & Zimmermann, A. (2019). Microservices migration in industry: Inten-

tions, strategies, and challenges. 2019 IEEE International Conference on Software Maintenance

and Evolution (ICSME). https://doi.org/10.1109/ICSME.2019.00081 (cit. on p. 1)

Girvan, M., & Newman, M. (2001). Community structure in social and biological networks. Proceedings of

the National Academy of Sciences of the United States of America, 99, 7821–7826 (cit. on p. 14).

Gysel, M., Kölbener, L., Giersche, W., & Zimmermann, O. (2016). Service cutter: A systematic approach

to service decomposition. In M. Aiello, E. B. Johnsen, S. Dustdar, & I. Georgievski (Eds.), Service-

oriented and cloud computing (pp. 185–200). Springer International Publishing. (Cit. on pp. 2,

14, 15).

Hamzehloui, M., Sahibuddin, S., & Ashabi, A. (2019). A study on the most prominent areas of research

in microservices. International Journal of Machine Learning and Computing, 9, 242–247. https:

//doi.org/10.18178/ijmlc.2019.9.2.793 (cit. on p. 1)

Henderson-Sellers, B., Ralyte, J., Ågerfalk, P., & Rossi, M. (2014). Situational method engineering. https:

//doi.org/10.1007/978-3-642-41467-1. (Cit. on p. 9)

Hubbell, D. (2020). Top 4 pros and cons of microservices architecture [(Accessed on 7/12/2020)]. (Cit.

on p. 7).

Jin, W., Liu, T., Cai, Y., Kazman, R., Mo, R., & Zheng, Q. (2021). Service candidate identification from

monolithic systems based on execution traces. IEEE Transactions on Software Engineering, 47(5),

1–1. https://doi.org/10.1109/TSE.2019.2910531 (cit. on pp. 2, 14, 57)

Jin, W., Liu, T., Zheng, Q., Cui, D., & Cai, Y. (2018). Functionality-oriented microservice extraction based on

execution trace clustering. 2018 IEEE International Conference on Web Services (ICWS), 211–218

(cit. on p. 2).

Kamimura, M., Yano, K., Hatano, T., & Matsuo, A. (2018). Extracting candidates of microservices from

monolithic application code. 2018 25th Asia-Pacific Software Engineering Conference (APSEC),

571–580. https://doi.org/10.1109/APSEC.2018.00072 (cit. on pp. 2, 9, 12, 13)

61

https://doi.org/10.1109/TrustCom.2012.244
https://doi.org/10.1145/3475061.3475086
https://doi.org/10.1145/3475061.3475086
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.18178/ijmlc.2019.9.2.793
https://doi.org/10.18178/ijmlc.2019.9.2.793
https://doi.org/10.1007/978-3-642-41467-1
https://doi.org/10.1007/978-3-642-41467-1
https://doi.org/10.1109/TSE.2019.2910531
https://doi.org/10.1109/APSEC.2018.00072

BIBLIOGRAPHY

Kazanavicius, J., & Mazeika, D. (2019). Migrating legacy software to microservices architecture. 2019 Open

Conference of Electrical, Electronic and Information Sciences (eStream), 1–5. https://doi.org/1

0.1109/eStream.2019.8732170 (cit. on pp. 2, 4)

Kharenko, A. (2015). Monolithic vs. microservices architecture [(Accessed on 25/11/2020)]. (Cit. on p. 4).

Kobayashi, K., Kamimura, M., Kato, K., Yano, K., & Matsuo, A. (2012). Feature-gathering dependency-

based software clustering using dedication and modularity. https://doi.org/10.1109/ICSM.201

2.6405308 (cit. on p. 12)

Kumar, S. (2020). Fault-tolerant patterns for microservice [(Accessed on 12/07/2020)]. (Cit. on p. 7).

Kwon, Y.-W., & Tilevich, E. (2013). Cloud refactoring: Automated transitioning to cloud-based services.

Automated Software Engineering, 21. https://doi.org/10.1007/s10515-013-0136-9 (cit. on

pp. 12, 13)

Leung, I. X. Y., Hui, P., Liò, P., & Crowcroft, J. (2009). Towards real-time community detection in large

networks. Physical review. E, Statistical, nonlinear, and soft matter physics, 79 6 Pt 2, 066107

(cit. on p. 14).

Mazlami, G., Cito, J., & Leitner, P. (2017). Extraction of microservices from monolithic software architec-

tures. 2017 IEEE International Conference on Web Services (ICWS), 524–531. https://doi.org/1

0.1109/ICWS.2017.61 (cit. on p. 2)

Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S. T., & Dustdar, S. (2018). Microservices:

Migration of a mission critical system. IEEE Transactions on Services Computing, 1–1. https :

//doi.org/10.1109/TSC.2018.2889087 (cit. on pp. 1, 2)

Newman, S. (2015). Building microservices: Designing fine-grained systems. O’Reilly Media. https : / /

books.google.pt/books?id=jjl4BgAAQBAJ. (Cit. on pp. 1, 6, 7)

Newman, S. (2019). Monolith to microservices: Evolutionary patterns to transform your monolith. O’Reilly

Media, Incorporated. https://books.google.pt/books?id=iul3wQEACAAJ. (Cit. on pp. 4, 5, 24,

27, 33, 53)

Pahl, C., & Jamshidi, P. (2016). Microservices: A systematic mapping study. Proceedings of the 6th In-

ternational Conference on Cloud Computing and Services Science - Volume 1 and 2, 137–146.

https://doi.org/10.5220/0005785501370146 (cit. on p. 2)

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Commun. ACM,

15(12), 1053–1058. https://doi.org/10.1145/361598.361623 (cit. on p. 9)

Richardson, C. (2018). Microservices patterns: With examples in java. Manning Publications. https : //

books.google.pt/books?id=UeK1swEACAAJ. (Cit. on pp. 4–8, 10, 11)

Tyszberowicz, S., & Raman, A. (2007). The easycrc tool. 2007 International Conference on Software En-

gineering Advances, 52. https://doi.org/10.1109/ICSEA.2007.72 (cit. on p. 14)

Tyszberowicz, S., Heinrich, R., Liu, B., & Liu, Z. (2018). Identifying microservices using functional decom-

position. In X. Feng, M. Müller-Olm, & Z. Yang (Eds.), Dependable software engineering. theories,

tools, and applications (pp. 50–65). Springer International Publishing. (Cit. on p. 14).

62

https://doi.org/10.1109/eStream.2019.8732170
https://doi.org/10.1109/eStream.2019.8732170
https://doi.org/10.1109/ICSM.2012.6405308
https://doi.org/10.1109/ICSM.2012.6405308
https://doi.org/10.1007/s10515-013-0136-9
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://books.google.pt/books?id=jjl4BgAAQBAJ
https://books.google.pt/books?id=jjl4BgAAQBAJ
https://books.google.pt/books?id=iul3wQEACAAJ
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1145/361598.361623
https://books.google.pt/books?id=UeK1swEACAAJ
https://books.google.pt/books?id=UeK1swEACAAJ
https://doi.org/10.1109/ICSEA.2007.72

BIBLIOGRAPHY

Yanaga, E. (2017). Migrating to microservice databases: From relational monolith to distributed data.

O’Reilly Media. https://books.google.pt/books?id=5D9UwAEACAAJ. (Cit. on p. 15)

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. Lourenço, 2021

Lourenço, J. M. (2021). The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. https://github.com/joaomlourenco/novathesis/raw/master/template.pdf. (Cit. on p. 63)

63

https://books.google.pt/books?id=5D9UwAEACAAJ
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

A

Appendix

A.1 Dependencies of restaurantServer classes with classes

that belong to different microservices.

Microservice 1

pl.edu.wat.wcy.pz.restaurantServer.security.WebSecurityConfiguration

pl.edu.wat.wcy.pz.restaurantServer.security.service.UserDetailsServiceImpl

pl.edu.wat.wcy.pz.restaurantServer.security.jwt.JwtAuthTokenFilter

pl.edu.wat.wcy.pz.restaurantServer.security.service.UserDetailsServiceImpl

pl.edu.wat.wcy.pz.restaurantServer.security.jwt.JwtProvider

pl.edu.wat.wcy.pz.restaurantServer.security.service.UserPrinciple

Microservice 2

pl.edu.wat.wcy.pz.restaurantServer.entity.User

pl.edu.wat.wcy.pz.restaurantServer.entity.Role

pl.edu.wat.wcy.pz.restaurantServer.entity.Reservation

pl.edu.wat.wcy.pz.restaurantServer.service.UserService

pl.edu.wat.wcy.pz.restaurantServer.entity.Reservation

pl.edu.wat.wcy.pz.restaurantServer.controller.UserController

pl.edu.wat.wcy.pz.restaurantServer.email.MailService

pl.edu.wat.wcy.pz.restaurantServer.entity.Reservation

64

A.1. DEPENDENCIES OF RESTAURANTSERVER CLASSES WITH CLASSES THAT BELONG TO DIFFERENT
MICROSERVICES.

Microservice 3

pl.edu.wat.wcy.pz.restaurantServer.entity.BillPosition

pl.edu.wat.wcy.pz.restaurantServer.entity.Dish

pl.edu.wat.wcy.pz.restaurantServer.service.BillService

pl.edu.wat.wcy.pz.restaurantServer.repository.RTableRepository

pl.edu.wat.wcy.pz.restaurantServer.entity.RTable

pl.edu.wat.wcy.pz.restaurantServer.controller.BillController

pl.edu.wat.wcy.pz.restaurantServer.repository.RTableRepository

pl.edu.wat.wcy.pz.restaurantServer.service.BillPositionService

pl.edu.wat.wcy.pz.restaurantServer.service.DishService

Microservice 4

pl.edu.wat.wcy.pz.restaurantServer.service.RTableService

pl.edu.wat.wcy.pz.restaurantServer.entity.Bill

pl.edu.wat.wcy.pz.restaurantServer.entity.Reservation

pl.edu.wat.wcy.pz.restaurantServer.entity.RTable

pl.edu.wat.wcy.pz.restaurantServer.entity.Reservation

pl.edu.wat.wcy.pz.restaurantServer.entity.Bill

pl.edu.wat.wcy.pz.restaurantServer.controller.RTableController

pl.edu.wat.wcy.pz.restaurantServer.entity.Bill

pl.edu.wat.wcy.pz.restaurantServer.entity.Reservation

Microservice 5

pl.edu.wat.wcy.pz.restaurantServer.RestaurantServerApplication

pl.edu.wat.wcy.pz.restaurantServer.entity.Role

pl.edu.wat.wcy.pz.restaurantServer.entity.User

pl.edu.wat.wcy.pz.restaurantServer.entity.RTable

pl.edu.wat.wcy.pz.restaurantServer.repository.RoleRepository

pl.edu.wat.wcy.pz.restaurantServer.repository.UserRepository

pl.edu.wat.wcy.pz.restaurantServer.repository.RTableRepository

65

APPENDIX A. APPENDIX

Microservice 6

pl.edu.wat.wcy.pz.restaurantServer.service.ReservationService

pl.edu.wat.wcy.pz.restaurantServer.service.UserService

pl.edu.wat.wcy.pz.restaurantServer.email.MailService

pl.edu.wat.wcy.pz.restaurantServer.service.RTableService

pl.edu.wat.wcy.pz.restaurantServer.entity.User

pl.edu.wat.wcy.pz.restaurantServer.entity.RTable

Microservice 7

pl.edu.wat.wcy.pz.restaurantServer.form.response.JwtResponse

pl.edu.wat.wcy.pz.restaurantServer.entity.Reservation

pl.edu.wat.wcy.pz.restaurantServer.controller.AuthController

pl.edu.wat.wcy.pz.restaurantServer.repository.UserRepository

pl.edu.wat.wcy.pz.restaurantServer.security.jwt.JwtProvider

pl.edu.wat.wcy.pz.restaurantServer.entity.User

66

A.2. ALL RESTAURANTSERVER TRANSFORMATIONS MADE BY DATABASE REFACTORING PHASE

A.2 All restaurantServer transformations made by database

refactoring phase

A.2.1 BillPosition - Dish

A.2.1.1 Relationship in monolithic application

Figure 29: Instance variables of the BillPo-
sition class in monolithic application Figure 30: Instance variables of the Dish

class in monolithic application

A.2.1.2 Relationship in microservice-based application

Figure 31: Instance variables of the Bill-
Position class in microservice-based ap-
plication

Figure 32: Interface DishRequest gener-
ated by the database refactoring

67

APPENDIX A. APPENDIX

Figure 33: Generated class DishRequestImpl that is responsible for the calls to the Dish microservice

Figure 34: Generated class that exposes the API to handle Dishes

68

A.2. ALL RESTAURANTSERVER TRANSFORMATIONS MADE BY DATABASE REFACTORING PHASE

Figure 35: Generated class that processes and directs the request to the DishRepository class

69

APPENDIX A. APPENDIX

A.2.2 RTable - Reservation & RTable - Bill

A.2.2.1 Relationship in monolithic application

Figure 36: Instance variables of the RTable
class in monolithic application

Figure 37: Instance variables of the Bill
class in monolithic application

A.2.2.2 Relationship in microservice-based application

70

A.2. ALL RESTAURANTSERVER TRANSFORMATIONS MADE BY DATABASE REFACTORING PHASE

Figure 38: Instance variables of the RTable class in
microservice-based application

Figure 39: Interface BillRequest generated
by the database refactoring

Figure 40: Interface ReservationRequest
generated by the database refactoring

Figure 41: Generated class BillRequestImpl that is responsible for the calls to the Bill microservice

71

APPENDIX A. APPENDIX

Figure 42: Generated class ReservationRequestImpl that is responsible for the calls to the Reservation
microservice

Figure 43: Generated class that exposes the API to handle Bills

72

A.2. ALL RESTAURANTSERVER TRANSFORMATIONS MADE BY DATABASE REFACTORING PHASE

Figure 44: Generated class that processes and directs the request to the BillRepository class

Figure 45: Generated class that exposes the API to handle Reservations

73

APPENDIX A. APPENDIX

Figure 46: Generated class that processes and directs the request to the ReservationRepository class

74

B

Appendix 2

B.1 Evaluation results from GitHub projects

75

APPENDIX B. APPENDIX 2
Pr
oj
ec
tG

ith
ub

#C
la
ss
es

#P
M

Re
fa
ct
?

#M
G

#C
AR

#R
R

#D
R

%N
C

te
st
s?

Re
su
lts

Re
as
on

be
nc
eb
ur
om

/s
m
ar
t-k
itc
he
n

85
7

Ye
s

8
14
7

14
15

73
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

pi
bi
gs
ta
r/
pa
rs
ev
ip

90
12

N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

Vi
no
00
7/
ja
va
EE
Sc
af
fo
ld

45
5

N
o

-
-

-
-

-
-

-
Cr
ea
te

DA
O

51
48
40
27
9/
da
ny
ua
n-
ap
pl
ic
at
io
n

27
7

15
N
o

-
-

-
-

-
-

-
M
is
si
ng

Id
an
no
ta
tio
n

cy
m
11
02
/n
gi
nx
W
eb
U
I

12
7

12
Ye
s

12
31
5

0
26
9

14
8

N
o

-

ja
se
lva

m
/S
pr
in
t2
_F
or
es
tm
an
ag
em

en
t

65
8

Ye
s

8
95

0
8

46
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

IN
CF

/e
eg
-d
at
ab
as
e

10
07

29
N
o

-
-

-
-

-
-

-
Cr
ea
te

DA
O

H
as
eo
o/
co
ur
ie
r-c
om

pa
ny
-s
ys
te
m

31
2

11
Ye
s

12
38
0

14
11
5

22
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

st
52
54
2/
es
ho
pS
em

Pr
ac
e

59
7

Ye
s

8
19
7

9
32

23
4

Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

Ba
rC
ze
rw
/i
nT
ea
m
s

57
5

Ye
s

6
18
8

8
52

23
0

Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

76

B.1. EVALUATION RESULTS FROM GITHUB PROJECTS

Pr
oj
ec
tG

ith
ub

#C
la
ss
es

#P
M

Re
fa
ct
?

#M
G

#C
AR

#R
R

#D
R

%N
C

te
st
s?

Re
su
lts

Re
as
on

Ya
ng
Le
eT
ho
m
so
n/
m
we

bs
vr

17
4

13
Ye
s

13
25
8

0
12
8

48
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

de
re
kr
ey
no
ld
s/
on
le
av
e

14
9

13
Ye
s

13
14
5

4
9

-3
Ye
s

Sa
m
e
re
su
lt

*
in
bo
th

ve
rs
io
ns

ta
ng
du
/s
m
h2

11
2

11
Ye
s

11
21
2

0
90

89
N
o

-

jd
m
r/
m
at
eo

70
4

28
N
o

-
-

-
-

-
-

-
Cr
ea
te

DA
O

le
lu
qu
e/
un
ive

rs
ity
-s
ite
-c
m
s

25
4

15
N
o

-
-

-
-

-
-

-
Id
an
no
ta
tio
n

in
m
et
ho
ds

O
pe
nG

eo
po
rt
al
/O

GP
2

33
0

18
Ye
s

18
48
2

0
24
4

46
N
o

-

m
ra
bu
sa
la
h/
Q
r-S
tu
de
nt
s-
At
te
nd
an
ce

91
9

Ye
s

9
99

0
5

9
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

ka
i8
40
6/
cm

op
23
7

13
Ye
s

13
55
7

0
10
96

13
5

N
o

-

gl
id
er
w
ik
i/
gl
id
er

32
9

20
Ye
s

20
51
1

0
70
5

55
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

m
oz
am

m
el
/m

N
et

14
8

16
Ye
s

16
43
8

38
78

19
6

Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

H
IIT
/d
im
e-
se
rv
er

91
7

N
o

-
-

-
-

-
-

-
M
is
si
ng

Id
an
no
ta
tio
n

77

APPENDIX B. APPENDIX 2

Pr
oj
ec
tG

ith
ub

#C
la
ss
es

#P
M

Re
fa
ct
?

#M
G

#C
AR

#R
R

#D
R

%N
C

te
st
s?

Re
su
lts

Re
as
on

ju
st
in
ba
by
/m

y-
pa
pe
r

46
3

19
Ye
s

19
97
1

0
77
1

11
0

N
o

-

cr
uz
er
bl
ad
e9
5/
sc
ho
ol
-a
tte
nd
an
ce
-s
ys
te
m
-a
pi

91
8

Ye
s

8
10
2

0
5

12
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

zh
an
gy
an
bo
20
07
/y
ou
ke
fu

83
0

60
Ye
s

60
13
37

0
22
21

61
N
o

-

EU
Su
rv
ey
/E
U
SU

RV
EY

35
6

11
Ye
s

11
11
33

0
69
49

21
8

Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

su
ye
q/
st
ea
m
M
al
l

12
0

12
Ye
s

12
24
5

0
13
8

10
4

N
o

-

Pr
as
ad
10
8/
Tu
te
sM

es
sa
ng
er

10
9

11
Ye
s

11
23
8

0
20
8

11
8

N
o

-

bu
si
ng
/c
irc
le
_w

eb
26
8

26
Ye
s

26
42
8

0
39
9

60
N
o

-

bb
ai
bb
10
09
/w

xc
rm

95
12

Ye
s

12
20
6

0
16
5

11
7

N
o

-

kh
as
an
g/
de
liv
er
y

21
8

16
Ye
s

16
22
5

0
13

0
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

Te
xn
ol
og
ia
Lo
gi
sm

ik
ou
/F
iz

19
9

13
Ye
s

13
17
4

0
80

-1
3

Ye
s

Sa
m
e
re
su
lt

*
in
bo
th

ve
rs
io
ns

AI
-2
02
0-
20
21
-L
AB

1/
st
oc
k-
ex
ch
an
ge
-a
pp
-b
ac
ke
nd

11
9

9
Ye
s

9
24
2

7
29

10
3

Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

w
an
g0
07
/l
ive

-s
er
ve
r

23
8

18
N
o

-
-

-
-

-
-

-
Cr
ea
te

DA
O

78

B.1. EVALUATION RESULTS FROM GITHUB PROJECTS

Pr
oj
ec
tG

ith
ub

#C
la
ss
es

#P
M

Re
fa
ct
?

#M
G

#C
AR

#R
R

#D
R

%N
C

te
st
s?

Re
su
lts

Re
as
on

us
ha
hi
di
/S
w
ift
Ri
ve
r-A

PI
24
9

12
N
o

-
-

-
-

-
-

-
Cr
ea
te

DA
O

so
fts
er
ve
da
ta
/l
v2
57

17
1

9
N
o

-
-

-
-

-
-

-
Cr
ea
te

DA
O

ba
o1
76
34
/W

ar
eh
ou
se
-s
ys
te
m

76
11

Ye
s

11
13
4

0
10
1

76
N
o

-

Se
en
ck
/j
ee
cg
-b
pm

-3
.8

81
0

23
Ye
s

23
96
1

0
19
46

19
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

Gr
af
fiT
ab
/G

ra
ffi
Ta
b-
Ba
ck
en
d

18
8

12
N
o

-
-

-
-

-
-

-
U
se

O
rik
a

fo
rO

RM

su
ra
jc
m
/P
os
ei
do
n

11
3

7
Ye
s

7
10
6

0
83

-6
Ye
s

Sa
m
e
re
su
lt

*
in
bo
th

ve
rs
io
ns

W
ils
on
H
u/
si
ns
im

26
4

16
N
o

-
-

-
-

-
-

-
U
se

M
yB
at
is

fo
rO

RM

dp
2-
g5
6/
Dp

2-
L0
2

24
5

12
Ye
s

12
58
5

0
11
9

13
9

Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

w
an
gw

an
g1
23
0/
te
-e
m
pl

15
6

8
Ye
s

8
21
5

0
27
7

38
N
o

-

Gl
am

dr
in
g/
we

ls
ha
re

24
1

16
N
o

-
-

-
-

-
-

-
Cr
ea
te

DA
O

O
H
DS

I/
Ar
ac
hn
eC
en
tra
lA
PI

84
1

19
N
o

-
-

-
-

-
-

-
M
is
si
ng

Id
an
no
ta
tio
n

79

APPENDIX B. APPENDIX 2
Pr
oj
ec
tG

ith
ub

#C
la
ss
es

#P
M

Re
fa
ct
?

#M
G

#C
AR

#R
R

#D
R

%N
C

te
st
s?

Re
su
lts

Re
as
on

El
ia
th
en
/s
ha
re
lib
ra
ry

18
2

13
Ye
s

14
39
3

20
53

11
6

Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

m
om

op
la
n/
da
ta
an
al
ys
is

19
5

12
N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

is
a-
gr
ou
p/
id
ea
s-
st
ud
io

11
5

10
Ye
s

10
16
0

0
63

39
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

sm
ar
tc
om

m
un
ity
la
b/
sm

ar
tc
am

pu
s.
va
s.
co
rs
i.w

eb
65

8
N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

XM
FB

ee
/A
ut
hP
la
tfo
rm

1
28
1

22
Ye
s

22
60
9

0
12
58

11
7

N
o

-

sc
ru
m
tra
ck
er
/s
cr
um

tra
ck
er
20
17

44
6

Ye
s

7
16
3

5
97

27
0

N
o

-

ra
ce
m
-c
he
rn
i/
Ki
nd
er
Ga

rte
nP
ro
je
ct

20
9

12
N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

sh
an
gt
ec
h/
W
ei
Xi
nP
la
tfo
rm

88
8

Ye
s

8
16
5

0
84

88
N
o

-

lo
ng
yz
kd
/w

j-w
eb
-e
xt
-e
nh
an
ce
r

15
4

12
Ye
s

12
20
5

0
14
0

33
N
o

-

gv
SI
GA

ss
oc
ia
tio
n/
gv
si
g-
we

b
12
7

7
Ye
s

7
14
6

0
30

15
N
o

-

im
m
im
e/
sh
op
-2

29
2

17
Ye
s

17
58
8

0
11
4

10
1

N
o

-

ho
ng
qi
an
g/
sh
op
b2
b

46
5

23
N
o

-
-

-
-

-
-

-
Cr
ea
te

DA
O

de
vo
ps
re
po
97
3/
sw
itc
hP
ro
je
ct

50
1

14
Ye
s

14
49
7

0
18
2

-1
Ye
s

Sa
m
e
re
su
lt

*
in
bo
th

ve
rs
io
ns

Su
pe
rm

eP
ow

er
/z
am

m
c-
m
an
ag
e

11
9

13
Ye
s

13
15
4

0
10
2

29
N
o

-

80

B.1. EVALUATION RESULTS FROM GITHUB PROJECTS
Pr
oj
ec
tG

ith
ub

#C
la
ss
es

#P
M

Re
fa
ct
?

#M
G

#C
AR

#R
R

#D
R

%N
C

te
st
s?

Re
su
lts

Re
as
on

dt
dh
eh
e/
pt
u-
lif
e

66
10

Ye
s

10
12
5

0
10
3

89
N
o

-

H
as
eo
o/
Te
le
Le
ar
n-
Ba
ck
en
d

22
9

13
Ye
s

13
30
9

16
67

35
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

39
89
07
87
7/
Ap
pP
or
ta
l

47
0

22
N
o

-
-

-
-

-
-

-
M
is
si
ng

Id
an
no
ta
tio
n

xa
ba
oh
ui
/z
is

55
3

23
N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

Ru
ss
el
-J
X/
O
U
C-
Fa
m
ily

27
6

33
N
o

-
-

-
-

-
-

-
Cr
ea
te

DA
O

M
ax
cj
/M

ax
cj

17
7

15
Ye
s

15
25
6

0
10
8

45
N
o

-

as
se
rtm

ys
el
f/
gw

eb
-v
2

36
5

29
Ye
s

29
46
4

0
18
3

27
N
o

-

M
ar
ce
lo
M
an
si
lla
-z
z/
Ve
te
rin
ar
ia

13
2

10
Ye
s

10
18
2

5
36

27
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

hy
pe
ra
eo
n/
Cr
az
yA
nd
O
pt
im
ize

13
99

15
5

Ye
s

15
5

83
6

0
23

-4
0

N
o

*

ve
er
ap
pa
nv
s/
el
ae
.c
ap

22
4

18
N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

po
lli
sh
ul
ya
/a
ge
nc
y

82
7

N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

xir
ui
09
20
/b
is
he

97
12

Ye
s

12
10
9

2
8

12
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

nc
on
tre
ra
sn
/P
et
Su
ite

12
3

7
N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

81

APPENDIX B. APPENDIX 2
Pr
oj
ec
tG

ith
ub

#C
la
ss
es

#P
M

Re
fa
ct
?

#M
G

#C
AR

#R
R

#D
R

%N
C

te
st
s?

Re
su
lts

Re
as
on

Sa
m
ue
lB
ia
zo
tto
/D

es
af
io
-L
an
ch
es
-B
ac
ke
nd

27
4

N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

Fz
sh
ua
i/
Fz
sh
ua
iB
lo
g

56
7

Ye
s

8
11
3

7
38

10
2

N
o

-

m
sc
al
da
s2
01
2/
ch
ro
ni
cA
pp
s

29
3

Ye
s

3
36

2
2

24
N
o

-

Fa
br
ic
ad
eS
of
tw
ar
eU

N
IV
IL
LE
/P
ro
jC
O
LA
BA

ss
is
ta
nt

63
7

N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

xx
n5
20
/y
ita
o

11
2

9
N
o

-
-

-
-

-
-

-
M
is
si
ng

Id
an
no
ta
tio
n

pa
ul
os
an
ch
ez
h/
Iw
Re
po
si
to
ry

50
6

Ye
s

8
14
4

11
32

18
8

N
o

-

m
au
ric
ed
ib
be
ts
19
86
/q
ie
nu
re
na
pp
gr
oe
p2

69
5

N
o

-
-

-
-

-
-

-
M
is
si
ng

Id
an
no
ta
tio
n

si
w
ar
20
/c
on
so
m
i_
to
un
si

11
2

14
N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

re
st
oc
kD
AW

/r
es
to
ck
Ba
ck
en
d

48
6

Ye
s

6
92

0
43

92
N
o

-

ba
u0
3/
E-
Ti
ca
re
t-B
ac
ke
nd
-S
pr
in
gb
oo
t

97
10

Ye
s

11
23
6

13
12
3

14
3

N
o

-

xh
ie
u2
20
6/
ba
nk
in
ga
pp

18
7

11
N
o

-
-

-
-

-
-

-
Cr
ea
te

DA
O

kk
m
in
yo
un
g/
DS

C-
H
ac
ka
th
on

45
6

Ye
s

6
67

0
9

49
N
o

-

sa
ee
ds
ho
ko
oh
i/
tik
on

55
3

32
N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

ga
lim

sa
ro
v/
ja
va
-th
es
is
-p
ro
je
ct

73
7

Ye
s

7
10
8

0
18

48
N
o

-

Pe
pp
er
N
oo
dl
es
/P
ep
pe
rN
oo
dl
es

18
4

13
N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

82

B.1. EVALUATION RESULTS FROM GITHUB PROJECTS
Pr
oj
ec
tG

ith
ub

#C
la
ss
es

#P
M

Re
fa
ct
?

#M
G

#C
AR

#R
R

#D
R

%N
C

te
st
s?

Re
su
lts

Re
as
on

ed
ua
rd
os
uk
ed
a/
ve
nd
as
-a
pi

47
5

Ye
s

5
79

5
4

68
N
o

-

SL
Cr
ic
ke
tL
ea
de
rB
oa
rd
/S
LC
ric
ke
tL
ea
de
rB
oa
rd
_B

ac
kE
nd

14
0

14
Ye
s

14
38
5

24
22
0

17
5

N
o

-

ki
va
12
13
8/
IT
Bl
og
Si
te
De

si
gn
An
dC

od
e

82
6

Ye
s

6
60

0
26

-2
7

N
o

*

Sl
ife
rD
M
C/

Ba
ck
up
-G
RI
-F
ro
nt
en
d

48
6

Ye
s

7
91

9
39

90
N
o

-

Kh
ru
st
al
/c
ou
rs
ew
or
k-
ba
ck
en
d

34
4

Ye
s

5
83

5
16

14
4

N
o

-

W
in
w
in
dH

/C
ar
ee
rB
rid
ge

98
11

Ye
s

11
12
3

0
9

26
N
o

-

ca
rla
n9
2/
H
os
pi
ta
l_
M
an
ag
em

en
t_
Sy
st
em

12
9

8
Ye
s

8
25
5

18
15
2

59
N
o

-

fla
vio

hl
m
/s
eg
ue
_m

e
13
3

11
N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

w
n1
50
50
9/
OA

_s
ys
te
m

23
7

12
Ye
s

13
53
5

33
51
0

12
6

N
o

-

M
en
ke
Te
ch
no
lo
gi
es
/p
uf
fri
de

41
9

Ye
s

9
10
3

11
1

15
1

N
o

-

na
m
nd
ph
10
09
1/
VI
N
FA
ST

45
5

Ye
s

5
97

4
12

11
6

N
o

-

pr
at
yu
sh
-s
dr
c/
SD

RC
-C
ol
le
ct
-W
eb

19
3

27
Ye
s

27
23
3

0
44

4
21

N
o

-

gi
ga
rth

an
/s
lii
t-p
ro
cu
re
m
en
t-s
ys
te
m

53
7

Ye
s

7
75

0
8

42
N
o

-

Co
ca
yU
N
AM

/P
ro
ye
ct
oU

N
AM

11
2

9
Ye
s

9
27
9

12
18
4

14
9

N
o

-

H
im
an
i-B
on
de
/B
ug
Tr
ac
ke
r

29
5

N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

Fo
rd
cl
iff
or
d/
m
re
gi
st
er

59
6

Ye
s

7
71

1
42

20
N
o

-

of
fw
ay
/a
th
en
a

19
6

18
Ye
s

18
35
7

0
16
5

82
N
o

-

Lo
re
na
Ac
os
ta
/s
pa
-re
st
fu
l-a
pi

69
11

N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

ba
la
ga
ff/
eC
om

m
-m
as
te
r-D

R
34

6
Ye
s

6
63

0
14

3
N
o

-

83

APPENDIX B. APPENDIX 2

Pr
oj
ec
tG

ith
ub

#C
la
ss
es

#P
M

Re
fa
ct
?

#M
G

#C
AR

#R
R

#D
R

%N
C

te
st
s?

Re
su
lts

Re
as
on

O
liv
ie
rB
rin
km

an
/E
in
do
pd
ra
ch
t_
Ba
ck
en
d

48
4

N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

Jt
ag
iro
va
/W

ef
lo
rs

54
7

Ye
s

7
80

0
25

48
N
o

-

N
iu
Pi
Fi
ve
Te
am

/H
ot
el
M
an
ag
eS
ys
te
m

22
4

16
Ye
s

16
40
7

0
23
8

82
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

sa
m
yu
m
ad
di
ku
nt
a/
O
nl
in
e_
M
ov
ie
_T
ic
ke
t_
Sy
st
em

36
5

Ye
s

5
76

0
14

11
1

N
o

-

jjx
s/
co
ol
w
ea
th
er
/d
aq
i

40
2

30
Ye
s

30
57
3

0
26
0

43
N
o

-

lio
ns
da
m
aj
ec
tim

/C
ha
m
pi
nk

35
5

Ye
s

5
10
4

18
39

19
7

N
o

-

ar
iv9

8/
O
nl
in
e-
m
ed
ic
in
e-
sh
op
pi
ng
-e
co
m
m
er
ce

69
8

Ye
s

8
20
4

8
6

19
6

Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

Aa
ry
at
ec
h/
H
rE
sa
yW

eb
Ap
iP
un
e

58
6

28
Ye
s

28
97
5

0
22
21

66
N
o

-

ih
lys
/m

us
ic
st
or
e

11
9

10
N
o

-
-

-
-

-
-

-
M
is
si
ng

Re
po
si
to
ry

La
va
ny
a-
An
na
di
/P
et
Ad
ap
t

40
5

Ye
s

5
84

7
18

11
0

N
o

-

na
vin

sh
ar
m
a2
5/
H
ot
el
-B
oo
ki
ng
-M
an
ag
em

en
t-S
ys
te
m

43
8

Ye
s

8
14
0

N
A

N
A

22
6

Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

M
an
de
m
H
ar
sh
ith
aR
ed
dy
52
7/
H
M
S

53
8

Ye
s

8
79

6
0

49
N
o

-

as
le
dz
ie
w
sk
i/
re
st
au
ra
nt
Se
rv
er

38
7

Ye
s

8
13
8

5
37

26
3

N
o

-

84

B.1. EVALUATION RESULTS FROM GITHUB PROJECTS

Pr
oj
ec
tG

ith
ub

#C
la
ss
es

#P
M

Re
fa
ct
?

#M
G

#C
AR

#R
R

#D
R

%N
C

te
st
s?

Re
su
lts

Re
as
on

al
ts
or
a/
So
ci
al
N
et
wo

rk
11
9

9
Ye
s

10
20
6

8
75

73
Ye
s

Sa
m
e
re
su
lt

in
bo
th

ve
rs
io
ns

yu
-g
ot
ch
a/
tim

e-
at
ta
ck
-w
eb

32
4

Ye
s

4
78

8
5

14
4

N
o

-

85

	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Statement
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Contributions
	1.2 Document Organization

	2 Background
	2.1 Monoliths
	2.2 Microservices

	3 State of the Art
	3.1 Manual Migration of Monoliths to Microservices
	3.2 Source-code oriented solutions
	3.3 Model-based Solutions
	3.4 Summary

	4 A Methodology for Refactoring Java Monoliths into Microservice-Based Applications
	4.1 restaurantServer
	4.2 Information Extraction
	4.2.1 Extraction of structural information
	4.2.2 Identify Microservice Dependencies

	4.3 Database Refactoring
	4.4 Code Refactoring

	5 MicroRefact - A tool for refactoring Java monoliths
	5.1 Information Extraction
	5.1.1 Project Parsing
	5.1.2 Identification of Dependencies between Microservices

	5.2 Database Refactoring
	5.3 Code Refactoring

	6 Evaluation
	6.1 Project collection
	6.2 Setup
	6.2.1 Example

	6.3 Results
	6.4 Analysis
	6.4.1 Degree of complexity and size of the applications
	6.4.2 Unrefactored projects
	6.4.3 Refactored projects with fewer classes than the original projects
	6.4.4 Percentage of new classes and analysis

	6.5 Threats to validity

	7 Conclusion
	7.1 Future work

	Bibliography
	A Appendix
	A.1 Dependencies of restaurantServer classes with classes that belong to different microservices.
	A.2 All restaurantServer transformations made by database refactoring phase
	A.2.1 BillPosition - Dish
	A.2.2 RTable - Reservation & RTable - Bill

	B Appendix 2
	B.1 Evaluation results from GitHub projects

	Back Matter
	Back Cover

