
Everton Nascimento

Student Nº 43593 (MIEI)

A Model-Driven Approach to
the Generation of Front-Ends

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Advisers: Jácome Cunha, Assistant Professor,
Universidade Do Minho
Vasco Amaral, Assistant Professor,
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

Examination Committee

Chairperson: Name of the male committee chairperson
Raporteurs: Name of a female raporteur

Name of another (male) raporteur
Members: Another member of the committee

Yet another member of the committee

February, 2018

A Model-Driven Approach to
the Generation of Front-Ends

Copyright © Everton Nascimento, Faculty of Sciences and Technology, NOVA University

of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “unlthesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

Lorem ipsum.

Abstract

Today most companies have many ways to connect and gather data from their clients.

Some companies provide spreadsheets to be filled and submitted, others have websites

with forms to collect information or even an Android or iOS app, etc. Multiple types of

front-ends are now the norm in the modern world. This brings advantages of connectivity,

interactivity, and the data gathering possibilities are great.

But in a fast-evolving world, time is important. Therefore, ensuring a faster and

more efficient way to generate, update and guarantee the coherence between front-ends

would be very relevant. In this work, we will try to tackle the problem of generating in a

coherent manners multiple types of front-ends from the common component which is the

database schema. Our aim is to create a solution that automatically generates front-ends

from a database schema definition in SQL code. Our solution is grounded in foundations

and tooling found in model-driven development and DSLs.

We want to automatically generate from a database schema specification in SQL:

spreadsheets and web pages (and in the future possibly any desired template) already

containing the restrictions and verifications needed. By doing this, we can decrease the

likelihood of errors and guarantee the efficiency and correctness of all elements of the

problem.

As a case study, we have the goal of solving a specific real-world case of the Portuguese

General Inspection of Finance (IGF). In IGF, we have identified the need for synchroniza-

tion and consistency between database, spreadsheets, and web pages. By addressing this

need we are trying to create a robust solution that solves various problems without the

need to learn new techniques or technology with a significant learning curve.

Our solution was also tested with multiple schemas and we are able to generate web

pages from the schema definitions of multiple SQL dialects.

Keywords: Spreadsheets, Web Pages, Front-Ends, SQL,Model-Driven Development, Do-

main Specific Languages

vii

Resumo

Hoje em dia, a grande maioria das empresas possui várias maneiras de conectar e

colectar dados dos seus clientes. Algumas empresas fornecem folhas de cálculo para serem

preenchidas e enviadas, outras têm sites com formulários para receber informação ou até

mesmo aplicações para Android ou iOS, etc. Vários tipos de front-ends são agora a norma.

Isso traz vantagens de conectividade, interatividade e as possibilidades de extracção de

dados são ótimas.

Mas em um mundo de rápida evolução, o tempo é importante. Portanto, garantir uma

maneira mais rápida e eficiente de gerar, atualizar e garantir a coerência entre front-ends

seria muito relevante.

Neste trabalho, tentaremos abordar o problema de gerar de maneira coerente vários

tipos de front-ends a partir do componente comum, que é o schema da base de dados.

Nosso objetivo é criar uma solução que gera automaticamente front-ends a partir de uma

definição de um schema de base de dados em código SQL. Nossa solução é feita com

fundamentos e ferramentas de desenvolvimento orientado a modelos (MDD) e DSLs.

O nosso objetivo é gerar automaticamente a partir de schema de base de dados escrito

em SQL: folhas de cálculo e páginas Web (e no futuro, possivelmente qualquer tipo

de front-end desejado) contendo as restrições e verificações necessárias. Ao fazer isso,

podemos diminuir a probabilidade de erros e garantir a eficiência e correção de todos os

elementos do problema.

Como caso de estudo, temos como objetivo abordar um caso real e específico da Inspec-

ção Geral de Finanças (IGF). Nas finanças, identificamos a necessidade de sincronização

e consistência entre base de dados, folhas de cálculo e páginas web. Ao abordar essa

necessidade, tentamos criar uma solução robusta que resolve vários problemas sem a

necessidade de aprender novas técnicas ou tecnologias que possuem um tempo de apren-

dizagem significativo. Nossa solução também foi testada com vários schemas e podemos

gerar páginas Web a partir das definições de schema de vários dialetos da linguagem SQL.

Palavras-chave: Folhas de Cálculo, Páginas Web, Front-Ends, SQL, Desenvolvimento

Orientado a Modelos, Linguagens de Domínio Específico

ix

x

Contents

List of Figures xiii

Listings xv

1 Introduction 1

1.1 The Rapid Growth of The Number of Front-Ends 1

1.2 Problem Statement . 2

1.3 Proposed Solution . 3

1.4 Contributions . 4

1.5 Structure of the Document . 5

2 Related Work 7

2.1 Model-Driven Development . 7

2.2 Model Transformation . 9

2.3 Domain-Specific Languages . 11

2.4 Model-Driven Development Projects . 12

2.4.1 INTEGRANOVA . 12

2.4.2 WebRatio . 14

2.4.3 A Methodology For The Development Of Complex Domain Specific

Languages . 15

2.5 Spreadsheet Solutions . 15

2.5.1 ViTSL . 15

2.5.2 ClassSheets and Embedded ClassSheets 16

2.5.3 GenSS - A Tool to Generate Spreadsheets 18

2.6 Bidirectional Transformations . 19

2.7 Website Generation . 20

2.7.1 Ruby on Rails . 20

2.7.2 Django . 20

2.7.3 Content Management System . 21

2.8 Low-Code Development Platforms . 21

2.8.1 OutSystems . 22

2.8.2 Mendix . 22

2.9 Summary . 23

xi

CONTENTS

3 A Model-Driven Approach To The Generation Of Front-Ends 25

3.1 Technologies Used . 26

3.1.1 Epsilon . 26

3.1.2 Eclipse Modeling Framework . 27

3.2 The ESQL Language . 28

3.2.1 Schema . 28

3.2.2 Table . 29

3.2.2.1 Key Types . 30

3.2.2.2 The Check Rule . 31

3.2.2.3 The Unique Rule . 31

3.2.3 Column . 32

3.2.4 Association . 32

3.2.5 Xtext Terminals . 33

3.3 The ESQL Generator . 34

3.4 The ATL Model Transformations . 38

3.4.1 ATL Transformation Structure . 38

3.4.1.1 The Header Section . 38

3.4.1.2 Helpers . 38

3.4.1.3 Rules . 39

3.4.2 The Main Rule . 40

3.4.3 The Workbook Lazy Rule . 41

3.4.4 The Worksheet Lazy Rule . 41

3.4.5 The Table Lazy Rule . 41

3.4.6 The Column Rule . 42

3.5 Generating Web Pages . 43

3.5.1 The EGL Generator . 43

3.6 Summary . 44

4 Validation 45

4.1 ESQL: Test Runs and Language Extension 45

4.2 ATL: Model Transformation Tests . 47

4.3 EGL: Web Page Generation Validation . 47

4.4 Case Study . 48

4.4.1 The IGF Case . 49

4.5 Summary . 54

5 Conclusions 57

5.1 Achievements . 57

5.2 Future Work . 58

Bibliography 59

xii

List of Figures

1.1 The number of websites in the internet along the year has increased immensely.

[Num] . 1

2.1 Relationships between model, metamodel and metametamodel. 8

2.2 Examples of model transformations [MVG06]. 10

2.3 Summarizing the model transformation process. 10

2.4 The class diagram of the Integranova software [Int]. 13

2.5 Generation of the final application in the Integranova environment [Int]. . . 13

2.6 The WebRatio IDE [Ace+07]. 14

2.7 Representation of the ViTSL/Gencel architecture [RA05]. 16

2.8 The ViTSL editor [RA05]. 16

2.9 Graph of the ClassSheet solution [EE05]. 17

2.10 A 2D ClassSheet [EE05]. 17

2.11 Model and instance in conformity [Cun+]. 18

2.12 The GenSS user interface [Tei16] . 18

2.13 This is a well known example from the ATL use case library, the family to

persons transformation [Web]. 19

2.14 The Django admin interface. [Dja19b] . 20

2.15 WordPress is one of the most popular CMS in the world [Cle]. 21

2.16 The OutSystems Development Platform [Rev16]. 22

2.17 Mendix Low-Code Platform cloud [Men]. 23

3.1 Diagram depicting how the parts of the solution connect. 26

3.2 A example of schema, table and columns defined in our language. 33

3.3 After the code is run, a xmi file is created containing the information that was

stored in the schema. 37

4.1 Web page form for one of the tables of the wikipedia SQL schema. 48

4.2 Web page of the tables of the wikipedia SQL schema. 49

4.3 The example schema of IGF. 50

4.4 The model generated from the ESQL file. 51

4.5 The model-to-model transformation is made by the ATL project. 52

xiii

List of Figures

4.6 The list of web pages and forms that were generated by the project from the

schema from IGF. 53

4.7 The generated web page form that represents one of the tables from the SQL

schema supplied by IGF. 54

xiv

Listings

3.1 A schema declaration in SQL. 27

3.2 A table declaration in SQL. 27

3.3 The root element of the ESQL language. 28

3.4 The elements rule offer the possible choices for an element in the grammar. 28

3.5 The create schema rule. 29

3.6 The create table rule. 29

3.7 The elements that can belong in a table rule. 29

3.8 The types of keys a table can have. 30

3.9 This rule creates the references of the key types. 30

3.10 The delete and action types of flags. 31

3.11 The check rule. 31

3.12 The unique rule. 31

3.13 The column rule. 32

3.14 The association rule. 33

3.15 The terminals of the ESQl language. 33

3.16 The start for the model generator of the ESQl language. 34

3.17 The model (XMI) code that is generated. 34

3.18 The two types of cycles for the schema code generation. 35

3.19 The two types of cycles for the table code generation. 36

3.20 Like the examples before the column generation is also made with two

types of cycles. 36

3.21 Example of a header section in the ATL transformation language. 38

3.22 Example of a helper section in the ATL transformation language [Jou+08]. 39

3.23 Example of a standard and lazy rule in ATL. 39

3.24 The Main rule for the beggining of the model to text transformation in ATL. 40

3.25 The workbook lazy rule. 41

3.26 The worksheet lazy rule. 41

3.27 The table lazy rule. 41

3.28 The column lazy rule and the define ct helper. 42

3.29 The EGL code for the main method for the generation of the web site. . . 43

3.30 The EGL code for the generation of the models for the website. 43

4.1 The SQL code for the table pagebackup from the OLTPBenchmark Project. 47

xv

LISTINGS

4.2 The ESQL code for the table Entidade. 50

4.3 The Python code generated by the EGL project to represent the table Enti-

dade in our web site. 52

xvi

C
h
a
p
t
e
r

1
Introduction

1.1 The Rapid Growth of The Number of Front-Ends

Most companies or enterprises in the modern world have numerous ways of connecting

with their intended users. Some companies use websites and applications, others have

Android and iOS apps coupled with a website (in Figure 1.1 we can see how the number

of websites grows with the years). It does not matter what type of business or goal the

company has, having a strategy centered in at least one type of front-end is helpful

for the success of a business [Gol+03]. The reason is that not only provides means of

communication with the intended target audience but also consists of multiple ways to

gather user data and other types of important information.

Figure 1.1: The number of websites in the internet along the year has increased immensely.
[Num]

1

CHAPTER 1. INTRODUCTION

1.2 Problem Statement

When companies embrace the decision of maintaining the offer of several front-ends, it

comes with a price. The multiple types of front-ends must be updated and coherent with

each other. It is easy to find places or situations where having these technologies not

synchronized would be troublesome.

For instance, the case of a company that provides simultaneously a spreadsheet, an

Android app, an iOS app, Windows app, and web page. Many of these technologies also

come in different programming languages, written by different teams at different times.

Having different technologies that were worked on by different teams at different times

can cause problems. If the need for changes arises, it is easy to guess that most likely all

of these pieces have to be looked at individually by someone or some group. Assuming

that the need to update this set of tools appears, the initial steps that would need to be

taken to make sure everything is up-to-date and synchronized would be:

• First, the domain experts would have to analyze the system and see what needs to

be updated, removed or improved.

• Second, after each development team analyses their technology, it would be neces-

sary for them to meet and agree on the changes that need to be adressed.

• Third, it would be needed to ensure that the communication between teams is

constant to avoid missing functionalities and big differences in layout.

In the case that, for instance, we have a company that uses as front-ends a spreadsheet,

a web page (to receive information) and an Android app to collect information from its

users. The fictional company in our example has at least four elements that have to be

in synchronicity: spreadsheet, a web page, an Android application and the common link

between them which is the database.

Traditionally, all of them would have to be updated manually. In many cases by

different teams. This makes coherence between the elements specifically difficult and

error prone. Every time that, for example, a table in the database is updated or altered, the

app and website will need to be updated manually. Having to update and maintain the

elements manually is less than ideal. It is known for some time that in the development

of software, the higher costs go to the maintenance phase. In the mythical man month

book by Fred Brooks, it is stated that 90% of the costs arise in the maintenance phase and

the software subsequently will have to be maintained [Bro95].

The notion of difficulty for software maintenance is nothing new. In 1974, Lehman

and Belady started to formulate the laws of software evolution. In 1980, professor Lehman

defined an E-Program as: "An E-program is written to perform some real-world activity;

how it should behave is strongly linked to the environment in which it runs, and such a

program needs to adapt to varying requirements and circumstances in that environment"

[Leh80].

2

1.3. PROPOSED SOLUTION

For this type of systems, 8 software evolution laws were defined. Some of these laws

are relevant to our problem, such as:

• Law I - Continuing Change - "E-type systems must be continually adapted else

they become progressively less satisfactory" [Leh+97]. All of software eventually

will have to be adapted, so having a efficient way to perform the adaptions will

always be of value.

• Law VI - Continuing Growth - "The functional content of E-type systems must

be continually increased to maintain user satisfaction over their lifetime" [Leh+97].

The growth of software is also to be expected. Some parts have to be updated and its

functionalities increased. Other parts will have to be added from scratch depending

on what is needed.

• Law VII - Declining Quality - "The quality of E-type systems will appear to be

declining unless they are rigorously maintained and adapted to operational envi-

ronment changes". [Leh+97]. Ease of maintenance is also a main focus of our work.

In this perspective, it is interesting to note that new ways of developing apps are also

being developed and utilized. Developing apps manually is something that takes some

time and low-code platforms and solutions that involve less hand-made code are gaining

a lot of interest. The market for these tools is projected to grow significantly [RR16].

The possibility of developing something without having to code everything by hand is

something that is very interesting and useful.

We defend in this thesis that the utilization of tools that use model-driven devel-

opment and DSLs can make the process of maintenance of complex systems more effi-

cient and less complicated. By creating a tool that utilizes model-driven development

paradigms coupled with DSLs we can improve development time, development effort

and make the process of actualization and verification easier. This thesis is limited to the

creation of spreadsheets and web pages but in the future it could be extended to support

more transformations and a bigger number of front-ends.

1.3 Proposed Solution

We wish to provide a solution that automatically generates front-ends without having

a significant learning curve. We will use model-driven development coupled with the

development of DSLs to achieve the goal of generating models that represent the elements

of the database. With these models, we will generate two types of front-ends: a web page

and spreadsheet.

We wish to create a tool that in the future could be extended to express more front-

ends and include more types of databases. We created a DSL using Xtext. This DSL

acts as a copy of SQL (and many of its most used dialects), the user only needs to copy

the SQL code and a model that contains the information of the schema will be created

3

CHAPTER 1. INTRODUCTION

by a generator written in the Xtend language. We then transform this model utilizing

ATL (a DSL that was created for model transformation) rules. The model that contains

the information of the schema is transformed to an intermediate model of the GENSS

project [Tei16] written in the SSDSL language. We then utilize this intermediate model

coupled with the EGL language (a project contained in the Eclipse IDE) to generate a

spreadsheet and a web page respectively. There are tools that generate websites, some

that produce web apps and etc. But most of these tools require the user to study and learn

new techniques or technology.

To test and validate our solution, we will utilize a repository called OLTPBenchmark

[Dif+13]. This repository has many SQL files of different types of dialects. We will

also apply this to a case study from the Portuguese General Inspection of the Finance

Department (IGF) [Igf].

In IGF, if there is a need to update the database, it would be necessary in this case to

hire someone to re-do the website manually.

Our proposal addresses this by automatically generating spreadsheets and web pages

from the database specifications. The database was chosen to be the principal element

in our solution because it is the central point of almost all systems that have multiple

front-ends. The information always has to come back to a common database. As many

front-ends have multiple users that are not technology proficient our solution does not

require a software expert to use it.

1.4 Contributions

This thesis will bring as contribution a framework that can receive a database schema

and automatically generate the desired template.

The main contributions are:

• The design and implementation of a tool that can be used in a number of real-world

use cases;

• A DSL representation of SQL in Xtext;

• ATL transformations of our DSL to the GenSS DSL;

• Creation of a complete solution that can generate a website from a database schema

which can be improved and extended in the future with multiple types of trans-

formations between the models, the generation of templates, the definition of the

schema, etc.

4

1.5. STRUCTURE OF THE DOCUMENT

1.5 Structure of the Document

This thesis consists of 4 more chapters. In chapter 2 we have a look at the background

knowledge necessary to understand the work of this thesis and talk about projects and so-

lutions that are relevant and can be related to this work. We briefly analyze solutions that

utilize MDD, projects for spreadsheets, we talk about bi-directional transformations, gen-

eration of web pages utilizing content management systems and low-code development

platforms.

Chapter 3, is where we explain how our solution was developed. We briefly explain

each technology used in the project and what it was used for. After we explain how each

piece of the solution is connected to each other, what each part generates and how the

models are transformed and used to generate the front-ends.

Chapter 4 is dedicated to the validation section of the thesis. We show how the

solution was tested and what was added and removed from the solution as the project

evolved.

The final chapter 5 is used to show our conclusions and what could be done to improve

this work in the future.

5

C
h
a
p
t
e
r

2
Related Work

This chapter presents the similar and related approaches to the problem (or parts of)

discussed in this thesis.

2.1 Model-Driven Development

Since the start of computer science, programmers and engineers have always tried to

create ways to do more with the machine without having to write more code. Raising the

level of abstraction to deal with complexity and increase productivity.

After the multiple types of developments and enhancements that occurred since the

days of the first FORTRAN compiler, we have gotten to a point where model-driven

development [Mel+03; Sel03] is a logical continuation of this trend.

In this work, a model is a simplified representation of something. In our case, the

models will be representations of artifacts of the systems and solutions we want to model.

A model always conforms to a meta-model. The meta-model is the model of a model.

The abstraction of our abstraction that is used to highlight the properties of the model

itself (Figure 2.1, shows how the meta-meta-model, meta-model and model are related).

In simpler terms, a meta-model decides what can and what cannot be represented in a

valid model of a certain modeling language [Sei03]. Models and meta-models make up

the basics of model-driven development (MDD).

Designing software is becoming more complex. There are many requirements that

need to be satisfied and different bodies of knowledge we have to apply to the formulation

of a solution. The main goal to be accomplished is to design something that not only works

but works well.

Model-Driven development is a effective approach to deal with complex systems de-

velopment. Model-to-code generation technologies years ago were expected to generate

7

CHAPTER 2. RELATED WORK

Figure 2.1: Relationships between model, metamodel and metametamodel.

code with memory and performance efficiency that could be on average between 5% to

15% better than hand-written code [Sel03]. In these days it would not be surprising if

these number have grown.

MDD is model-driven because the models are the main drivers of the software de-

velopment. These models (target or source, sometimes both) will expand, evolve and

grow with the process. The implementation process needs to be derived from the starting

models. It is useful because model-driven development automates the transformation of

models from one form to another. One of the main advantages of using this type develop-

ment (and models for software development) is the possibility of enhanced productivity

[Bak+05].

MDD is applied to the problem of designing models at a high level of abstraction.

Models guide the process of creating software, shifting the focus to specific parts of the

problem and presenting a better way to manage the complexity of the problem.

A good example of an application of MDD is when a business needs software to be

crafted which will make process within the company more efficient. Here, the workers

of a company know how to perform an action that could be improved, or how to solve a

particular problem. We can call these people the domain experts, by being experts they

know all the details and the better way to solve the problem. The problem here is, the

8

2.2. MODEL TRANSFORMATION

domain experts are not software experts (most of the time). They do not understand how

to develop a software solution. The software engineer knows how to develop but does

not have the knowledge of the expert.

Model-Driven development bridges this gap between domain expertise and software

development knowledge by creating models that represent the systems we want. This

helps us design solutions for the problems that arrive during the development process.

It is also interesting to note that MDD has an extensive list of benefits claimed by

many authors, such as:

• Improvement of code quality [Bor04; MF05; SS09].

• Improvement of code consistency [Bor04; Mid].

• Elimination of repetitive code [SS09].

• Improvement in reuse, development of new versions and maintainability [HT06].

• It is a technology easier to understand [MF05; Sel03].

• Reduces developer effort [Bor04; HT06; Sel03; SK03; SS09; Mid].

• Improves productivity [Bra+12; MF05; Sel03].

MDD has also been used in Industrial settings. Motorola has a 15 year report on their

application of MDD and its implications in effort, quality and productivity [Bak+05].

This report states that their results in code and automatic test generation have decreased

defects by 1.2 and 4 times, productivity is between 2 and 8 times greater and effort is 2.3

times less.

2.2 Model Transformation

In this thesis, we use model transformations. A transformation can be defined as the

automatic generation of a target model from a source model with a specific intent [Syr11].

This transformation is made by a set of transformation rules that are used to describe how

the source model in a source language can be used to generate a transformed model in the

target language. These transformation rules are the description of how the constructs in

the source language and model will be transformed to target language and model. Using

these basic definitions we can define model transformation as the manipulation of input

models to produce output models.

A model transformation can have multiple source models and multiple target models.

An example of a type of model transformation that uses multiple models is model merging

where multiple source models are combined to give us a resulting target model. For a

transformation example of the latter, we could take the one source model and transform

it in multiple models (Figure 2.2 shows the transformation from a platform independent

9

CHAPTER 2. RELATED WORK

model (PIM) to multiple platform-specific models (PSM). The transformations can also

be unidirectional (from source to target) or bidirectional (from target to source or vice

versa).

Figure 2.2: Examples of model transformations [MVG06].

There are also other two types of model transformations categories: model-to-model

and model-to-text (sometimes called model-to-code transformation). The first category

consists of rule-based transformations between models. A model-to-model transforma-

tion as the name suggests transforms a model into another model. These transformations

are made by rules that describe how the constructs of one model are mapped to the con-

structs of another model. The second category includes an automatic generation of text

from a model which can be executable text (spreadsheet code, HTML, Python, etc.) or

any other type of textual artifact. We will use a DSL that was made in the GENSS project

[Tei16] and other tools to generate the code necessary for the desired templates.

Figure 2.3: Summarizing the model transformation process.

10

2.3. DOMAIN-SPECIFIC LANGUAGES

In our project, we will use only one source model (The SQL code that will be repre-

sented in a model we generate) and will generate a model in the target language that was

already developed in other project. This is a one-to-one transformation. We will also

use both types of transformations. Model-to-model in the transformation of our source

model (which is generated by our DSL) to the target model (represented by the SSDSL

language created in the GENSS project). The model-to-text (or code) transformation, will

happen when we use the transformed model (written in the SSDSL language) to generate

the code for the desired type of spreadsheet and the code for the web page. These are the

two types of targets we want to generate. Our transformations will also be unidirectional

since we desire to go only from the database schema to generate our front-ends. Although,

making the transformations bi-directional would be a very interesting thing to add to the

project in the future.

2.3 Domain-Specific Languages

Programming languages can be classified in multiple ways: declarative vs imperative,

high-level vs low-level, domain-specific languages (DSLs) vs general purpose languages

(GPLs) and etc.

In our project, we will also use domain-specific languages. A domain-specific lan-

guage is a programming language that is made with focus on a particular problem domain

[VD+00]. We decided to create a DSL to help us generate the model that will represent

the schema information that it is written in SQL. We’ve also already had a DSL created

in another project [Tei16] that is used to help generate spreadsheet code and will be used

to generate the web page.

The most used programming languages of today can be designated general purpose

languages. As the name suggests this types of languages are employed in a wide variety

of domains (E.g. Python, Java, C++ etc). These languages are used to provide tools to

solve general problems and are not specifically made for a single scope.

The difference between domain-specific language and general-purpose languages is

not always so clear. Some languages can be designed for a specific scope but used for

in a bigger scope than planned. Perl was originally created to be a language used for

text-processing but then it became a GPL.

Domain Specific Languages are languages that focus on a specific domain. There is

a great number of programming languages that can be called domain specific. Some

examples of well known DSLs are:

• SQL [Cha12] - A language that is used to manipulate databases. Its main purpose

is to express how to insert, change or extract data from a relational database. It

includes many types of dialects (MySQL, nuoDB, Oracle SQL, PostgreSQL, the

Microsoft SQL Server, etc.).

11

CHAPTER 2. RELATED WORK

• The Extensible Markup Language (XML) [Xml] - defines a set of rules for encoding

documents in a format that is both human-readable and machine-readable. XML-

based formats have become the default for many office-productivity tools, including

Microsoft Office (Office Open XML), OpenOffice.org, Libre Office (OpenDocument)

etc.

• LaTeX [Lat] - this language was created to provide writers functions for defining

the formatting and layout (headers, footnotes, references, bibliographies and etc)

of their work. it is mainly used in academic circles for the publication of scien-

tific documents and a wide variety of fields (physics, computer science, economics,

mathematics and many more fields).

These are some the languages that are used and related to the work we developed in

this thesis.

In the context of DSLs, they can also be divided into two main types:

• Internal: these are contained inside the host language (GPL) and reuse its syntax,

type system and run-time systems (sometimes they are difficult to differentiate from

an API) [Fow10].

• External: These have a parser, syntax and execution infrastructure (sometimes)

independent of the host language [Fow10].

In MDD, DSLs can also be used to help in the generation of the desired models or

artifacts.

The external are the ones in focus in this project, as they can be related to MDD

because some of its complementary tools are also DSLs, such as OCL, QVT (domain-

specific transformation language) and even ATL could be characterized as a DSL.

As we referred before, DSLs are utilized to focus on a particular aspect of a sys-

tem/problem, they are used to encapsulate domain knowledge and facilitate the develop-

ment of projects were domain experts and software engineers collaborate.

2.4 Model-Driven Development Projects

This section highlights some projects that use model-driven development concepts for

their functionality and have models as a central part of its solutions.

2.4.1 INTEGRANOVA

The INTEGRANOVA M.E.S. (Model Execution System) is a business application that uses

model-driven architecture to generate applications in multiple types of programming

languages and environments. "The most advanced MDA (Model Driven Architecture)

solution, capable of programming 100% of the final application’s code, including the

12

2.4. MODEL-DRIVEN DEVELOPMENT PROJECTS

more complex business logic, instead of being limited (as other systems) to obtain basic

functionality and/or frameworks of programs" [Int].

The goal is to generate a model-driven development framework that can also make it

easier for domain experts and developers to communicate. Raising the level of abstraction

in the development process is the way which they try to close this gap between domain

expertise and software development.

Figure 2.4: The class diagram of the Integranova software [Int].

The software has a simple structure. It has a class diagram, where the user can create

the classes that he/she wants (see figure 2.4). In each class the user can define attributes

and the actions that can happen to the various attributes.

After defining how the models interact, what actions and what permissions they have,

it is possible to generate an application in multiple types of programming languages and

environments (as we can see in figure 2.5).

Figure 2.5: Generation of the final application in the Integranova environment [Int].

13

CHAPTER 2. RELATED WORK

Although it is an easy software to master and a effective tool to generate code in mul-

tiple types of programming languages, the INTEGRANOVA software does not support

the SQL language and the models have necessarily to be made by hand (at least in the

first iteration).

2.4.2 WebRatio

The project WebRatio [Ace+04] is also a project the uses model-driven development. This

project allows the user the capture business requirements in models to generate business

applications.

WebRatio uses graphical languages to specify the generation of code for data-intensive

Web applications, process management primitives, calls to Web services, and integration

of heterogeneous data sources. These applications are made using the Entity-Relationship

(ER) model for data requirements, and the WebML language for the functional require-

ments. It also has been created along Eclipse (see figure 2.6) as a set of plug-ins for the

IDE [Ace+04; Ace+07; Bra+08].

The users of WebRatio can focus on the requirements of the app being developed and

on high-level design because the documentation and code are automatically generated

and verified by the tool.

Figure 2.6: The WebRatio IDE [Ace+07].

WebRatio like most of the solutions only focus on a part of the problem we are trying

to tackle. In this case it utilizes model-driven development to generate web and mobile

applications and but it does not use any part of a common database between this two

types of front-ends. The applications have to be created in a environment similar to the

Eclipse IDE that has a signficant learning curve.

14

2.5. SPREADSHEET SOLUTIONS

2.4.3 A Methodology For The Development Of Complex Domain Specific
Languages

As a work that precedes the GENSS project (see section 2.5.3), we have a project worked

on by Dr. Matteo Risoldi during his PhD which is a methodology for the development of

complex domain specific languages [Ris10].

The goal of the thesis was to tackle the domain of interactive systems and apply a

DSML-based workflow which moves from a system specification to the prototyping of a

Graphical User Interface (GUI) [Ris10]. The domain chosen by the thesis was the control

systems (CSs). A control system manages, commands, direct, or regulates the behavior

of other devices or systems using control loops. It can range from a single home heating

controller using a thermostat controlling a domestic boiler to a large industrial control

systems that can be used to control machines in factories [DB98].

We can group objects with others to form more complex control systems. These

more complex control systems will have a composite structure where each object can be

coupled with others and the composite objects can also form larger objects. This forms

a hierarchical tree in which the root represents the whole system and the leaves are its

most elementary devices [Ris10].

This thesis delivers a definition of a method for DSML engineering along with a

workflow that allows for the generation of interactive user interfaces, system simulation,

validation, and verification. In this method, a language engineer makes the effort of cre-

ating the DSML for a specific domain and integrating it to the workflow, while specifying

the system and prototyping the software goes to a system expert. The latter can use the

DSML to interact with the workflow using concepts and metaphors near to his view on

the system, without requiring (to a certain degree) a deep computing science knowledge.

2.5 Spreadsheet Solutions

For spreadsheet generation and verification there are some solutions that were created.

In this section we outline the ones more related to our project.

2.5.1 ViTSL

To address some of the problems created by errors in spreadsheet conception, ViTSL

(Visual Template Specification Language)[RA05] was devised. This is a language made

to model templates and control the evolution of spreadsheets.

In ViTSL the conception of spreadsheets is split into two phases:

• We create a computational template and this defines headers, data cells, and com-

putations. This part is made in the ViTSL extension.

• The spreadsheet is filled with info, and now we have the possibility to delete or

insert data into the rows and columns. This part is performed with Gencel.

15

CHAPTER 2. RELATED WORK

Figure 2.7: Representation of the ViTSL/Gencel architecture [RA05].

Figure 2.8: The ViTSL editor [RA05].

The two-level approach is useful because a user can update spreadsheets, but with

limitations that make it impossible to introduce any type, omission and reference errors.

As an example of the usefulness of this approach, for example, a company could construct

with domain experts ViTSL specifications, and the employees need not know how they

are implemented to work with the spreadsheets.

The second level of the approach would make Gencel act as a way to manage the

quality of the data inserted, making sure users only insert data compliant with the speci-

fications made by the domain experts.

Although ViTSL eliminates formula and reference errors from spreadsheets, it still

offers a poor comprehension of the logic and structure of spreadsheets, another drawback

is that after creating spreadsheets we cannot change its template.

2.5.2 ClassSheets and Embedded ClassSheets

After the implementation of ViTSL, the project ClassSheets[EE05] was developed in an

attempt to further improve the solution and remove some mistakes that are still relevant

to the problem.

16

2.5. SPREADSHEET SOLUTIONS

Figure 2.9: Graph of the ClassSheet solution [EE05].

A ClassSheet represents some characteristics of a spreadsheet, namely the details of

the attributes, its references, and inheritance. For the classes and objects, it represents

its relationships and structure. It also derives the grid-layout, the safety and correct-

ness features of the ViTSL project, also offering the possibility to create a diagram as

documentation for the classes of the ClassSheet.

Figure 2.10: A 2D ClassSheet [EE05].

ClassSheets was created to offer an additional layer for the modeling of spreadsheets,

therefore making it explicit for the developer (with indicated colored structures contained

in the ClassSheet model) the different design possibilities and effects of decisions, and

consequently reducing the gap between the requirements of the domain and its represen-

tation in the spreadsheet model.

The principal problems with this approach are that it still does not address the domain

errors, making it impossible to express constraints related to the business logic, some

popular spreadsheet structures are not supported, data insertion and model creation

are in separated environments and when we modify a template a new spreadsheet is

generated and all the data of the destroyed spreadsheet is lost.

To correct mistakes and improve the robustness of ClassSheets a related work emerged

called Embedded ClassSheets [Cun+].

17

CHAPTER 2. RELATED WORK

This new work makes available for end users to use a language similar to SQL, to help

create queries in a familiar environment. Unlike ClassSheets, this Embedded ClassSheets

allows the parallel evolution of a spreadsheet and template, meaning that the model

evolve with its instance and vice versa.

Figure 2.11: Model and instance in conformity [Cun+].

But some of the former stated problems still stand, it still doesn’t address the con-

straints and business logic errors, it does not scale well for larger spreadsheets and does

not cover some of the more popular spreadsheet environments.

2.5.3 GenSS - A Tool to Generate Spreadsheets

To offer a solution for some of the problems that remain after the creation of the earlier

referenced works, one project was developed called GenSS.

GenSS[Tei16] is a visual language which is based in UML. It provides the possibility

of defining a spreadsheet via a graphical interface (see figure 2.12). Besides this, it also

offers the possibility to use OCL invariants for the creation of constraints. OCL is used to

make the model more robust thus preventing errors.

Figure 2.12: The GenSS user interface [Tei16]

The Advantage GenSS offers in comparison with the works we already explained, is

the possibility to create domain constraints to prevent domain errors. The big disadvan-

tage of the project is that one needs to be an expert and really know the technologies

involved (Eclipse, EGL, etc) to be able to properly use the GenSS tool.

18

2.6. BIDIRECTIONAL TRANSFORMATIONS

2.6 Bidirectional Transformations

Bidirectional transformations are a mechanism for maintaining the consistency of two

(or more) related sources of information. Researchers from a wide range of areas are

investigating the use of bidirectional transformations to solve a diverse set of problems.

These transformations apply to our case because they can compute and synchronize ar-

tifacts of software [AC08; Sch95; Ste07; YXM07], update tables and views [BS81; Boh+06;

DB82; Kel86] and translate values between languages[Ben05; Ram03].

Figure 2.13: This is a well known example from the ATL use case library, the family to
persons transformation [Web].

In figure 2.13, we have a source and target model. The source model is the FamilyReg-

ister model. This model contains the number of families and its members. Each member

belongs to its family through its role and this roles can be of a mother, father, son or

daughter.

The target model has almost all the same information as the source model but it does

not contain the concept of family. Every person belongs to PersonsRegister. The way

to differentiate between people is via their last names, that we assume are unique for

simplicity.

To relate this case to bidirectional transformations, for example, if we move a member

in the source model to another family, it should cause the appropriate change in the target

model and vice versa.

To implement solutions that use bidirectional transformations in different scopes, we

have projects being developed such as:

• Boomerang is a bi-directional programming language used to create bidirectional

transformations that work on ad-hoc, textual formats[Boh+08].

• Augeas, a configuration editing tool, that parses the configuration files we feed into

a tree and make transformations from it[Lut08].

19

CHAPTER 2. RELATED WORK

2.7 Website Generation

For website generation, there are not many projects/or tools being developed specifically

for generation of a web page or web app in parallel with a spreadsheet template. Although,

many languages have libraries that can help in generating code for web development.

2.7.1 Ruby on Rails

Rails is a web application framework for the development of websites that acts on the

server side. It provides everything that is needed do create a database, a web service and

web pages. It facilitates the use of technologies such as JSON, HTML, CSS, JavaScript

[Han]. In this application it is possible to define a data model, and after that it is easy to

generate a web application.

2.7.2 Django

Like rails, Django is also a web application framework. It is based on the Python pro-

gramming language and uses the model-view-template architectural pattern.

The goal of Django is to make it easier to create complex websites. It is focused on

diminishing the number of lines of code that should be done, re-usability, loose coupling

and quick development [Dja19a]. This framework also provides the create, read, update

and delete (CRUD) interface for the admin models.

Figure 2.14: The Django admin interface. [Dja19b]

The problem in relation to the problem we tackle on this thesis is that they are focused

only on website generation. On ruby for example is not easy to use an existing database,

due to the fact that it would have to be consistent with the rails conventions. Our objective

is to generate more than one type of front-end.

20

2.8. LOW-CODE DEVELOPMENT PLATFORMS

2.7.3 Content Management System

A CMS (Content Management Systems) is a web application, that provides the possibility

for different types of users with varying levels of knowledge create and manage data of a

website project (website, blog, etc.). In the CMS domain, manage can mean many things

such as create, publish, generate or archive data. These systems are perfect for users with

little or no experience with any type of web development language (HTML, JavaScript,

CSS). Tons of content management solutions are offered online. Some of the more popular

ones are WordPress, Drupal, Joomla! and Blogger.

Figure 2.15: WordPress is one of the most popular CMS in the world [Cle].

They offer a comfortable way to create a website that requires minimal or no technical

knowledge for the end users. It is almost an out of the box solution to generate websites.

This solution of course is always limited to the templates that the suppliers leave

available to the users, they are not very customizable for specific business solutions.

2.8 Low-Code Development Platforms

The low-code development platforms [CR14] are types of software that provide for pro-

grammers and users without much programming practice, tools for fast development of

applications through graphical interfaces instead of the traditional way of development

based solely on learning to code.

These platforms are focused on the design and development of many types of ap-

plications: databases, business processes, web applications, etc. This software can help

provide entirely operational applications.

21

CHAPTER 2. RELATED WORK

The aim of these platforms is to decrease the amount of hand-coding done by the

developers, thus enabling a sped up development and delivery process of applications.

Another benefit is the possibility of inclusion of a wider-range of collaborators in the pro-

cess, not only those with computer science and programming skills. They also diminish

the costs of training, deployment.

The main utilities that the main low-code platforms provide are:

• Visual modeling of business logic and workflows, with the ability to extend with

custom code.

• Visual definition of data models and integration components.

• Drag-and-drop implementation of modern user interfaces for multiple devices.

• Application change and life-cycle management.

2.8.1 OutSystems

The OutSystems Platform [Out] is a platform as a service (PaaS) intended for devel-

oping and delivering enterprise web and mobile applications, which run in the cloud,

on-premises or in hybrid environments.

It is a low-code platform that was created to let users visually develop entire applica-

tions, integrate this applications with existing systems and add hand-made code when

necessary.

Figure 2.16: The OutSystems Development Platform [Rev16].

2.8.2 Mendix

Founded in 2005, Mendix like OutSystems provides tools and architecture to design,

build, test, integrate, deploy, manage and optimize service-oriented business applications

(SOBAs).

22

2.9. SUMMARY

Figure 2.17: Mendix Low-Code Platform cloud [Men].

Mendix’s technology enables companies to streamline and automate complex pro-

cesses across people and systems. It also provides a run-time environment which means

it does not provide code generation – the model is fully executable.

2.9 Summary

The aim of our work is to make a system that combines the solutions that are currently

offered.

For the spreadsheet generation and verification, these are projects that provide a part

of what we want to offer for our end users. They are limited in terms of accessibility for

a user with little technical knowledge, they do not have flexibility in resolving domain

problems related to business logic and also most of them only offer one type of spread-

sheet environment template. These reasons make these projects one dimensional and not

flexible in terms of scalability.

As for the bidirectional transformations, they are very related to what we want to

perform. It would be very interesting to add to our project the possibility of bidirectional

transformations of our models (database to front-end and vice versa). Even though, a

solution that combines database integration and that generates multiple types of front-

ends is not yet available.

The content management systems are able to offer solutions that are very accessible for

any type of end user, facilitating immensely the job of creating and managing a website

requiring no technical knowledge. But they are one dimensional, only provide website

management and only for the templates that a given system is made to support. In this

sense the user is limited to what type of template or website the system offers.

The low-code platforms are very interesting solutions and provide something very

similar of what we want. We also want to minimize the amount of coding needed in the

transformation from one model to another. These solutions are also mostly designed for

the fast development of business oriented small apps.

23

CHAPTER 2. RELATED WORK

We want to combine all of these solutions and offer a multidimensional project that

can be user-friendly in the knowledge sense, offer many different types of templates

generated from a database.

24

C
h
a
p
t
e
r

3
A Model-Driven Approach To The

Generation Of Front-Ends

In this Chapter, we describe our approach regarding the generation of front-ends using

the schema from a database.

To resolve this multi-layered problem a multi-layered solution was devised. We have

4 main parts:

• The ESQL Language

• The ATL Transformations

• The Spreadsheet Generation

• The Web Page Generation

Firstly, we developed a language we called ESQL. the objective of this language is to

emulate a simple version of SQL. In our case this DSL also supports some of the principal

dialects of SQL such as: MySQL, nuoDB, Oracle SQL, PostgreSQL, and the Microsoft SQL

Server.

Next, we developed in the ATL transformation language the transformations to go

from the model generated in our ESQL language to the SSDSL language.

After having the ESQL model translated to the SSDSL language, we can use work that

was already developed in the GENSS project [Tei16] to generate a spreadsheet. We also

use the translated model along with model-to-text transformations (M2T) made with the

EGL language to generate the web page files needed in our web site.

25

CHAPTER 3. A MODEL-DRIVEN APPROACH TO THE GENERATION OF

FRONT-ENDS

Figure 3.1: Diagram depicting how the parts of the solution connect.

3.1 Technologies Used

This section describes all the technologies that are related and are used in the develop-

ment of our project.

3.1.1 Epsilon

For the development of the project we choose the Eclipse IDE as it is an familiar coding

environment for us and because it works well with all of the technologies that we’ve used.

26

3.1. TECHNOLOGIES USED

Along with eclipse, we will also use the Epsilon Platform (Extensible Platform of In-

tegrated Languages for model management). This platform provides us with many tools

that can be employed in model-driven development tasks like transformation, compari-

son, merging, validation of models and code generation [DK17].

Among a multitude of tools, Epsilon also gives us many languages that were created

specifically for model-driven development. In our project, we will use:

• EOL (Epsilon Object Language) [Pai+09], that is a general purpose model oriented

imperative language that gives us the capacity to create, query and modify EMF

models (see section 3.1.2). This language is used in the project for spreadsheet

generation [Tei16], to translate the Ecore models to GMF models.

• EGL (Epsilon Generation Language) [Ros+08], as the name suggests it is a model-

to-text language used to generate code, documentation and other textual artifacts.

This will be the language used to generate the templates of spreadsheets and other

types of files we want.

Each one of these languages comes with development tools and an interpreter for its

code.

3.1.2 Eclipse Modeling Framework

The EMF (Eclipse Modeling Framework) [Fou13] is going to be used to help us build

models of the DSLs of our project.

EMF has a meta-modeling language called Ecore. In our case the Ecore files are used

to define the meta-models of the languages.

This tool was also chosen because like the technology explained before, it comes with

many available tools already implemented that can be used along with the Eclipse IDE.

In our work, we are concerned only with SQL expressions made to represent tables

and columns in a schema.

The expressions for the schema, table and column are written in a specific way (see

listings 3.1 and 3.2). Even though there is a standard definition for SQL alterations are

still needed when switching from one dialect from another.�
1 CREATE SCHEMA schema_name;� �

Listing 3.1: A schema declaration in SQL.�
1 CREATE TABLE table_name (

2 column1 datatype,

3 column2 datatype,

4 column3 datatype);� �
Listing 3.2: A table declaration in SQL.

27

CHAPTER 3. A MODEL-DRIVEN APPROACH TO THE GENERATION OF

FRONT-ENDS

In our case, it is not our objective to represent completely every detail of the SQL

language, seeing that this would be a big task that would require more time and personnel

than we can offer. In our language we represent the main commands for the creation of a

database schema with multiple tables and tables with multiple columns.

3.2 The ESQL Language

We utilized the Xtext language in the Eclipse IDE to develop a DSL that we call ESQL.

This language acts as a copy of the SQL language. We copy the information of a SQL

schema to a file of the ESQL language. After this, our DSL is made to generate a model

with the information contained in the original SQL schema.

In Xtext, we define rules for our grammar. These rules define how the syntax of our

language is going to be made.

The first rule of our grammar describes where the parser starts and the type of root

elements the DSL has.�
1 Model:

2

3 Schemas+=Schema*

4 Tables += Table*

5 Associations += Association* ;� �
Listing 3.3: The root element of the ESQL language.

In the ESQL language, a program is a collection of schemas, tables, columns and

associations. All of this elements are stored in the model object.

The elements of the language are all stored in collections that are assigned with the

"+=" sign (see listing 3.3). These data structures are similar to the ones implemented in

other programming languages such as Java, Python and etc.

We’ve also created an rule called Elements (see listings 3.4) that makes a exclusive

selection (denoted by the pipe "|" operator) between the tree main rules in our grammar:

schema, table and column.�
1 Elements:

2

3 Schema|Table|Column

4 ;� �
Listing 3.4: The elements rule offer the possible choices for an element in the grammar.

3.2.1 Schema

A valid schema declaration statement starts with the Create Schema keywords (see list-

ing 3.5), followed by a name which is of the "Anything" type. This type was created to be

able to contain almost any type of combination for a name. Initially this was made taking

28

3.2. THE ESQL LANGUAGE

in to account names that only contained the regular A-Z and 0-9 characters, but as the

number of dialects expanded and the test cases got more complex, the need to create this

data type arose, so now a name can contain the normal characters plus dots and special

characters.

This ID is assigned to the feature called name of the parsed schema model element.�
1 Schema:

2

3 ("CREATE�SCHEMA" name = Anything Tables += Table*)

4 source=[Elements]? Refnumber=INT?;� �
Listing 3.5: The create schema rule.

The schema rule also contains an optional reference to a source element. In our case

this can be any type of element but generally a schema will not have a source element

because it is the "root" element of the file. The rule also contains a Refnumber variable

that is also optional and that functions as a reference number for the current schema and

a Tables collection that contains all the tables that belong to the current schema.

3.2.2 Table�
1 Table:

2

3 ("CREATE�TABLE" name = QualifiedName)

4 ("(" (Columns += TABLE_ELEMENTS)* ")"? ";"?

5 source =[Schema]? Refnumber=INT?);� �
Listing 3.6: The create table rule.

The table rule starts with the Create Table keywords (see listing 3.6). Afterwards

it receives a name but of the QualifiedName type. This is a different type of name that

of the schema name because some of the dialects tested allowed for names that were

composed of two word linked by an ".", so we decided to create this rule to be able to

contain two words of the type Anything connected by a dot.

After the name variable, the table rule contains the Columns collection which is com-

posed of another rule called TABLE ELEMENTS (see listings 3.7).�
1 TABLE_ELEMENTS:

2

3 Column | KEY_TYPES | Check_Rule | KEY_RULE | UNIQUE_RULE

4 ;� �
Listing 3.7: The elements that can belong in a table rule.

The table elements rule contains a column, the key types rule, the check rule, the key

rule and the unique Rule. these are all of the different types of elements that can appear

and be combined in any form in a table rule.

29

CHAPTER 3. A MODEL-DRIVEN APPROACH TO THE GENERATION OF

FRONT-ENDS

The table rule also has the source element, which in this case will also have the

possibility of having all the three types of elements as a source and a INT for a reference

number.

3.2.2.1 Key Types

To represent the types of keys that can appear in a table declaration, the key types choice

was created. This rule contains the two types of keys of SQL: primary and foreign Keys.

In SQL, The primary key is comprised of a column or a set of columns that contains

data that is utilized to uniquely identify each row in a given table. It could be thought

of as like an ID for a person. A citizen card or ID is something that uniquely identifies a

person, so a primary key can be compared to that but in relation to rows in a table.

The foreign key is also a column or set of columns that are a reference to the primary

key of another table.�
1 KEY_TYPES hidden(WS):

2

3 Foreign_Key | Primary_key

4

5 ;

6 Foreign_Key hidden(WS):

7 {Foreign_Key} (("FOREIGN�KEY" "("(Foreigns += Key)*")"

8 (R = Rererence)) &(De ?= DELETE)? &(A ?= ACTION)?) ","?

9

10 ;

11 Primary_key hidden(WS):

12

13 {Primary_key} ("PRIMARY�KEY" ("("(Primaries += Key)*")")?)","?

14

15 ;� �
Listing 3.8: The types of keys a table can have.

The primary key rule contains an object definition of the primary key. After this, the

key words "Primary Key" are called and the primaries collection is made. The primaries

collection is a collection of variables of the type key. A key is just a name with a ","

character. The coma is to give the possibility of having multiple names in a primary key

definition.

The foreign key rule also contains the object instantiation of the rule. It has the

"FOREIGN KEY" keywords and a collection of keys called foreigns.

Adding to this, the foreign key rule also contains the reference rule:�
1 Rererence:

2 {reference} "REFERENCES"

3 "["?(Src_Table = [Elements|Anything])"]"? "(" (srcs += SRCs*) ")";� �
Listing 3.9: This rule creates the references of the key types.

30

3.2. THE ESQL LANGUAGE

The reference rule was created to complement the foreign key rule. A foreign key

(most of the times) is coupled with a reference to a different table. This rule also contains

the src table variable that can be an element or a string, and contains a srcs collection

that contains the names of the sources for this foreign key.

The rule also contains the flags for delete and the types of actions that can be taken

on the foreign keys.�
1 DELETE:

2 "ON�DELETE�CASCADE" | "ON�DELETE"
3 ;

4

5 ACTION:

6

7 "ACTION" | "NO�ACTION"
8 ;� �

Listing 3.10: The delete and action types of flags.

3.2.2.2 The Check Rule

In SQL, the check constraint is used to limit the range that a value that belongs to a

column can have.

The rule is called by the check keyword and has left and right operators. These

operators are all defined bellow in another rule.�
1 Check_Rule:

2 ("CHECK" "(" Left = [Column] Op = Operator Right = [Column] ")") ","?

3 ;

4 //SQL Comparison Operators

5 Operator:

6 ’<>’ | ’==’ | ’>’ | ’<’ | ’<=’ | ’>=’ | ’=’

7 ;� �
Listing 3.11: The check rule.

3.2.2.3 The Unique Rule

Another constraint that we choose to represent in our DSL is the unique constraint. It

ensures that all values in a column are different. A primary key automatically has a

unique constraint.

The rule is called by the unique keyword and stores the keys in a collection called

primaries.�
1 UNIQUE_RULE:

2 {UNIQUE_RULE}("UNIQUE" ("("(Primaries += Key)*")")?)","?;� �
Listing 3.12: The unique rule.

31

CHAPTER 3. A MODEL-DRIVEN APPROACH TO THE GENERATION OF

FRONT-ENDS

3.2.3 Column

The column rule starts with the optional keyword constraint, a variable name of the

QualifiedName type, a type which is of the type columntype (this is an enumerate that

contains all of the possible types for a column, in our case we included more than 20

types), a source element, reference number and a integer or two integers (one is the

normal size of a column with just one number for its size and the other is a range type of

size that accepts two numbers and this is the range of values that a column can have).�
1 Column:

2

3 "CONSTRAINT"? ((name = QualifiedName ("["?type = ColumnType "]"?)

4 (ide = IDENTITY)? (size = Typeofsize)?)

5 &(’UNSIGNED’)? &(De ?= DELETE)? &(A ?= ACTION)? &(N ?= NullnotNull)?

6 &(D ?= DefaultTypes)? &(N2 ?= NullnotNull)?

7 &(R ?= Rererence)?)(’auto_increment’)?

8 (source = [Table]? Refnumber = INT?)(",")? ;

9

10

11 Typeofsize:

12

13 NormalSize | RangeSize

14

15 ;

16

17 NormalSize:

18 ("(" S1 = INT ")");

19

20 RangeSize:

21 ("(" S1 = INT "," S2 = INT ")");

22

23 enum ColumnType:

24

25 FOREIGNKEY | PRIMARYKEY | string | CHAR | clob | DATE

26 | longvarchar | binary | ENUM |

27 VARCHAR |varchar2 | number| varbinary | tinyint | INT

28 | integer | SMALLINT| BIGINT |

29 FLOAT | DOUBLE | BOOL | blob | tinyblob | mediumblob | serial

30 | datetime | bit | money

31 | smallmoney | TEXT | timestamp | numeric | mediumtext | decimal

32 | Anything;� �
Listing 3.13: The column rule.

3.2.4 Association

The association rule is composed of an source element, a target element and a reference

number of the association. This a rule made to help create associations when we create

the model via Xtend.

32

3.2. THE ESQL LANGUAGE

�
1 Association:

2

3 Source = [Elements] Target = [Elements] Refnumber=INT?

4 ;� �
Listing 3.14: The association rule.

Figure 3.2: A example of schema, table and columns defined in our language.

3.2.5 Xtext Terminals

It is also important to note that many keywords and constructs of the dialects we choose to

represent in our DSL, were represented as terminals in the Xtext language. This was made

to facilitate the testing of the languages and also because the relevant information for the

creation of the models for our project are the schema, table and column information.�
1 terminal ML_COMMENT: ’/*’ -> ’*/’;

2 terminal SL_COMMENT: ’//’ !(’\n’|’\r’)* (’\r’? ’\n’)?;

3 terminal SL_COMMENT2 : ’--’ !(’\n’|’\r’)* (’\r’? ’\n’)?;

4 //terminal UNIQUE : ’UNIQUE’ !(’\n’|’\r’)* (’\r’? ’\n’)?;

5 terminal DROP : ’DROP’ -> ’;’;

6 terminal BEGIN : ’BEGIN’ -> ’END;;’;

7 terminal ALTER : ’ALTER’ -> ’END;;’;

8 terminal DECLARE : ’DECLARE’ -> ’END;;’;

9 terminal TRIGGER : ’CREATE�OR�REPLACE�TRIGGER’ -> ’END;;’;

10 terminal CREATE_SEQUENCE : ’CREATE�SEQUENCE’ -> ’;’;

11 terminal CREATE_SEQUENCE2 : ’create�sequence’ -> ’;’;

12 terminal CREATE_INDEX : ’CREATE�INDEX’ -> ’;’;

13 terminal CREATE_INDEX2 : ’create�index’ -> ’;’;

14 terminal IF : ’IF’ -> ’;’;

15 terminal FUNCTION : ’create�or�replace�function’ -> ’end;’;

16 terminal ENGINE : ’ENGINE’ -> ’;’;

17 terminal VIEW : ’CREATE�VIEW’ -> ’;’;

18 terminal SET : ’SET’ -> ’;’;

19 terminal ALTER_TABLE : ’ALTER�TABLE’ -> ’;’;� �
Listing 3.15: The terminals of the ESQl language.

33

CHAPTER 3. A MODEL-DRIVEN APPROACH TO THE GENERATION OF

FRONT-ENDS

All of this represents the triggers, sequences, indexes and similar SQL commands.

These were represented in terminals to be recognized as comments in our DSL. They are

made to be comments in our language because at the moment they are not relevant to our

project.

3.3 The ESQL Generator

After the DSL was created, we needed to specify how the model was going to be generated

after an ESQL program is made. Xtext has a generator that is written in the Xtend

language. This is where we created the methods for the generation of our ESQL model.

The ESQL generator class is a class that only contains the following methods:

• DoGenerate: This method (see listing 3.16) acts in a similar way as the main method

in a Java class; it generates the XMI model file after running the called methods. It

has a loop that runs through all of the files in the folder, and for each file runs the

createxmi method. This makes the generation of multiple models from multiple

files automatic.�
1 for (file : resource.contents){

2 fsa.generateFile(file.eResource.URI.trimFileExtension +

3 ’.xmi’,

4 createxmi(file as Model))}

5 }� �
Listing 3.16: The start for the model generator of the ESQl language.

• createxmi: This method (see listing 3.17) iterates through all of the schema objects

stored in the model that is received. After that it checks to see if the schemas

collection is empty, if true then it runs the generatedefaultSchemaCode which is

a method that creates a default schema for the ensuring tables. This was needed

because some of the files that where tested did not have a schema definition. If false,

it runs just the generateSchemaCode.�
1 def createxmi(Model m) {

2 ’’’<?xml version="1.0" encoding="UTF-8"?>

3 <myDsl:Model

4 xmi:version="2.0"

5 xmlns:xmi="http://www.omg.org/XMI"

6 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

7 xmlns:myDsl="http://www.xtext.org/example/mydsl/MyDsl1"

8 xsi:schemaLocation="http://www.xtext.org/example/mydsl/MyDsl1

9 MyDsl1.ecore">

10

11 IF m.schemas.isEmpty

12 m.generateDefaultSchemaCode()

13

34

3.3. THE ESQL GENERATOR

14 ELSE

15 FOR o : m.schemas

16 o.generateSchemaCode()

17 ENDFOR

18

19 ENDIF

20

21

22 </myDsl:Model>

23 ’’’

24 }� �
Listing 3.17: The model (XMI) code that is generated.

• GenerateSchemaCode and generateDefaultSchemaCode (see listing 3.18): The

first method receives a schema object and writes the information (name, reference

number, source element) on the model. After that it iterates through all of its tables

and calls the method generateTableCode for each table.

The second method is very similar to the first one. The main difference is that

instead of receiving a schema object, it just writes the information as a "Default-

Schema". It also receives directly the model and its information and utilizes that to

move on to its equivalent generateTablecode.�
1 def generateSchemaCode(Schema schema) ’’’

2 <Schemas xsi:type="eSQL:Schema" name="«schema.name»

3 "Refnumber="«schema.refnumber»

4 "source="//@Schemas.«schema.source.refnumber»">

5 «FOR t : schema.tables»

6 «t.generateTableCode()»

7 «ENDFOR»

8 </Schemas>

9 ’’’

10

11 def generateDefaultSchemaCode(Model m) ’’’

12

13 <Schemas name="Default_Schema"

14 source="//@Schemas.0"

15 Refnumber="0">

16

17 «FOR element : m.tables»

18 «element.generateTableCode2()»

19 «ENDFOR»

20

21 </Schemas>

22 «Scounter++»

23 «Tcounter = 0»

24 ’’’� �
Listing 3.18: The two types of cycles for the schema code generation.

35

CHAPTER 3. A MODEL-DRIVEN APPROACH TO THE GENERATION OF

FRONT-ENDS

• GenerateTableCode and GenerateTableCode2 (see listing 3.19): Both methods re-

ceive a table object that writes its information (name, reference number, source

element), iterates through all of its columns and calls the method generateColumn-

Code for each column. For the table name in the model we removed all characters

that are not a-z, A-z or 0-9, and removed blank spaces between names.�
1 def generateTableCode(Table table, Schema S) ’’’

2 «table.refnumber = Tcounter»

3 «table.source = S»

4 <Tables name="«table.name.replaceAll("[^a-zA-Z0-9]", "")»"

5 source="//@Schemas.«table.source.refnumber»"

6 Refnumber="«table.refnumber»">

7

8 «FOR c : table.columns»

9 «if (c instanceof Column)

10 c.generateColumnCode(table)»

11 «ENDFOR»

12 </Tables>

13 «Tcounter++»

14 «Ccounter = 0»

15 ’’’

16 def generateTableCode2(Table table) ’’’

17 «table.refnumber = Tcounter»

18 <Tables name="«table.name.replaceAll("[^a-zA-Z0-9]", "")»"

19 source="//@Schemas.0"

20 Refnumber="«table.refnumber»">

21

22 «FOR c : table.columns»

23 «if (c instanceof Column)c.generateColumnCode2(table)»

24 «ENDFOR»

25 </Tables>

26

27 ’’’� �
Listing 3.19: The two types of cycles for the table code generation.

• GenerateColumnCode and GenerateColumnCode2: The last methods of the gen-

erator receive each column of the owner table, a table as the source element and

with this writes its information (name, type, size, reference number and source

element).

We’ve also included the size or range method, to show how the two types of sizes

are differentiated in the Xtend generator.�
1 def generateColumnCode(Column column,Table source) ’’’

2 <columns name="«column.name»" type="«column.type»"

3 size="«column.size»"

4 source=//@Tables."«column.source.refnumber»"/> ’’’

5

36

3.3. THE ESQL GENERATOR

6

7 def generateColumnCode2(Column column, Table table) ’’’

8 «column.refnumber = Ccounter»

9 «column.source = table»

10 <Columns

11 xsi:type="myDsl:Column"

12 name="«column.name»"

13 source="//@Schemas.0/@Tables.«column.source.refnumber»"

14 type="«column.type»">

15 «column.size.size_or_range»

16 </Columns>

17 «Ccounter++»

18 ’’’� �
Listing 3.20: Like the examples before the column generation is also made with two

types of cycles.

After the development of this two elements of our solution, we can represent SQL

schema as a model in our project (see figure 3.3). By having this we can advance to the

next part of our model-driven solution, which is to transform this model that contains the

information of the schema to other model of the SSDSL language of the GENSS project

[Tei16].

Figure 3.3: After the code is run, a xmi file is created containing the information that was
stored in the schema.

37

CHAPTER 3. A MODEL-DRIVEN APPROACH TO THE GENERATION OF

FRONT-ENDS

3.4 The ATL Model Transformations

The ATL language is the language we chose to help with the model-to-model transforma-

tion part of this thesis. We will utilize the model generated with our language (ESQL) and

transform this to a model defined in the SSDSL language. The SSDSL language models

are the models that we will use to generate spreadsheets and the files for the Django web

page.

3.4.1 ATL Transformation Structure

The ATL model transformation language works by decomposing transformations into

three main parts: a header, helpers and rules.

3.4.1.1 The Header Section

The header is used to declare general information such as the module name (this is the

transformation name: it must match the file name), the source and target metamodels

and imported libraries. The header section starts with the keyword module followed by

the name of the module (in our example, in listing 3.21 is called defaultmodule). Then

the keyword create indicates the target models. the target is the variable OUT and the

metamodel is the outmodel. The keyword from and the variable (IN) are the source

models and they conform to the metamodel called inmodel.�
1 module defaultmodule;

2 create OUT : outmodel from IN : inmodel;� �
Listing 3.21: Example of a header section in the ATL transformation language.

The target model that is connected to the variable OUT is created from the source

model IN.

3.4.1.2 Helpers

Helpers can be compared to Java methods but for the ATL project. These helpers are

subroutines (based on OCL) [Jou+08] that are used to reduce code redundancy. To define

a helper, we need:

• The name of the helper (in listing 3.22 the name is firstToLower()).

• The context of the helper. The context defines in which cases the helper is applied.

The types of elements that the helper applies to. If the helper does not have a

context defined, it is associated to the global context of the module.

• A return value. This is obligatory for every type of helper.

• A set of parameters (optional).

38

3.4. THE ATL MODEL TRANSFORMATIONS

In ATL we can define two types of helpers: operation and attribute helpers.

• Operation helpers, have parameters and (sometimes) have recursion. They are

used to define an operation to a model element or in general in the module.

• Attribute helpers, also have a name, context and a type but not input parameters.

They are mostly used to associate read-only values to source model elements.

To show how an operation helper is made we can look at listing 3.22.�
1 helper context String def: firstToLower() : String =

2 self.substring(1, 1).toLower() + self.substring(2, self.size());� �
Listing 3.22: Example of a helper section in the ATL transformation language [Jou+08].

The helper firstToLower is made for the type String and its values are strings. It has

an OCL expression to calculate the values of the helper. These values are assigned after

the ’=’ character. This helper changes the capital letter in the beginning of a string for a

short case one.

3.4.1.3 Rules

Rules are the main logic behind the expression of the transformation made in an ATL

program. These rules come in two types: matched rules and called rules.

Matched rules can also be called declarative rules. A matched rule has a name, source

pattern and a target pattern. The source pattern is defined by using the keyword from.

This allows the specification of a variable from the model element that has to match the

type of the source elements.

The target pattern is declared by the keyword to. These pattern generates elements

every time there is a match with the source pattern.

We can look at the listing 3.23 for an example of a declarative rule.�
1 rule Member2Male {

2 from

3 s : Families!Member (not s.isFemale())

4 to

5 t : Persons!Male (

6 fullName <- s.firstName + ’�’ + s.familyName)� �
Listing 3.23: Example of a standard and lazy rule in ATL.

There are several kinds of matched rules differing in the way they are triggered.

• Standard rules, are applied once for every match that can be found in source mod-

els.

• Lazy rules, are triggered by other rules. They are applied on a single match as many

times as it is referred to by other rules, every time producing a new set of target

elements. Lazy rules are indicated by the keyword lazy;

39

CHAPTER 3. A MODEL-DRIVEN APPROACH TO THE GENERATION OF

FRONT-ENDS

• Unique lazy rules, are also triggered by other rules. They are applied only once for

a given match. If a unique lazy rule is triggered later on the same match the already

created target elements are used. Rules of this type are indicated by the unique lazy

keywords.

A called rule is basically a procedure: it is invoked by name and may take arguments.

They provide the imperative programming functionalites to the ATL transformations.

These rules can be compared to helpers as they accept parameters and have to be explicitly

called. But unlike helpers, they can actually create elements for the target model.

3.4.2 The Main Rule

In our model to text transformation, firstly we defined the module name (in our case is

called translation). After this we defined the source and target metamodels and create

the main rule. This rule acts as a starting point for the translation process and calls

out the other rules for the transformation. In this main rule we created 4 variables: Wk

(workbook), Ws(worksheet), Tables (set of tables) and Associations (set of compositions).

These elements correspond to the main elements of the SSDSL language that we use

in this project. Each definition of these variables calls the corresponding translation

rule and after that all of these elements are added in the main data structure and the

translation is finished.�
1 module Translation;

2 create OUT: ExcelLang from IN: ESQLLang;

3

4 rule main {

5 from

6 M: ESQLLang!Model

7 using { Wk: ExcelLang!Workbook = thisModule.WorkBook(M.Schemas.first());

8 Ws: ExcelLang!Worksheet = thisModule.Worksheet(M.Schemas.first());

9 Tables:Set(ExcelLang!Table) = M.Schemas.first().Tables.asSet()

10 -> collect(T|thisModule.table(T));

11 Associations:Set(ExcelLang!Composition) =

12 Tables -> collect(E|thisModule.associate(Ws,E));

13

14 }

15 to

16 Elements: ExcelLang!SS_DSL (

17 hasElements <- Set{Wk,Ws,Asc1,Tables,Associations}

18),

19 Asc1: ExcelLang!Composition (

20 source <- Wk,

21 target <- Ws

22)

23 }� �
Listing 3.24: The Main rule for the beggining of the model to text transformation in ATL.

40

3.4. THE ATL MODEL TRANSFORMATIONS

3.4.3 The Workbook Lazy Rule

The workbook lazy rule receives an element in our ESQL of the type schema and creates

a workbook with that name.�
1 lazy rule WorkBook{

2 from

3 S: ESQLLang!Schema (

4 S.oclIsTypeOf(ESQLLang!Schema)

5)

6 to

7 Wk: ExcelLang!Workbook (

8 name <- ’Workbook_’ + S.name

9)}� �
Listing 3.25: The workbook lazy rule.

3.4.4 The Worksheet Lazy Rule

The worksheet lazy rule receives an element of the type schema and creates a worksheet

element with the exact same name as the schema.�
1 lazy rule Worksheet{

2 from

3 S: ESQLLang!Schema (

4 S.oclIsTypeOf(ESQLLang!Schema)

5)

6 to

7 Ws: ExcelLang!Worksheet (

8 name <- S.name

9)}� �
Listing 3.26: The worksheet lazy rule.

3.4.5 The Table Lazy Rule

The table lazy rule receives an element of the type table and creates a table element of the

SSDSL language. This rule also calls the lazy rule column for the definition of its owned

attributes as columns.�
1 lazy rule table {

2 from

3 T: ESQLLang!Table

4

5 using{

6

7 Columns:Set(ExcelLang!Columns) = T.Columns.asSet()->

8 collect(c|thisModule.column2entry(c));

9 }

10

41

CHAPTER 3. A MODEL-DRIVEN APPROACH TO THE GENERATION OF

FRONT-ENDS

11 to

12 Table: ExcelLang!Table (

13 clientDependency <- Set{},

14 name <- T.name,

15 ownedAttribute <- Columns,

16 type <- ’VERTICAL’

17)do {

18 -- The corresponding name for the current ElementB is added in the map.

19 -- This map will be used at the end of the transformation to create a

20 link between ElementB and DefinitionB

21 thisModule.TableToAssign(T.source.name, Table);

22 }

23 }� �
Listing 3.27: The table lazy rule.

3.4.6 The Column Rule

This lazy rule translates column elements in our DSL to entry elements of the target DSL.

We also note that we have a helper rule to define the cType of the column. This rule

has the three data types of the SSDSL language: text, number and none.�
1 lazy rule column2entry {

2 from

3 C: ESQLLang!Column

4 to

5 Entry: ExcelLang!Entry (

6 cType <- ’NONE’,

7 clientDependency <- Set{},

8 name <- C.name,

9 supplierDependency <- Set{}

10)

11 }

12

13 helper context mydsl!Column def: define_ct (column: mydsl!Column): String =

14

15 if (column.type = #VARCHAR) or (column.type = #CHAR)

16 then ’TEXT’

17 else

18 if (column.type = #SMALLINT) or (column.type = #INT)

19 then ’NUMBER’

20 else

21 ’NONE’

22 endif

23 endif;� �
Listing 3.28: The column lazy rule and the define ct helper.

42

3.5. GENERATING WEB PAGES

After these steps are executed, we currently have a path to generate from a SQL

schema definition an equivalent program in the SSDSL language. This gives us a way to

get from a SQL schema to a working spreadsheet made in the GENSS project.

The next step in the thesis is to create a CRUD web application to pair with our

spreadsheet.

3.5 Generating Web Pages

One of the objectives of this work is to create a web page from the initial SQL schema

definition. This web page is created to interact with the original database.

Currently, there are many types of solutions to create databases for example: CMS,

Django, Ruby on rails and etc. But in these cases it is necessary to create most things from

scratch and by hand.

In our project, we can already represent the SQL schema information in our generated

models. Now we are going to use these models to generate CRUD web pages that are

directly derived from a database schema.

3.5.1 The EGL Generator

EGL is a language that was made for model-to-text transformation (M2T) and thus it can

be used to transform models into various types of textual artifacts. In our case it will be

used to generate python code for the web site that we will create.�
1 [%

2 var t = TemplateFactory.load("transformation.egl");

3 var workbook = Workbook.all[0];

4

5 t.populate("worksheets", workbook.targetAssociation.target);

6 t.process();

7 t.generate(’models.py’);

8 %]� �
Listing 3.29: The EGL code for the main method for the generation of the web site.�

1 from django.db import models

2 from django.forms import ModelForm

3

4 [% for(ws in worksheets.sortBy(ws | ws.order)){ %]

5 [% for(t in ws.targetAssociation.target.sortBy(t | t.order)){%]

6 class [%=t.name%](models.Model):

7 [%var attributes = t.ownedAttribute;

8 for(a in attributes){%]

9 [%=a.name%][% if (a.cType+"" == "NUMBER"){%]

10 = models.IntegerField(blank=True, null=True)

11 [%}else if (a.cType+"" == "TEXT"){%]

12 = models.CharField(max_length=100, blank=True, null=True)

13 [%}else if (a.cType == "NONE"){%]

43

CHAPTER 3. A MODEL-DRIVEN APPROACH TO THE GENERATION OF

FRONT-ENDS

14 = models.CharField(max_length=100, blank=True, null=True)

15 [%}else %] = models.CharField(max_length=100, blank=True, null=True)

16 [% }%]

17 def __str__(self):

18 return self.name

19 class Meta:

20 managed = False

21 db_table = ’[%=t.name%]’

22

23

24 [% }%]

25 [% }%]� �
Listing 3.30: The EGL code for the generation of the models for the website.

The EGL generator receives a model written in the SSDSL language and populates

a variable called workbook in the main method. After the variable creation it iterates

through its elements. Firstly, it finds the worksheets and iterates it one by one. For each

worksheet, it finds its targets which are tables and for each table it writes its information

in a python file that are for the models definition in a Django web page.

3.6 Summary

These transformations allow us to have a basic end-to-end transformation from a database

schema to a spreadsheet and a CRUD web page developed in the Django environment.

This end-to-end transformation starts with a database schema written in SQL and

that its code is copied to an ESQL file. The ESQL file is connected to an Xtend generator

that automatically generates a model with the information contained in the file. This

creates the first model needed to start our transformations.

After the generation of the model with the schema information, we transfer this model

and the DSLs meta-models to the model transformation project made with the ATL lan-

guage. This project contains all the rules for the model-to-model transformation that we

need to make to obtain the transformation from our source model which is the ESQL

model to our target model which is the SSDSL model.

After we run the ATL transformations and obtain the model translated to the SS-

DSL language, we then use the EGL generator. The EGL generator makes the model-to-

text transformation of the information contained in the SSDSL model and generates the

python file that contains the models in our website. We can also use the SSDSL model to

generate a spreadsheet file by using the GENSS project.

44

C
h
a
p
t
e
r

4
Validation

4.1 ESQL: Test Runs and Language Extension

As mentioned in the introduction of this thesis, the aim of this project is to create a tool

that tries to makes it easier to synchronize and maintain back and front-end by making it

easier to generate spreadsheets and web pages.

To summarize, the main objectives of this work are:

• To create a DSL in Xtext that represents the SQL language in our project.

• Create transformations using the ATL transformation language and the DSL created

to generate models and translate this models to the GenSS DSL (a language created

in the thesis that acts as a basis for this work).

• The creation of a complete and robust solution that generates a website and spread-

sheet file from a database schema. This also should be able to be extended to allow

further developments in the transformation of the models, the DSLs created and

the generation of templates.

Initially, the DSL was created with the minimal abstractions of the SQL language

because these abstractions are the ones needed for our project. It is best for a faster devel-

opment to use the essentials of the language. The DSL contained the schema, table and

column creation, and also the basic data types (integer, float, double, char, varchar).

This is the information that is relevant in our project. As we validated our solution with

more examples, the language and its constructs were extended to support not only more

features of SQL but also to support multiple dialects of the SQL language.

To validate our solution, we used a repository from GitHub; the project is called OLTP-

Bench [Dif+13] which is a multi-threaded load generator. The framework is designed to

45

CHAPTER 4. VALIDATION

be able to produce variable rate, a variable mixture load against any JDBC-enabled rela-

tional database. This framework provides data collection features, e.g., per-transaction

latency and throughput logs. This repository has a multitude of SQL files of multiple

dialects and is a project that is utilized in the real world, so it provides valuable code.

We decided to make an iterative run through the repository files to validate and

extend the ESQL language. During our first run, we tested the ESQL language for the

Wikipedia SQL files of the benchmark suite. this folder similarly to most of the SQL

folders of the repository contains the following dialects of SQL: MySQL, nuoDB, Oracle

SQL, PostgreSQL, and the Microsoft SQL Server. At first, we only concerned ourselves

with the running of the MySQL files as this is one of the most widely used dialects of SQL.

The first run made us detect the index command but as the creation and/or utilization of

indexes is not relevant for our work, we made the index command to be recognized as a

type of comment written in our DSL.

This first run also extended the number of data types supported by our DSL. To the

data types mentioned earlier we included the varbinary, binary and tiny int. Another

feature added was the primary and foreign keys and also the unique predicate. In the

second run, we used a more complex file of MySQL. This created the need to add the

“default” predicate and default values for the columns and also the possibility to add

references to tables.

The third test session was made with the nuoDB files, this dialect differs from MySQL

and this caused more changes to our DSL. For these files, we added the small int,

longvarchar, datetime and big int data types. In this session we also tested the Oracle

SQL files, this is a dialect-heavy in triggers, indexes, sequences, and similar commands,

so we decided to consider all the code for these features as comments as they are irrel-

evant for our project. The information we want to extract out of the files is the tables

and columns information and this is going to be inserted into our models that will be

translated. The Oracle files also made us add to the existing data types the varchar2,

number, and clob. We also needed to add the support for a different type of size of the

variables, a range type of size was added as an option for the size of the variable e.g. (

column number(10,0)).

The repository also had other two dialects for most of the database files: PostgreSQL

and Microsoft SQL Server. For the Wikipedia folder that was being tested these dialects

didn’t require modifications to the language, the only addition was to consider the "IF"

command as a comment and the text data type.

After this initial folder test, we changed folders and tested multiple folders at the

same time as the runs were starting to produce few errors. When errors appeared, these

were only minor and easily correctable. after running the project in this batch mode, we

created a data type called Anything in our DSL. This data type comprises any possible

combination of the String, ID, Int and the other types of characters supported, making it

possible to have any type of name for the schemas, tables, and columns of our language.

This is needed because many times names can have different types of characters and this

46

4.2. ATL: MODEL TRANSFORMATION TESTS

makes it acceptable to have any type of character in a name.

The final batch of tests using the OLTPBench SQL files did not return any new errors

thus making it unnecessary to introduce any new feature to our language. The only

thing added was the possibility of having a primary key declared anywhere in the table

(originally we only had the declaration made after all the columns were declared) and

also the possibility to add multiple foreign key declarations in each table.

After our DSL was tested in all 84 files that contained SQL code in the repository and

stopped returning any type of syntax error, we moved on to test the transformations of

the models generated by our DSL as presented in the next section.

4.2 ATL: Model Transformation Tests

For the ATL transformations validation we used the ANSI SQL and MySQL files. These

files contain two popular dialects of SQL.

An important point for the generation of the models is how scalable is our solution.

It is important to know how the transformation will behave with a significant number of

tables or a significant number of columns for each table. We tested for up to 500 tables

which is database of significant size and the transformations behaved like we expected.

For a bigger number of columns by table, we also tested with 5 tables with 100 columns

each, also a decent sized database and the behaviour was also as expected and the time

of execution remained less than 10 seconds.

There was no need to alter or add new transformations rules, and this was to be

expected because the transformations only need the information supplied by the model

generated in our DSL. In this case the changes added did not alter the information

supplied to the transformation module.

As time is not altered by a big increase in tables, one of our focus of the tests was to

see if the information from the tables contained in the schemas is correctly represented

in the model generated by our ATL transformations.

To test this, we ran the transformations for the ANSI SQL and MySQL files of the

Wikipedia, twitter and chbenchmark folders of the OLTPBenchmark repository. All of

the models generated had all of the information we intended to extract from the SQL files

and thus they were correct.

4.3 EGL: Web Page Generation Validation

For the web page validation part of the thesis we decided to create some web pages and

verify if the fields of the tables are represented in the examples.

We’ve created web pages for the MySQL files of the Wikipedia (see figures 4.1 and 4.2),

Twitter and chbenchmark folders. All of the web pages were verified by us and contained

all the fields with correct information.�
47

CHAPTER 4. VALIDATION

1 CREATE TABLE page_backup (

2 page_id int NOT NULL,

3 page_namespace int NOT NULL,

4 page_title varchar(255) NOT NULL,

5 page_restrictions varchar(1024) NOT NULL,

6 page_counter bigint NOT NULL,

7 page_is_redirect tinyint NOT NULL,

8 page_is_new tinyint NOT NULL,

9 page_random double NOT NULL,

10 page_touched binary(14) NOT NULL,

11 page_latest int NOT NULL,

12 page_len int NOT NULL,

13 PRIMARY KEY (page_id),

14 UNIQUE (page_namespace,page_title)

15);� �
Listing 4.1: The SQL code for the table pagebackup from the OLTPBenchmark Project.

Figure 4.1: Web page form for one of the tables of the wikipedia SQL schema.

4.4 Case Study

As a case study, we have a real-world scenario that we also used for testing. This scenario

is a real-world test utilizing the example database schemas of the Portuguese Finance

General Inspection.

48

4.4. CASE STUDY

Figure 4.2: Web page of the tables of the wikipedia SQL schema.

4.4.1 The IGF Case

The Finance General Inspection is a service of the integrated Ministry of Finance in

the direct administration of the State. With administrative autonomy, it works directly

dependent on the Minister of Finance, and its mission is the evaluation and strategic

control of the financial administration of the State and specialized technical support to

the Ministry of Finance. Its intervention covers all entities of the administrative and

business public sector and the private and cooperative sectors.

IGF was kind enough to give us an example database schema that we utilized to run

this test case scenario.

For this test case some modifications had to be made to our language as the schema

that was given to us also contained some features that were not present in the SQL files

that were tested in the repository. The main addition to our DSL was the addition of more

types of SQL commands to be ignored (in the case of the IGF schema, we ignored the

constrained commands utilized for the primary key, for what we need the information

supplied by this command is not needed).

We composed the run of this project in the following steps:

1. The user copies the SQL schema code to a file of our DSL. After this a model (or

models, depending on the number of files copied) containing the information of the

file is generated.

49

CHAPTER 4. VALIDATION

Figure 4.3: The example schema of IGF.

2. These generated models are copied by the user to the ATL transformations project.

3. The user now runs the ATL transformations on the models. This will create a SSDSL

file which is the file that is used to generate the spreadsheet and the web page.

4. Generate the spreadsheet files with the GENSS project.

5. Finally, the user copies the SSDSL files to the EGL project and generate the Django

files for the website.

To show how all of the elements of this work connect, we are going to utilize the

schema provided by IGF (see figure 4.3) and show how the table entidade (see listing

4.2) is translated from SQL to our DSL. This generates a model that is translated to a

SSDSL language model and after it can be used to generate a spreadsheet and a web page.�
1 CREATE TABLE [dbo].[Entidade](

2 [NIPC] [varchar](20) NOT NULL,

3 [Designacao] [varchar](350) NULL,

4 [email] [varchar](250) NULL,

5 [Telefone1] [varchar](20) NULL,

6 [Telefone2] [varchar](9) NULL,

7 [Fax] [varchar](20) NULL,

8 [Morada] [varchar](400) NULL,

9 [CP4] [varchar](4) NULL,

50

4.4. CASE STUDY

10 [CP3] [varchar](3) NULL,

11 [CPDesignacao] [varchar](150) NULL,

12 [idGrupo] [tinyint] NULL,

13 [OutroGrupo] [varchar](150) NULL,

14 [idConcelho] [smallint] NULL,

15 [DataCriacao] [date] NOT NULL,

16 [DataRegisto] [date] NOT NULL,

17 [Utilizador] [varchar](50) NOT NULL,

18 [EP] [bit] NOT NULL,

19 [Estrangeiro] [bit] NOT NULL)� �
Listing 4.2: The ESQL code for the table Entidade.

Firstly, we copied the SQL schema information to a file of our ESQL language. Our

language then generates a model that contains the information of the IGF schema (see

figure 4.4). Our generator was made to automatically generate XMI models as they are

introduced in a project of the ESQL language. It also updates the models every time the

ESQL file is changed and saved.

Figure 4.4: The model generated from the ESQL file.

After the generation of the model (or models) is finished, we transfer these models

to the ATL translation project. In the ATL project, we manually run the transformations

using the meta-models from ESQL, SSDSL and the model of the schema we want to

translate (see figure 4.5).

51

CHAPTER 4. VALIDATION

Figure 4.5: The model-to-model transformation is made by the ATL project.

After we executed all the previous transformations, we can use the generated SSDSL

files in two projects: the GENSS project and our EGL project.The GENSS project uses the

SSDSL files to generate spreadsheet files written in XML. In a normal utilization of the

GENSS project, those files would be generated by hand in an interface used in eclipse

where the user can create a graph very similar to UML were the tables, columns and

relationships between them are represented. In this case, we generate all the tables and

relationships between them automatically with our transformations.

The EGL project generates files which represent the models that will be represented

in the web page (see listing 4.3). Our Django project utilizes the models generated by

them and creates the equivalent web pages (see figure 4.7 and 4.6).�
1

2 class dboEntidade(models.Model):

3 Fax = models.CharField(max_length=100, blank=True, null=True)

4 EP = models.CharField(max_length=100, blank=True, null=True)

5 Designacao = models.CharField(max_length=100, blank=True, null=True)

6 Telefone2 = models.CharField(max_length=100, blank=True, null=True)

7 CP4 = models.CharField(max_length=100, blank=True, null=True)

8 email = models.CharField(max_length=100, blank=True, null=True)

9 Morada = models.CharField(max_length=100, blank=True, null=True)

10 idConcelho = models.CharField(max_length=100, blank=True, null=True)

11 CPDesignacao = models.CharField(max_length=100, blank=True, null=True)

12 Estrangeiro = models.CharField(max_length=100, blank=True, null=True)

13 Telefone1 = models.CharField(max_length=100, blank=True, null=True)

52

4.4. CASE STUDY

14 DataRegisto = models.CharField(max_length=100, blank=True, null=True)

15 Utilizador = models.CharField(max_length=100, blank=True, null=True)

16 CP3 = models.CharField(max_length=100, blank=True, null=True)

17 DataCriacao = models.CharField(max_length=100, blank=True, null=True)

18 OutroGrupo = models.CharField(max_length=100, blank=True, null=True)

19 NIPC = models.CharField(max_length=100, blank=True, null=True)

20 idGrupo = models.CharField(max_length=100, blank=True, null=True)

21 def __str__(self):

22 return self.name

23 class Meta:

24 managed = False

25 db_table = ’dboEntidade’� �
Listing 4.3: The Python code generated by the EGL project to represent the table Entidade

in our web site.

Figure 4.6: The list of web pages and forms that were generated by the project from the
schema from IGF.

53

CHAPTER 4. VALIDATION

Figure 4.7: The generated web page form that represents one of the tables from the SQL
schema supplied by IGF.

4.5 Summary

In this chapter we explained how we validated each part of the solution. For the ESQL

language, we utilized a repository called OLTPBenchmark that contains a significant

number of SQL files of different types of dialects. This repository made us extend our

language to support more SQL concepts and different types of dialects.

The ATL transformation verification was made by running the transformation with

multiple types of different models. Models with a large number of tables (up to 500) and

models with tables with a large number of rows. Through all of the tests the information

contained in the generated models was correct and the time of run for every test was

practically the same.

For the EGL project, we generated multiple web pages and tested them in a Django

project. Like in the ATL transformations, we verified if all of the fields were correctly

represented and if the web pages were functional.

As a final test-case, we showed our transformation of the example SQL schema of the

Portuguese Finance General Inspection to a web page that represents its tables. This is

the full run of a real-world study case that utilizes our project, with this run we can show

we accomplished the main goals of the project.

54

4.5. SUMMARY

This project provides the possibility of utilization of multiple dialects of SQL (contains

at least the most used ones such as MySQL, PostgreSQL, Microsoft SQL Server and more).

This provides a lot of flexibility in the project’s utilization. We also verified in our tests

that the important information in the schemas provided is correctly translated to the

generated intermediate models and to the front-ends in a quick and efficient manner.

In its current state, we can generate two types of front-ends: web pages and spread-

sheets. But is important to note that this project can also be easily extended to contain

more characteristics of the needed SQL dialects, more dialects and also to provide more

complex and different front-ends.

55

C
h
a
p
t
e
r

5
Conclusions

5.1 Achievements

In this thesis, we have presented our approach to the generation of front-ends by using

model-driven development. To achieve our goals we created a DSL called ESQL and used

another DSL called SSDSL which was made in a previous project.

We have also developed model-to-model transformations in a project called ATL.

In this project, we defined the rules for our model-to-model translation of the model

generated by our language to the target language. We’ve also utilized the EGL project

to perform model-to-text transformations to generate the final front-end files for the

spreadsheet and web page projects.

In summary, the main contributions of this work are:

• The creation of a DSL that mimics the SQL language in a model-driven environment.

This language is coupled with a generator that creates models of the information

contained in the DSL file.

• Model-to-Model transformations defined in the ATL language. We can transform

models of our language to models of the SSDSL language.

• Model-to-Text transformations written in the EGL project. We can utilize the mod-

els that were translated to the SSDSL language and generate a CRUD web page of

this information in a Django project.

More generally, using model-driven development and DSLs we’ve created a way to

use a SQL schema definition to generate our desired types of front-ends.

We have also created a project that in the future can be extended to include more

types of transformations (bi-directional), more dialects of SQL, more abstractions of SQL,

different types of front-ends, etc.

57

CHAPTER 5. CONCLUSIONS

5.2 Future Work

As is the case for many academic works, there are things which are not completely perfect

and could be improved in this project in the future.

Some improvements and future work for this project could be:

• To extend the ESQL language to allow more types of dialects and to receive infor-

mation from some of the commands of SQL. Some dialects have information in the

commands that could be interesting to add (e.g the IGF case).

• Create a type of automatic verification for the model-to-model transformation in

the ATL project. Currently, we verify the transformation by looking if all the infor-

mation is there but this could be done in a more efficient manner.

• Create verifications for the models in Django project. The verification was made

similarly to the ATL project where we looked to see if all the information is there.

• Create more polished and complex websites. We were not able to generate valida-

tions for foreign keys and other useful types of validations.

• Create a script/tool to allow the automatic execution of the complete process.

These are the main points for improvement of this work and the ones that could be

used to enhance the project usability and effectiveness.

58

Bibliography

[Ace+04] R. Acerbis, A. Bongio, S. Butti, S. Ceri, F. Ciapessoni, C. Conserva, P. Fraternali,

and G. T. Carughi. “Webratio, an innovative technology for web application

development”. In: International Conference on Web Engineering. Springer.

2004, pp. 613–614.

[Ace+07] R. Acerbis, A. Bongio, M. Brambilla, and S. Butti. “Webratio 5: An eclipse-

based case tool for engineering web applications”. In: International Conference
on Web Engineering. Springer. 2007, pp. 501–505.

[AC08] M. Antkiewicz and K. Czarnecki. “Design Space of Heterogeneous Synchro-

nization”. In: In Generative and Transformational Techniques in Software Engi-
neering II, International Summer School, Volume 5235 (2008), pages 3–46.

[Bak+05] P. Baker, S. Loh, and F. Weil. “Model-Driven engineering in a large industrial

context—motorola case study”. In: International Conference on Model Driven
Engineering Languages and Systems. Springer. 2005, pp. 476–491.

[BS81] F. Bancilhon and N. Spyratos. “Update Semantics of Relational Views”. In:

ACM Trans. Database Syst. 6.4 (Dec. 1981), pp. 557–575. issn: 0362-5915.

doi: 10.1145/319628.319634. url: http://doi.acm.org/10.1145/

319628.319634.

[Ben05] N. Benton. “Embedded Interpreters”. In: J. Funct. Program. 15.4 (July 2005),

pp. 503–542. issn: 0956-7968. doi: 10.1017/S0956796804005398. url:

http://dx.doi.org/10.1017/S0956796804005398.

[Boh+06] A. Bohannon, B. C. Pierce, and J. A. Vaughan. “Relational Lenses: A Language

for Updatable Views”. In: Proceedings of the Twenty-fifth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems. PODS ’06.

Chicago, IL, USA: ACM, 2006, pp. 338–347. isbn: 1-59593-318-2. doi:

10.1145/1142351.1142399. url: http://doi.acm.org/10.1145/1142351.

1142399.

[Boh+08] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt. “Boomerang:

resourceful lenses for string data”. In: ACM SIGPLAN Notices. Vol. 43. 1.

ACM. 2008, pp. 407–419.

[Bor04] Borland. “Keeping your business relevant with model driven architecture

(MODEL-DRIVEN ARCHITECTURE)”. In: (2004).

59

https://doi.org/10.1145/319628.319634
http://doi.acm.org/10.1145/319628.319634
http://doi.acm.org/10.1145/319628.319634
https://doi.org/10.1017/S0956796804005398
http://dx.doi.org/10.1017/S0956796804005398
https://doi.org/10.1145/1142351.1142399
http://doi.acm.org/10.1145/1142351.1142399
http://doi.acm.org/10.1145/1142351.1142399

BIBLIOGRAPHY

[Bra+08] M. Brambilla, S. Comai, P. Fraternali, and M. Matera. “Designing web ap-

plications with WebML and WebRatio”. In: Web Engineering: Modelling and
Implementing Web Applications. Springer, 2008, pp. 221–261.

[Bra+12] M. Brambilla, J. Cabot, and M. Wimmer. “Model-driven software engineering

in practice”. In: Synthesis Lectures on Software Engineering 1.1 (2012), pp. 1–

182.

[Bro95] F. P. Brooks Jr. The Mythical Man-month (Anniversary Ed.) Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 1995. isbn: 0-201-83595-9.

[Cha12] D. D. Chamberlin. “Early history of SQL”. In: IEEE Annals of the History of
Computing 34.4 (2012), pp. 78–82.

[CR14] C. M.A.C.D. W. Clay Richardson John R. Rymer. New Development Platforms
Emerge For Customer-Facing Applications. Version 2016-11-18. Cambridge,

Massachusetts: Forrester, June 9, 2014.

[Cle] D. Clements. The New WordPress Dashboard Design (MP6) - Try It Now! https:
//www.doitwithwp.com/the-new-wordpress-dashboard-design-mp6-

try-it-now/. (Accessed on 02/19/2018).

[Cun+] J. Cunha, J. Mendes, J. Saraiva, and J. P. Fernandes. “Embedding and evolution

of spreadsheet models in spreadsheet systems”. In: in VL/HCC’11. IEEE,

pp. 186–201.

[DB82] U. Dayal and P. A. Bernstein. “On the Correct Translation of Update Opera-

tions on Relational Views”. In: ACM Trans. Database Syst. 7.3 (Sept. 1982),

pp. 381–416. issn: 0362-5915. doi: 10.1145/319732.319740. url: http:

//doi.acm.org/10.1145/319732.319740.

[Dif+13] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. “OLTP-Bench: An

Extensible Testbed for Benchmarking Relational Databases”. In: Proc. VLDB
Endow. 7.4 (Dec. 2013), pp. 277–288. issn: 2150-8097. doi: 10.14778/

2732240.2732246. url: http://dx.doi.org/10.14778/2732240.2732246.

[DK17] A. G.-D.R. P. Dimitris Kolovos Louis Rose. The Epsilon Book. 2017.

[Dja19a] Django. Design philosophies | Django documentation | Django. 2019. url:

https://docs.djangoproject.com/en/2.0/misc/design-philosophies/

(visited on 03/05/2019).

[Dja19b] T. W. Django. 6. Models and Databases — How to Tango with Django 1.7. 2019.

url: https://www.tangowithdjango.com/book17/chapters/models.html

(visited on 03/05/2019).

[DB98] R. C. Dorf and R. H. Bishop. “Modern control systems”. In: (1998).

[EE05] G. Engels and M. Erwig. “ClassSheets: Automatic Generation of Spreadsheet

Applications from Object-Oriented Specifications”. In: In 20th IEEE/ACM Int.
Conf. on Automated Software Engineering. 2005, pp. 124–133.

60

https://www.doitwithwp.com/the-new-wordpress-dashboard-design-mp6-try-it-now/
https://www.doitwithwp.com/the-new-wordpress-dashboard-design-mp6-try-it-now/
https://www.doitwithwp.com/the-new-wordpress-dashboard-design-mp6-try-it-now/
https://doi.org/10.1145/319732.319740
http://doi.acm.org/10.1145/319732.319740
http://doi.acm.org/10.1145/319732.319740
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.14778/2732240.2732246
http://dx.doi.org/10.14778/2732240.2732246
https://docs.djangoproject.com/en/2.0/misc/design-philosophies/
https://www.tangowithdjango.com/book17/chapters/models.html

BIBLIOGRAPHY

[Xml] Extensible Markup Language (XML). url: https://www.w3.org/XML/ (visited

on 02/05/2019).

[Fou13] E. Foundation. an Eclipse-based modeling framework and code generation facility
for building tools and other applications based on a structured data model. 2013.

url: https://www.eclipse.org/modeling/emf/.

[Fow10] M. Fowler. Domain-specific languages. Pearson Education, 2010.

[Gol+03] W. Golden, M. Hughes, and P. Gallagher. “On-line retailing: what drives

success? Evidence from Ireland”. In: Journal of Organizational and End User
Computing (JOEUC) 15.3 (2003), pp. 32–44.

[HT06] B. Hailpern and P. Tarr. “Model-driven development: The good, the bad, and

the ugly”. In: IBM systems journal 45.3 (2006), pp. 451–461.

[Han] D. H. Hansson. Ruby on Rails : A web-application framework that includes
everything needed to create database-backed web applications according to the
Model-View-Controller (MVC) pattern. http://rubyonrails.org/. (Accessed

on 02/19/2018).

[Igf] Inspeção-Geral de Finanças. http : / / www . igf . gov . pt/. (Accessed on

02/19/2018).

[Int] Integranova Software Solutions | Integranova Software Solutions. url: http:

//www.integranova.com/ (visited on 02/11/2019).

[Jou+08] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. “ATL: A model transformation

tool”. In: Science of computer programming 72.1-2 (2008), pp. 31–39.

[Kel86] A. M. Keller. “Choosing a View Update Translator by Dialog at View Defini-

tion Time”. In: Proceedings of the 12th International Conference on Very Large
Data Bases. VLDB ’86. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1986, pp. 467–474. isbn: 0-934613-18-4. url: http://dl.acm.org/

citation.cfm?id=645913.671458.

[Lat] LaTeX - A document preparation system. url: https://www.latex-project.

org/ (visited on 02/05/2019).

[Leh80] M. M. Lehman. “Programs, life cycles, and laws of software evolution”. In:

Proceedings of the IEEE 68.9 (1980), pp. 1060–1076. issn: 0018-9219. doi:

10.1109/PROC.1980.11805.

[Leh+97] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. M. Turski. Metrics and Laws
of Software Evolution – The Nineties View. 1997.

[Lut08] D. Lutterkort. “Augeas–a configuration API”. In: Linux Symposium, Ottawa,
ON. 2008, pp. 47–56.

[Mel+03] S. Mellor, T. Clark, and T. Futagami. “Model-driven development - Guest

editor’s introduction”. In: Software, IEEE 20 (Oct. 2003), pp. 14–18. doi:

10.1109/MS.2003.1231145.

61

https://www.w3.org/XML/
https://www.eclipse.org/modeling/emf/
http://rubyonrails.org/
http://www.igf.gov.pt/
http://www.integranova.com/
http://www.integranova.com/
http://dl.acm.org/citation.cfm?id=645913.671458
http://dl.acm.org/citation.cfm?id=645913.671458
https://www.latex-project.org/
https://www.latex-project.org/
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1109/MS.2003.1231145

BIBLIOGRAPHY

[MVG06] T. Mens and P. Van Gorp. “A taxonomy of model transformation”. In: Elec-
tronic Notes in Theoretical Computer Science 152 (2006), pp. 125–142.

[MF05] T. Meservy and K. Fenstermacher. “Transforming software development: An

MDA road map”. In: Computer 38 (Oct. 2005), pp. 52 –58. doi: 10.1109/MC.

2005.316.

[Out] OutSystems. 2019. url: https://www.outsystems.com (visited on 03/19/2019).

[Pai+09] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. C. Polack. “The

Design of a Conceptual Framework and Technical Infrastructure for Model

Management Language Engineering”. In: Proceedings of the 2009 14th IEEE
International Conference on Engineering of Complex Computer Systems. ICECCS

’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 162–171. isbn:

978-0-7695-3702-3. doi: 10.1109/ICECCS.2009.14. url: http://dx.doi.

org/10.1109/ICECCS.2009.14.

[Ram03] N. Ramsey. “Embedding an Interpreted Language Using Higher-order Func-

tions and Types”. In: Proceedings of the 2003 Workshop on Interpreters, Vir-
tual Machines and Emulators. IVME ’03. San Diego, California: ACM, 2003,

pp. 6–14. isbn: 1-58113-655-2. doi: 10.1145/858570.858571. url: http:

//doi.acm.org/10.1145/858570.858571.

[Rev16] M. Revel. What Is Low-Code? 2016. url: https://www.outsystems.com/

blog/what-is-low-code.html (visited on 02/11/2019).

[RR16] C. Richardson and J. R. Rymer. “Vendor Landscape: The Fracture, Fertile

Terrain of Low-Code Application Platforms”. In: FORRESTER, Janeiro (2016).

[Ris10] M. Risoldi. “A methodology for the development of complex domain specific

languages”. PhD thesis. Geneva U., 2010.

[RA05] S. K.-E. S. Robin Abraham Martin Erwig. Visual Specifications of Correct Spread-
sheets. Tech. rep. Oregon State University, 2005. url: http://web.engr.

orst.edu/~erwig/Gencel/vitsl.pdf.

[Ros+08] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. C. Polack. “The Epsilon Gener-

ation Language”. In: Model Driven Architecture – Foundations and Applications.
Ed. by I. Schieferdecker and A. Hartman. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2008, pp. 1–16. isbn: 978-3-540-69100-6.

[Sch95] A. Schurr. “Specification of Graph Translators with Triple Graph Gram-

mars”. In: International Workshop Graph-Theoretic Concepts in Computer Sci-
ence, (1995).

[Men] Search Mendix. 2016. url: https://www.mendix.com/press/mendix-

flexible-low-code-platform-cloud/ (visited on 02/11/2019).

[Sei03] E. Seidewitz. “What models mean”. In: Software, IEEE 20 (Oct. 2003), pp. 26

–32. doi: 10.1109/MS.2003.1231147.

62

https://doi.org/10.1109/MC.2005.316
https://doi.org/10.1109/MC.2005.316
https://www.outsystems.com
https://doi.org/10.1109/ICECCS.2009.14
http://dx.doi.org/10.1109/ICECCS.2009.14
http://dx.doi.org/10.1109/ICECCS.2009.14
https://doi.org/10.1145/858570.858571
http://doi.acm.org/10.1145/858570.858571
http://doi.acm.org/10.1145/858570.858571
https://www.outsystems.com/blog/what-is-low-code.html
https://www.outsystems.com/blog/what-is-low-code.html
http://web.engr.orst.edu/~erwig/Gencel/vitsl.pdf
http://web.engr.orst.edu/~erwig/Gencel/vitsl.pdf
https://www.mendix.com/press/mendix-flexible-low-code-platform-cloud/
https://www.mendix.com/press/mendix-flexible-low-code-platform-cloud/
https://doi.org/10.1109/MS.2003.1231147

BIBLIOGRAPHY

[Sel03] B. Selic. “The pragmatics of model-driven development”. In: IEEE Software
20.5 (2003), pp. 19–25. issn: 0740-7459. doi: 10.1109/MS.2003.1231146.

[SK03] S. Sendall and W. Kozaczynski. “Model transformation: The heart and soul of

model-driven software development”. In: IEEE software 20.5 (2003), pp. 42–

45.

[SS09] Y. Singh and M. Sood. “Model Driven Architecture: A Perspective”. In: Mar.

2009. doi: 10.1109/IADCC.2009.4809264.

[Ste07] P. Stevens. “Bidirectional Model Transformations in QVT: Semantic Issues

and Open Questions”. In: International Conference on Model Driven Engineer-
ing Languages and Systems, (2007), pages 1–15.

[Syr11] E. Syriani. “A multi-paradigm foundation for model transformation language

engineering”. PhD thesis. McGill University Libraries, 2011.

[Tei16] R. Teixeira. “Controlled Specification and Generation of Spreadsheets”. MA

thesis. Universidade Nova de Lisboa, 2016.

[Mid] The Middleware Company: Model Driven Development for J2EE Utilizing a Model
Driven Architecture (MDA) Approach, vol. 2004 (2003). https://www.omg.

org/mda/mda_files/MDA_Maintainability_Analysis_Report_040305.

pdf.

[Num] Total number of Websites - Internet Live Stats. 2014. url: http : / / www .

internetlivestats.com/total-number-of-websites/ (visited on 02/01/2019).

[VD+00] A. Van Deursen, P. Klint, and J. Visser. “Domain-specific languages: An

annotated bibliography”. In: ACM Sigplan Notices 35.6 (2000), pp. 26–36.

[Web] B. C. Website. Bx Examples Repository: Family to Persons. url: http://bx-

community.wikidot.com/examples:familytopersons.

[YXM07] Z. H.-H.Z.M. T. Y. Xiong D. Liu and H. Mei. “Towards automatic model

synchronization from model transformations”. In: In ASE ’07: Proceedings
of the twenty-second IEEE/ACM international conference on Automated software
engineering (2007), pages 164–173.

63

https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/IADCC.2009.4809264
https://www.omg.org/mda/mda_files/MDA_Maintainability_Analysis_Report_040305.pdf
https://www.omg.org/mda/mda_files/MDA_Maintainability_Analysis_Report_040305.pdf
https://www.omg.org/mda/mda_files/MDA_Maintainability_Analysis_Report_040305.pdf
http://www.internetlivestats.com/total-number-of-websites/
http://www.internetlivestats.com/total-number-of-websites/
http://bx-community.wikidot.com/examples:familytopersons
http://bx-community.wikidot.com/examples:familytopersons

	List of Figures
	Listings
	Introduction
	The Rapid Growth of The Number of Front-Ends
	Problem Statement
	Proposed Solution
	Contributions
	Structure of the Document

	Related Work
	Model-Driven Development
	Model Transformation
	Domain-Specific Languages
	Model-Driven Development Projects
	INTEGRANOVA
	WebRatio
	A Methodology For The Development Of Complex Domain Specific Languages

	Spreadsheet Solutions
	ViTSL
	ClassSheets and Embedded ClassSheets
	GenSS - A Tool to Generate Spreadsheets

	Bidirectional Transformations
	Website Generation
	Ruby on Rails
	Django
	Content Management System

	Low-Code Development Platforms
	OutSystems
	Mendix

	Summary

	A Model-Driven Approach To The Generation Of Front-Ends
	Technologies Used
	Epsilon
	Eclipse Modeling Framework

	The ESQL Language
	Schema
	Table
	Key Types
	The Check Rule
	The Unique Rule

	Column
	Association
	Xtext Terminals

	The ESQL Generator
	The ATL Model Transformations
	ATL Transformation Structure
	The Header Section
	Helpers
	Rules

	The Main Rule
	The Workbook Lazy Rule
	The Worksheet Lazy Rule
	The Table Lazy Rule
	The Column Rule

	Generating Web Pages
	The EGL Generator

	Summary

	Validation
	ESQL: Test Runs and Language Extension
	ATL: Model Transformation Tests
	EGL: Web Page Generation Validation
	Case Study
	The IGF Case

	Summary

	Conclusions
	Achievements
	Future Work

	Bibliography

