
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Visually-assisted Decomposition of
Monoliths to Microservices

Breno Salles

Mestrado em Engenharia de Software

Supervisor: Prof. Jácome Cunha

July 19, 2023

Visually-assisted Decomposition of Monoliths to
Microservices

Breno Salles

Mestrado em Engenharia de Software

Approved in oral examination by the committee:

President: Prof. João Carlos Pascoal Faria
Referee: Prof. Jácome Cunha
Referee: Prof. João Seco

July 19, 2023

Abstract

In the world of software development, the concept of microservices is popular. This architec-
tural style has received much attention in both business and academia, and converting a monolithic
application into a microservice-based application has become a regular practice. Companies strug-
gle with migrating their existing monolithic applications to microservices, and software architects
and developers frequently face challenges due to a lack of complete awareness of alternative mi-
gration methodologies, making the migration process even harder.

This dissertation aims to structurally analyse the state of the art in migrating monolithic ap-
plications to microservices architectural style, mainly which tools help architects, engineers, and
developers and how automated they are. A systematic literature review identified one hundred
and six relevant publications. These publications were organised and grouped to provide a more
comprehensive understanding of the current tools available for microservice migration.

Furthermore, we present an extensible framework to help architects, engineers, and developers
during the migration process by addressing gaps in understanding various migration tools and
approaches, allowing for easy comparison between multiple options. The application combines
multiple tools into one platform, allowing a comprehensive visualisation of migration proposals
and making it easy to compare different options.

To evaluate the efficacy of the application, we conducted an empirical study that focused on
assessing its usability and the associated workload experienced by users during its utilisation.
The study yielded favourable outcomes concerning usability, indicating that participants found the
application user-friendly and intuitive. However, the workload results were diverse, implying that
the application’s efficacy in mitigating overall workload during the decomposition process was not
universally experienced among the participants.

Keywords: microservices, monoliths, decomposition, visualisation

i

Acknowledgments

I want to thank my advisor, Prof. Jácome Cunha, for his invaluable guidance and support
throughout this work. His mentorship has been instrumental in keeping me focused during chal-
lenging times, and I sincerely appreciate his continued assistance.

I sincerely thank my friends and colleagues for their companionship and the memorable expe-
riences we shared during group projects and late-night study sessions. Your presence and support
have made these years more enjoyable and meaningful.

I am particularly grateful to my dear friend Hugo Pais for his calming presence and tranquillity,
which gave me peace of mind even during the most challenging times.

I want to warmly thank Cátia Condez and Fátima Fonseca for their unconditional love, unwa-
vering support, and profound presence in my life. Your support has made the challenging phases
of my life something laughable.

Lastly, I owe a special thank you to my father, Vital Salles. I am indebted to you for shaping
my character’s positive and negative aspects, and I hope this work would have made you proud.

Breno Salles

ii

Contents

1 Introduction 1

2 Background 3
2.1 Monoliths . 3
2.2 Microservices . 3
2.3 Refactoring . 4

3 Systematic Literature Review 5
3.1 Research Methodology . 5

3.1.1 Data sources . 5
3.1.2 Search strategy . 6
3.1.3 Query definition . 7
3.1.4 Selection Criteria . 8

3.2 Research Results . 9
3.2.1 Publications Grouping and Selection . 10

3.3 Publication Analysis . 13
3.3.1 Monolith as an input for the tool . 13
3.3.2 Microservices as an output for the tool 15
3.3.3 Tool target language . 16

3.4 Summary . 16

4 Tool Design 17
4.1 Requirements . 18
4.2 Architecture . 18
4.3 Interface Overview . 20

5 Solution Development 24
5.1 Technologies . 24
5.2 Database . 27
5.3 Backend . 28

5.3.1 API Design . 29
5.3.2 Authentication and Authorisation . 30

5.4 Frontend . 31
5.4.1 Tool Selection . 31
5.4.2 Results . 32
5.4.3 Comparison . 33
5.4.4 Authentication and Authorisation . 38

5.5 Deployment . 40

iii

CONTENTS iv

5.6 Implemented requirements . 40

6 Empirical Validation 42
6.1 Design . 42

6.1.1 Subjects and Objects . 42
6.1.2 Instrumentation . 43
6.1.3 Pre Study . 44
6.1.4 Data Collection . 45

6.2 Execution . 45
6.3 Analysis . 46

6.3.1 Subjects . 46
6.3.2 System Usability Scale . 47
6.3.3 Raw-TLX . 50

7 Discussion 56
7.1 Results evaluation . 56
7.2 Threats to validity . 58

7.2.1 Internal validity . 58
7.2.2 Conclusion validity . 58
7.2.3 Construction validity . 58
7.2.4 External validity . 59

8 Conclusion 60
8.1 Future Work . 61

A Questionaire 71

List of Figures

3.1 Review iterations . 6

4.1 Application architecture . 21
4.2 Tool/Language Selection . 22
4.3 Project or Source Code upload . 22
4.4 Per tool parameter tuning . 22
4.5 Decomposition Status . 23
4.6 Decomposition Visualisation . 23

5.1 Container and Virtual Machines . 27
5.2 Database Model . 28
5.3 Decomposition Lifecycle . 29
5.4 Tool Selection . 32
5.5 Project Upload . 32
5.6 Awaiting Decomposition . 33
5.7 All Results . 33
5.8 Expanded Result . 34
5.9 Comparison Page . 36
5.10 Toggle Decomposition . 37
5.11 Microservice Focus . 38
5.12 Modules Visualisation . 39
5.13 User ID storage Flowchart . 39

6.1 Tasks Contents . 44
6.2 Subjects Age Distribution . 46
6.3 Years of Experience Distribution . 47
6.4 Frequency of work related with microservices 48
6.5 Years working with microservices . 48
6.6 Amount of monoliths decomposed . 49
6.7 Statements Results SUS . 50
6.8 SUS Box Plot . 51
6.9 Experienced Participants Statements Results SUS 52
6.10 Task 1 Graph . 53
6.11 Task 2 . 54
6.12 Tasks Results . 55

7.1 SUS vs Raw-TLX Performance . 57

A.1 Background Questionaire . 71

v

LIST OF FIGURES vi

A.2 Task Questionaire . 73
A.3 Answer Questionaire . 73
A.4 SUS Questionaire . 74
A.5 Raw-TLX Questionaire . 75
A.6 Feedback Questionaire . 75

List of Tables

3.1 Database Selection . 6
3.2 Keywords . 7
3.3 Search Engine Tool Search . 9
3.4 DB Results . 10
3.5 Snowballing Results . 10
3.6 Approach grouping . 12
3.7 Status grouping . 12
3.8 Language grouping . 13

4.1 Functional Requirements . 19
4.2 Non-Functional Requirements . 20

5.1 REST Endpoints . 30
5.2 Visualisation Tool Comparison . 35
5.3 Visual Expressiveness . 35
5.4 Not Implemented Requirements . 40

6.1 SUS Quartiles . 51
6.2 Task 1 Results Table . 53
6.3 Task 2 Results Table . 53
6.4 Tasks Results Table . 54

vii

Chapter 1

Introduction

Microservices is an architectural style that evolved from Service Oriented Architecture (SOA).

Just like SOA, microservices are an alternative to monolithic architecture. The main contrasts are

that, while monolithic applications are software systems with a single, integrated codebase that

includes all necessary components, and features [14], microservices tend to be separated, and

loosely coupled [20]. Also while monoliths tend to be easier to develop they may scale poorly

and are harder to maintain when compared to microservices [19]. Microservices are increasingly

being used in the development of modern applications, particularly in the areas of cloud comput-

ing [1]. Many organizations, including large enterprises and startups, are adopting microservices

as a way to build and deploy applications more quickly and efficiently [46]. Microservices are

particularly well-suited for distributed, cloud-based environments, where they can take advantage

of the flexibility and scalability of the cloud [36]. This type of architecture is already being applied

in multiple well-known companies, like Uber, Netflix, eBay [47] [22], and also being followed by

the rest of the herd when compared to monolith architecture [24].

Refactoring from monoliths to microservices is a heavily debated topic both in the academic

world and the industry. The main takes from this debate are that refactoring is difficult and time-

consuming, and companies struggle with migrating their already existing monolithic applications

to microservices [13]. To help address this, some tools were developed that help with the refac-

tor [55, 57, 58], but in today’s world, where the amount of data and information is constantly

increasing, it would be ideal to have a centralised location where architects, engineers, and de-

velopers can access and utilise all the tools that are currently available as well as those that will

be developed in the future. Unfortunately, at the moment, no tool that offers multiple options for

decompositions with different possibilities exists.

In this dissertation, we structurally analyse the state of the art in regards to the migration of

monolithic applications to the microservices architectural style, mainly which tools help architects,

engineers and developers in this migration, and how automated they are.

To achieve this, the guidelines presented by Kitchenham and Charters [16] were followed

while performing a systematic literature review. The research protocol was defined at first and

then followed to ensure all results could be reproduced.

1

Introduction 2

According to Kitchenham and Charters [16], research questions should be specified as they

will direct the entire review methodology. The research questions formulated are as follows:

RQ1. What tools already exist that aid in the migration process of monoliths to microservices?

RQ1.1. How do they take the monolith as input?

RQ1.2. How do they produce the microservice as output?

RQ1.3. Are they bound to a specific language?

RQ2. Is there an application that aggregates those tools to help architects, engineers and devel-

opers in their monolith decomposition?

Furthermore, we also develop an application that aims to aggregate existing tools into a single

platform and provide the means to extend and incorporate new tools. This application offers a

convenient and comprehensive way to access and use various tools that help the decomposition

from monoliths to microservices and provide them with a perspective on several decomposition

proposals, allowing for easily comparable and different combinations options.

The purpose of the application is to answer the following research question:

RQ3. Can we devise an application that aggregates existing tools in a single comprehensive en-

vironment to help in the decomposition to microservices?

RQ3.1. Can the application exhibit a good usability for decomposing?

RQ3.2. Does the application provide a low workload?

It is important to mention that the final objective is not to create a new technique for discover-

ing microservices from a monolith system, but rather to aggregate the already existing ones into a

single and comprehensive framework.

We conducted an empirical study to evaluate the quality of the application, focusing on assess-

ing the usability and workload associated with its usage. The study yielded favourable outcomes

in terms of usability, indicating that participants found the application to be user-friendly and in-

tuitive. However, the workload results were varied, suggesting that the application’s impact on

reducing the overall workload during the decomposition process was not consistently observed

among participants.

The rest of this dissertation is structured as follows: Chapter 2 introduces the reader to various

concepts of monolithic and microservices architectures. Chapter 3 contains the literature review of

the current state of the art. The architecture and design of the application is explained Chapter 4.

Chapter 5 discusses the development of the application. In Chapter 6, we present the study design,

its execution and corresponding analysis of results. Chapter 7 discusses the results obtained and

their threats to validity. Finally, Chapter 8 ends with with some conclusions and future work.

Chapter 2

Background

To give readers a foundational understanding of microservices architecture and its key features,

we will provide a brief overview of microservices and contrast them with traditional monolithic

applications. This will allow readers to clearly understand the differences between the two archi-

tectures.

2.1 Monoliths

Monolithic applications are software systems that are designed as a single, self-contained unit

[9]. In other words, monolithic applications are composed of a single, integrated codebase that

includes all of the necessary components and features for the application to run [14]. This means

that all of the different parts of the application, such as the user interface, business logic, and

database access are all contained within a single codebase and are not modularized or separated

into distinct components that are separately deployed and executed.

Monolithic architecture is a traditional approach to software development that has been widely

used for many years [9]. It is generally characterized by a strong emphasis on simplicity and ease

of development. However, monolithic applications can also be more difficult to maintain and

update, as changes to one part of the codebase can have unintended consequences on other parts

of the system. This can make it challenging to introduce new features or make changes to the

application without significant testing and debugging [14].

Despite these challenges, monolithic applications are still widely used in many contexts due to

their simplicity and ease of development. They are particularly well-suited for small to medium-

sized applications that do not require a high level of modularity or separation of concerns.

2.2 Microservices

Microservices is an architectural style that structures an application as a collection of loosely

coupled services [20]. This means that each microservice is a self-contained unit of functionality,

3

Background 4

which communicates with other microservices through well-defined interfaces, typically using a

lightweight messaging protocol such as HTTP [37].

One key benefit of this approach is that it allows for greater flexibility and scalability [19].

Because each microservice is independent and modular, it can be modified and deployed indepen-

dently of the other services in the application. This can make it easier to make changes to the

system, as it is not necessary to redeploy the entire application every time a change is made. In

addition, the modular nature of microservices allows for easier scaling, as individual services can

be scaled up or down as needed to meet changing demand [19, 20] [37].

Another advantage of microservices is that they can be developed and maintained by small,

autonomous teams [6]. This can be beneficial for organizations with a large codebase or a dis-

tributed development team, as it allows for more focused development and faster deployment of

changes [18].

However, there are also challenges to consider when adopting a microservices architecture

[38]. One challenge is the added complexity of managing a distributed system, as there may be a

larger number of moving parts to monitor and troubleshoot [20]. In addition, the communication

between microservices can add latency to the system, which may impact the performance of the

overall application [38] [21].

Overall, microservices can be an effective way to structure an application, particularly for

large, complex systems that require a high degree of flexibility and scalability [20]. However, it is

important to carefully evaluate the trade-offs and consider whether the benefits of a microservices

architecture are worth the added complexity [38].

2.3 Refactoring

Refactoring is the process of modifying the internal structure of an existing codebase without

changing its external behaviour [2]. When migrating from a monolithic architecture to a microser-

vices architecture, it may be necessary to refactor the existing codebase to break it into independent

microservices. This can be a complex and time-consuming process, particularly for large, complex

systems [19].

There are several factors to consider when refactoring an existing codebase for a microservices

architecture [19]. One challenge is ensuring that the code is modular and loosely coupled so it can

be developed and deployed independently as a microservice. This may require restructuring the

code, introducing new abstractions and interfaces, and potentially even rewriting parts of the code.

Another challenge is preserving the application’s existing functionality while making changes

to the codebase. It is important to carefully plan and test the refactoring process to ensure that the

application continues to work as expected after the changes are made.

Overall, refactoring an existing codebase for a microservices architecture can be a significant

undertaking, and it is important to carefully evaluate the resources and time required to complete

the process [19].

Chapter 3

Systematic Literature Review

A systematic literature review is a type of review that aims to identify, evaluate, and summarize

the results of all studies that address a specific research question or topic [10, 15, 16]. It involves

following a specific methodology to identify, analyse, and interpret all relevant evidence related to

the research question being addressed. The purpose of a systematic literature review is to provide

a comprehensive and up-to-date overview of the current state of knowledge on a specific research

question or topic. It is a critical appraisal of the existing research and it can help identify gaps in

the literature and inform future research directions [16].

As per Kitchenham and Charters guidelines [16], a systematic literature review (SLR) involves

three phases: planning, conducting, and reporting. The planning phase involves establishing the

review protocol based on the research questions and the need for the review. The conducting phase

involves selecting primary studies and applying the criteria established in the review protocol to

analyse them. Finally, the reporting phase involves the creation of the report. These guidelines

were loosely followed in the development of this review.

3.1 Research Methodology

To address the research questions posed in Chapter 1, the appropriate research methods were

utilised as means to properly investigate the current state of the art. To give guidance, Figure 3.1

shows a diagram of the review iterations that will be explained in the following sections.

3.1.1 Data sources

To access relevant research and information, it is advisable to search several databases that

specialise in scientific literature. Table 3.1 presents a list of several such databases, including the

ACM Digital Library, Science Direct, IEEE Xplore, Wiley, Springer Link, Engineering Village,

and Google Scholar. These databases contain a wealth of knowledge and resources, including

journal articles, conference proceedings, technical reports, and more, which can be useful for

staying up to date on the latest developments.

5

Systematic Literature Review 6

Figure 3.1: Review iterations

Table 3.1: Database Selection

ID Search Engine Website
ACM ACM Digital Library https://dl.acm.org/

IEEE IEEE Xplore https://ieeexplore.ieee.org/

SPL Springer Link https://link.springer.com/

WLY Wiley https://onlinelibrary.wiley.com/

SCI-D Science Direct https://www.sciencedirect.com/

ENG-V Engineering Village https://www.engineeringvillage.com/

3.1.2 Search strategy

To ensure a thorough and comprehensive search for relevant publications in this field, we will

utilise a breadth-first search approach. This method involves starting with a specific query string

and selecting relevant publications from a given database. We will then use a technique called

snowballing to expand the search and locate additional relevant publications. Snowballing involves

searching for citations and publications that are related to the initially selected publications.

There are two types of snowballing that we will employ in this search: forward snowballing

and backward snowballing. Forward snowballing involves searching for citations and publications

using Google Scholar for the initially selected publications. This process can be repeated multiple

times, with each iteration referred to as a level of snowballing. For this search, we will perform

two levels of forward snowballing, in which we extract the references of the initially selected

publications (level one) and then select the references of those references (level two).

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://link.springer.com/
https://onlinelibrary.wiley.com/
https://www.sciencedirect.com/
https://www.engineeringvillage.com/

3.1 Research Methodology 7

Backward snowballing involves searching for publications that have been cited by the initially

selected publications. This technique can also be repeated multiple times, but for this search, we

will only perform one level of backward snowballing. This will include all previous publications

found during the forward snowballing step.

By utilising both forward and backward snowballing techniques, we aim to cast a wide net and

identify as many relevant publications as possible.

After completing the search for relevant publications in a given database using the specified

query string, we will move on to the next database. This approach is advantageous because it

allows us to efficiently locate relevant publications while minimizing the number of duplicates

that are analysed. By searching multiple databases and using snowballing techniques, we can

identify a large number of relevant publications and eliminate the need to analyse many of them

in subsequent iterations.

3.1.3 Query definition

To identify relevant publications for this research, we will utilise a range of keywords related

to the topic of microservices. These keywords will include various phrases and terms used to

describe microservices. As for the practices that may help identification of microservices, key-

words that help this architectural refactoring should be included, such as “migration”, “refactor”,

“identification”. It could also be useful to use “monolith” (and all its possible synonyms) to be the

comparison against “microservices”, although this can result in some extra publications not related

to microservices but instead related to “service-oriented architecture”. An expected outcome or

conclusion of the publication could be included, “approach” or even “tool”. The main keywords

that will be used are present in Table 3.2.

Table 3.2: Keywords

Focus microservices
Refactoring migration, decomposition, iden-

tify, refactor, evolve, discover,
transition

Target monolith
Outcome approach, tool

Initially the focus was in determining how many tools exist that are able to solve this research

question or, at the very least, help partially with it. In order to do this, one could not be limited to

tools that are documented in academic databases therefore, in addition to the databases mentioned

in Table 3.1, GitHub, GitLab and even DuckDuckGo were searched for, even though they do not

represent a scientific search engine.

By using some keywords mentioned in Table 3.2 the following initial trial query was created

(in an initial phase, we did not have all terms in Table 3.2):

https://github.com
https://gitlab.com
https://duckduckgo.org

Systematic Literature Review 8

(“microservice” OR “micro-service”) AND (“migration” OR “identification”) AND

(“monolithic” OR “monolith”) AND (“tool”)

To increase the number of works found, we changed the focus to be on the location of publica-

tions that describe alternative approaches for migrating from monolithic to microservices architec-

tures that may not have been implemented in practice. This will allow an increased understanding

of the current state of the art in this area, identify any gaps or areas where further research is

needed, and determine what can be improved upon. This information will be useful in guiding the

development of our tool and abstraction.

Relying on the keywords identified in Table 3.2, the following query was created:

(microservice* OR micro?service*) AND (migrat* OR identif*) AND (monolith*) AND (migrat*

NEAR/2 (process* OR approach*))

In some databases, the query produced more than two thousand results, which would have been

impractical to analyse within the given timeframe. Therefore, we modified the query to focus only

on the titles and abstracts of the publications, since in these parts of the documents, the authors

tend to give more focus to what the work is really about. The revised query that should be used is:

(microservice* OR “micro-service”) AND (migrat* OR decompos* OR identif* OR refactor* OR

evolv* OR extract* OR discover* OR transition*)

3.1.4 Selection Criteria

In order to filter the publications, the title and the abstract will be analysed and should mention

at least one of:

IC1. A tool that automates the process of migration of monoliths to microservices.

IC2. Identification of microservices from monolith systems.

IC3. Analysis of tools or approaches for migrating from monoliths to microservices.

In cases of ambiguous abstracts, further inspection of the publication may be done. When this

happens, and if relevant publications apply, conclusions should also be taken into account.

As for more pratical approach for exclusion of publications, the criteria will be:

EC1. Publications that are not written in English or Portuguese.

EC2. Publication is not accessible.

3.2 Research Results 9

3.2 Research Results

The initial query mentioned in the Section 3.1.3 was applied to GitHub, GitLab and Duck-

DuckGo, the query would be essentially typed into their respective search engine and the results

gathered as well as the query are presented in Table 3.3.

The reason we used these search engines in detriment of others were:

• GitHub and GitLab: both are one of the most popular source code hosting platforms, which

would increase our chance of finding relevant results.

• DuckDuckGo: the one we thought would less likely influence results.

Table 3.3: Search Engine Tool Search

Search
Engine

Query Total
number
of results

Extracted
Results

GitHub https://github.
com/search?q=
monolith+to+
microservice

745 4

GitLab https://
gitlab.com/
search?search=
monolith%20to%
20microservice

0 0

DuckDuckGo https://
duckduckgo.com/
?q=monolith+to+
microservices+
tool

Uncountable 2

Through this search process, we can also trace the references used in these publications to

determine if the tools described were based on previous work, but only implemented a specific

approach. This will help us to understand the context and origins of these tools and how they fit

into the broader landscape of research in this area.

Applying the the query to the databases yielded 1394, with 34 that were extracted for having

passed the selection criteria defined in Section 3.1.4, as shown in Table 3.4.

In the case of Science Direct, as presented in Table 3.4, two queries were done. The main

reason for this is that Science Direct is limited to 7 OR conditions, therefore it was necessary to

split it into two queries where it does not affect the general condition. In the specific case, the

“evolv” keyword was moved into a separate query. Also, Science Direct automatically accepts

truncations without using the “*” char. The two queries are:

https://github.com
https://gitlab.com
https://duckduckgo.org
https://duckduckgo.org
https://github.com/search?q=monolith+to+microservice
https://github.com/search?q=monolith+to+microservice
https://github.com/search?q=monolith+to+microservice
https://github.com/search?q=monolith+to+microservice
https://gitlab.com/search?search=monolith%20to%20microservice
https://gitlab.com/search?search=monolith%20to%20microservice
https://gitlab.com/search?search=monolith%20to%20microservice
https://gitlab.com/search?search=monolith%20to%20microservice
https://gitlab.com/search?search=monolith%20to%20microservice
https://duckduckgo.com/?q=monolith+to+microservices+tool
https://duckduckgo.com/?q=monolith+to+microservices+tool
https://duckduckgo.com/?q=monolith+to+microservices+tool
https://duckduckgo.com/?q=monolith+to+microservices+tool
https://duckduckgo.com/?q=monolith+to+microservices+tool

Systematic Literature Review 10

Table 3.4: DB Results

Database Total
number
of results

Extracted
Results

ACM 568 15
IEEE 4 0
SPL 678 3
WLY 9 3
SCI-D (1st) 21 1
SCI-D (2nd) 0 0
ENG-V 114 12

1. (microservice OR “micro-service”) AND (migrat OR decompos OR identif OR refactor OR

extract OR discover OR transition)

2. (microservice OR “micro-service”) AND (evolv)

After reviewing the references of the identified papers and applying forward and backward

snowballing techniques, we were able to locate additional related publications and expand the

scope of our search as demonstrated in Table 3.5. This helped us to increase the number of relevant

publications that we were able to consider in the next steps of the process.

Table 3.5: Snowballing Results

1st Forward 2nd Forward Backward
23 2 45

Having iterated over the results and reviewing the references of the newly found publications,

we did not identify any additional publications that were worth including in the final list. This

marked the end of our general search for relevant publications. We were able to find 106 relevant

publications.

All the results that were analysed from of the search are available in a gist1.

3.2.1 Publications Grouping and Selection

Given the large number of publications that were identified as potential candidates for further

analysis, it was necessary to further reduce the list to a more manageable size. To accomplish this,

we employed a categorization approach in order to better organize and prioritize the publications

for later selection. This allowed us to select and analyse the most relevant publications for our

purposes. Through this process, we arrived at three main categories that were derived from RQ1

1https://gist.github.com/Guergeiro/c3baefb0ac6fdf673866f6515f1416a3

https://gist.github.com/Guergeiro/c3baefb0ac6fdf673866f6515f1416a3

3.2 Research Results 11

into which we could place each publication. This will be especially relevant when creating the new

tool, by enhancing the possibility of integrating various tools that employ different approaches, in

order to provide the developer with multiple perspectives, which may facilitate the ability to make

comparisons and informed decisions.

• The approach used for identifying microservices from monoliths, Table 3.6.

– Data flow.

– Dependency analysis.

– Execution log.

– etc.

• The current status of the publication, Table 3.7.

– It only explains the method at a high level.

– Has implementation details with the algorithm on how to identify.

– Already has a working tool.

• The language in which that it targets, Table 3.8.

– Java.

– Cpp.

– C.

– Language Agnostic.

– etc.

The publications that were selected are grouped in Tables 3.6, 3.7 and 3.8. It is important to

note that the papers analysed in this study were classified into multiple categories, as opposed to

a singular classification. To facilitate a more comprehensive understanding, the classified papers

can be viewed on the online spreadsheet2.

Having evaluated most of the literature in regard to tools that help with the migration of mono-

liths to microservices, we need to select those that are most relevant for the purpose of this thesis.

Given our focus on tools and their implementation, we will prioritise works that have already de-

veloped a tool and made it available for a free inspection and use. Therefore, if a publication does

not provide a link to the tool or instructions for self-hosting or deploying it, it is not worth further

consideration. This will help us to focus our efforts on publications that provide practical and use-

ful information about tools and their implementation. The tools that fulfilled these requirements

are:

• https://github.com/HduDBSI/MsDecomposer [68]

2https://bit.ly/publication-grouping

https://github.com/HduDBSI/MsDecomposer
https://bit.ly/publication-grouping

Systematic Literature Review 12

Table 3.6: Approach grouping

Approach Amount
Data flow 8
Control flow 7
Dynamic analysis 11
Semantic analysis 4
Problem frames 1
Model based 10
Static analysis 13
Dependency analysis 15
Multi objective 1
Feature analysis 7
Data analysis 6
REST 4
Graph based 2
Domain analysis 10
Neural analysis 2
Layer 1
Business analysis 3
Strangler pattern 1
Code change history 1
Contributor based 1
Logs analysis 1
Transactional contexts 1
Execution flow 1
Unknown 2

Table 3.7: Status grouping

Status Amount
Method 48
Algorithm 7
Tool 25
Unknown 1

• https://github.com/FranciscoFreitas45/MicroRefact [57]

• https://github.com/miguelfbrito/microservice-identification [55]

• https://github.com/gmazlami/microserviceExtraction-backend [50]

• https://github.com/socialsoftware/mono2micro [64]

• https://github.com/antbucc/Migration [56]

https://github.com/FranciscoFreitas45/MicroRefact
https://github.com/miguelfbrito/microservice-identification
https://github.com/gmazlami/microserviceExtraction-backend
https://github.com/socialsoftware/mono2micro
https://github.com/antbucc/Migration

3.3 Publication Analysis 13

Table 3.8: Language grouping

Language Amount
Agnostic 59
Java 16
Ruby 1
Python 3
Unknown 4

• https://github.com/tiagoCMatias/monoBreaker [61]

3.3 Publication Analysis

In the following sections, we will provide an analysis of the data collected during the knowl-

edge extraction process from the selected publications. This analysis will allow us to address the

primary research question (RQ1) and its sub-questions.

In the following sections, we will provide an analysis of the data collected during the knowl-

edge extraction process from the selected publications. This analysis will allow us to address the

primary research question (RQ1) and its sub-questions.

3.3.1 Monolith as an input for the tool

The first aspect to be analysed is the input requirements for the tool. Despite the growing

interest in microservice migration using automated tools, the field is still in its infancy, and the

existing solutions tend to address specific issues rather than being versatile. As a result, the inputs

for these tools are often rigid and not easily adjustable. For example, raw source code and Ope-

nAPI specification were possible ways tools use for identifying microservices from monoliths and

will be further discussed.

Source Code

One potential method for providing input to a tool is by utilising source code directly. Our

research revealed that eighteen of the contributions analysed use source code as input for their

tools with multiple using Spring Boot or other equivalent frameworks to help in understanding the

overall code structure. One reason for the use of frameworks is that they provide building blocks

for developers, meaning the core functionality of the framework is already in place and developers

simply fill in the gaps allowing for the framework to apply inversion of control [8]. Since the

behaviour of the framework is kept intact, the tool can then safely analyse the overall code and

even apply the refactoring.

https://github.com/tiagoCMatias/monoBreaker

Systematic Literature Review 14

For instance, Freitas et al. [57] tool, MicroRefact3, utilises Java source code to extract struc-

tural information by relying on the Abstract Syntax Tree. This information is used to generate

a list of candidate microservices. They then leverage Spring Boot decorators, particularly those

utilising the Java Persistence API (JPA), to infer the entities of the database and their relationships.

This process then results in the output of working Java code for each identified microservice.

OpenAPI

In a microservices architecture, one of the common solutions for communication between dif-

ferent microservices is through HTTP calls. Therefore, it is reasonable to assume that identifying

microservices within a monolithic application could be done by examining their REST endpoints

since they will be exposed through HTTP protocols. This inspection of REST endpoints can also

serve as a guide for decomposing the monolithic application into smaller, independent services.

In fact, when the programming language was not a determining factor, OpenAPI was commonly

used as the standard for distinguishing microservices from monolithic systems [51, 68].

The tool proposed by Al-Debagy and Martinek [51] utilises the OpenAPI specification file to

identify microservices within a monolithic application. The tool begins by extracting the operation

names from the OpenAPI file, which are then input into the Affinity Propagation Algorithm [7].

This algorithm calculates the number of microservices by analyzing the messages exchanged be-

tween data points. Afterwards, clustering is performed by utilising the Silhouette coefficient [23]

which results in the identification and grouping of similar microservices, helping in the decompo-

sition of the monolithic system.

MsDecomposer4 [68] uses a similar approach to identify microservices within a monolithic

application. The first step is to calculate the similarity of candidate topics and response messages

among the APIs. Then, it constructs a graph that represents the similarity between different APIs,

where the APIs are represented as nodes and the similarity score is the weight. Finally, it applies a

graph-based clustering algorithm on the constructed graph, which helps to identify the candidate

microservices.

This highlights that OpenAPI is a language-agnostic method for identifying the architecture

of software systems.

Other

Besides the input types that have been previously mentioned, there are other types that may not

be able to create a new category but are still relevant to the microservices identification process.

For example, using a specific system model as input [67] or utilising the history of changes to

understand in addition to common artefacts like classes and methods [66].

3https://github.com/FranciscoFreitas45/MicroRefact
4https://github.com/HduDBSI/MsDecomposer

https://github.com/FranciscoFreitas45/MicroRefact
https://github.com/HduDBSI/MsDecomposer

3.3 Publication Analysis 15

3.3.2 Microservices as an output for the tool

For microservices identification, it is important to understand how existing tools output their

identified microservices in order to cater to the needs of users. The ideal outcome would be a fully

functional code ready to be deployed, as it makes the migration process smoother, ensuring that

the resulting microservices have all the necessary components and reducing the effort needed for

manual migration. From the work that was analysed, tools that output a list of candidates and tools

that output source code are more relevant to take into consideration and will be further discussed.

Candidates List

A prevalent approach for identifying microservices in a monolithic system is by producing

a candidate list. This approach is used in most of the publications and tools found, and it is a

way of providing an organized and structured output of the microservices that can be derived

from the monolithic application, in order to facilitate the migration process. The candidate list

is commonly used as a guide or checklist for architects, engineers, and developers to assist in

the actual partitioning of the application. It typically includes but is not limited to, data entities,

interfaces, methods, and other relevant system components that are used as references to guide the

migration process.

The tool proposed by Al-Debagy and Martinek [51] uses OpenAPI as input to identify mi-

croservices within a monolithic application. One of the limitations of their output is that it only

provides a list of candidates, which may not include information about the relationships and in-

teractions between each microservice. This can be an inconvenience when assigning different de-

velopment teams or groups with the task of applying the migration, as they may not have enough

information to understand how the microservices interact and depend on each other, making it

harder to assign and split the workload accordingly.

There are other tools available that output a more informative result for microservices iden-

tification. Even though they still output candidate lists, where no migration is done yet, these

tools provide more detailed information about the relationships and connections between mi-

croservices, some of them even including visual feedback such as clusters and call context tree

diagrams [58–60, 62]. This additional information can be very beneficial for architects and de-

velopers, as it makes it easier for them to understand the connections and dependencies between

microservices, and make informed decisions about how to proceed with the migration process.

Source Code

Generating the final output of the migration process as source code that is ready to be deployed

would be the ideal outcome for most cases, as it would lessen the efforts needed to migrate,

but it is not yet commonly used in current literature. Out of the tools that were analysed, only

two of them employ this method. One of them is the work of Freitas et al. [57], and another is

Mono2Micro [58–60].

Systematic Literature Review 16

3.3.3 Tool target language

The majority of works utilised Java as their primary programming language for input [50, 52,

54, 56, 58–60, 63, 65, 70]. This may be attributed to the language’s strict syntax rules, which fa-

cilitate the examination of source code during the inspection process. Additionally, some of them

utilised the Spring Boot framework in conjunction with Java [55, 57, 64–66, 69], which further

enforces structure through the utilisation of decorators. In contrast, those who employed program-

ming languages other than Java, such as Python, utilised corresponding frameworks like Django,

to compensate for the language’s more lenient syntax constraints [53, 61].

3.4 Summary

Based on the literature review and analysis presented in the preceding sections, the research

question RQ1 - “What tools already exist that aid in the migration process of monoliths to mi-

croservices?” was examined. As mentioned in Section 3.2.1, limited tools are available to de-

compose monolithic architectures into microservices. We identified seven free and open-source

tools [50, 55–57, 61, 64, 68], each with varying degrees of completeness, as discussed in the

relevant literature. However, it is worth noting that the most promising tool identified, IBM’s

Mono2Micro [58–60], is not accessible to the general public.

Addressing the following research question, RQ2 - “Is there an application that aggregates

those tools to help architects, engineers, and developers in their microservice migration?” the

research findings revealed a lack of such an application. We found no existing application that

served as an aggregator of multiple decomposition tools, offering users a graphical and unified

interface. Therefore, this dissertation addresses this gap by proposing a solution that precisely

fulfils the need for an application that aggregates decomposition tools, providing a user-friendly

and consolidated platform for microservice migration activities.

Chapter 4

Tool Design

During our analysis described in Section 3.3, locating any relevant works that could address

the second research question (RQ2) was impossible. As a result, it will be necessary to tackle this

question and strive to answer it.

In order to address RQ2, we intend to develop an application with several functionalities. The

functionalities we aim to include should answer a specific problem.

Problem

Multiple tools exist, but how do we present them for the user to choose?

We create a list of all available tools that users can select which one they want to use for a

decomposition task.

Problem

Each tool accepts a language that might not be the same to others, how can we show and

handle this information?

In the tool list we also show the languages compatible with it. Upon selecting one of them,

you can only select more if they share a common language.

Problem

Tools may also have a parameters that may be tuned to optmise the decomposition output,

therefore we should allow users to tune them.

For tools that are selected, and if the tool allows parameter tuning, we allow users to fill in the

parameter values.

Problem

For each of the tools selected, one or multiple decompositions may be produced, how to com-

pare them efficiently?

17

Tool Design 18

Give a interface where users are able to select the decompositions they want to compare, toggle

to view more information of each specific decomposition, evaluate the relationship between each

microservice in the cluster of microservices that make the decomposition.

In Section 4.1, we gather some functional requirements that break down system features and

functions as well as some non-functional requirements that determine how the system will im-

plement these features. Some functional requirements were derived of the problems stated. Sec-

tion 4.3 contains some mockups of a possible frontend interface.

4.1 Requirements

Software requirements, refer to the explicit delineations of the functionalities a given system

should offer, the scope of services it should provide, and the operational constraints it must adhere

to. There are two types of requirements: Functional and Non-Functional, where the first focuses

on what a system is supposed to do and the latter on how a system is supposed to be [25]. We used

the MoSCoW method to prioritise each requirement, which is an acronym from the first letter of

each prioritisation category: Must have, Should have, Could have, Will not have [3].

We delimited eighteen functional and eight non-functional requirements as an initial Minimum

Value Product (MVP), presented in Table 4.1 and Table 4.2, respectively. It is essential to high-

light that no requirement fits the "Will not have" category because requirement elicitation was not

conducted with a user but rather a brainstorming between the entities responsible for this work.

4.2 Architecture

The application architecture consists of three distinct components, as presented in Figure 4.1.

The frontend is responsible for the interface between the tool logic and the user. The tool domain

contains adapters for each individual tool and the tool runtime, which receives the monolithic input

and generates the candidate microservices. The backend serves as a bridge between the frontend,

the database of available tools, and the tool domain.

The main role of the backend component is to initiate jobs and notify the frontend when a given

job has been completed. A job consists of the process of identifying microservices from a given

monolithic input, which is then completed when the output containing the identified microservices

is produced. To avoid potential bottlenecks when multiple jobs are run concurrently, the backend

does not perform these tasks directly but rather delegates them to the individual tools, therefore

acting like a bridge.

In the tool domain, the purpose of the adapter is to provide a consistent interface for interacting

with the tool runtime, regardless of the specific input and output formats that it uses. This is

important because different tools may accept different inputs and produce different outputs, such

as JSON or raw code. By using an adapter to translate between these formats, it becomes easier to

process the inputs and outputs of the tool and integrate them with the overall tool logic. The tool

4.2 Architecture 19

Table 4.1: Functional Requirements

ID Requirement Priority
FR01 Frontend allows for user selection of a tool. Must have
FR02 Frontend allows for user selection of a language. Must have
FR03 Frontend allows for user parameter tunning. Must have
FR04 Frontend allows for an user visualisation of the

identified microservices.
Must have

FR05 Frontend allows for user code upload (either
source code or specification).

Must have

FR06 Frontend allows comparison between multiple
identifications.

Must have

FR07 Frontend allows for user session. Should have
FR08 Frontend allows for download of output. Could have
FR09 Frontend allows for upload of previous outputs. Could have
FR10 Backend does not halt when an identification is

running.
Must have

FR11 Backend starts the identification as soon as the in-
put is uploaded.

Must have

FR12 Backend must serve the current existing ap-
proaches/languages/parameters to the user.

Must have

FR13 Backend must signal the user when the identifica-
tion is completed.

Must have

FR14 Backend must signal the tool domain to start pro-
cessing a code.

Must have

FR15 Tool domain has at least one approach. Must have
FR16 Tool domain with each approach running sepa-

ratly.
Should have

FR17 Tool domain with extensible adapter for other ap-
proaches.

Must have

FR18 Tool domain signals the backend when it finishes
processing.

Must have

runtime receives the monolithic input and generates the candidate microservices, while the adapter

serves as a “middleman” between the tool runtime and the other components of the architecture.

Given that the tasks performed by the tool runtime component are asynchronous, the com-

munication between the tool runtime and the backend cannot be based on synchronous HTTP

request-response cycles. Instead, we will use a message queue to connect the two components,

with the use of message brokers. The backend will send a message to initiate a job, which will

be picked up by the appropriate adapter and executed by the tool runtime. Once the job is com-

pleted, the tool runtime will send another message to the backend to indicate that it is finished.

This approach allows us to process multiple jobs concurrently and avoid potential bottlenecks in

the communication between the tool runtime and the backend.

Tool Design 20

Table 4.2: Non-Functional Requirements

ID Requirement Priority
NFR01 Frontend must be deployed individually. Must have
NFR02 Frontend must be deployed using Docker. Must have
NFR03 Frontend could be split into multiple microser-

vices.
Could have

NFR04 Backend must be deployed individually. Must have
NFR05 Backend must be deployed using Docker. Must have
NFR06 Backend could be split into multiple microser-

vices.
Could have

NFR07 Tool domain should be deployed individually. Should have
NFR08 Each tool implementation deployed individually. Could have

4.3 Interface Overview

We created a set of mockups to guide the implementation of the application’s user interface.

These mockups served as visual representations of the intended design and layout of the user inter-

face, aiding in the visualisation and communication of the desired interface elements and interac-

tions. The mockups acted as a blueprint for the development process, assisting the implementation

in achieving the envisioned user interface design.

Figure 4.2 primarily facilitates the selection of the tool and programming language to be used,

thereby addressing the requirements FR01 and FR02. Figure 4.3 is dedicated to fulfilling FR05,

which pertains to the capability of uploading the project’s source code. Figure 4.4 addresses FR03,

which involves the ability to perform parameter tuning for each selected tool. This figure show-

cases the user interface elements and options that enable users to adjust and fine-tune parameters

associated with the chosen tool. Figure 4.5 illustrates the provision of feedback regarding the sta-

tus of the decomposition process after the project upload. This feedback mechanism keeps users

informed about the progress and status of the decomposition, allowing them to track the ongoing

process. Figure 4.6 focuses on the frontend’s capability to visualise the identified microservices

and facilitate comparisons between multiple identifications, addressing FR04 and FR06. This fig-

ure demonstrates the user interface elements that enable users to visually explore and analyse the

identified microservices, supporting the comparative analysis of different decompositions.

In Figure 4.6, we propose representing each microservice as a circular geometric shape, with

the shape’s size determined by a metric derived from the underlying tool. This metric could be

based on factors such as the number of classes, the amount of code, or any other relevant metric

determined by the tool. Additionally, we aim to illustrate the relationships between microservices

within the visualisation by a line in which microservice dependencies, call stacks, or data flow,

among other factors, define its stroke size.

4.3 Interface Overview 21

Figure 4.1: Application architecture

Tool Design 22

Figure 4.2: Tool/Language Selection

Figure 4.3: Project or Source Code upload

Figure 4.4: Per tool parameter tuning

4.3 Interface Overview 23

Figure 4.5: Decomposition Status

Figure 4.6: Decomposition Visualisation

Chapter 5

Solution Development

This section presents the prototype solution to the design mentioned in Chapter 4. We im-

plemented the system’s backend using Node.js, an open-source JavaScript runtime environment.

Despite JavaScript’s inherent limitations, such as its dynamic nature, employing Node.js allowed

us to rapidly prototype a solution, a crucial requirement in this work. To mitigate the drawbacks

associated with JavaScript, TypeScript was chosen as the primary programming language, bene-

fiting from its static typing and enhanced tooling capabilities. As for the frontend, we used UI

frameworks like React and SolidJS alongside TypeScript.

5.1 Technologies

Node.js

Node.js is an open-source runtime environment that enables the execution of JavaScript code

outside of the web browser. Initially developed in 2009 by Ryan Dahl as a response to the criti-

cisms he had expressed towards the widely used Apache HTTP Server [30].

In contrast to traditional execution models, where code is executed sequentially and relies

on thread mechanisms to prevent blocking, Node.js adopts a distinct approach. It capitalises on

JavaScript’s event loop [33] paradigm to manage asynchronous I/O operations. This event-driven

architecture enables Node.js to handle concurrent requests efficiently, maximising performance

[34].

Moreover, the Node.js ecosystem offers modules via npm1 that address various common chal-

lenges encountered in software development. These modules help with functionalities such as file

and network access, manipulation of binary data, cryptography, and other general-purpose tasks.

Node.js has become widely adopted as a versatile tooling platform for developing a wide

range of applications, even when those applications themselves do not run on Node.js. Notably,

frameworks such as React2, Vue3, and Angular4 utilise Node.js for tooling purposes, specifically
1https://www.npmjs.com/
2https://github.com/facebook/react
3https://github.com/vuejs/core
4https://github.com/angular/angular

24

https://www.npmjs.com/
https://github.com/facebook/react
https://github.com/vuejs/core
https://github.com/angular/angular

5.1 Technologies 25

for compiling their JavaScript framework code into browser-compatible JavaScript.

In the context of this work, Node.js is used for deploying both the backend and the underlying

tool system, while is also used as a build tool for the frontend.

TypeScript

TypeScript, an open-source language developed and maintained by Microsoft [48], is consid-

ered a superset of JavaScript that introduces static typing to the language [41]. The motivation

behind TypeScript originates from the shortcomings experienced when developing large-scale ap-

plications with JavaScript. While JavaScript offers speed and ease of use, as projects grow in size

and complexity, maintaining and updating it becomes increasingly challenging.

TypeScript brings some benefits, namely:

• Compilation: TypeScript code must be compiled to JavaScript before execution. This com-

pilation step allows developers to identify errors during the process. If there is an invalid

code, the compilation will fail, providing an opportunity to catch and rectify errors before

runtime.

• Strong and Static Typing: TypeScript introduces a type system that builds upon JavaScript.

While JavaScript permits variables to have any type, TypeScript enforces static typing, re-

quiring developers to explicitly declare the type of variables, functions, methods, and many

more. This approach promotes code clarity and helps prevent type-related errors by ensuring

that variables are assigned appropriate types and used correctly throughout the codebase.

For this work, TypeScript is used transversally across all implementations. Anytime JavaScript

is required, TypeScript is used instead.

NestJS

Kamil Myśliwiec created NestJS [42] to facilitate the development of efficient and scalable

backend applications using Node.js. This framework supports JavaScript and TypeScript lan-

guages, allowing developers to choose the language that best suits their project requirements.

One of the distinguishing features of NestJS is its ability to use various programming paradigms,

namely Functional Programming (FP), Object-Oriented Programming (OOP), and Functional Re-

active Programming (FRP). By incorporating elements from these paradigms, NestJS provides de-

velopers with a toolkit to build applications using a combination of functional and object-oriented

concepts that allow them to leverage the strengths of each approach, fostering code modularity,

maintainability, and reusability [42].

NestJS is an opinionated framework that draws inspiration from Angular and is similar to the

Spring framework for Java in the Node.js ecosystem. Like Spring, NestJS offers comprehensive

documentation outlining solutions to common backend challenges. It accomplishes this by pro-

viding adapters and integrations with popular existing solutions. With the speed, ease of use and

Solution Development 26

integrations it provides, NestJS is used for both the backend and the adapter implementation of the

tool.

Redis

Redis is an in-memory multi-model database famous for its sub-millisecond latency. It was

created in 2009 by Salvatore Sanfilippo [49] based on the idea that a cache can also be a durable

data store. Around this time, applications like Instagram [39] were growing exponentially and

needed a way to deliver data to their end users faster than a relation database could handle.

Redis, which means Remote Dictionary Server [45], was adopted by some of the most popular

sites in the world, because it changed the database game by creating a system in which data is

always modified or read from the main computer memory as opposed to the much slower disk, but

at the same time, it stores its data on the disk so it can be reconstructed as needed.

Every data point in the database is a key followed by a value that can be any of its many data

structures, like lists, sets, streams, json, an others [43]. It can be used as a distributed key-value

store, cache, and message broker [44]. This latter use case is exactly how Redis is used in the

context of this application, by serving as the communication mechanism between the backend and

the underlying tools. In the case of the implementation of the underlying tool, Redis is used as an

internal event queue.

Astro, React and Solid

One of the first decisions that we have considered is which target platform the tool should

support. There are three major platforms that are relevant for this purpose: macOS, Windows,

and Linux. Determining which of these platforms to focus on would require extensive surveying

to ensure that the tool will be used by the intended audience. While market share data suggests

that Windows is the most widely used desktop operating system, followed by macOS and Linux

[27], this may not necessarily reflect the operating systems used by the architects, engineers, and

developers who are responsible for migration. Given the limited time frame, it is infeasible to

conduct a thorough survey to determine the preferred operating system of this target audience. As

a result, we have decided to adopt a more cross-platform solution. After evaluating the options,

we have determined that the browser is the most suitable platform for this purpose.

One of the most difficult decisions of a frontend developer is choosing between the UI frame-

work; this is primarily due to the difficulty in switching once a particular framework is adopted.

Astro addresses this by adopting a framework-agnostic approach [28]. It enables the creation of

components in popular frameworks such as React, Svelte, Vue, Solid, among others, which trans-

lates into being unrestricted by the technological specifics of each framework, thereby enabling

the integration of components from various ecosystems to speed up the development process.

React, also known as React.js or ReactJS, is a popular frontend library utilised for constructing

component-based user interfaces [40]. Developed by Meta (formerly Facebook), React enables

5.2 Database 27

the development of single-page applications by providing a framework for building reusable and

modular components.

Solid is a JavaScript framework developed by Ryan Carniato [29], explicitly designed for cre-

ating interactive web applications. It empowers developers to leverage their existing knowledge

of HTML and JavaScript to construct reusable components that can be utilised across the entire

application. It shares most of React’s functionality but heavily focuses on bundle size and perfor-

mance [29].

Docker

Docker is a tool that can package software into containers that run reliably in any environment

[31]. One way to package an application is with a Virtual Machine (VM), where the hardware is

simulated and installed with the required Operating System (OS) and dependencies. It enables the

ability to run multiple applications on the same infrastructure; however, because each VM runs

alongside its OS, they tend to be bulky and slow. A Docker container is conceptually similar to a

VM, but instead of virtualising hardware, containers only virtualise the OS, which results in faster

and more efficient applications [32]. Figure 5.1 demonstrates this difference.

Figure 5.1: Container and Virtual Machines

Source: https://www.docker.com/resources/what-container/

5.2 Database

Structured Query Language (SQL) is generally considered the most effective programming

language for managing structured data. In our system, there are five fundamental entities:

1. Tool - represents the underlying tool utilised during the decomposition process. It encom-

passes the specific software or framework for breaking down a system into smaller compo-

nents.

https://www.docker.com/resources/what-container/

Solution Development 28

2. Language - signifies the programming languages that can be targeted for decomposition. It

encapsulates the various programming languages that the system supports for component

extraction.

3. Result - denotes whether a decomposition job succeeded or encountered any issues.

4. Decomposition - encapsulates the actual decomposition and includes all the necessary data

to represent it comprehensively.

5. Service - represents each microservice within the system.

The relationships between these entities are illustrated in Figure 5.2, visually depicting their

interconnections.

Figure 5.2: Database Model

5.3 Backend

As stated in Section 5.1, the entire backend of the system is developed using the Node.js run-

time, the TypeScript language, and the NestJS framework. Following the specifications outlined

in Chapter 4, both the backend and the tool adapter components are monolithic applications.

These components communicate through a message broker, utilising Redis as the underlying

technology for message queuing and delivery. This messaging system enables seamless interaction

and data exchange between the backend and the tool adapter, facilitating the flow of information

within the system’s infrastructure.

Figure 5.3 contains the entire decomposition workflow since the user requests a decomposition

for a given tool, until it receives the result.

1. Client uploads (FR05) the project alongside the tools it want to use for decomposition.

5.3 Backend 29

Figure 5.3: Decomposition Lifecycle

2. The backend signals each tool adapter (FR11, FR14) that matches the client’s request with

the unique identifier for that decomposition result as well as the identifier of the client’s

project on S3. This means the backend is free to handle new requests (FR10).

3. Each separate tool adapter (FR16) receives the unique identifier and starts an internal job

for decomposition.

4. Each separate tool adapter (FR16) receives the unique identifier and starts an internal job

for decomposition.

5. Upon finishing, each tool signals the backend (FR18) about the results, that are either suc-

cess or failure.

6. When the backend receives the results from each tool adapter, it updates the database with

the results so that it can always be accessible.

7. In the end, the backend reports back to the client with the status of the result (FR13).

5.3.1 API Design

The backend architecture follows the principles of the REST style and utilises JSON as the

format for data transportation. The implemented REST API adheres to the guidelines of Level 2 in

the Richardson Maturity Model [35], which signifies a high level of API maturity and conformity

to REST principles.

Table 5.1 provides a comprehensive depiction of the available endpoints within the backend.

These endpoints represent the various functionalities and operations that can be performed through

Solution Development 30

the API, allowing clients to interact with the backend system and access its resources. By conform-

ing to Level 2 of the Richardson Maturity Model, the backend ensures standardised and efficient

communication between clients and the server, enhancing interoperability and scalability.

Table 5.1: REST Endpoints

Endpoint/Method GET POST
/users N/A Creates a user
/tools Retrieves all tools N/A
/results Retrieves all results Creates a result
/results/:id Retrieves a result that matches

“:id”
N/A

/decompositions Retrieves all decompositions N/A
/decompositions/:id Retrieves a decomposition

that matches “:id”
N/A

/decompositions/:id/export Exports a decomposition that
matches “:id”

N/A

A lot of the time, when making calls to a REST API, there will be many results to return.

Therefore, we paginate the results to ensure responses are easier to handle. Let us say the initial

request asks for all the tools available; the result could be a massive response with hundreds of

thousands of tools. There are better places to start than that. Therefore, we have built a limit on

results to ensure that only that amount of results will be returned. This limit defaults to five results

per page but can be changed at will.

We employed pagination on endpoints that may return multiple results, that is on GET requests

to /tools, /results and /decompositions. This allow us to confidently serve the content the client

needs, for example, serving the existing a tools and corresponding data that composes each tool,

thereby completing FR12.

5.3.2 Authentication and Authorisation

The authentication and authorisation mechanisms implemented within the system serve mul-

tiple purposes. It allows users to retrieve their previous decompositions and separate their own

findings and knowledge from those of others. This ensures a personalised and enhanced user

experience when returning to the application (FR07).

Authentication, as a standalone concept, is not explicitly implemented. Users can be created

by making a POST request to the /users endpoint, which generates a new user without requiring

any additional fields.

On the other hand, authorisation is enforced for specific paths within the API. The paths /re-

sults and their subpaths, as well as /decompositions and their subpaths, require a user id to be

accessible. This mechanism ensures that each user’s content remains segregated, preventing mix-

ing or unauthorised access to other users’ data.

5.4 Frontend 31

To provide a seamless user experience, the API client (e.g., the frontend application described

in Section 5.4) needs to store the user id locally. This enables smooth integration when the user

returns to the application, allowing them to retrieve their personalised data and settings effortlessly.

Further implementation details of the frontend application can be found in Section 5.4.4, pro-

viding a comprehensive overview of how the frontend interacts with the backend API to deliver

the desired functionality and user experience.

5.4 Frontend

The application frontend is developed using Astro as the foundational framework while pri-

marily utilising React and Solid as the underlying UI frameworks. The frontend implementation

encompasses three main pages: the tool selection page, which also serves as the homepage, the

results page, and the comparison page.

1. Tool Selection Page/Homepage (Section 5.4.1) - serves as the initial interface where users

can select the desired tool for the decomposition process. It provides a user-friendly envi-

ronment for tool exploration and selection, enabling users to make informed decisions about

the tools they wish to utilise.

2. Results Page (Section 5.4.2) - displays the outcomes of the decomposition process. It

presents the findings and relevant information, showcasing the success or failure of each

decomposition job. Users can review and analyse the results, as well as select the decompo-

sitions for further comparison.

3. Comparison Page (Section 5.4.3) - facilitates a side-by-side evaluation of different decom-

position results or tool combinations. It allows users to compare and contrast the outcomes

of various decompositions, aiding in the identification of patterns, trends, and performance

differences among the different tools employed.

5.4.1 Tool Selection

The tool selection page necessitates the user to choose the underlying tool for the decomposi-

tion process. Currently, the only implemented tool available for selection is the one developed by

Brito et al. [55].

Figures 5.4 to 5.6 visually depict the step-by-step procedure involved in selecting a tool (FR01,

FR02), uploading a file (FR05), and waiting for the decomposition to be performed. These illus-

trations provide a clear representation of the user interface and the corresponding actions taken by

the user during the tool selection process. Figure 5.4 showcases the tool selection interface, where

the user can choose the desired tool. Figure 5.5 exhibits the file upload functionality, allowing

the user to upload a file that contains the project to be decomposed. Finally, Figure 5.6 illustrates

the waiting process as the system performs the decomposition, providing the user with a progress

indicator or other relevant information.

Solution Development 32

Figure 5.4: Tool Selection

Figure 5.5: Project Upload

5.4.2 Results

The results page displays a comprehensive overview of all the results from the user’s previous

decompositions. This page allows the user to select up to five decompositions for comparison

purposes, providing the flexibility to mix and match results from different runs of the tool.

Figures 5.7 and 5.8 provide a visual representation of the results page and showcase the user

interface elements and features available on this page, such as the list of decompositions, selection

checkboxes, and any other relevant information the underlying tool provides, like weigths, and

metadata.

5.4 Frontend 33

Figure 5.6: Awaiting Decomposition

Figure 5.7: All Results

5.4.3 Comparison

The comparison page serves as the core component of the solution, providing users with es-

sential functionalities. On this page, users can:

1. Visualise microservices generated by each decomposition, enabling users to gain insights

into the composition and structure of the system components (Section 5.4.3).

2. Toggle the visibility of decompositions allowing users to focus on the ones they want to

compare (Section 5.4.3).

Solution Development 34

Figure 5.8: Expanded Result

3. Focus on a microservice and check its constituent modules where users can delve into the

details of each microservice and understand its internal components (Section 5.4.3).

4. Compare modules across different decompositions, which helps users identify similarities,

differences, and variations in the composition of the system components (Section 5.4.3).

During the evaluation of various tools for visualising the comparison view, four options were

considered: Graphviz5, D3.js6, Gephi7, and Chart.js8. Each tool was assessed based on four

categories: Customizability, Ease of use, Charts available, and Real-time interactivity. A matrix

analysis was conducted (as presented in Table 5.2) to assess the strengths and weaknesses of each

tool.

Considering the industry’s preference for node graphs in presenting microservices [5] and

after careful consideration of the pros and cons, D3.js was determined to be the most powerful and

suitable visualisation tool for the specific use case.

In addition to having a powerful tool, the way information is presented and the visual elements

used are crucial. As suggested by Moody [17], using different shapes, colours, strokes, and line

dashes to depict entities and their relationships is an effective way of expressing variation between

entities in visualisations.

Table 5.3 illustrates how each visual representation tool expresses different entities, highlight-

ing the specific shapes and visual cues employed to convey information effectively.

5https://graphviz.org/
6https://d3js.org/
7https://gephi.org/
8https://chartjs.org/

https://graphviz.org/
https://d3js.org/
https://gephi.org/
https://chartjs.org/

5.4 Frontend 35

Table 5.2: Visualisation Tool Comparison

Visuali-
sation
Tool

Customizability Ease of use Charts available Real-time inter-
activity

Graphviz Limited customi-
sation options,
suitable for
creating static
diagrams and
graphs.

Easy-to-use syn-
tax, accessible to
non-experts.

Suitable for
creating static
diagrams and
graphs, with
limited support
for charts.

Limited interac-
tivity options.

D3.js Highly customis-
able, suitable for
creating custom
and interactive
visualisations.

Steep learning
curve, requires a
good understand-
ing of JavaScript
and web tech-
nologies.

Suitable for
creating a wide
range of charts,
including bar
charts, line
charts, scat-
terplots, and
more.

Provides ad-
vanced interac-
tivity options,
such as brushing
and zooming,
making it suit-
able for real-time
visualisations.

Gephi Customisable
with a range
of features, but
may have limited
design options.

User-friendly in-
terface, easy to
learn for begin-
ners.

Suitable for
creating net-
work graphs and
visualisations.

Allows users
to interact with
graphs and ma-
nipulate layouts
in real-time.

Chart.js Customisable
with various
options for color
schemes, font
styles, and ani-
mation effects.

Simple and
easy-to-use API,
minimal setup
required.

Supports com-
mon chart types
such as line
charts, bar charts,
pie charts, and
more.

Provides basic
interactivity
features such as
hover effects and
tooltips.

Table 5.3: Visual Expressiveness

Entity Shape Size Colour
Service Circle Variable according

amount of modules
Based selected de-
composition *

Module Square Static Mix between
selected decompo-
sitions

Relationships Line Static Static

* Each decomposition colour is random.

Microservices Visualisation

As mentioned in Section 3.4, there is currently a lack of existing tools that provide a unified

interface designed to inspect decomposed monolithic architectures. Most available tools gener-

Solution Development 36

ate output files, such as JSON, primarily intended for machine-to-machine communication rather

than human interpretation. As humans, our natural inclination is to comprehend information vi-

sually, and visual representations allow us to understand better and grasp the differences between

decompositions. Visual representations can convey complex concepts more effectively than tex-

tual representations, which require a comprehensive understanding of the underlying structure.

Therefore, developing an application that offers a visual representation of decomposed monolithic

architectures can significantly enhance the ability of humans to comprehend and analyse the de-

composition process.

Figure 5.9 provides a visual representation of three different decompositions. Among these

decompositions, two consist of clusters of microservices generated through the decomposition of

the same project. Consequently, a connection exists between the modules within these two de-

compositions, indicating the relationship between the corresponding microservices. On the other

hand, the third decomposition does not exhibit any connection or relationship with the other two

decompositions. This visual representation helps users differentiate between the decompositions

and perceive the interconnection of modules within related decompositions while highlighting the

third decomposition’s independent nature.

Figure 5.9: Comparison Page

Toggle Decompositions

The toggle visibility feature in the graphical interface allows users to control the display of

specific decompositions. This functionality proves beneficial in various scenarios, such as when

users want to concentrate solely on a single decomposition, compare two decompositions side

by side, or exclude a discarded decomposition from the view. Without this feature, all selected

5.4 Frontend 37

decompositions would remain in an active state, potentially cluttering the visual interface. Fig-

ure 5.10 showcases this toggle visibility feature on and off states, enabling users to easily switch

between displaying or hiding specific decompositions according to their needs and preferences.

(a) Off State

(b) On State

Figure 5.10: Toggle Decomposition

Microservice Focus

When a user clicks on a specific microservice within the graphical interface, the graph zooms

into the selected microservice’s centre. Additionally, a new window opens, providing detailed

Solution Development 38

information about the modules contained within the focused microservice. This approach en-

ables users to conduct a more in-depth analysis of each microservice, examining its composition

and internal structure. Furthermore, this functionality facilitates comparisons at the service level,

allowing users to compare multiple services across different decompositions. Figure 5.11 visu-

ally represents this feature, showcasing the zoomed-in graph with the focused microservice and

the accompanying window displaying the modules associated with the selected microservice. This

capability enhances the user’s ability to analyse and compare microservices within the application.

Figure 5.11: Microservice Focus

Modules Comparison

The application includes a toggle for visualising the modules within each microservice. This

feature is the visual counterpart to the Modules Comparison functionality discussed in Section 5.4.3.

However, there is a significant distinction. The toggle for visualising modules enables users to ob-

serve the connections and relationships between modules across different microservices and mi-

croservices from different decompositions. This capability aids users in visualising the mapping of

components from their original monolithic structure to their placement within microservices. Fig-

ure 5.12 illustrates this functionality, showcasing the visualisation of module connections across

microservices, facilitating a clearer understanding of the distribution and organisation of compo-

nents within the application.

5.4.4 Authentication and Authorisation

In order to enhance the user experience of the authentication and authorisation mechanism

described in Section 5.3.2, the application utilises local storage to store the user id. This approach

5.4 Frontend 39

Figure 5.12: Modules Visualisation

provides a seamless and persistent user experience by retaining the user’s identification informa-

tion across sessions (FR07). The flowchart depicting the logic of this process is presented in

Figure 5.13.

Figure 5.13: User ID storage Flowchart

However, it is essential to note that users can manually remove their user id from local storage.

This action carries the risk of losing access to all their previous decompositions. Therefore, users

should exercise caution when manually deleting their user id, as it may result in losing important

data and restrict their access to previous work within the application.

Solution Development 40

The idea behind this “crude” implementation was not have typical persistent authentication,

but more so to have a minimalist mechanism that helps the users in their decompositions and

evaluation.

5.5 Deployment

Each system component is deployed as a microservice (NFR01, NFR04, NFR07, NFR08) in

a Docker container (NFR02, NFR05) to facilitate scalability and cross-platform deployment. This

is especially important for the tool runtime component, as we do not care how the specific tool is

implemented as long as it subscribes to decompositions requests and publishes the decomposition

results from and to the message broker.

The application incorporates a Continuous Integration and Delivery (CI/CD) process. When-

ever a new push is made to the master branch of the Git repository, it triggers a GitHub Action that

initiates the build process and deploys the applications. The hosting platform used for the applica-

tion is Railway9. However, since the application is packaged with Docker, it can be hosted on any

platform that supports Docker images, as explained in Section 5.1. This flexibility allows the ap-

plication to be deployed to various hosting environments based on specific requirements and pref-

erences. The tool is currently available at https://frontend-mesw.brenosalles.com/,

and there is a video tutorial of the tool10.

5.6 Implemented requirements

From the comprehensive enumeration of requirements delineated in Tables 4.1 and 4.2, it

should be noted that their implementation still needs to be fully realised. This limitation in the

embodiment of all stipulated requirements can primarily be attributed to the existing time con-

straints.

Table 5.4: Not Implemented Requirements

ID Requirement Priority
FR03 Frontend allows for user parameter tunning. Must have *
FR08 Frontend allows for download of output. Could have **
FR09 Frontend allows for upload of previous outpus. Could have

* Parameter tuning was not implemented on the frontend, but the backend end expects the request
to have parameters.
** It is possible to export the decomposition, but the exportation content would need to be revised
to work with the upload requirement.

9https://railway.app/
10https://youtu.be/WQAAU9vQddA

https://frontend-mesw.brenosalles.com/
https://railway.app/
https://youtu.be/WQAAU9vQddA

5.6 Implemented requirements 41

Table 5.4 contains requirements that primarily pertain to enhancing the experience for users,

rather than directly impacting the core workflow of the application. These requirements were

identified as non-essential to the fundamental operational processes of the application.

Chapter 6

Empirical Validation

Empirical validation is used to validate a developed application. Thus, we prepared an empir-

ical study to confirm that it helps decompose monoliths.

In this section, we present an empirical study we designed and ran to evaluate to which extent

our tool actually aids in the migration of monoliths to microservices. The study design is presented

in Section 6.1, outlining the methodology and approach employed. Subsequently, Section 6.2

explains the execution of the study, providing details on how the validation process was carried

out. Data analysis is the primary focus of Section 6.3, where the collected data from the empirical

study is analysed and evaluated.

6.1 Design

As mentioned in Chapter 4, we developed an application to address RQ2 stated in Chapter 1.

It is important to note that the validation of such a tool is not solely based on the quality of the

microservices decomposition itself, as this responsibility lies with the underlying tools used for

decomposition. Instead, the validation focuses on how effectively and efficiently the application

aids architects, engineers, and developers in their migration processes.

The study conducted aims to evaluate the effectiveness and efficiency of users utilising the

application in performing decomposition tasks. Once participants complete the task, they are

requested to fill out a questionnaire based on the System Usability Scale (SUS) [4] and Raw Task

Load Index (Raw-TLX) [11].

The target audience for this study is software developers, engineers, and architects at various

levels of expertise. We created a questionnaire (Appendix A) that serves as a structured tool

for collecting data and participant feedback, aiding in evaluating and analysing the application’s

usability and task workload performance.

6.1.1 Subjects and Objects

In the study, the subjects refer to the individuals who are the target participants for evaluation.

In contrast, the objects refer to the tasks or activities the participants perform during the study.

42

6.1 Design 43

For the subjects, the study aims to target a broad demographic of participants. The popula-

tion includes senior-level developers, engineers, and architects who can assess the viability of the

application in their migration processes and more junior-level users looking into a more acces-

sible entry point for monolith decompositions. By including participants from both ends of the

experience spectrum, the study can gather insights and feedback from a diverse range of users.

As for the objects, the subjects are required to complete a monolith decomposition task. The

specific tasks are consistent across all participants, but the monolith projects targeted for decom-

position differ. Three projects are considered, one serving as a tutorial or instructional example,

while the other two are reserved for the participants to apply the application to their respective

tasks. The choice of projects varies regarding the number of classes and complexity, providing a

heterogeneous study environment.

6.1.2 Instrumentation

As mentioned in Section 6.1.1, three specific projects have been selected to be used in this

study. The tutorial project, designated as YarkAdminMS1, consists of sixty-nine classes [55].

Task number one (Figure 6.1a) utilises a Warehouse System2 project with a total of seventy-nine

classes [55], while task number two (Figure 6.1b) is based on a Petclinic System3 project with

forty classes. All of these projects are implemented in Java since, currently, the application sup-

ports Java as the primary language for decomposition. It is worth noting that the projects used

in the study were forked into the author’s GitHub account to ensure permanent accessibility and

availability for the study.

(a) Task 1 Content

1https://github.com/Guergeiro/Yark-AdminMS
2https://github.com/Guergeiro/Warehouse-system
3https://github.com/Guergeiro/spring-petclinic

https://github.com/Guergeiro/Yark-AdminMS
https://github.com/Guergeiro/Warehouse-system
https://github.com/Guergeiro/spring-petclinic

Empirical Validation 44

(b) Task 2 Content

Figure 6.1: Tasks Contents

6.1.3 Pre Study

The purpose of an empirical study is to ensure that the study accurately reflects the functional-

ity and performance of the application. It is crucial to minimise any potential issues arising from

the study design or tasks that could affect participants’ responses, ensuring that their feedback

reflects the application’s performance.

We employed an iterative approach of conducting mock studies with live support. Participants’

experiences and difficulties were carefully observed and noted during these mock studies. Exactly

two mock studies were conducted.

Based on the feedback received and the observations made during the mock studies, we made

improvements and adjustments to the study design and tasks. The aim was to address and rectify

any issues identified during the mock runs, ensuring that the final study provided participants with

a smoother and more authentic experience.

To mitigate bias and prevent participants from being influenced by prior knowledge or expe-

rience with the study, individuals who participated in the mock runs were automatically excluded

from the final study, helping to maintain the integrity of the study results by ensuring that the

responses obtained are unbiased and representative of the application’s performance.

6.2 Execution 45

6.1.4 Data Collection

The study is divided into eighth parts. The questionaire presented in Appendix A contains the

following sections:

1. Small video4 describing what microservices are.

2. Background questionaire about age, years of industry experience, etc. Figure A.1

3. A tutorial about the application in video5 format.

4. The task section where users are required to take note of start and end time. Figure A.2

5. A section where users should paste what they think is the best decomposition for the given task,

including a video6 on how to fill it. Figure A.3

6. System Usability Scale. Figure A.4

7. Raw Task Load Index. Figure A.5

8. An optional section where general feedback is appreciated. Figure A.6

6.2 Execution

The study was disseminated among professional colleagues, academic peers, and within the

open-source communities to ensure diverse participants. The optimisation described in Sec-

tion 6.1.3 allowed for asynchronous participation, making it more convenient for participants to

engage in the study. Nevertheless, real-time assistance was provisioned in case of issues arising.

Participants were required to validate their knowledge of microservices. Initially, those with

limited prior knowledge could watch a small video to provide a basic understanding of microser-

vices concepts. Following this, participants completed a questionnaire that collected background

information such as age, gender, industry and academic experience, educational level, and profi-

ciency in programming languages.

A tutorial follows, demonstrating an example task and explaining the expected approach. Par-

ticipants were then assigned their specific tasks and asked to replicate the steps demonstrated in

the tutorial.

Afterwards, participants were asked to explore the application’s multiple decompositions,

compare them and use the entire feature list to identify the microservice they believed to be the

best for their assigned task, as well as providing a rationale for choosing a particular decom-

position. Additionally, participants filled out the System Usability Scale and Task Load Index

questionnaires to assess the usability and perceived workload of the application.

4https://youtu.be/lTAcCNbJ7KE
5https://youtu.be/WQAAU9vQddA
6https://youtu.be/3SVlrkiFNmU

https://youtu.be/lTAcCNbJ7KE
https://youtu.be/WQAAU9vQddA
https://youtu.be/3SVlrkiFNmU

Empirical Validation 46

Finally, an optional section was included where participants were encouraged to provide ad-

ditional feedback on the tool, allowing them to share any additional thoughts, suggestions, or

comments they had.

6.3 Analysis

We have collected fifteen participants’ answers, and by analysing the data from these partici-

pants, the findings will contribute to understanding the application’s effectiveness, usability, and

user experience, providing valuable information for further improvements and future research.

6.3.1 Subjects

During the study, basic information about each participant was collected, including their gen-

der, age group, academic level, years of industry and academic experience, regularity of working

with microservices, the duration of their experience with microservices, and the number of mono-

liths they have assisted in decomposing.

Notably, the collected data indicates that 100% of the participants in the study were male, with

the age distribution observed in Figure 6.2.

Figure 6.2: Subjects Age Distribution

The distribution of years of experience, considering both industry and academic realms, can

be found in Figure 6.3, and by examining this distribution, it is possible to identify individuals

with wide industry experience, academic expertise, or a combination of both. This differentiation

is vital to understand the varied perspectives and knowledge participants bring to the study. It

6.3 Analysis 47

also aids in analysing how their backgrounds and experience may influence their perceptions,

evaluations, and performance during the decomposition tasks.

Figure 6.3: Years of Experience Distribution

The study categorised their level of experience with microservices into four categories: those

who have never worked with microservices, those who have worked with microservices at least

once per month, those who have worked with microservices at least once per week, and those who

have worked with microservices daily.

Figure 6.4 provides a visualisation of the participants’ frequency of working with microser-

vices in their professional activities.

The study also considered the participants’ experience working with microservices and the

number of monolith decompositions they had undertaken, as presented in Figures 6.5 and 6.6.

6.3.2 System Usability Scale

The System Usability Scale (SUS) is a ten-question questionnaire, each with a five-point re-

sponse scale ranging from Strongly Disagree to Strongly Agree. These questions are divided into

two types:

1. Odd-numbered items, considered the positive statements (Figure 6.7a).

2. Even-numbered items, considered the negative statements (Figure 6.7b).

The division of the questions into positive and negative statements provides valuable insights

into the overall usability of the application. Better user experience and usability mean the ques-

tionnaire tends to have higher evaluations (agreement) on positive statements. Conversely, lower

Empirical Validation 48

Figure 6.4: Frequency of work related with microservices

Figure 6.5: Years working with microservices

evaluations (disagreement) are desired on negative statements, indicating fewer usability issues or

challenges. The aim is to achieve higher ratings on the positive statements and lower ratings on

the negative statements, as this indicates a more favourable user perception of the application’s

6.3 Analysis 49

Figure 6.6: Amount of monoliths decomposed

usability.

By analysing the results of the statements in Figure 6.7, it becomes evident that most partici-

pants provided higher evaluations for the positive statements. Approximately 79% of participants

rated these positive statements at level four or higher, indicating a positive perception of the appli-

cation’s usability, while only a tiny proportion (7%) of participants selected level two or lower for

the positive statements.

On the other hand, the negative statements received lower evaluations from the participants.

Around 81% of participants rated these negative statements at level two or lower, suggesting a rel-

atively low occurrence of usability issues, and a minimal percentage (5%) of participants provided

evaluations at level four or higher for the negative statements.

The average SUS Score for each participant was found to be 80.3 out of 100, indicating a

generally positive perception of the application’s usability. The median SUS Score was calculated

to be 85 out of 100, further supporting the positive evaluation.

The quartiles, representing the distribution of the SUS Scores, are presented in Table 6.1.

Additionally, a corresponding box plot graphic in Figure 6.8 visualises the distribution of the

scores, providing a visual representation of the SUS Score data.

Participants with experience in microservices, those who have worked with microservices and

have experience in decomposing monoliths into microservices, have higher evaluations in positive

statements and lower evaluations in negative statements, as evidenced in Figures 6.9a and 6.9b,

respectively.

Empirical Validation 50

(a) Positive Statements

(b) Negative Statements

Figure 6.7: Statements Results SUS

6.3.3 Raw-TLX

The National Aeronautics and Space Administration (NASA) developed NASA Task Load

Index (NASA-TLX) to evaluate subjective workload. It employs a multi-dimensional rating ap-

6.3 Analysis 51

Table 6.1: SUS Quartiles

Quartile Value
0 42,5
1 65.75
2 85
3 93.75
4 97.5

Figure 6.8: SUS Box Plot

proach considering the weighted average ratings of six subscales. These subscales assess various

aspects of workload experienced by participants, including subjective mental demand, physical de-

mand, time demand, performance, effort, and frustration levels in a ten-point response scale [12].

In the study context, the Raw Task Load Index (Raw-TLX) is used as a simplified version of

the NASA-TLX. One potential difference is that NASA-TLX incorporates a weighting process to

adjust each scale to an individual’s perception of workload [12]. In contrast, Raw-TLX omits this

weighting process to maintain simplicity and ease of application [11].

In alignment with the use of Raw-TLX, the study also omitted one of the scales, Physical

Demand, as it did not apply to the specific context of the task. The omission of this scale was due

to its lack of relevance in assessing the workload associated with the decomposition tasks in the

study. Not omitting the scale could skew the overall score since all scales have equal weight, that

is, 6
100 . From all scales of Raw-TLX, only the Performance scale considers higher evaluations as

positive. As for the other four scales, having a high score is considered harmful.

Empirical Validation 52

(a) Positive Statements

(b) Negative Statements

Figure 6.9: Experienced Participants Statements Results SUS

The Raw Task Load Index (Raw-TLX) was conducted to collect information on the effort

required to complete the monolith decomposition tasks using the application. Then we calculated

each category’s average and median scores separately for each task. Task 1 and 2 results and

6.3 Analysis 53

scores are presented in Tables 6.2 and 6.3 as well as visualy in Figures 6.10 and 6.11, respectively.

Table 6.4 combines Task 1 and Task 2 results and the general average and median to pro-

vide a comprehensive overview of the perceived workload across both tasks. The visualisation

in Figure 6.12 allows for comparing and analysing the workload distribution across the different

categories for the overall study. Each line in all three graphs represents a different participant and

the task they were each assigned.

Table 6.2: Task 1 Results Table

Mental
Demand

Temporal
Demand

Perfor-
mance

Effort Frustration

Average 4.71 4.14 4.71 4.86 3.43
Median 5.0 4.0 4.0 5.0 3.0

Figure 6.10: Task 1 Graph

Table 6.3: Task 2 Results Table

Mental
Demand

Temporal
Demand

Perfor-
mance

Effort Frustration

Average 4.13 4.75 5.75 5.00 3.25
Median 4.0 5.0 7.0 5.5 2.5

Empirical Validation 54

Figure 6.11: Task 2

Table 6.4: Tasks Results Table

Mental
Demand

Temporal
Demand

Perfor-
mance

Effort Frustration

Average 4.40 4.47 5.27 4.93 3.33
Median 4.0 4.0 5.0 5.0 3.0

6.3 Analysis 55

Figure 6.12: Tasks Results

Chapter 7

Discussion

This chapter discusses the results from each evaluation metric, including the SUS and Raw-

TLX shown in Section 6.3, their implications and some questions associated with each specific

evaluation question.

Additionally, the chapter addresses the threats to the validity of the study results and includes

an exploration of potential limitations and biases that may have influenced the findings.

7.1 Results evaluation

Can the application exhibit a good usability for decomposing?
The application demonstrates good usability based on the results and discussions presented

in Section 6.3.2. The SUS scores, as indicated by the average of 80.3 and median of 85, reflect

positive evaluations from the participants. The SUS is a widely used questionnaire to measure

usability, and the high scores suggest that the participants found the application user-friendly,

intuitive, and easy to use.

Furthermore, the analysis of the SUS questionnaire’s positive and negative statements reveals

that the participants generally agreed with the positive statements, indicating their satisfaction with

the application’s usability. Conversely, they disagreed with the negative statements, suggesting

they did not encounter significant usability issues or challenges while using the application.

The positive evaluations and feedback from the participants regarding usability provide strong

evidence that the application is well designed and effectively supports the monolith decomposition

tasks.

Does the application provide a low workload?
While looking at results obtained in Raw-TLX, Section 6.3.3, the participants rated the work-

load according to five categories: Mental Demand, Temporal Demand, Performance, Effort and

Frustration.

The usage of our application did not frustrate the participants, having an average and median

frustration of 3.33 and 3 points, respectively.

56

7.1 Results evaluation 57

In regards to performance, the results are more balanced. Subjects did not feel that the tool

would have improved their decompositions, scoring an average of 5.27 and a median of 5. This

result contradicts some results of Section 6.3.2 and could be related to the fact that this question’s

positive answer shifted to the left instead of keeping on the right; that is, higher evaluations are

considered negative instead of positive. In fact, 27% of the participants that scored a SUS greater

or equal to 70 answered as a 7 out of 10 regarding their success on the decomposition, which could

indicate participants were distracted while filling out this part of the questionnaire. This can be

visualised in Figure 7.1 (for a better visualisation, Raw-TLX Performance was scaled to match

SUS scale).

Figure 7.1: SUS vs Raw-TLX Performance

As for effort, subjects scored an average of 4.93 and a median of 5, which means that the

participants felt indifferent to how hard they had to work to obtain their performance results.

The two demand levels score similarly, with 4 as the median and 4.40 4.47 for mental and

temporal demand, respectively. This means subjects did not find the task mentally demanding or

felt time pressure.

Overall, the application provided a mixed workload performance.

Despite the highly positive SUS scores, the Raw-TLX ratings were relatively underwhelming.

A possible explanation for this discrepancy is the absence of contextual information provided dur-

ing the task. Users relied solely on the application to assist them in the decomposition process and

encountered particular challenges and frustrations, which may have resulted in slightly negative

sentiments. It would be beneficial to introduce a two-step approach to address this issue. Initially,

Discussion 58

users could engage in a decomposition task without utilising the application, followed by a subse-

quent task, using a different project, involving employing the tool. This sequential methodology

has the potential to yield improved outcomes. Also, since decomposing a monolith into microser-

vices is a difficult task, not having something for participants to compare the results to, may affect

the perception on how much the application helps them.

7.2 Threats to validity

The study aimed to demonstrate that using the application for performing monolith decom-

position tasks is better than not using it. Throughout the study, various threats to validity were

identified and categorised into two main categories according to Wohlin et al [26]: internal valid-

ity, conclusion validity, construct validity, and external validity.

7.2.1 Internal validity

A potential threat to the study is the absence of a control or test group. Without a comparison

group, it becomes challenging to establish a clear causal relationship between the treatment (use

of the application) and the outcome (usability and workload evaluations). The lack of a control

group limits our ability to determine whether any observed changes or improvements in usability

and workload are specifically attributable to the use of the application or could be influenced by

other factors. We advise that this study ins performed with a control group.

7.2.2 Conclusion validity

As outlined in Section 6.3, the study was conducted with a relatively small sample size of

fifteen participants, which may lead to reduced statistical power. To help mitigate this, we invited

participants with diverse backgrounds, including varying levels of industry expertise, academic

expertise, and familiarity with microservices.

Furthermore, the asynchronous nature of the experiment introduces a potential challenge in

controlling the participants’ environment and level of focus during the tasks. To mitigate this

issue, the study aimed to provide a smooth and user-friendly experience, as discussed in Section

Section 6.1.3.

There is also the argument that drawing general conclusions from only two tasks presents

a limitation in terms of generalizability. It is hard to balance the subject’s interest in the study

while trying to extract as much data from them as possible. However, to address this limitation,

two projects with different sizes and domains were included in the study (as explained in Sec-

tion 6.1.2).

7.2.3 Construction validity

One threat is the degree to which the study’s measurements accurately capture the intended

constructs or concepts using the correct metrics to evaluate results. In our case, we wanted to

7.2 Threats to validity 59

measure the usability and workload of the application developed, and measures such as the System

Usability Scale (SUS) and Raw Task Load Index (Raw-TLX) were employed to assess them, as

mentioned in Sections 6.3.2 and 6.3.3.

7.2.4 External validity

One potential threat is the pre-test-treatment interaction, where interaction with participants

before the study may sensitise them to aspects of the study. The interaction with the subjects

before participating in the study was minimal and focused on providing the required instructions

and support, essential in maintaining the study’s validity and scores.

Chapter 8

Conclusion

Microservices are becoming more popular in the development of new applications. Many

businesses, both large and small, are using microservices to design and deliver applications more

rapidly and efficiently [46]. Microservices are especially well-suited for distributed, cloud-based

systems, where they may benefit from the cloud’s flexibility and scalability [36].

We performed a literature review on the subject of migratin architecture from monolithic ap-

plications to microservices for this study. A total of one hundred and six primary research contri-

butions were chosen, categorised, and analysed using a clear research protocol in order to collect

pertinent migration data. A tool’s target programming languages, the processes it uses to con-

vert monolithic inputs into microservices, and the output of these identified microservices are the

subject of analysis in this study.

Tool input needs were examined first. Despite increased interest in microservice migration

using automated tools, the topic is still young, and current solutions have strict inputs rather than

being adaptable. Raw source code and OpenAPI were one method tools to identify microservices

from monoliths.

As for how existing tools output their identified microservices, the outcome would ideally be

fully functional code ready for deployment, as it would make the migration process smoother and

ensure that the resulting microservices have all necessary components, thus reducing the effort

needed for manual migration. From the research analysed, common outputs from microservices

identification tools include a list of candidates and source code.

Based on the literature review and analysis, we found limited tools to aid the migration process

from monoliths to microservices. Seven free and open-source tools were identified, each with

varying levels of completeness.

In terms of an application that aggregates these tools to assist architects, engineers, and de-

velopers in microservice migration, we have yet to find an existing application to fulfil this role.

Therefore, the dissertation proposes a solution to this gap by providing a user-friendly and consol-

idated platform for microservice migration activities.

The application architecture consists of three distinct components. The frontend is responsible

for the interface between the tool logic and the user. The backend serves as a bridge between

60

8.1 Future Work 61

the frontend, the database of available tools, and the tool domain. Each tool’s adapter provides

a consistent interface for interacting with the tool runtime. Each component of the application

architecture is be deployed as a microservice in a Docker container to facilitate scalability and

cross-platform deployment. This approach allows us to process multiple jobs concurrently and

avoid potential bottlenecks in the communication between the tool runtime and the backend.

Decomposing monolithic architectures into microservices primarily involves labour-intensive

and time-consuming manual work, coupled with the difficulty of identifying functional units due to

the complex analysis required across multiple dimensions of the software architecture. However,

the application proposed in this study’s experiment favourably impacted the participants.

As evidenced by the positive evaluations and high scores obtained in the SUS, participants

perceived the application as user-friendly, intuitive, and easy to navigate.

Regarding the workload, the application did not yield significant effects on the decomposition

process of monolithic architectures, as the performance results were mixed.

8.1 Future Work

Given that software development is never finished, there are two areas for future improve-

ments: enhancements to the application and refinements in the evaluation process.

In terms of application improvements, valuable insights were obtained through the feedback

questionnaire (depicted in Figure A.6), leading to the identification of several potential future

enhancements:

• Enhancing metadata descriptions for improved comparisons: The application only presents

metadata metrics without accompanying explanations for each metadata. It would be ben-

eficial to provide descriptions for metadata attributes to facilitate better understanding and

comparisons. One participant stated “Add explanation for terms like Modularity and Reso-

lution”, while other “ The modularity and resolution could be explained a bit further”.

• Implementing decomposition tracking features: Introducing functionality to track de-

compositions would enable users to manage and differentiate between various decomposi-

tions, like selecting favourites or marking decompositions as already viewed. Such features

assist users in discarding irrelevant decompositions while retaining others for future com-

parisons. As suggested by one participant “When selecting decomposition results for com-

parison, having an option to mark each decomposition result as viewed or analyzed would

help the use”, and another stated “Save decomposition id, like a favorites menu”.

• Establishing bidirectional relationships between microservices and modules: When fo-

cusing on a specific microservice, the application displays the list of modules that compose

it. However, this relationship is unidirectional. It would be advantageous to establish a

two-way association, enabling users to select a module and visualise all the corresponding

microservices across different decompositions. The suggestion is “Have a list of classes

Conclusion 62

and when selected show in the graph in which service it belongs to (even when comparing

multiple decompositions)”

• Incorporating refactoring tools: Providing a preview step for tools before the refactoring.

At the moment, there are some tools that already do code refactor [57], but do not provide

a way of previewing it. It could be benefitial to “inject” this solution in the middle of the

process, going from decomposition, into visualisation, into refactoring.

In terms of evaluation improvements, some considerations should be taken into account for

future studies, specifically:

• Expanding the respondent pool: Increasing the number of participants in evaluations can

enhance the reliability and generalizability of the findings. A more extensive and diverse

group of respondents can capture a more comprehensive range of perspectives and experi-

ences, leading to more robust conclusions.

• Incorporating a comparative approach: Participants should be engaged in both tasks, one

without utilising the application and only using the underlying tools and another while using

the application. By comparing the outcomes and experiences between these two scenarios,

the added value and impact of the application can be assessed more accurately. Additionally,

employing different tasks with similar-sized projects can help evaluate the application’s

performance across various contexts and validate its usefulness in different scenarios.

• Broadening the task pool and project size range: Diversifying the available tasks and

expanding the range of project sizes used in evaluations contribute to a more comprehensive

assessment of the application.

References

[1] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Migrating to cloud-native ar-

chitectures using microservices: an experience report. In Advances in Service-Oriented and

Cloud Computing: Workshops of ESOCC 2015, Taormina, Italy, September 15-17, 2015,

Revised Selected Papers 4, pages 201–215. Springer, 2016.

[2] Paul Becker, Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.

Refactoring: improving the design of existing code. Addison-Wesley Professional, 1999.

[3] Kevin Brennan et al. A Guide to the Business Analysis Body of Knowledger. Iiba, 2009.

[4] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in industry,

189(194):4–7, 1996.

[5] Tomas Cerny, Amr S Abdelfattah, Vincent Bushong, Abdullah Al Maruf, and Davide Taibi.

Microservice architecture reconstruction and visualization techniques: A review. In 2022

IEEE International Conference on Service-Oriented System Engineering (SOSE), pages 39–

48. IEEE, 2022.

[6] Lianping Chen. Microservices: architecting for continuous delivery and devops. In 2018

IEEE International conference on software architecture (ICSA), pages 39–397. IEEE, 2018.

[7] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points.

science, 315(5814):972–976, 2007.

[8] Erich Gamma, Ralph Johnson, Richard Helm, Ralph E Johnson, and John Vlissides. Design

patterns: elements of reusable object-oriented software. Pearson Deutschland GmbH, 1995.

[9] Konrad Gos and Wojciech Zabierowski. The comparison of microservice and monolithic

architecture. In 2020 IEEE XVIth International Conference on the Perspective Technologies

and Methods in MEMS Design (MEMSTECH), pages 150–153. IEEE, 2020.

[10] David Gough, Sandy Oliver, and James Thomas. An introduction to systematic reviews.

Sage, 2017.

[11] Sandra G Hart. Nasa-task load index (nasa-tlx); 20 years later. In Proceedings of the human

factors and ergonomics society annual meeting, volume 50, pages 904–908. Sage publica-

tions Sage CA: Los Angeles, CA, 2006.

63

REFERENCES 64

[12] Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load index): Results

of empirical and theoretical research. In Advances in psychology, volume 52, pages 139–183.

Elsevier, 1988.

[13] Manabu Kamimura, Keisuke Yano, Tomomi Hatano, and Akihiko Matsuo. Extracting candi-

dates of microservices from monolithic application code. In 2018 25th Asia-Pacific Software

Engineering Conference (APSEC), pages 571–580. IEEE, 2018.

[14] Justas Kazanavičius and Dalius Mažeika. Migrating legacy software to microservices ar-

chitecture. In 2019 Open Conference of Electrical, Electronic and Information Sciences

(eStream), pages 1–5. IEEE, 2019.

[15] Barbara Kitchenham, O Pearl Brereton, David Budgen, Mark Turner, John Bailey, and

Stephen Linkman. Systematic literature reviews in software engineering–a systematic lit-

erature review. Information and software technology, 51(1):7–15, 2009.

[16] Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic literature

reviews in software engineering. 2007.

[17] Daniel Moody. The “physics” of notations: toward a scientific basis for constructing visual

notations in software engineering. IEEE Transactions on software engineering, 35(6):756–

779, 2009.

[18] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. Microservice archi-

tecture: aligning principles, practices, and culture. " O’Reilly Media, Inc.", 2016.

[19] Sam Newman. Monolith to microservices: evolutionary patterns to transform your monolith.

O’Reilly Media, 2019.

[20] Sam Newman. Building microservices. " O’Reilly Media, Inc.", 2021.

[21] Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai Josuttis.

Microservices in practice, part 2: Service integration and sustainability. IEEE Software,

34(02):97–104, 2017.

[22] Zhongshan Ren, Wei Wang, Guoquan Wu, Chushu Gao, Wei Chen, Jun Wei, and Tao Huang.

Migrating web applications from monolithic structure to microservices architecture. In Pro-

ceedings of the tenth asia-pacific symposium on internetware, pages 1–10, 2018.

[23] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster

analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[24] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Processes, motivations, and issues for

migrating to microservices architectures: An empirical investigation. IEEE Cloud Comput-

ing, 4(5):22–32, 2017.

REFERENCES 65

[25] Karl Wiegers and Joy Beatty. Software requirements. Pearson Education, 2013.

[26] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders

Wesslén. Experimentation in software engineering. Springer Science & Business Media,

2012.

Webliography

[27] Desktop operating system market share worldwide. https://gs.statcounter.com/

os-market-share/desktop/worldwide/. Last accessed 7 January 2023.

[28] Astro. Why astro? https://docs.astro.build/en/concepts/why-astro/. Last

accessed 15 June 2023.

[29] Ryan Carniato. Introducing the solidjs ui library. https://dev.to/ryansolid/

introducing-the-solidjs-ui-library-4mck. Last accessed 26 June 2023.

[30] Ryan Dahl. Original node.js presentation. https://youtu.be/ztspvPYybIY, 2009.

Last accessed 15 June 2023.

[31] Docker. The industry-leading container runtime. https://www.docker.com/

products/container-runtime/. Last accessed 15 June 2023.

[32] Docker. What is a container? https://www.docker.com/resources/

what-container/. Last accessed 15 June 2023.

[33] Mozilla Foundation. The event loop. https://developer.mozilla.org/en-US/

docs/Web/JavaScript/Event_loop. Last accessed 15 June 2023.

[34] OpenJS Foundation. The event loop. https://nodejs.org/en/docs/guides/

event-loop-timers-and-nexttick#what-is-the-event-loop. Last accessed

15 June 2023.

[35] Martin Fowler. Richardson maturity model. https://martinfowler.com/

articles/richardsonMaturityModel.html. Last accessed 15 June 2023.

[36] Martin Fowler. Microservice prerequisites. https://martinfowler.com/bliki/

MicroservicePrerequisites.html, 2014. Last accessed 4 January 2023.

[37] Martin Fowler. Microservices. https://martinfowler.com/articles/

microservices.html, 2014. Last accessed 4 January 2023.

[38] Martin Fowler. Microservice trade-offs. https://martinfowler.com/articles/

microservice-trade-offs.html, 2015. Last accessed 4 January 2023.

66

https://gs.statcounter.com/os-market-share/desktop/worldwide/
https://gs.statcounter.com/os-market-share/desktop/worldwide/
https://docs.astro.build/en/concepts/why-astro/
https://dev.to/ryansolid/introducing-the-solidjs-ui-library-4mck
https://dev.to/ryansolid/introducing-the-solidjs-ui-library-4mck
https://youtu.be/ztspvPYybIY
https://www.docker.com/products/container-runtime/
https://www.docker.com/products/container-runtime/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Event_loop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Event_loop
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick#what-is-the-event-loop
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick#what-is-the-event-loop
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/bliki/MicroservicePrerequisites.html
https://martinfowler.com/bliki/MicroservicePrerequisites.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html

WEBLIOGRAPHY 67

[39] Mike Krieger. Storing hundreds of millions of simple key-

value pairs in redis. https://instagram-engineering.com/

storing-hundreds-of-millions-of-simple-key-value-pairs-in-redis-1091ae80f74c.

Last accessed 26 June 2023.

[40] Meta. Describing the ui. https://react.dev/learn/describing-the-ui. Last

accessed 26 June 2023.

[41] Microsoft. Typescript for the new programmer. https://www.typescriptlang.org/

docs/handbook/typescript-from-scratch.html. Last accessed 15 June 2023.

[42] Kamil Mysliwiec. Nestjs documentation. https://docs.nestjs.com/. Last accessed

15 June 2023.

[43] Redis. Redis data types. https://redis.io/docs/data-types/. Last accessed 15

June 2023.

[44] Redis. Using redis. https://redis.io/docs/manual/. Last accessed 15 June 2023.

[45] Redis. Where does the name "redis" come from? https://redis.io/docs/

getting-started/faq/#where-does-the-name-redis-come-from. Last ac-

cessed 15 June 2023.

[46] Chris Richardson. Microservice architecture. https://microservices.io/

patterns/microservices.html. Last accessed 4 January 2023.

[47] Chris Richardson. Who is using microservices. https://microservices.io/

articles/whoisusingmicroservices.html. Last accessed 4 January 2023.

[48] Jonathan Turner. Announcing typescript 1.0. https://devblogs.microsoft.com/

typescript/announcing-typescript-1-0/, 2014. Last accessed 15 June 2023.

[49] VentureBeat. A conversation with salvatore sanfilippo, creator of the open-source database

redis. https://venturebeat.com/dev/redis-creator/. Last accessed 26 June

2023.

https://instagram-engineering.com/storing-hundreds-of-millions-of-simple-key-value-pairs-in-redis-1091ae80f74c
https://instagram-engineering.com/storing-hundreds-of-millions-of-simple-key-value-pairs-in-redis-1091ae80f74c
https://react.dev/learn/describing-the-ui
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
https://docs.nestjs.com/
https://redis.io/docs/data-types/
https://redis.io/docs/manual/
https://redis.io/docs/getting-started/faq/#where-does-the-name-redis-come-from
https://redis.io/docs/getting-started/faq/#where-does-the-name-redis-come-from
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://microservices.io/articles/whoisusingmicroservices.html
https://microservices.io/articles/whoisusingmicroservices.html
https://devblogs.microsoft.com/typescript/announcing-typescript-1-0/
https://devblogs.microsoft.com/typescript/announcing-typescript-1-0/
https://venturebeat.com/dev/redis-creator/

Systematic Literature Review
References

[50] Shivali Agarwal, Raunak Sinha, Giriprasad Sridhara, Pratap Das, Utkarsh Desai, Srikanth

Tamilselvam, Amith Singhee, and Hiroaki Nakamuro. Monolith to microservice candidates

using business functionality inference. In 2021 IEEE International Conference on Web Ser-

vices (ICWS), pages 758–763. IEEE, 2021.

[51] Omar Al-Debagy and Peter Martinek. A new decomposition method for designing microser-

vices. Periodica Polytechnica Electrical Engineering and Computer Science, 63(4):274–281,

2019.

[52] Omar Al-Debagy and Peter Martinek. A microservice decomposition method through using

distributed representation of source code. Scalable Computing: Practice and Experience,

22(1):39–52, 2021.

[53] Lars van Asseldonk. From a monolith to microservices: the effect of multi-view clustering.

Master’s thesis, Utrecht University, 2021.

[54] Wesley KG Assunção, Thelma Elita Colanzi, Luiz Carvalho, Alessandro Garcia, Ju-

liana Alves Pereira, Maria Julia de Lima, and Carlos Lucena. Analysis of a many-objective

optimization approach for identifying microservices from legacy systems. Empirical Soft-

ware Engineering, 27(2):1–31, 2022.

[55] Miguel Brito, Jácome Cunha, and João Saraiva. Identification of microservices from mono-

lithic applications through topic modelling. In Proceedings of the 36th Annual ACM Sympo-

sium on Applied Computing, pages 1409–1418, 2021.

[56] Antonio Bucchiarone, Kemal Soysal, and Claudio Guidi. A model-driven approach towards

automatic migration to microservices. In International Workshop on Software Engineering

Aspects of Continuous Development and New Paradigms of Software Production and De-

ployment, pages 15–36. Springer, 2020.

[57] Francisco Freitas, André Ferreira, and Jácome Cunha. Refactoring java monoliths into ex-

ecutable microservice-based applications. In 25th Brazilian Symposium on Programming

Languages, pages 100–107, 2021.

68

SYSTEMATIC LITERATURE REVIEW REFERENCES 69

[58] Anup K Kalia, Jin Xiao, Rahul Krishna, Saurabh Sinha, Maja Vukovic, and Debasish Baner-

jee. Mono2micro: a practical and effective tool for decomposing monolithic java applications

to microservices. In Proceedings of the 29th ACM Joint Meeting on European Software En-

gineering Conference and Symposium on the Foundations of Software Engineering, pages

1214–1224, 2021.

[59] Anup K Kalia, Jin Xiao, Chen Lin, Saurabh Sinha, John Rofrano, Maja Vukovic, and De-

basish Banerjee. Mono2micro: an ai-based toolchain for evolving monolithic enterprise ap-

plications to a microservice architecture. In Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 1606–1610, 2020.

[60] Rahul Krishna, Anup Kalia, Saurabh Sinha, Rachel Tzoref-Brill, John Rofrano, and Jin Xiao.

Transforming monolithic applications to microservices with mono2micro. In Proceedings of

the 36th IEEE/ACM International Conference on Automated Software Engineering, pages

3–3, 2021.

[61] Tiago Matias, Filipe F Correia, Jonas Fritzsch, Justus Bogner, Hugo S Ferreira, and André

Restivo. Determining microservice boundaries: a case study using static and dynamic soft-

ware analysis. In European Conference on Software Architecture, pages 315–332. Springer,

2020.

[62] Rina Nakazawa, Takanori Ueda, Miki Enoki, and Hiroshi Horii. Visualization tool for de-

signing microservices with the monolith-first approach. In 2018 IEEE Working Conference

on Software Visualization (VISSOFT), pages 32–42. IEEE, 2018.

[63] Vikram Nitin, Shubhi Asthana, Baishakhi Ray, and Rahul Krishna. Cargo: Ai-guided de-

pendency analysis for migrating monolithic applications to microservices architecture. In

37th IEEE/ACM International Conference on Automated Software Engineering, pages 1–12,

2022.

[64] Luís Nunes, Nuno Santos, and António Rito Silva. From a monolith to a microservices archi-

tecture: An approach based on transactional contexts. In European Conference on Software

Architecture, pages 37–52. Springer, 2019.

[65] Ilaria Pigazzini, Francesca Arcelli Fontana, and Andrea Maggioni. Tool support for the

migration to microservice architecture: An industrial case study. In European Conference on

Software Architecture, pages 247–263. Springer, 2019.

[66] Ana Santos and Hugo Paula. Microservice decomposition and evaluation using dependency

graph and silhouette coefficient. In 15th Brazilian Symposium on Software Components,

Architectures, and Reuse, pages 51–60, 2021.

SYSTEMATIC LITERATURE REVIEW REFERENCES 70

[67] Simone Staffa, Giovanni Quattrocchi, Alessandro Margara, and Gianpaolo Cugola. Pangaea:

Semi-automated monolith decomposition into microservices. In International Conference on

Service-Oriented Computing, pages 830–838. Springer, 2021.

[68] Xiaoxiao Sun, Salamat Boranbaev, Shicong Han, Huanqiang Wang, and Dongjin Yu. Expert

system for automatic microservices identification using api similarity graph. Expert Systems,

page e13158, 2022.

[69] Yuyang Wei, Yijun Yu, Minxue Pan, and Tian Zhang. A feature table approach to decom-

posing monolithic applications into microservices. In 12th Asia-Pacific Symposium on Inter-

netware, pages 21–30, 2020.

[70] Junfeng Zhao and Ke Zhao. Applying microservice refactoring to object-2riented legacy sys-

tem. In 2021 8th International Conference on Dependable Systems and Their Applications

(DSA), pages 467–473. IEEE, 2021.

Appendix A

Questionaire

Figure A.1: Background Questionaire

71

Questionaire 72

Figure A.1: Background Questionaire (cont.)

Questionaire 73

Figure A.2: Task Questionaire

Figure A.3: Answer Questionaire

Questionaire 74

Figure A.4: SUS Questionaire

Questionaire 75

Figure A.5: Raw-TLX Questionaire

Figure A.6: Feedback Questionaire

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Monoliths
	2.2 Microservices
	2.3 Refactoring

	3 Systematic Literature Review
	3.1 Research Methodology
	3.1.1 Data sources
	3.1.2 Search strategy
	3.1.3 Query definition
	3.1.4 Selection Criteria

	3.2 Research Results
	3.2.1 Publications Grouping and Selection

	3.3 Publication Analysis
	3.3.1 Monolith as an input for the tool
	3.3.2 Microservices as an output for the tool
	3.3.3 Tool target language

	3.4 Summary

	4 Tool Design
	4.1 Requirements
	4.2 Architecture
	4.3 Interface Overview

	5 Solution Development
	5.1 Technologies
	5.2 Database
	5.3 Backend
	5.3.1 API Design
	5.3.2 Authentication and Authorisation

	5.4 Frontend
	5.4.1 Tool Selection
	5.4.2 Results
	5.4.3 Comparison
	5.4.4 Authentication and Authorisation

	5.5 Deployment
	5.6 Implemented requirements

	6 Empirical Validation
	6.1 Design
	6.1.1 Subjects and Objects
	6.1.2 Instrumentation
	6.1.3 Pre Study
	6.1.4 Data Collection

	6.2 Execution
	6.3 Analysis
	6.3.1 Subjects
	6.3.2 System Usability Scale
	6.3.3 Raw-TLX

	7 Discussion
	7.1 Results evaluation
	7.2 Threats to validity
	7.2.1 Internal validity
	7.2.2 Conclusion validity
	7.2.3 Construction validity
	7.2.4 External validity

	8 Conclusion
	8.1 Future Work

	A Questionaire

