
António Simões Ferreira

Bachelor in Computer Science

Integration of Visual Languages with SCS tools
in the Software Development Industry

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Advisers: Jácome Cunha, Assistant Professor,
University of Minho
André Pinto Vieira, Software Engineer, OutSystems

Co-advisers: João Ricardo Viegas da Costa Seco,
Assistant Professor, NOVA University of Lisbon
Hugo Lourenço, Software Engineer, OutSystems

September, 2019

Integration of Visual Languages with SCS tools in the Software Development
Industry

Copyright © António Simões Ferreira, Faculty of Sciences and Technology, NOVA Univer-

sity Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

I would like to start by thanking the Faculdade de Ciências e Tecnologia da Universidade

Nova de Lisboa (FCT-UNL), in particular to the Informatics Department, for providing

me with all the necessary educational tools to start off my professional career. Also I

would like to thank OutSystems for providing a scholarship for this dissertation. A big

thanks to my advisers, Jácome Cunha, André Vieira, João Seco and Hugo Lourenço for

mentoring me in this thesis. Their advice was really helpful and allowed me to constantly

improve my work.

Also, a big thanks to all of my OutSystems friends: Francisco Cunha, David Mendes,

Lara Borisoglebski, Joana Tavares, Miguel Loureiro, João Gonçalves, Miguel Madeira,

Francisco Magalhães, Michael Silva, Nuno Calejo, Mariana Cabeda and Nuno Pulido, for

all of the great and fun lunches, coffee breaks and conversations over the pool table.

Most importantly a huge thank you to my parents. Their unconditional support was

vital and one of the main reasons why I was always capable of withstand the hard times

in my journey and be where I am today. Also, a big thanks to my brother, for all of the

times he distracted me from my work, which allowed me to clear off my mind for bit.

Thank you Bolota for being the fluffy ball of fur that always wrecked havoc when running

around the house.

And lastly, a big thanks to all of my close friends, whose names don’t need to be

mentioned, because they know who they are. All of their support, conversations, and fun

times we spent together is something that I am and always will be grateful for.

v

“Once I did bad and that I heard ever. Twice I did good, but
that I heard never.”

-Dale Carnegie

Abstract

Source Control Systems (SCS), also known as Version Control Systems (VCS), help teams

to organize and track changes in the software development process. These systems have

become vital in the software development industry as the increased growth and geo-

graphical diversity of teams, forced them to find solutions to deal with multiple people

accessing the same pieces of software concurrently. Although for a while SCS seemed to

be coping well with the needs of software development, the rise of the low-code platforms

and Visual Programming Languages (VPLs) brought a new challenge to version control:

how to manage visual artifacts without losing SCS functionalities? The biggest cause of

this challenge is the fact that SCS are mostly oriented to work with text-based program-

ming languages. Thus text-oriented SCS are (in general) incapable of dealing with visual

artifacts as well as they do with text. So, to cope with the loss of SCS functionalities in

VPLs projects, teams either accept and work with this loss or are forced to come up with

a solution of their own to tackle a specific version control problem. These issues can be

found in the OutSystems platform, which is our case study.

To solve this problem, we propose a system, termed OSGit, that acts as a man-in-the-
middle between the low-code platform and the designated SCS. The proposed system will

translate the requested version control operations from the low-code platform to native

operations of the given SCS. In operations that require visual artifacts to be managed - like

applying blames - we propose the creation of metadata files. The metadata files contain

the needed information about the visual elements used to build applications in the low-

code platform. This information is thus a compacted representation of the visual elements

through text. Therefore, using metadata files will allow the SCS to correctly handle the

required visual artifacts while integrating this system with a low-code platform or a VPL.

The produced system obtained auspicious results in the usability tests that were per-

formed and that featured ten OutSystems developers. They showed great satisfaction

when using OSGit and also gave suggestions for future improvements. OSGit bridges the

gap between text-based SCS and visual artifacts, which proves the possibility of integrat-

ing these systems in the world of VPL with a high-level of user satisfaction.

Keywords: Source Control Systems, Version Control Systems, Visual Programming Lan-

guages, Low-Code, OutSystems

ix

Resumo

Os Source Control Systems (SCS), também conhecidos como Version Control Systems

(VCS), ajudam as equipas a organizar e a localizar mudanças num software durante a

construção do mesmo. Estes sistemas tornaram-se vitais na indústria de desenvolvimento

de software que, devido ao crescimento e à diversidade geográfica das equipas, levaram

estas equipas a procurar soluções para lidar com o facto de existirem várias pessoas a

trabalhar concorrentemente no mesmo software. Contudo, a ascensão das plataformas

low-code e das linguagens de programação visuais, trouxeram um novo desafio às metodo-

logias de controlo de versões: como gerir artefatos visuais sem perder as funcionalidades

dos SCS? Este desafio emerge com o facto de a maioria dos SCS fornecerem apenas funci-

onalidades para software construído apartir de linguagens de programação baseadas em

texto. Agora que a integração e o uso das linguagens de programação visuais na indústria

de desenvolvimento de software emergiu, os SCS desenvolvidos para texto, são (no geral)

incapazes de lidar com os artefatos visuais da mesma forma que o fazem com elementos

textuais. Para lidar com a perda de funcionalidades dos SCS em projectos que usem VPLs,

as equipas podem optar por duas vertentes: aceitar as perdas; ou serem forçadas a criar

uma solução para lidar com o problema de controlo de versões em artefactos visuais.

Para resolver este problema, propomos um sistema, denominado OSGit, que atua

como um man-in-the-middle entre a plataforma da OutSystems e o SCS escolhido. Este

sistema traduzirá as operações de controlo de versões usadas na plataforma para ope-

rações nativas do SCS escolhido. Em operações que exigam que artefatos visuais sejam

manipulados, propomos a criação de ficheiros de metadados. Estes ficheiros contêm in-

formações sobre elementos visuais usados para criar aplicações em OutSystems. Estes

metadados são então uma representação destes elementos através de texto. Desta forma

o SCS manipulará corretamente os artefatos visuais presentes na plataforma.

O sistema proposto obteve resultados bastante favoráveis nos testes de usabilidade

realizados. Nestes testes participaram dez programadores da OutSystems. Estes partici-

pantes mostraram grande satisfação em relação ao OSGit, dando também sugestões para

melhorias do mesmo. O OSGit colmata assim, a lacuna entre o SCS e os artefatos visuais,

o que comprova a possibilidade de integrar estes sistemas no mundo das VPLs com um

alto nível de satisfação dos utilizadores.

Palavras-chave: Sistemas de Controlo de Versões, Linguagens de Programação Visuais,

Low-Code, OutSystems

xi

Contents

List of Figures xvii

List of Tables xix

Listings xxi

Acronyms xxiii

1 Introduction 1

1.1 Motivation . 2

1.2 Proposed Solution . 3

1.3 Key Contributions . 4

1.4 Structure . 5

2 Low-Code Software Development 7

2.1 Low-Code Software Development . 7

2.2 OutSystems . 7

2.2.1 Service Studio . 8

2.2.2 The OutSystems Application Files 10

3 The Different Shapes of SCS 11

3.1 Source Control Systems . 11

3.2 Source Control in Low-Code Platforms . 11

3.2.1 Versioning in OutSystems . 12

3.2.2 Versioning in Mendix . 14

3.3 Source Control in IDEs . 15

3.3.1 Source Control in Unreal Engine 4 15

3.3.2 Source Control in Unity . 16

3.3.3 Summary . 16

3.4 Source Control in Modeling Languages . 17

3.4.1 Summary . 18

3.5 Source Control in Spreadsheets . 18

3.6 Source Control in Text-Based Languages 19

3.7 Choosing the SCS to integrate with OutSystems 21

xiii

CONTENTS

3.7.1 Mercurial Vs. Git . 22

3.7.2 The Chosen Git Operations . 23

4 Integrating Git with OutSystems 25

4.1 Overview . 25

4.2 Representing Visual Objects as Text . 26

4.2.1 Generating the Metadata Files . 28

4.2.2 Deleting an Element . 30

4.2.3 The Metadata Directory . 31

4.3 The Settings Screen . 31

4.3.1 The Account Configuration Box . 32

4.3.2 The Git Configuration Box . 33

4.3.3 The Repository Configuration Box 34

4.3.4 Saving settings . 34

4.4 The Commit Operation . 35

4.4.1 The Operation Implementation . 37

4.4.2 The Repository State . 39

4.5 The Blame Operation . 40

4.5.1 The Operation Implementation . 42

4.6 Additional Operations . 44

4.6.1 The Fetch Operation . 44

4.6.2 The History Operation . 45

5 Evaluation 47

5.1 Experiment Design . 47

5.2 Participants . 48

5.3 Execution . 49

5.4 Results . 49

5.4.1 The SUS . 53

5.5 Analysis . 54

6 Conclusions 57

6.1 Final Observations . 57

6.2 Future Work . 58

Bibliography 61

A Post-Test Questionnaire 65

B SCS User Acceptance Exercise 71

C SCS User Acceptance Exercise 73

xiv

CONTENTS

D SCS workflows in IDE’s 77

xv

List of Figures

1.1 Schema of the current state of version control in the OutSystems platform. . 2

1.2 Schema of the proposed solution that establishes the communication between

the OutSystems Service Studio, the chosen SCS and its external repository. . 4

2.1 The OutSystems Platform components, with an emphasis on the Service Studio

and the Platform Server [38]. 8

2.2 Service Studio overview while editing an application’s User Interface (UI). . 9

2.3 Service Studio overview while editing an application’s logic. 9

2.4 Service Studio overview while editing an application’s database. 10

3.1 Merge situation, where the developer can visually compare two versions and

merge them manually [26]. 12

3.2 Merge conflict situation between two versions of a Cascading Style Sheets

(CSS) file [9]. 13

3.3 Merge conflict situation between two versions of an action [9]. 13

3.4 Number of repositories of each SCS as of July 2019 [10]. 22

4.1 Detailed schema of the proposed solution that establishes the communication

between the Service Studio and a GitHub repository. 25

4.2 The ESpace tree elements of the interface that form the Bookings application. 27

4.3 An example of the metadata information that is stored for each ESpace tree

element. 27

4.4 The web screens metadata file, where all application’s web screens metadata

is stored. 29

4.5 The user actions metadata file content. 30

4.6 The user actions metadata file content, with a deleted metadata entry. 30

4.7 An example of the generated metadata files directory. 31

4.8 The mockup of the Settings menu, from where the users can configure the Git

repository and authenticate to GitHub. 32

4.9 The Git Credential Manager GitHub authentication window. 33

4.10 The implemented version of the Settings Screen UI. 35

4.11 The commit message input, for the user to introduce his commit message. . . 36

4.12 The state diagram of the commit operation. 37

xvii

List of Figures

4.13 The implemented commit message input. 38

4.14 The implemented commit feedback dialog. 39

4.15 The GitHub repository content. 40

4.16 The Blame result for the “Bookings” web screen. 41

4.17 The output of the used blame command. 43

4.18 The implemented blame screen. 43

4.19 The Fetch operation feedback. 44

4.20 The History result, which shows the full commit history of the repository. . . 45

5.1 An example of an Action content. These four elements that constitute this

action are called action nodes. 55

C.1 Participants answers to question one of the post-test questionnaire. 73

C.2 Participants answers to question two of the post-test questionnaire. 74

C.3 Participants answers to question three of the post-test questionnaire. 74

C.4 Participants answers to question four of the post-test questionnaire. 74

C.5 Participants answers to question five of the post-test questionnaire. 75

C.6 Participants answers to question six of the post-test questionnaire. 75

C.7 Participants answers to question seven of the post-test questionnaire. 76

D.1 State diagram of the source control workflow, while UE4 using Perforce. . . . 77

D.2 State diagram of the source control workflow in Unity, while using Git. . . . 78

xviii

List of Tables

3.1 Availability of the most used features of the studied model and text-based SCS. 21

3.2 An extra set relevant features and information regarding the studied model

and text-based SCS. * - Perforce’s only released P4CLI and P4Web tools [41] as

open source.

? - We could not find enough information, to be able to either confirm or deny

the existence of the specified data. 21

5.1 Demographic information of the ten participants. 48

5.2 The mean of the answers the first seven questions of the “About our Tool”

section of the post-test questionnaire (Appendix A). 50

5.3 Participants’ answers to question eight of the post-test questionnaire. 50

5.4 Participants’ answers to question nine of the post-test questionnaire. 51

5.5 Participants’ answers to question ten of the post-test questionnaire. 52

5.6 The mean of the answers for each of the System Usability Scale (SUS) questions. 53

5.7 The various SUS scores with their acceptability and ratings [4] 53

xix

Listings

4.1 The algorithm that fetches the metadata information 28

4.2 Settings Screen User Stories. 31

4.3 Commit Operation User Stories. 35

4.4 Blame Operation User Stories. 40

4.5 Fetch Operation User Stories. 44

4.6 History Operation User Stories. 45

xxi

Acronyms

AMOR Adaptable Model Versioning.

API Application Programming Interface.

CDO Connected Data Objects.

CLI Command-Line Interface.

CSS Cascading Style Sheets.

CVS Concurrent Versions System.

DSL Domain Specific Language.

EMF Eclipse Modeling Framework.

IDE Integrated Development Environment.

OML OutSystems Modeling Language.

SCCS Source Code Control System.

SCM Source Control Management.

SCS Source Control Systems.

SQL Structured Query Language.

SUS System Usability Scale.

SVN Subversion.

UE4 Unreal Engine 4.

UI User Interface.

UML Unified Modeling Language.

VCS Version Control Systems.

VPL Visual Programming Language.

XML eXtensible Markup Language.

xxiii

C
h
a
p
t
e
r

1
Introduction

Since development teams started to grow in size, the usage of Source Control Systems

(SCS) is highly required in order for developers to organize, collaborate and track changes

in their projects throughout their development process. Most importantly, SCS give a

vision over what was changed in a project, why it was changed, and who changed it. This

allows for a controlled and efficient management of the life cycle of a project [27].

There are some alternative terms that can be used to refer to SCS, naming: Version

Control Systems (VCS), Source Control Management (SCM) and Source Code Control

System (SCCS). SCM is the same as VCS. SCCS was the main “source code control on Unix
platforms for many years” [20], but the term can still be used to refer to SCS. For the sake

of simplicity and coherence, the term that will be used from now on will be SCS.

Although having many advantages, SCS are mainly text-based tools, i.e., mainly built

to manage text-based files (source code). This raises a problem when these systems need

to handle visual artifacts, usually in the form of binary files: they start to lose their source

control functionalities, such as changelogs, file comparisons, blames, among others. As

these files are approached as black boxed atomic parts, any change that is done to them

will not be well interpreted by regular source control operations, because most of these

files require a visual representation of the modifications done to them instead of the plain

binary text visualisation, which most of the times, is not readable by the user.

This problematic of SCS handling visual artifacts, emerged with the rise of VPL in the

software development industry. VPL are often associated with low-code platforms, which

have also been growing in popularity in the past years, as software development teams

are in constant pressure to quickly deliver a better, more efficient and reliable software.

1

CHAPTER 1. INTRODUCTION

As Nigel Warren states [31]:

“Web and mobile development demand is booming, challenging IT departments
to keep up despite limited resources. As a result, IT is on the hunt for app devel-
opment solutions that can overcome this challenge. Hence the rapidly increasing
adoption of low-code application development platforms over the last two years.”

This leads us to the foundation of this thesis which is to integrate VPL with SCS in

the software development process - in this case, to integrate a SCS with the OutSystems

platform - as OutSystems is looking for new ways to improve collaboration between devel-

opers that use the platform. To achieve this, we intend to leverage on the current power

of SCS by bringing them to the OutSystems environment, thus re-utilizing the already

provided operations by these SCS. Furthermore, software development in OutSystems is

done recurring to the OutSystems VPL, thus raising the same problems described before,

about SCS management of visual artifacts, which is widely common in software produced

with VPLs.

1.1 Motivation

The current version control scenario provided by OutSystems is shown in figure 1.1.

Figure 1.1: Schema of the current state of version control in the OutSystems platform.

As we can obverse, OutSystems is already able to store versions of a project, in the

OS Repository that resides in the OutSystems Platform Server. Furthermore, OutSystems

already provides a few source control operations that the developers can use during the

2

1.2. PROPOSED SOLUTION

course of their project’s development, namely, version history, version tagging, merging

and compare facilities. Despite of the project’s versions storing, OutSystems does not

have the concept of commit. Only the compiled and executable versions are stored, which

prevents storing versions that do not compile or execute yet. Moreover these operations

were developed by OutSystems from scratch, in order to suit its needs when managing

the OutSystems application files, which are binary files.

One downside of the current OutSystems approach, is the fact that the number of

operations is rather limited, and here is where OutSystems intends to innovate and bring

more value to their product. An integration with an existing SCS would allow OutSys-

tems to harness the SCS operations’ power, thus increasing the number of the operations

available in the platform. This would also increase the possibilities of collaboration be-

tween OutSystems developers, as they would have a more complete set of operations to

use in their software development workflows.

Many of these developers are already familiarized with the world of source control and

its benefits in projects management, thus started to advise OutSystems to incorporate the

required source control functionalities, in order to suit their needs. For instance, Carlos

Ardiles, an OutSystems developer, says in a forum thread that [57]:

“(...) A blame tool would be useful for specific Client/Server Actions.

To be able to right click on an action and click on a blame option. A pop up like the
“open another version” window could appear in the screen with the users and the
changes made to that specific element.”

This feedback message sent by the OutSystems community, reveals the space for im-

provement in the area of SCS for the platform. In addition, the fact that this user suggests

the incorporation of one operation - the blame operation - that is already provided by

most of the SCS, reveals that the best approach to tackle these requests is to complement

the platform by integrating it with an existing SCS.

1.2 Proposed Solution

Our goal is to enhance the OutSystems platform with an existing SCS, while addressing

the associated problems when integrating text-based SCS with VPL: the OutSystems

language. To do this, we must develop a solution that prevents the chosen SCS from

losing its functionalities while handling visual artifacts produced by the OutSystems

platform. Therefore, we propose a system that will act as a man-in-the-middle between

the OutSystems Service Studio, the developing environment, and the chosen SCS, like it

is shown in figure 1.2.

In contrast to figure 1.1, figure 1.2 shows the new addition to OutSystems platform.

The source control operations will be called from the Service Studio, where they will

be forwarded to our System. The System’s job is to process these operation requests,

3

CHAPTER 1. INTRODUCTION

Figure 1.2: Schema of the proposed solution that establishes the communication between
the OutSystems Service Studio, the chosen SCS and its external repository.

originated in the Service Studio, and execute the associated source control operations of

the chosen SCS. Some of these operations, that are requested by the user from the Service

Studio, can be directly translated to the native SCS operations. For example the commit

or push operations, because these operations only transfer data. However, operations that

modify data or require visual constructs to be displayed, such as, solving merge conflicts

or applying blames, are the kind of operations that need to be addressed differently and

cannot be directly translated into native source control operations. To tackle this problem,

a textual representation of the visual constructs will be used, so that the SCS can function

with these constructs. Also, the communications with the external repository will be

handled by our system. This means that any information that is sent or received from

the Service Studio and from external repository, will be interpreted and processed by our

system and forwarded accordingly to their respective recipients.

1.3 Key Contributions

With the conclusion of this thesis, there is a state of the art specification of SCS - described

in this document - with their extensibility and integration capabilities. We produced

a proof of concept for the configuration and integration of GitHub with OutSystems,

namely the OutSystems Service Studio. This proof of concept is a system that provides

some SCS operations and a connection to an external repository through an intuitive UI.

Lastly, this work will contribute to the scientific community as a case study of a SCS

integration with a visual software development tool: OutSystems. Because OutSystems

is in the domain of VPLs, integrating a text-oriented SCS - Git - proves to be an interest-

ing challenge if we want to preserve its functionalities while correctly handling visual

artifacts.

4

1.4. STRUCTURE

1.4 Structure

The remaining chapters of this document are organized as follows:

• Chapter 2 - SCS and Low-Code Software Development: in this chapter key con-

cepts about SCS and the low-code software development are discussed, followed by

background information about OutSystems.

• Chapter 3 - The Different Shapes of SCS: this chapter showcases the state of the

art of some SCS, with an emphasis on their integration capabilities with external

systems, operations provided and ability to manage visual artifacts.

• Chapter 4 - Integrating Git with OutSystems: in this chapter a detailed explana-

tion of the implementation and architecture of the developed proof of concept is

described.

• Chapter 5 - Evaluation: this chapter describes the evaluation process of the devel-

oped system by showcasing the user tests performed and discussing the obtained

results.

• Chapter 6 - Conclusions: in this chapter a discussion of the work developed through-

out the course of this thesis, is presented. Also a few insights about the future work

are discussed.

5

C
h
a
p
t
e
r

2
Low-Code Software Development

In this chapter, we will introduce the low-code software development concept. An

overview of OutSystems as a company and as a product, will also be presented.

2.1 Low-Code Software Development

Low-code is the design and development process of a software system by using minimal

hand-written source code [45]. Low-code development techniques usually recur to visual

components as a way to mask and automatically generate source code, thus allowing

developers to quickly build a piece of software. As Matthew Revell says [45]:

“Developers skip all the infrastructure and re-implementation of patterns that
can bog them down and go straight to the unique 10% of an application.”

i.e., developers start working on the specific part of their software that actually represents

the value and the uniqueness of the product they are building. Furthermore, the low-code

approach allows people that are not familiarized with writing source code, to actually

partake on a software development project, as the hand-writing source code is kept to a

minimum.

2.2 OutSystems

OutSystems1 is a software company that is primarily focused on improving developers

efficiency whilst developing software on their daily basis. OutSystems is capable of

achieving this by providing developers with methodologies that accelerate, abstract and

ease the majority of software development tasks.

1The OutSystems website - https://www.outsystems.com/

7

https://www.outsystems.com/

CHAPTER 2. LOW-CODE SOFTWARE DEVELOPMENT

OutSystems’ product is a low-code platform that accelerates the software develop-

ment process. The OutSystems platform allows developers to build, deploy and manage,

platform-independent mobile and web applications. By being in a low-code environment,

building an application becomes a fast and productive process [1].

Figure 2.1: The OutSystems Platform components, with an emphasis on the Service
Studio and the Platform Server [38].

Figure 2.1 shows the two OutSystems platform components that are going to be ap-

proached next: the Service Studio and the Platform Server.

2.2.1 Service Studio

The Service Studio is the OutSystems visual development environment [38]. It is where

the developers build applications in a drag-and-drop style. With the Service Studio, devel-

opers can create:

The application’s UI Built through a composition of visual widgets, like buttons or text

boxes, like it is represented in figure 2.2.

The application’s logic Built through the composition of visual widgets, like variable

assigns or conditional and loop primitives. This composition is aggregated in a graph-

like structure that represents the step-by-step operation workflow, like it is shown in

figure 2.3.

The application’s database modeling Where the applications’ databases are modeled

through the creation of entities and static entities, like it is displayed in figure 2.4.

8

2.2. OUTSYSTEMS

Figure 2.2: Service Studio overview while editing an application’s UI.

Figure 2.3: Service Studio overview while editing an application’s logic.

9

CHAPTER 2. LOW-CODE SOFTWARE DEVELOPMENT

Figure 2.4: Service Studio overview while editing an application’s database.

2.2.1.1 Platform Server

The Platform Server is the core of the OutSystems platform. It is responsible for generat-

ing, optimizing, compiling and deploying the applications built in the Service Studio [38].

To deploy an application, the Service Studio sends the applications’ models to the

Platform Server, where as figure 2.1 illustrates the applications are:

• Versioned, by using the OutSystems versioning system - identified by the number 1
- Versioning, in figure 2.1 - which will be approached in detail in section 3.2.1;

• Compiled into .NET and optimized for performance and security reasons - identi-

fied by the number 2 - Code Generator, in figure 2.1;

• Deployed to the front-end OutSystems servers, which establish the contact between

the user and the application.

2.2.2 The OutSystems Application Files

All of the applications that are built in the Service Studio, are transported and stored as

OutSystems Modeling Language (OML) files. The OMLs are binary files that have an un-

derlying eXtensible Markup Language (XML) specification [30]. This XML specification

can later be extracted to a file with the aid of an internal OutSystems tool, that decodes

the OMLs to XML.

10

C
h
a
p
t
e
r

3
The Different Shapes of SCS

In this section, we will introduce Source Control Systems (SCS) and approach source

control methodologies in software systems, with a variety of SCS being presented.

3.1 Source Control Systems

The need to organize and track changes in a project exists for as long as people started

thinking about collaboration and the concept of versioning: to store and manage multiple

copies of a project, since its creation until its completion [50]. The possibility of tracking

and review changes or the possibility to restore a previous version, are also motivations

that lead to the creation of SCS [27]. These systems are intended to provide a way for de-

velopers to work concurrently on the same project, while helping them in the endeavour

of managing the project’s source code. Nowadays, in the software development industry,

the concept of source control has become associated with ways to track code changes,

allow the revision of the code history, provide the ability to revert to previous versions,

provide merge and comparison facilities of distinct versions of a project and to allow the

collaboration of multiple individuals on the same project [27, 59]. Even though different

SCS may provide complementary operations, they all try to respect and follow these basic

guidelines as to what a SCS should be.

3.2 Source Control in Low-Code Platforms

Besides the OutSystems appearance in the low-code development world, innovations

in the low-code area are rising, thus another promising competitor emerges: Mendix.

The Mendix use-case is the closest for the study of source control in low-code platforms

besides OutSystems, and will both be introduced next.

11

CHAPTER 3. THE DIFFERENT SHAPES OF SCS

3.2.1 Versioning in OutSystems

OutSystems currently supports version control through an internally developed version-

ing system that is able to provide some version control operations namely, comparing and

merging, version history, version tagging, rollbacks to previous versions, and developer

sandboxes [26, 53]. Moreover, OutSystems does not integrate with any existing SCS that

already partake in the software development of its users. This is a limiting factor when

it comes to the source control operations available in the current versions of the Out-

Systems platform, and because users cannot use the same source control methodologies

when working with OutSystems..

Lastly, OutSystems keeps the versions of the applications in a central repository that

resides in the developer’s personal environment1. Each time an application is published, i.e.

when the developer uploads the application to his personal environment, a new version

is stored and made available for everyone with access to it.

Compare and Merge

When a developer wants to merge two versions of an application, the OutSystems Ser-

vice Studio will automatically perform the merge or, if the developer requests or there

were any conflicts detected, it allows to manually perform the merge. The OutSystems

Service Studio provides three ways to compare and see differences of two versions of an

application: in a widget tree view, like it is observed in figure 3.1, in a text view, like it is

displayed in figure 3.2 and in a graph-like view, like it is shown in figure 3.3.

Figure 3.1: Merge situation, where the developer can visually compare two versions and
merge them manually [26].

1The personal environment is the cloud-based version of the OutSystems platform. For more
information refer to https://success.outsystems.com/Support/Personal_Environment/What’s_an_

OutSystems_personal_environment%3F.

12

https://success.outsystems.com/Support/Personal_Environment/What's_an_OutSystems_personal_environment%3F
https://success.outsystems.com/Support/Personal_Environment/What's_an_OutSystems_personal_environment%3F

3.2. SOURCE CONTROL IN LOW-CODE PLATFORMS

The widget tree view is the default view for a merging situation. Like we can see in

figure 3.1, the changed application widgets appear highlighted and displayed in a tree.

Figure 3.2: Merge conflict situation between two versions of a CSS file [9].

The text view is really simple and it is widely used as the mean of showing differences

in most of the SCS. It is where changes are seen through the comparison of lines of text,

like we can see in figure 3.2. This view is only shown for the comparison of text artifacts

that are used when programming with OutSystems, like Structured Query Language

(SQL) statements, Cascading Style Sheets (CSS) and JavaScript files.

Figure 3.3: Merge conflict situation between two versions of an action [9].

Lastly, the graph-like view is shown when the developer needs to visualize differences

between two versions of an action2. Figure 3.3 shows a merge conflict between two

versions of an action in the value assigned to the variable section.
2Actions are a part of the logic elements of the OutSystems language, allowing developers to describe

the intended behaviour of their application.

13

CHAPTER 3. THE DIFFERENT SHAPES OF SCS

Version Tagging

Version tagging [26] in OutSystems is intended to facilitate developers with the ability to

tag a specific version of the application, as a stable state of the application was obtained

or a set of objectives were fulfilled. By tagging the versions of the application during its

development process, developers can easily deploy it to production when a certain goal

is achieved or, if needed, return to a previous state that was stable.

Version History and Rollbacks

In OutSystems, as every publish or version of an application is stored with the information

of the date and author of the publication, it is possible to retrieve and rollback to any of

these previously saved versions.

Developer Sandbox

Developer sandboxes [26] are private areas of an OutSystems application, where develop-

ers can concurrently work on the same application without interfering with each others

work, by publishing their versions to this private area. One can think of developer sand-

boxes as a branch of the public version of the application. When their work is concluded,

then they can publish and merge it with the public version of the application.

3.2.2 Versioning in Mendix

Mendix is a low-code platform that provides a fast and easy development, management

and deploy processes for web and mobile applications [33, 49]. These applications are

also built through a drag-and-drop style like we saw with OutSystems. Mendix adopted

the centralized version control workflow, as its SCS is built on top of Subversion (SVN),

which is a centralized SCS. Mendix integrates with SVN as a way to benefit from the

existing operations provided by this system, while also granting a familiar workflow to

the users that already worked with SVN [54].

Mendix also provides its own SVN repository hosting service, called Mendix Team

Server. However, some companies policies require their software to be stored in servers

on their premises. To tackle this issue, Mendix also provides a way for users to configure

their own repositories, thus allowing them to oblige to their company policies [56].

Despite the fact that Mendix is able to directly harness most of SVN’s operations,

SVN’s merge operation cannot be used in the model files, which are the Mendix’s large

binary files. This lead Mendix to create an internal algorithm, that is responsible for auto-

matically merge changes or, if conflicts emerge, allow the users to manually merge them

[54]. This custom merge algorithm consequently lead to the creation of a differentiation

algorithm as well, which calculates differences between model files and feeds them to the

merge algorithm, while being the backbone structure for showing differences when the

user is manually performing a merge of model files [56].

14

3.3. SOURCE CONTROL IN IDES

Finally, the Mendix use case revealed to be an interesting case study as it enables a text-

based source control (SVN) integration with a visual programming language (Mendix).

3.3 Source Control in IDEs

Integrated Development Environments (IDEs) provide facilities for developers to build

software, and since its coexistence with SCS, the latter revealed to be a great complement

to the IDEs range of functionalities. The integration of SCS with these environments,

eases the software development process, as developers can follow the source control

workflows from within the IDE they are working with.

There are a lot of examples regarding SCS integration with IDEs, for example, the

integration of Git, Mercurial or Perforce with Visual Studio or even SVN, Git or Mercurial

integration with Eclipse. We chose the Unity and Unreal Engine 4 (UE4) IDEs use cases

because the matter of integrating a SCS with these two systems, are case studies that fall

under the topic of a SCS handling visual artifacts, as these two IDEs manage binary files

and visual assets.

3.3.1 Source Control in Unreal Engine 4

Unreal Engine 4 (UE4)3 [46] supports by default two SCS: SVN and Perforce. Neverthe-

less, developers are free to choose which system they want to use, as the engine provides

the same built-in interface regardless of the chosen SCS [47]. However, the operations

that this interface allows developers to perform, may not be the complete set of oper-

ations that are provided by the SCS itself, i.e., there may be some operations, like the

visualization of branches in a tree, that are not displayed in the UE4 IDE. Nonetheless,

such operations can still be concurrently used with the respective SCS client or via the

Command-Line Interface (CLI).

Large binary files are very common to exist in projects developed with UE4, as they

are usually used to describe compositions of visual artifacts. Therefore, while using

Perforce, UE4 recurs to file locking [52], to lock binaries that are being edited by one

user, so that others cannot concurrently change it. This lock is later released when the

developer finishes his work by committing his changes.

Figure D.1 illustrates the source control workflow of Perforce. It briefly describes

the control and communication flow, between calls of source control operations and the

engine’s response. To use the source control operations, the user is provided with two

choices: to use the integrated operations that are available via UE4 UI, or to use the

operations directly via Perforce’s client. There is only one setback regarding the usage of

the integrated source control operations, and that is the fact that the available operations

3UE4 is a set of tools that allows creators to build applications, animations and high-quality games. For
more information refer to https://www.unrealengine.com/en-US/features.

15

https://www.unrealengine.com/en-US/features

CHAPTER 3. THE DIFFERENT SHAPES OF SCS

are limited. So, if one intends to use Perforce to its full potential, one will eventually

need to recur to Perforce client.

3.3.2 Source Control in Unity

Unity4 [51] integrates with two version control systems: Perforce and PlasticSCM, by

featuring an interface for both of these SCS. This interface is integrated in the Unity

IDE and allows for the basic source control operations to be performed: add, commit,

push, pull. More complex operations like branching, showing logs or visualizing differ-

ences, although they can be called from within Unity, in the case of showing differences

and branches in PlasticSCM, they are, however, displayed in PlasticSCM’s client, where

proper visualization techniques are implemented. The usage of different SCS like Git or

Mercurial is also possible in Unity. There are two ways to tackle this: either by using an

external SCS client or the CLI, to perform any of the version control operations required;

or by using Unity plugins that integrate with the IDE. Furthermore, among others, these

plugins are intended to provide a way to integrate SCS like Git, SVN or Mercurial, with

the Unity IDE.

Using the GitHub for Unity [19] plugin as an example, it enables the integration of

Git with the Unity IDE, while using GitHub as the hosting service. The plugin provides

the following SCS operations [19]: initialize a repository, fetch, push and pull from the

repository, add and commit to the local repository, create and switch branches, showing

changes and history, and file locking.

Figure D.2 illustrates the source control workflow of using Git operations via the

plugin Github for Unity. This workflow is very similar to the one represented in figure D.1,

where the user is also able to choose whether or not he/she intends to use the integrated

source control operations or remain with the classic CLI or source control client to use

them. Once again, other source control operations, like rebase, grep or tagging in Git, can

still be used side-by-side with GitHub for Unity plugin, although they can only be called

via CLI or a specific Git client.

Unity provides a very interesting feature to handle the problem of the described text-

based SCS while handling Unity’s visual artifacts; for example, Unity’s game scenes. Unity

has a text metadata representation for every visual artifact. This enables any text-based

SCS operations, like merges, compares or blames, to correctly be applied on these visual

artifacts by instead using the metadata files as intermediaries to these visual artifacts.

3.3.3 Summary

The SCS integration with the UE4 and Unity IDEs demonstrated the possibility of inte-

grating a text-oriented SCS with systems that manage visual artifacts. UE4 suggests the

usage of file locking to handle modifications in visual artifacts. This prevents conflicts

4Unity is a technology that allows creators to build games, animations and virtual prototypes. For more
information refer to https://unity3d.com/.

16

https://unity3d.com/

3.4. SOURCE CONTROL IN MODELING LANGUAGES

and any merge necessity over these visual files, thus enabling the version control work-

flow to proceed smoothly. Essentially, UE4 solves the issue of handling visual artifacts,

by not causing disruptions among the versioned visual files. Unity, on the other hand,

has an exciting approach to this problem of handling visual artifacts with text-based SCS.

Each visual artifact present in Unity has a textual file representation, which stores meta-

data information of that artifact. It is a textual representation of a visual artifact over a

metadata text file. In this way, every textual representation can logically be handled by

any text-based SCS. This approach provided by Unity is a very interesting idea to solve

the problem of SCS handling visual artifacts, and a similar approach will partake in our

solution.

3.4 Source Control in Modeling Languages

Modeling Languages like the Unified Modeling Language (UML) are within the world of

VPLs, which make them an interesting case study when SCS are used to manage models

that were built with them. Thus, we will discuss some of the existing tools. Furthermore,

in addition to UML models, some of these tools provide source control facilities to Eclipse

Modeling Framework (EMF)5 models.

Note that some of the tools that will be presented are not necessarily SCS as a whole.

Some of them are just tools that implement one or more operations that are in the world

of source control, for instance the compare and merge operations, while others can be

hubs for other tools.

EMFStore It is an integrated tool in Eclipse, designed specifically for EMF-based models.

It provides compare, merging, branching, tagging and history facilities, featuring an UI

where conflicts, branches and history are displayed in a visual manner. EMFStore recurs

to the EMFCompare tool to provide the merge and compare functionalities [15] and has

its own repository server architecture, prepared for EMF models, where users share and

commit their models [28, 58].

Connected Data Objects (CDO) It is an integrated tool in Eclipse, as it is built on top

of the EMF. CDO, provides comparison, merge, branching and history functionalities,

while supporting a way to change history, that is, to change previous commits. Also, the

comparison feature provided by CDO recurs to the EMFCompare tool in order to provide

an efficient compare editor. Lastly, CDO provides two manners to work offline: repository

cloning, where the user holds an entire copy of the repository - the full commits history

and branches - and a lightweight approach, where it is possible for the user to checkout a

copy of a specific branch point, so that he/she holds a small chunk of the repository at a

given time [7]. This repository is dependent of the EMF [8].

5EMF is a modeling framework and code generation tool that works upon data models EMF. For more
information refer to https://www.eclipse.org/modeling/emf/.

17

https://www.eclipse.org/modeling/emf/

CHAPTER 3. THE DIFFERENT SHAPES OF SCS

Adaptable Model Versioning (AMOR) AMOR provides merging and comparison fea-

tures by innovating in the following topics: i) in precise conflict detection, by avoiding

undetected and wrongly identified conflicts, ii) in intelligent conflict resolution, by pro-

viding techniques for the representation of conflicts and suggesting resolution strategies.

The comparison feature requires that a previously defined comparison method is pro-

vided: the authors recommend the usage of EMFCompare. So AMOR is somewhat depen-

dent on existing software, in order to reach its full potential. In this case, with the usage

of EMFCompare, the user is restricted to work on top of EMF models [2].

ModelBus It is a tool integration framework, based on a service oriented architecture. It

features: the integration of software tools, construction of integrated and automated tool

chains and supports collaboration of developers (via VCS). ModelBus already features the

integration of SVN and Git as some of its core technologies. It was designed for managing

complex development processes with the need to integrate a variety of tools working

together [36].

3.4.1 Summary

These systems provide very particular solutions that are grappled to specific problems.

For instance, the first three tools - EMFStore, CDO and AMOR - work with EMF models

and propose solutions to handle these specific model types, which are structured XMI files.

The other tool - ModelBus - provides a tool integration environment. Thus, these tools

are not acceptable candidates to perform the integration with the OutSystems platform.

Despite OutSystems files being structure as XML files, as described in section 2.2.2, an

approach where the solution would work with the underlying XML specification, instead

of the raw binary files that the users can see, would present two problems. The first

problem is linked to the file structure privacy, that must remain concealed to final users.

That is why the application files are obfuscated through a binary representation. The

second problem is related to the amount of time the current tool takes to transform a

binary file into its XML specification, which is a time-consuming deed. Furthermore, most

of the model-based SCS studied are Eclipse plugins, which discards the big necessity for

these tools to be standalone software solutions, to be able to integrate with any external

systems.

3.5 Source Control in Spreadsheets

Regarding source control in spreadsheets, there is an interesting case study that needs to

be mentioned: the SheetGit tool [32, 37]. SheetGit provides a Git integration with Excel

through an intuitive UI. This tool provides operations such as: compares, merging and

the creation of new versions. Also, SheetGit uses BitBucket as the repository host.

SheetGit uses an interesting approach to tackle the problematic of the version control

operations loss: the usage of metadata files. These metadata files contain the list of

18

3.6. SOURCE CONTROL IN TEXT-BASED LANGUAGES

changes done in each commit, the parent commit of the current commit and the current

working branch. So, for every commit, the spreadsheet file and the related metadata file

containing the said information, are stored in the remote repository for each commit [37].

Thus using an operation-based approach, where the operations made to the spreadsheet

files are store in the repository as well.

This work is similar to the proposed solution for this thesis, as discussed in section 1.2,

where SheetGit fulfills the gap between the VPLs represented by Excel spreadsheets and

a VCS portrayed by Git. Furthermore, the metadata approach appears again in SheetGit,

thus revealing to be a promising solution to tackle the version control problem when

dealing with visual artifacts.

3.6 Source Control in Text-Based Languages

Text-based SCS need to be mentioned because they will be the foundation of the integra-

tion we intent to provide to the OutSystems platform. A selection of the widely known

text-based SCS will be described, with a description of their main functionalities, opera-

tion extension capabilities and integration with external systems.

Git Is an open source distributed SCS that is designed to be lightweight with a focus

on performance and scalability while handling large sized projects [16]. Furthermore,

Git features the widely used operations like: comparing and merging, branching, history

revision and version tagging, with a special emphasis on operations such as [16]: File

Locking, to ensure that only one user has access to a given file; A Staging area, that acts

as a provisional space that holds the modified files before committing, whilst allowing

the user to review them; And Stash, that stores the state of a dirty working directory (that

is not yet committed) back to a clean working directory state that matches the current

commit in the repository.

Lastly, Git can be easily integrated with external systems, as we can obverse with the

Git integrations done with VSCode [55] or Unity [19], while also providing the facility of

adding custom source control operations.

Bazaar This SCS [5] has the particularity of allowing for both centralized and distributed

workflows to be used. Also Bazaar innovates in the centralized workflow by introducing

bound branches, that verify if the local repository is up-to-date with the central repository

before committing. If the verification is successful, the central commit is performed

before the local one, thus ensuring the atomicity of the operation.

Besides the common SCS operations - like merges, compares, branches and history

review - it also provides tagging and shelve operations. The shelve operation is the same

as Git stash one but with a different name. Lastly, Bazaar also provides the ability to add

custom operations via plugins as a way to extend its core functionalities.

Mercurial Is a distributed SCS [34] that has the particularity of providing the ability to

either modify or extend existing operations and create new ones, in a very intuitive and

19

CHAPTER 3. THE DIFFERENT SHAPES OF SCS

easy way, via the creation of plugins. Furthermore, besides the common source control

operations, Mercurial provides [34]: version tagging, file locking, staging area, like we

saw in Git that goes by the name DirState and shelve (or stash). Lastly, Mercurial can be

integrated with external systems, as VSCode [25] and Eclipse [35] do.

Concurrent Versions System (CVS) This SCS deserves an honorable historical mention,

as it was one of the precursors of modern era SCS. CVS features operations such as [11,

12]: merging and comparison of source code, branching, history revision and version

tagging.

SVN Originally designed as an improved CVS, SVN [3] is a centralized SCS built to be

reliable and simple to use. SVN provides operations such as [3]: compares and merges,

branching, history revision and version tagging, a staging area known as Changelists and

file locking. Regarding SVN’s integration with external systems, the Eclipse [14] and

IntelliJ [48] use cases, illustrate the flexibility this tool has, to be complemented with

other software.

Plastic SCM This SCS also allows for distributed and centralized workflows to be

adopted, with an emphasis on the fact that both of these workflows can be used by differ-

ent users concurrently. Apart from text, Plastic SCM innovates with an image differentia-

tion algorithm that allows users to visually compare two versions of an image. Features

that Plastic SCM provides besides the usual source control operations, are [42]: version

tagging (named as version labels), changelists (also know as staging area), file locking

(named as exclusive checkout), and shelve. All of these operations are performed and

displayed in a simple and intuitive UI. Plastic SCM’s integration with external systems

is restricted as existing integrations, like the Unity [43] and Microsoft Office6 [44] cases,

are created when new versions of Plastic SCM are launched.

Perforce HelixCore is the the Perforce’s SCS software [40], often designated as just

Perforce, which leverages from an intuitive and user-friendly UI. Perforce provides source

control operations like: merging, branching, history, version labels, also known as tagging,

changelists or staging area, file locking and lastly, shelve [39]. Perforce is able to integrate

with almost any system due to its own plugins and open API [24], as we can see in

the examples of the integrations done with Visual Studio [23] and Unity [22]. Also,

it is possible to extend operations’ functionalities through triggers, which are custom

programs that are called when specific source control operations are used [21].

Tables 3.1 and 3.2 are a compacted way to visualize and compare, the studied text-

based SCS. These SCS revealed to be the ones of utmost interest, because they are flexible

and offer the largest number of functionalities.

6Only in the Microsoft Office Word, Excel and Powerpoint.

20

3.7. CHOOSING THE SCS TO INTEGRATE WITH OUTSYSTEMS

Source Control Features

SCS
Compare

and Merge
Branches History Tagging Blame

Staging
Area

Stash

Git Yes Yes Yes Yes Yes Yes Yes
Bazaar Yes Yes Yes Yes Yes No Yes

Mercurial Yes Yes Yes Yes Yes Yes Yes
SVN Yes Yes Yes Yes Yes Yes No
CVS Yes Yes Yes Yes Yes No No

Plastic SCM Yes Yes Yes Yes Yes Yes Yes
Perforce Yes Yes Yes Yes Yes Yes Yes

Table 3.1: Availability of the most used features of the studied model and text-based SCS.

SCS Open Source Extensible
Integration with
external systems

Latest Version
Release

Git Yes Yes Open 2018-12-15
Bazaar Yes Yes Open 2016-01-31

Mercurial Yes Yes Open 2018-01-07
SVN Yes ? Open 2018-10-30
CVS Yes ? Open 2009-09-03

Plastic SCM No ? Open 2019-01-11
Perforce Yes* Yes Open ?

Table 3.2: An extra set relevant features and information regarding the studied model and
text-based SCS. * - Perforce’s only released P4CLI and P4Web tools [41] as open source.
? - We could not find enough information, to be able to either confirm or deny the existence
of the specified data.

3.7 Choosing the SCS to integrate with OutSystems

Table 3.1 features a set of known SCS operations. These operations were chosen from

a list of SCS operations that were internally discussed at OutSystems, as operations of

interest. As the table shows, the represented SCS are able to provide the essential and

most common source control operations: compare, merge, branching, history revision

and version tagging. However, it is in the last three functionalities that a noticeable

discrepancy rises between them. Git, Mercurial, Plastic SCM and Perforce are able to hold

their positions as the SCS that are able to provide all of the considered functionalities,

whereas Bazaar, SVN and CVS cannot provide the same functionalities as the other SCS.

To elect a tool between Git, Mercurial, Perforce and Plastic SCM, it is necessary to gather

additional information about these systems. As it is displayed in table 3.2, information

regarding the extensibility of SCS operations, the possibility of SCS integration with

external systems, the latest released version and the availability of the SCS source code

to the public, is described.

By taking into consideration this new information, our goal is to find a SCS that can

easily be integrated with external systems and provide an easy way to add or extend

21

CHAPTER 3. THE DIFFERENT SHAPES OF SCS

its functionalities. As the software development industry is in constant growth, it is

also important to favor a SCS that is regularly updated. Also, a software that is Open

Source is preferred as it can be easily edited to fit any project’s needs, while relying on a

large number of people that inspect the code base looking for possible bugs. Considering

these last four factors, that are represented in table 3.2, we can exclude Plastic SCM and

Perforce. Moreover, these systems operations extension capabilities are not very easy and

fast to use. That leaves us with Git and Mercurial - that are very much alike - which will

be compared in the following section.

3.7.1 Mercurial Vs. Git

Mercurial and Git are both powerful SCS, with several similarities. Both are able to

provide operation extension facilities, which allow the creation of new operations or the

extension of the existing ones - like the diff and merge operations, where one can change

the default algorithm - as one sees fit. It is noticeable that Mercurial’s syntax is simpler

than Git’s, thus revealing to be a weak point of Git, especially because new Git users

may have difficulties while learning and using it. Such simplicity also comes with the

cost of having fewer available operations when compared to Git, which provides a wider

range of source control operations. Moreover, Git’s popularity has risen, and became the

most used SCS with much bigger community than Mercurial’s, as we can see in figure 3.4.

Thus, we choose Git.

Figure 3.4: Number of repositories of each SCS as of July 2019 [10].

22

3.7. CHOOSING THE SCS TO INTEGRATE WITH OUTSYSTEMS

3.7.2 The Chosen Git Operations

According to the operations described in table 3.1 in section 3.6, we intend to provide:

compare and merging, history and blame. Moreover, the blame operation was highly

requested by some employees when we discussed our solution with OutSystems. The

commit and fetch operations also need to be provided, despite not being mentioned in

the table, because these two operations are elementary SCS operations that transfer data

and are present in every SCS.

The decision to include these five operations resides in the fact that these operations

are enough to provide an intermediate SCS usage workflow. This means that the user

will be allowed to perform the basics of source control, which consists of doing commits,

fetch changes, or see history. Also, the user will still be able to perform more complicated

operations, such as compare and merges to solve possible conflicts or applying blames.

The branching operation could be interesting to incorporate, however it was discarded

because it created a new problem that is outside the scope of this thesis, and that is related

to the database architecture of the OutSystems applications.

23

C
h
a
p
t
e
r

4
Integrating Git with OutSystems

In this chapter, a description of the system development and architecture will be dis-

cussed, focusing on design decisions, solutions to the problems found and operations

descriptions.

4.1 Overview

As discussed in section 1.2, we proposed a system that acts as a man-in-the-middle between

the OutSystems Service Studio and an external repository. As the chosen SCS is Git, we

selected GitHub as the hosting service for the Git repositories. We term our system OSGit.

Figure 4.1: Detailed schema of the proposed solution that establishes the communication
between the Service Studio and a GitHub repository.

25

CHAPTER 4. INTEGRATING GIT WITH OUTSYSTEMS

OSGit, as figure 4.1 shows, establishes and coordinates the communications between

the OutSystems Service Studio and an external GitHub repository. The SCS operations

will be invoked from the Service Studio along-side any necessary configurations. OSGit

will then interpret and translate the SCS operations invoked from the Service Studio to

native Git operations, which are going to communicate with the external GitHub repos-

itory as needed. As previously described, some operations that modify data or require

visual constructs to be displayed, need to be addressed differently and cannot be directly

translated into native Git operations. Thus the way these operations are used need to

be different from the direct usage of the native Git operations mentioned before. This is

where OSGit also innovates and is in charge of providing a way to customize the native

Git operations calls over visual artifacts that otherwise would not be usable. The external

repository, as mentioned, is a GitHub repository created by the user, which will contain

the OutSystems application files and the metadata files. OSGit’s main purpose is to pro-

vide an abstraction layer from what is happening at a lower level, where the Git operation

calls and the GitHub communications take place, and any extensions to Git operations

are thus made invisible and covered by OSGit.

To enable the abstraction layer, OSGit provides an Application Programming Interface

(API), that resides in the core code of the product - in the core of Service Studio - and

provides a set of SCS operations, that use Git in its core. These operations provided by

our API will not necessarily be a direct match of the chosen Git operations described

before. Some operations consist of one or more Git operations. Also, to assist in the

implementation of some of the Git operations, the LibGit2Sharp [29] library was used.

This library provides an API for some of the Git core operations, thus providing a way to

avoid using Git operations directly from the command line and parsing their result.

The API, by itself, would not be able to provide any interaction for a user that is using

the Service Studio to build his application. So to fill this gap, OSGit also has a simple

UI implemented in Service Studio interface, that provides the user with all of the SCS

operations available in the API. So to better understand how to incorporate an UI with

Service Studio, we produced design mockups of the UI, that shows how the user interacts

with the SCS operations, and the type of feedback he/she receives while using them. We

also created user stories for every operation available in the UI, that describes the type of

user, what they want and why.

Lastly, the technology used to build the back-end section of this integration - the API

- was C#, while the front-end part is built with React, TypeScript, and SCSS.

4.2 Representing Visual Objects as Text

To build an application with OutSystems, the user must compose and structure a chain

of different elements. The application development is done in the Service Studio, and the

elements composing the application are displayed on the right-hand side of the screen in

the form of a tree, as illustrated in figure 4.2, termed ESpace.

26

4.2. REPRESENTING VISUAL OBJECTS AS TEXT

Figure 4.2: The ESpace tree elements of the interface that form the Bookings application.

The ESpace tree contains all of the elements that form an application built with Out-

Systems. For instance, figure 4.2 presents the elements that form the interface of an

application. These elements include web screens, like the Bookings and Home screens, or

actions, like the CheckIn action that executes a certain logic when the check-in button in

the Home screen is pressed. These elements are the building blocks of an OutSystems

application, and to integrate them with a traditional SCS, we need to represent them in a

textural manner.

In order to represent the OutSystems visual elements as text, some attributes of these

elements are thus extracted and stored in a file. Figure 4.3 shows an example of the

metadata extracted from a web screen and saved in a metadata file.

Figure 4.3: An example of the metadata information that is stored for each ESpace tree
element.

The extracted metadata is composed of four pieces of information that are split by

a vertical bar “|”. The first piece of information in the metadata example depicted in

figure 4.3 is the element’s name: Home. This name is the name given by the user when the

element was created. The next bit of information is the tag name: Flows.WebScreen. The

tag name indicates the type of each element, for example, in figure 4.2, there are three

more web screens: BookingDetail, Bookings, CheckOut. All of these three elements have the

same tag names: Nodes.WebScreen, because they are all web screens. The tag name will

be crucial in grouping the elements of the same type in the metadata files. The third bit

of information is very significant. It is the key of the element: TT8tufF_XU6OSMds7eIOgg,

27

CHAPTER 4. INTEGRATING GIT WITH OUTSYSTEMS

which will serve the purpose of aiding in the element’s searching in the metadata file.

The last piece of information is one element property called LastModifiedByCommand:

efd0ee6e-c8db-410c-84be-a4a954470396. This property indicates if an element was

modified, and each time a modification occurs in the element, this property changes its

value. Thus, the element’s modification will be reflected as a modification in this line.

4.2.1 Generating the Metadata Files

The metadata files, contain all the metadata of a given element type, i.e., all of the meta-

data of the elements that are web screens. For the generation of metadata files, all infor-

mation referred before - name, tag name, key, and the LastModifiedByCommand property

- must be acquired from each element present in the ESpace tree. The ESpace tree is essen-

tially an n-ary tree, where the nodes are the elements of the ESpace. Listing 4.1 contains

the algorithm used to transverse the tree and to fetch the metadata for each element.

1 GenerateMetadataMap(treeNode, metadataMap) {

2 if (treeNode.HasChildren) {

3 foreach (child in treeNode.Children) {

4 if (child.hasLastModifiedByCommand) {

5 tagName = child.TagName;

6 List objectsList;

7 if (!metadataMap.ContainsKey(tagName)) {

8 objectsList = new List();

9 } else {

10 objectsList = new List(metadataMap[tagName]);

11 }

12 objectsList.Add(

13 child.Name + "|" + child.TagName + "|"

14 + child.Key + "|" + child.LastModifiedByCommand

15);

16 metadataMap[child.TagName] = objectsList;

17 }

18 GenerateObjectsMetadataMap(child, metadataMap);

19 }

20 }

21 return metadataMap;

22 }

Listing 4.1: The algorithm that fetches the metadata information

When traversing the tree, the algorithm visits each node and checks for the existence

of the property LastModifiedByCommand. If the node contains the LastModifiedBy-

Command property, all of the four pieces of information - name, tag name, key, and

the property itself - are saved in a HashMap for further processing. The map’s content

28

4.2. REPRESENTING VISUAL OBJECTS AS TEXT

is already structured very similarly to the structure the individual files have when the

metadata information is copied to them. The map’s key is an element’s tag name, while

the value is a list of strings that represent the structured element’s metadata, i.e., one line

of the file, as seen in figure 4.3. So, for every map entry, there is a list of all metadata

elements of the same type, which is how the metadata directory is structured.

Now that all the metadata information is contained in a structure, we proceed to

saving it to the respective files remains to be done. This process has three distinct cases:

1. Nor the file or the element metadata exist;

2. The file exists, but the element metadata has not been added yet;

3. Both the file and the element metadata exist, but the element has been modified.

The first case represents the scenario where a new element is created, and another

element of its type does not exist as well. Thus, this is the base case, where both the

file and a new file entry containing the element’s metadata must be created. The file is

created with the same name as the tag name of the element. This helps to maintain an

organized file structure, where all of the elements of the same type are in the same file.

Notice in figure 4.4, that there are eight metadata entries describing elements of the same

type: Nodes.WebScreen. All new element’s metadata entries are added at the end of the

file, so that they are ordered by insertion. This “anchors” each entry to a specific line,

which will be useful when using the blame operation, as will be seen later.

Figure 4.4: The web screens metadata file, where all application’s web screens metadata
is stored.

The second case is similar to the first one, but this time there are already elements

of the same type in the metadata file, where the new element’s metadata is going to be

saved. Thus, there is only the need to insert the new element’s metadata entry at the end

of the file, just like it is done in the first step.

The third and last case happens when both the file and the metadata entry in the file,

already exist. This occurs when an existing element is modified, and to be able to point out

this modification, the LastModifiedByCommand property changes, and must be reflected

in the element’s metadata as well. This time the element’s metadata is already present in

the respective metadata file. This means that only the property LastModifiedByCommand

needs to be saved, as the remaining information is the same. Next, the corresponding

file needs to be found in the metadata directory. Using the tag name present in the

29

CHAPTER 4. INTEGRATING GIT WITH OUTSYSTEMS

metadata, finding the element inside the file by looking at its key is a direct process.

Finally replacing the old LastModifiedByCommand property value for the new one, that

indicates that this element was modified, is the last requirement to update this entry in

the file.

4.2.2 Deleting an Element

Besides creating and modifying an ESpace tree element, deleting them is also a possibility.

So far, to maintain the respective metadata files ordered, element creations pondered on

adding its metadata at the end of the file. Moreover, element modifications reflected on

changing the LastModifiedByCommand property value in the file which does not move

the metadata entry in the file, thus maintaining its original position. However, deleting an

element is challenging. When an ESpace tree element is deleted, its metadata entry cannot

just be removed from the file, because it disrupts the order of the following metadata

entries, as the lines are rearranged in the file. This would produce an erroneous output

when using the blame operation on a given element. This incorrect output occurs because

the history of the moved element’s metadata is lost, as the metadata entry moves to a

different line that holds the history of a different element. Moreover, when a metadata

entry is created, it cannot be moved away from its first line in the file, so that every

element’s modification history is safely saved throughout the continuous modifications

that may occur on that metadata entry.

The solution to tackle the delete issue is to mark the deleted metadata entry with the

text: “-Deleted-”. By marking the deleted lines with a different text structure, the order

in the file is kept, and no history is mixed or lost between element’s, as their metadata

entries stay in the same place.

Figure 4.5: The user actions metadata file content.

Figure 4.6: The user actions metadata file content, with a deleted metadata entry.

In figure 4.5 notice how the third element is deleted during the development of an

application, whereas after this process, in figure 4.6 the line of the deleted element is

rewritten to indicate that this element ceased to exist, without affecting the global order

of the file.

30

4.3. THE SETTINGS SCREEN

4.2.3 The Metadata Directory

The metadata directory is a folder containing all of the metadata files that are associated

with an OML. Figure 4.7 shows an example of how the metadata directory looks like after

the generation of the metadata files is completed. The metadata files are named after the

tag names of the elements of the tree. This way, all elements of the same type are well

organized within their file, thus facilitating future searches for a specific element.

Figure 4.7: An example of the generated metadata files directory.

4.3 The Settings Screen

The Settings screen was the first developed functionality because before being able to start

using any Git operations, information like repository paths or user authentications are

required. To better understand which path the UI design should follow, the user stories

are described in listing 4.2. Also, the design mockup that resulted in the interpretation

of the user stories produced, displayed in figure 4.8, will be analyzed further.

As an OutSystems developer

I want to authenticate my GitHub account

So that I am able to perform git-based operations on my repository

As an OutSystems developer

I want to specify the URL and the path for my repository

So that I can start performing git-based operations on my repository

As an OutSystems developer

I want to specify my name and email

So that my commits are performed with my information

31

CHAPTER 4. INTEGRATING GIT WITH OUTSYSTEMS

As an OutSystems developer

I want to save all the given information

So that I do not need to specify it again

Listing 4.2: Settings Screen User Stories.

Figure 4.8: The mockup of the Settings menu, from where the users can configure the Git
repository and authenticate to GitHub.

Firstly, the user must authenticate with a remote repository host, which in this case is

GitHub, to be able to interact with a remote repository. Secondly, the GitHub repository

link must be provided to perform certain Git operations, namely the clone operation.

Also, a local folder path must be provided, so that a local version of the remote repository

can be stored. Lastly, the user must provide its name and email, because this information

is required in some Git operations, such as commits and merges, as a way to identify the

person who performed them. Taking this into consideration, the last thing that is left to

do is to save the required information for the remaining operations of our system to be

able to use and give the user an environment where he/she will be ready to work. It also

means that a copy of the remote repository must be brought to a local folder.

4.3.1 The Account Configuration Box

In this section, as shown on the left-hand side of the “Settings” screen in figure 4.8, the

user can authenticate to GitHub with his account. Recurring to the tool Git Credential
Manager for Windows [18], helped keeping the communications with GitHub safe, as the

authentication process involves password exchanges. This tool is a secure Git credential

storage, which handles all of the network communications with GitHub. It also provides

a local secure storage for Git passwords so that the user does not need to log in every time

he/she intends to use our system.

32

4.3. THE SETTINGS SCREEN

When pressed, the Login button opens the Git Credential Manager authentication

window, as seen in figure 4.9. This is done via a simple command:

git credential-manager fill

This command waits for an input, that is the repository host to authenticate with,

which is GitHub. Therefore, the provided input is as follows: “host=https://github.com”.

Figure 4.9: The Git Credential Manager GitHub authentication window.

Now, the user can proceed with the authentication process by filling the fields in

figure 4.9, thus authenticating himself to GitHub.

4.3.2 The Git Configuration Box

The Git Configuration Box, as seen in the right-hand side of the “Settings” screen in

figure 4.8, allows the user to give information about himself, namely his name and email,

so that Git operations like merges and commits, can identify the person that performs

them. These two fields - name and email - are simple text inputs, with the possibility

to be filled automatically. The automation process occurs after the user successfully

authenticates with GitHub. After the authentication process, a call to the GitHub API is

made, requesting information with the following command:

curl -u username:token https://api.github.com/user

The token stands for the secured token secret that was generated and stored in the

Git Credential Manager for the current user. This information may or may not be already

present in the user’s GitHub account. In the cases that it is not, the respective field stays

blank for the user to fill.

33

CHAPTER 4. INTEGRATING GIT WITH OUTSYSTEMS

4.3.3 The Repository Configuration Box

In this segment of the screen, as seen in the bottom of figure 4.8, all the repository related

configurations take place. The first field, as the name suggests, receives the link to the Git

repository where the user will be working on. The second field, represented by the button

Choose Folder, is intended for allowing the user to browse the file system, and choose the

desired folder where the local version of his repository will be held.

4.3.4 Saving settings

The Save button, on the bottom right-hand side of figure 4.8, saves all the information

specified in the boxes described above - username, name, email, local and remote repos-

itory paths - in the persistent settings provided by the Service Studio, so that whenever

the user closes or opens the Service Studio, all of this information persists, and is not

required to be inserted again. Also, this button only becomes available if all of the fields

are correctly filled.

The most important thing the Save button does is cloning the remote repository to the

local folder specified by the user in the Git Configuration Box. This step recurs to the git

clone operation with the provided remote repository path as input. The saving step also

has the particularity to verify if an OML is already present in the repository. If this is true,

then the OML is automatically opened in the Service Studio, ready for the user to work.

After the saving is complete, the user is left in a safe state, where all the information that

he/she provided is saved, and the repository is ready to be used.

Besides showing how the implemented settings screen UI is displayed, figure 4.10 also

shows how the settings screen looks like when all of its fields are filled. Notice that after

a successful authentication, the Account Configuration Box changes, so that it displays

a new button where the user can perform the logout operation. This operation deletes

the credentials stored in the Git Credential Manager that were previously created when

the user authenticated with GitHub. The credentials deletion operation is done via the

following command:

git credential-manager reject

As previously described, this command also expects the same input indicating which

repository host we are referring to.

Lastly, the field Local Repository, after successfully choosing a path, this path is now

shown before the Choose Folder button, which now changed to the Change button that

allows to change the previously selected path.

34

4.4. THE COMMIT OPERATION

Figure 4.10: The implemented version of the Settings Screen UI.

4.4 The Commit Operation

The commit operation was the following developed functionality. For the commit opera-

tion, user stories were also created and are displayed in listing 4.3, where they provide

the global vision over the functionalities of this operation. For this case, the only user

interaction is when the user must write a commit message, receive feedback while the

commit is in progress and when the commit completes. Thus, one new design mockup

arises: the commit message screen, shown in figure 4.11. In this message screen, the user

is going to input his commit message that reflects the changes he/she performed with his

commit.

As an OutSystems developer

I want to perform a commit

So that I can save my current work on my repository repository

As an OutSystems developer

I want to write my commit message

So that others can understand what has changed with my commit

As an OutSystems developer

I want to merge the changes present in the remote repository

So that my local repository is up-to-date and my commit concluded

As an OutSystems developer

35

CHAPTER 4. INTEGRATING GIT WITH OUTSYSTEMS

I want to solve the conflicts that appeared with the merge operation

So that I can successfully merge the remote and local revisions of

my project, thus completing my commit

Listing 4.3: Commit Operation User Stories.

Figure 4.11: The commit message input, for the user to introduce his commit message.

The commit operation provided in our solution is different from the commit operation

that is present in Git. The commit operation available in Git only saves the current

modifications to the local repository while creating a new version. In our solution, the

commit operation also saves the modifications in the remote repository, i.e., the commit

operation in our solution uses the Git commit operation to save the modifications locally,

and then utilizes the Git push operation to send and save them in the remote repository

as well. This approach is preferred because it tends to minimize potential conflicts in the

code that is made by inexperienced users. In this situation where the user is not used

to a SCS workflow, in the scenario where the commit operation is the same as Git’s, the

user may tend to spend longer periods without saving his modifications to the remote

repository. This introduces a high-cost conflict resolution effort when he/she tries to save

all of the local modifications in the remote repository, which may already have advanced

work performed by other team members.

The commit and push workflow, however, raises a new problem. When the Git push

operation takes place, the remote repository might have modifications that the user does

not have locally. This means that both the remote and local versions have to be merged

and conflicts may arise. Thus, two Git operations must integrate the solution’s commit op-

eration: Git pull and merge, the first is to bring the remote version to the local repository

and the latter needed to merge the local and remote versions.

36

4.4. THE COMMIT OPERATION

4.4.1 The Operation Implementation

Regardless of the SCS, performing a commit, only makes sense if any pending modifi-

cations need to be saved. Thus, checking for pending modifications is required before

allowing the user to try to commit his work. Figure 4.12 shows the commit operation

flow.

Figure 4.12: The state diagram of the commit operation.

The first step is to generate the metadata files. It is by checking for modifications -

with the Git status operation - in these files, that states whether or not the commit should

proceed. If there are not any modifications detected, a simple dialog informing the user

that there are no pending modifications to be saved is shown. On the other hand, if

modifications are detected, the next step before committing is to generate the application

file, the OML, so that it can be saved in the remote repository. This step involves saving

the current OML opened in the Service Studio to the local repository folder, specified in

the settings screen. The following step is to perform the actual commit. This procedure,

37

CHAPTER 4. INTEGRATING GIT WITH OUTSYSTEMS

as seen in figure 4.12 requires three steps: displaying the commit message input, followed

by calling the Git add operation and lastly performing the Git commit operation. Firstly

a small input box, as shown in figure 4.13 is displayed. After capturing the user commit

message, all the necessary information required for the commit operation is gathered. The

next step is to call the Git add operation because, before using the Git commit operation,

the existing modifications must be staged. Only staged modifications are considered in

the commit operation. So, after this step, the Git commit operation can finally be called

with the commit message previously inserted by the user.

Figure 4.13: The implemented commit message input.

The commit section of the commit and push workflow is now complete. By proceeding

to the push part of the workflow, figure 4.12 shows that the next step is to use the Git

pull operation. This operation is needed because it checks for modifications in the remote

repository and brings them to the local repository if they exist. Also, performing a Git

push operation requires that the local repository is updated with the remote one. After

the Git pull operation is executed, two paths emerge. In the first path, the local repository

is up-to-date with the remote repository, and the flow can proceed to push the local

modifications to the remote repository. In the second path, the remote repository contains

work that the local repository does not have yet, thus requiring both the remote and local

versions to be merged, before pushing the local modifications to the remote repository.

In the first path, where the local repository is up-to-date with the remote repository,

the flow can proceed to execute the Git push operation to save the local modifications

on the remote repository. After this step, a feedback dialog indicating that the local

modifications were stored in the remote repository is shown, as seen in figure 4.14.

In the second path, where both the local and remote repositories have different ver-

sions, there is the need to merge both versions in order to be able to save the final merged

version onto the remote repository. Following figure 4.12, if the versions differ, the flow

continues to the display of the merge window. The merge operation used to merge two

versions of an OML is not the merge operation offered by Git, because the text-oriented

merge algorithms do not work with OMLs. OutSystems had already produced a merge

algorithm that works with the OML file architecture, which is the algorithm that is used

38

4.4. THE COMMIT OPERATION

Figure 4.14: The implemented commit feedback dialog.

here to replace the Git merge. This algorithm already has an interface from where the

user can compare and merge two versions of an OML, as seen in figure 3.1. On the left-

hand side of the merge window, there is the user’s local version, and on the right-hand

side is the version present in the remote repository. Notice that the merge algorithm

needs two OMLs to work. One OML is already present in the Service Studio, which is the

user’s local version. So, to get the OML’s version present in the remote repository, the last

commit ID is obtained and followed by fetching the OML version for that commit, via the

following command:

git show lastCommitID:application.oml

After the user merges both versions of the OML, the local repository is left with new

modifications that resulted from the merging process. But before continuing figure’s 4.12

flow, the metadata files, and the OML must be generated again and stored in the local

repository. After the latter has been concluded, the new modifications are ready to be com-

mitted again. Thus the figure’s 4.12 flow, returns to the previous step of introducing a new

commit message for the newly merged modifications. Although this time, the commit

message - “Merge branch "master" of https://github.com/user/repository.git”

- is automatically filled for the user, as the previous modifications resulted from merging

two versions of the same application. From now on, all of the previous steps, involving

staging the modifications, committing them locally and checking for updated remote ver-

sions, are repeated in a loop until the remote repository versions match the local version,

and the local modifications are pushed to the remote repository, as seen in figure 4.12.

4.4.2 The Repository State

After the user commits a new version of his work to the remote repository, the applica-

tion’s OML and the generated metadata files are the only contents that are sent to the

repository, as we can see in figure 4.15. The metadata files are grouped in a folder named

after the application’s OML.

39

CHAPTER 4. INTEGRATING GIT WITH OUTSYSTEMS

Figure 4.15: The GitHub repository content.

4.5 The Blame Operation

Following the footsteps of the previous functionalities, user stories were created for this

operation, which are presented in listing 4.4. Like the previous functionality, the user

stories helped to define the UI and understand the user interactions with this operation.

The blame operation UI design mock is shown in figure 4.16.

As an OutSystems developer

I want to see the last person that modified the Home web screen

So that I can warn him of an important feature that is missing

in the screen

As an OutSystems developer

I want to see the last person that modified the Settings web screen

So that I can see the commit message and perform an appropriate code

review of the changes made to the screen

As an OutSystems developer

I want to see the last person that modified the FetchUsers action

So that I can see the differences between his version and the version

I committed yesterday

Listing 4.4: Blame Operation User Stories.

The blame operation that our solution provides is mostly implementing the same idea

as the blame operation offered by Git. The Git blame operation annotates each line of code,

which are lines of text, with information about the last person who modified it. Extracting

the blame idea to the paradigm of the visual language can be challenging. The problem is

that there are no lines of text when programming with OutSystems that can be interpreted

by humans, that would otherwise be interpreted with text-based programming languages.

40

4.5. THE BLAME OPERATION

Figure 4.16: The Blame result for the “Bookings” web screen.

The OutSystems files, the OMLs, are binary files, and directly applying a blame over

these files in a human-readable manner cannot be done correctly. Moreover, building

applications with OutSystems is about composing and structuring elements - like actions

or web screens - that correlate with each other to form an application. It is very different

from writing a line of code that executes a particular action. So, defining what applying

a blame means in the OutSystems language is critical, as it cannot be applied directly

to OMLs. Furthermore, our vision for the blame operation goes further than the blame

operation offered by Git. The Git blame operation shows the last modification on a given

line of text, and our intent is to show the full modification history of a given element.

Despite being possible to use Git blame to see any prior version of a line of text, we have

to specify the commit ID of the revision we want to blame. This would not be optimal,

because if we want to see the full modification history, we have to get every commit ID

and re-execute the Git blame operation for each one of those commit ID’s. To this extent,

the best operation to use is not the Git blame operation, but instead an operation that

simulates the Git blame behaviour and that fetches the full modification history of an

element. This operation is a parameterized version of the Git log operation.

As the “lines of code” are the building blocks of an application build with a text-

based programming language, the ESpace tree elements are the building blocks of an

OutSystems application as depicted in figure 4.2. These elements are thus the targets to

apply the blame operation. Hence the OSGit’s blame operation main idea is to blame an

ESpace tree element: for instance figure’s 4.2 Bookings screen, and retain a history of the

last modifications made to that screen, as represented by the mock in figure 4.16.

41

CHAPTER 4. INTEGRATING GIT WITH OUTSYSTEMS

Lastly, to make use of Git log operation (the detailed version of Git blame), as we are

before a text-oriented SCS, some form of text representation is required. This is where

the metadata files are used. As the building blocks of an OutSystems application are the

elements of the ESpace tree, by using the metadata to represent them in a text manner,

the blame operation over each element can work well.

4.5.1 The Operation Implementation

The blame operation as described before, is applied to the metadata files, which have the

textual representation of the elements in the ESpace tree - figure 4.2. So, the Git log oper-

ation is applied to one line of one metadata file, which has the metadata representation

of a given ESpace tree element, also containing its full modification history. This works

because this metadata line changed as the respective element was being modified, and

thus the element’s history is resides in the modification history of its metadata line.

Similarly to the Git blame operation, which extracts information that includes the

commit ID, commit date, and the name of the person who did it, the parameterized

version of the Git log operation, will also extract the same information. Furthermore,

the Git log cannot be applied to the whole file, as there is only the need to retrieve

information about one line of the file that corresponds to one ESpace tree element. Thus

the parameterized Git log operation is as follows [17]:

git log --pretty=format:"%h|%ai|%an|%s" -G"^.*key.*$" --pickaxe-all --filePath

The first parameter of the command, --pretty=format:"%h|%ai|%an|%s" is the out-

put formating options, which indicates that each line of the output presents the commit

ID, commit date, the commit’s author name, and the commit message, separated by a

vertical bar “|”. The following two parameters dictate the search method, i.e., to find all

modifications that contain the regular expression specified after the “-G” option. This

regular expression contains the keyword key, which is the key of the element’s metadata.

Lastly, the “--filePath” argument, specifies in which file, the regular expression lookup

takes place.

To know which values to assign to the key and the filePath parameters, we need to find

the corresponding metadata file and element’s key, respectively. Taking figure 4.16 as an

example, let us suppose the user utilizes the blame operation on the Bookings web screen

as shown. The first thing to do is to retrieve the tag name of the element the user clicked,

i.e., the tag name of the Bookings web screen. With the tag name, finding the metadata

file where the Bookings web screen metadata is stored is a direct process, as the file has

the same name as the tag name. The following step is to obtain the element’s key. Also,

the key is already known as it is associated with the Bookings web screen that the user

clicked to perform the blame operation.

The element’s key and the file name are then used in the parameters of the command

described above. Its output will be multiple strings, with each string containing the

42

4.5. THE BLAME OPERATION

four bits of information request in the parameter --pretty=format:"%h|%ai|%an|%s":

commit ID, commit date, the commit’s author name, and the commit message, as shown

in figure 4.17. Each string essentially contains the said information pieces about a commit

that modified the Bookings web screen in a given point in time. Lastly, these strings will

be stored in an array that will be used in the next step of the blame operation.

Figure 4.17: The output of the used blame command.

The following step of the blame operation is to display the fetched blame history -

the array of strings - to the user, as shown in the mock in figure 4.16. Figure 4.18 shows

the implemented blame UI. As it can be observed, there is a table-like display of the

information fetched by the command described earlier. Each line of the table maps to

each string of the provided array that contains the blame information. Notice that the first

row always shows the most recent modification made to the respective ESpace element.

Furthermore, all of the remaining rows are ordered by commit date, i.e., by modification

date.

Figure 4.18: The implemented blame screen.

43

CHAPTER 4. INTEGRATING GIT WITH OUTSYSTEMS

4.6 Additional Operations

Two of the proposed operations in section 3.7.2: the fetch and history operations, were

not implemented in the final proof of concept due to time constraints. However, some

work for these two operations was developed and is presented next.

4.6.1 The Fetch Operation

The fetch operation is required so that users are able to bring the changes stored in the re-

mote repository to the local repository. This operation is useful if the user wants to check

if there is advanced work in the remote repository that he/she does not have in his local

repository. As described throughout chapter 4, the initial steps before implementing the

featured operations in the proof of concept, were to write user stories to understand the

usability of the operation in hand and to produce design mocks of the featured operation

screen. As presented in listing 4.5, the produced user stories for the fetch operation are

shown. In figure 4.19, a simple feedback message that must be shown to the user while

executing the fetch operation, is displayed. The next steps would be to implement this

feature, taking into consideration the work that has already been done.

Figure 4.19: The Fetch operation feedback.

As an OutSystems developer

I want to obtain the changes in the remote repository

So that I have an updated local repository

As an OutSystems developer

I want to resolve any merge conflicts while fetching the remote work

So that I can complete the fetching process

Listing 4.5: Fetch Operation User Stories.

44

4.6. ADDITIONAL OPERATIONS

It must be considered that possible conflicts might occur when the user fetches the

changes in the remote repository. So, the merge operation must be included in the fetch

workflow if such conflicts are detected. Lastly, this operation would be easy to implement,

because a part of it is already implemented in the fetching process of the commit operation

of OSGit.

4.6.2 The History Operation

The history operation intends to display the full repository history to the user. Informa-

tion such as commit messages, commit ID’s, commit author’s names and commit dates,

should at least be included in the history provided.

This operation follows the same path as the fetch operation described above. The

user stories and design mocks for this operation, were also produced and are displayed

in listing 4.6 and figure 4.20 respectively.

Figure 4.20: The History result, which shows the full commit history of the repository.

As an OutSystems developer

I want to observe all the commits in the repository

So that I can see who performed them and why

As an OutSystems developer

I want to observe the commit done by Paul last Monday

So that I can see the differences between his version and my

current version

Listing 4.6: History Operation User Stories.

45

CHAPTER 4. INTEGRATING GIT WITH OUTSYSTEMS

As shown in figure 4.20, it is intended to shown each commit information in a table-

like display, where each line of the table could be clicked, and take the user to the compare

and merge screen, figure 3.1, so that the user could compare or revert any changes at any

point in history. However, this operation is not essential, because GitHub already features

a commit history view.

46

C
h
a
p
t
e
r

5
Evaluation

This chapter introduces and discusses the evaluation step. We performed usability tests

in order to validate our solution, and which execution and feedback will be approached

next.

5.1 Experiment Design

Usability tests measure user performance in a given piece of software. This interaction is

measured by covering user productivity, goals accomplished, and satisfaction, which are

the key aspects that are going to evaluate our solution [13].

There are several ways we could conduct this study. One would be by evaluating the

participants’ performance in a version of the Service Studio with OSGit - scenario A - and

in another version without OSGit - scenario B. The participants would then perform a

series of tasks over scenario A and repeat them for scenario B as well. At the end, we

would compare the usability of both scenarios. In a second approach to measure usability,

the participants’ performance is only evaluated in one version of the Service Studio with

OSGit, where they will also perform a defined series of tasks in this scenario. We chose

the second approach because the first one is more complex and would take more time

to complete, which is an issue due to the industrial environment we are conducting our

study, where the number of participants and their available time are rather limited.

The second case consisted of providing a Service Studio version with the OSGit inte-

gration. A new build containing the integration was generated and installed in a virtual

machine hosted by Amazon Web Services. Using a virtual machine to hold the Service

Studio version with OSGit, avoids the installation setup time that the participants would

have to spend. It also makes it easier for us to control the environment where the par-

ticipants are doing the exercise and prepare it accordingly to speed up the experiment

47

CHAPTER 5. EVALUATION

duration. The following step consisted of handing over to the participants a set of tasks

that they will perform by using OSGit’s Service Studio integration. We called it the “SCS

User Acceptance Exercise” and it is available in appendix B. All the tasks that the partici-

pants are asked to perform in this exercise sheet consist of using every operation provided

in OSGit and their respective workflows. For example, in the commit operation, there are

two possible scenarios: the user commits without conflicts, and the user commits after

solving the conflicts. These two scenarios were simulated in the experiment, thus the

similarity of the first and third points of the “Onto the Exercise” section of appendix B.

At the end of the exercise, the participants were asked to fill the post-test questionnaire

displayed in appendix A. This questionnaire features some basic demographic questions,

a section of questions regarding the utility of OSGit, also with open-ended questions, and

the last section featuring the SUS questionnaire [6].

The experiment was built to have a maximum duration of thirty minutes, given the

industrial environment where the study is being conducted.

5.2 Participants

The participants to conduct this study need to be people that use OutSystems daily. These

people are the ones that are capable of giving the most accurate and reasonable feedback

because of their experience working with the Service Studio, thus being able to provide

further insights about the usability of our tool. To this extent we asked for volunteers

inside OutSystems, i.e., OutSystems employees that work with the platform daily. In

total, we could find ten available participants.

Participant
Number

Gender Age
OutSystems

Experience (Years)
Academic

Background
1 Male 30-40 10 Computer Science
2 Male 30-40 10 Computer Science
3 Male 30-40 3 Computer Science
4 Male 30-40 5 Computer Science
5 Female 30-40 3 Environmental Engineering
6 Male 20-30 3 Computer Science
7 Male 30-40 7 Computer Science
8 Male 40-50 6 Computer Science

9 Female 20-30 2
Computer Science

and Business Management
10 Female 20-30 3 Computer Science

Table 5.1: Demographic information of the ten participants.

As depicted in table 5.1, the participant’s pool varied in ages between 20 to 50 years

old, with 70% males and 30% females. Also, from a technical point of view, we had people

from various teams inside OutSystems, that also differed in the academic background,

where two people had bachelors in environmental engineering and business management,

48

5.3. EXECUTION

and the remaining had a computer science background. Another important aspect was

the familiarity with the OutSystems Language, i.e., we had participants ranging from 2

to 10 years of experience working with OutSystems.

5.3 Execution

The execution of this study was done in a period of three weeks. There were two groups

of five participants each, because five of them work at Braga’s OutSystems office, whereas

the remaining five, work at Linda-a-Velha’s office, the place where we conducted the

study. To conduct the study with the remote participants in Braga, we meet using a video

conferencing tool called Zoom. Zoom allowed us to be connected even at a distance, and

by using the sharing screen and camera facilities of the tool, we could fully see the other

person’s actions throughout the study.

Before the start of each study, the GitHub repository that participants would be work-

ing with was created with an already built application (OML) and some commit history

to simulate a real scenario.

The study was carried individually with each participant and set to take a maximum

of thirty minutes with each participant. Initially, we started by introducing the objectives

of this thesis to give context to the participant. Next, a brief explanation of the proof

of concept produced - OSGit - was given with a small demo of the navigation in the

tool while showcasing its functionalities. The following step was to ask the participant

to connect to the virtual machine that held the Service Studio version with the OSGit

integration and the exercise sheet shown in appendix B. Before the participants started

reading and doing the tasks depicted in the exercise sheet, we asked them to think aloud,

so that we could understand their line of thought. The participant then started to read the

exercise sheet, and began to complete the required tasks. After completing the second task

in the “Onto the Exercise” section of the sheet, we also partook in the task, by committing

a previously prepared version of the same OML the user was working on, so that when

the participant completed task 4, conflicts would appear and need to be solved by the

participant accordingly. Lastly, at the end of the exercise, the participant was asked to fill

the post-test questionnaire shown in appendix A, and if there was any time left, he/she

was free to give any further comments. At the end of each session, the answers to the

post-test questionnaire (Appendix A), the end-session feedback and any comments made

by the participants throughout the study, were all collected for further analysis.

5.4 Results

After completing the usability tests with the ten participants, the results present in the

answers to the post-test questionnaire in appendix A were gathered. Appendix C shows

the distribution of the answers to the questions one to seven of the “About our Tool”

section of the questionnaire. The answers are given in a numerical agreement scale,

49

CHAPTER 5. EVALUATION

where the number one represents the “strongly disagree” answer and number five the

“strongly agree” answer.

Question Min Max Median Mean
1. The interface of our tool, is easy to use. 4 5 4 4.4
2. The Settings feature, is easy to use. 3 5 4.5 4.2
3. The Commit feature, is easy to use. 4 5 4 4.3
4. The Blame feature, is easy to use. 3 5 4 4.2
5. The Commit feature would be useful to
incorporate with your current software development
methodologies, while using OutSystems.

4 5 5 4.6

6. The Blame feature would be useful to
incorporate with your current software development
methodologies, while using OutSystems.

3 5 5 4.6

7. Our tool would be useful to incorporate with your
current software development methodologies,
while using OutSystems.

4 5 5 4.7

Table 5.2: The mean of the answers the first seven questions of the “About our Tool”
section of the post-test questionnaire (Appendix A).

Table 5.2 shows the mean answers of the answers displayed in appendix C. These

means represent each answer’s mean value of the ten given answers for each question.

Furthermore, these seven questions are meant to find and establish a level of necessity

and usefulness for OSGit.

Question 8: What difficulties did you have while using our tool?
Participant

Number
Answer

1 “n/a”

2
“Configuring the settings, was not clear what to define at the beginning,
due to the instructions provided in the paper.”

3
“When using the blame it should open directly on the action we’ve
selected in order to compare with the version commited”

4 “None”
5 “Linking accounts”

6
“I can only commit a single OML at a time. I would like to commit the
entire feature, which can include multiple OMLs and Appplications.”

7 “Nothing except the double-click thing”

8
“To be able to commit changes inside a screen or an action
(OutSystems does not allow it)”

9 “No major difficulties, just minor usability issues that can be improved.”

Table 5.3: Participants’ answers to question eight of the post-test questionnaire.

For the remaining three answers in the “About our Tool” section of the questionnaire,

as they were open-ended questions, the participants had the freedom to express them-

selves through a small text. Table 5.3 shows the answers to the eighth question regarding

50

5.4. RESULTS

the difficulties the participants had while using OSGit. The participants answers will

allow us to understand the faced difficulties while using our tool and allow us to refine

OSGit so that future problems can be solved.

Question 9: Which other new features would you like to see in our tool?
Participant

Number
Answer

1 “On ClickPublish be able to Commit.”

2
“Branches and History. Open in Git button, to show how the code
repository looks like on Git.”

3
“Have a feature to tag stable versions in order to revert to
them if necessary”

4 “All”

5
“I would like to see the blame feature with more details.
For instance, I want to perform blame in an aggregate inside an action,
or in an entity attribute.”

6
“I would love to have the Blame functionality working with the
standard OS version control”

7 “Ability to integrate with other source control systems; branching”

Table 5.4: Participants’ answers to question nine of the post-test questionnaire.

In table 5.4, the participants present their ideas for future features that they would

like to see implemented in OSGit. This question is rather interesting as it shows us the

various necessities of each area of expertise within OutSystems, because participants

come from different teams.

Lastly, table 5.5 shows the suggestions about the general improvements to OSGit that

were given by the participants. As it can be observed, the last answer suggesting a better

merge operation slides way from the goal of this thesis. Nevertheless, it still shows the

satisfaction levels of each participant with the presented functionalities.

51

CHAPTER 5. EVALUATION

Question 10: Which improvements would you suggest to our tool?
Participant

Number
Answer

1 “N/a”
2 “When doing a publish, it should also commit to Git.”

3
“If possible in the future make the 1 click publish also commit to the
versioning tool, and also allow several instances of the blame to opened
at the same time without the need to close the one currently open”

4 “Some ui tunes in the views and the link to the gitub account steps”

5
“I would love some shortcut keys, I don’t like menus much and much
less two-level menus :)”

6
“The pop up with the commit message could be in the first pop up
that is showed to the user.”

7

“Minor usability improvements:
- Integrated login in the Setting screens
- When commiting, avoid showing the "There are changes"
popup (it is unnecessary and causes confusion)
- When commiting with errors on the oml, show an alert saying so.
- When commiting with conflicts, the experience can be closer
to the "1-click publish"
- The Blame popup design can be improved for better usability - it
can be bigger and the lines can be clearer they’re clickable and
what that does (maybe they should have a button instead)”

8 “A better merge”

Table 5.5: Participants’ answers to question ten of the post-test questionnaire.

52

5.4. RESULTS

5.4.1 The SUS

The System Usability Scale (SUS) was the last section of the post-testing questionnaire -

shown in appendix A - handed to the participants at the end of the exercise. To comple-

ment the already discussed questionnaire topics, and obtain a more thoroughly usability

survey, the SUS was thus presented.

The SUS [6] is a scale of ten questions that assess key usability points for any given

system. Each question’s answers are given by a numerical agreement degree, i.e., for each

question, there is a one to five numerical agreement scale. This scale contemplates the

“strongly disagree” answer represented by number one, throughout the next numbers of

the scale until number five, which represents a “strongly agree” answer.

SUS Question
Mean

Answer
1. I think that I would like to use this system frequently. 4,4
2. I found the system unnecessarily complex. 1,6
3. I thought the system was easy to use. 4,4
4. I think that I would need the support of a technical person to be able
to use this system.

1,5

5. I found the various functions in this system were well integrated. 3,8
6. I thought there was too much inconsistency in this system. 1,6
7. I would imagine that most people would learn to use this system
very quickly.

4,3

8. I found the system very cumbersome/awkward to use. 1,6
9. I felt very confident using the system. 4,3
10. I needed to learn a lot of things before I could get going with
this system.

1,8

Table 5.6: The mean of the answers for each of the SUS questions.

Table 5.6 shows the mean values of the agreement scale referred to before (from one

to five). The evaluation phase contemplated ten people, and the “Mean Answer” column

of the table represents the mean value of all of the ten answers to each question. These

values are going to enter in the calculation of the global SUS score [6]. Recurring to the

values in table 5.6 the global SUS score obtained is 82,75, which is a promising result.

Score Acceptability Rating
≤25 Not Acceptable Worst Imaginable

26-39 Not Acceptable Poor
40-52 Not Acceptable Ok
53-74 Marginal Good
75-85 Acceptable Excellent

86-100 Acceptable Best Imaginable

Table 5.7: The various SUS scores with their acceptability and ratings [4]

53

CHAPTER 5. EVALUATION

5.5 Analysis

The results obtained in the study are very promising. By looking at table 5.2, the answers

are very positive. These questions focused on the participants global difficulties of using

OSGit and if they find the need for incorporating our tool in their software development

workflow. The answers means were well above four, which means that it tends to the

“strongly agree” side of the statements asked. This means that the participants found few

setbacks while using OSGit, and would like to use it as a part of their daily routines.

Regarding the difficulties encountered and shown in table 5.3, the main aspects

pointed out were in configuring the GitHub account in the settings screen: as pointed

in the second and fifth answer; and minor usability issues: pointed in the third, seventh,

eighth and ninth answers. These aspects will be taken into consideration for the future

work on this tool, as the difficulties the participants had are of utmost importance.

Table 5.4 displays additional features that the participants suggested to be integrated

into OSGit. This also reflects the needs that the developers from different teams have.

The first suggestion pointed by one of the participants is for the 1-Click-Publish Out-

Systems functionality to also perform a commit. This functionality deploys a running

version of the application he/she is producing and stores that version of the application

in the OutSystems repository. The 1-Click-Publish functionality has a similar workflow

as the commit operation, and currently, it is how the users are used to store and generate

versions of their applications. This similarity, lead to the suggestion for the 1-Click-

Publish to integrate the commit functionality, thus enabling the commit operation and

the OutSystems publish operation to be concentrated in only one button, that the cur-

rent OutSystems users already use. However, the implications of this integration should

be discussed further and the impact of its usability by the users should be measured

accordingly, before taking any decisions.

The second subject states that branches and history would be two exciting features

to add to our solution. Taking into consideration the branching setback described in sec-

tion 3.7.2, it would be an interesting feature to incorporate once the database architecture

issue is tackled. The history operation to see the full commit history of the repository is

also suggested. Lastly, the possibility to integrate the remote repository content visualiza-

tion through the click of a button is presented by the participant.

Answer five is an interesting observation. The participant suggests that the blame

operation to be more detailed, i.e., to be able to show the modification history for items

with a finer granularity. For example, an action is constituted by a set of finer granularity

elements which are action nodes as depicted in figure 5.1. The suggestion is enabling

the blame functionality in OSGit to also work at a deeper level to be able to extract

information about each node modifications.

The seventh subject’s answer mentions the integrations with other SCS besides Git.

Also, the branching operation is once again referred. This seems to indicate this is one of

the most wanted features.

54

5.5. ANALYSIS

Figure 5.1: An example of an Action content. These four elements that constitute this
action are called action nodes.

Regarding the last question of the “About our Tool” section shown in table 5.5, it fo-

cuses on the suggested improvements for our tool. As we can see the topic of integrating

the 1-Click-Publish OutSystems functionality with the OSGit commit operation appears

again in answers two and three, thus revealing the importance of this topic. The remain-

ing suggestions refer UI improvements such as the five minor usability improvements

in question seven, the order of the feedback and input messages screen in question six,

and allow for several blame screen to be opened, as requested in question three. The last

answer targets a topic that is outside the scope of this thesis, which is the improvement

of the current merge algorithm provided by OutSystems.

To conclude, we obtained great feedback from the evaluation phase, and the partici-

pants showed great satisfaction towards OSGit. Which by analyzing table 5.7 and from

the SUS score obtained, with a value of 82.75, we can say that the result obtained for OS-

Gits is acceptable and rated “excellent”. Despite obtaining an acceptable solution, there is

still room for improvements according to the participants’ feedback seen in tables 5.3, 5.4

and 5.5.

55

C
h
a
p
t
e
r

6
Conclusions

In this chapter, we present the final observations and the future work for this thesis.

6.1 Final Observations

The growing world of VPLs and consequently low-code platforms will always bring the

need to incorporate version control methodologies in the software development processes,

as teams get bigger within a collaborative environment to accelerate the development

process.

The main problem we studied is the integration of a text-based SCS with a VPLs, which

answers the following question: how to cope with the loss of SCS functionalities when

dealing with visual artifacts? A solution to this problem is what the implemented proof of

concept demonstrates. In the context of this thesis, we are integrating Git - the SCS - with

OutSystems - the VPL - more precisely with the OutSystems developing environment, the

Service Studio. In our solution, the Git clone, commit, push and pull operations, could be

directly used with the OutSystems application files, the OMLs. However, the Git compare,

merge, and blame operations could not be directly used with the OML files, because these

last three operations need to manage or display the file contents, and text-oriented SCS

interpret visual assets as black-boxed constructs. So, to tackle the compare and merge

operation setback, OutSystems already provides such facility. For the compare and merge

cases, instead of using Git’s operations, we had to reuse the one that was already built by

OutSystems and was ready to interpret and modify the OML files. The blame operation

was a different case. The solution for this issue had to be entirely engineered through

the creation of metadata files, that by containing text, enabled the Git blame operation to

work over them as explained in section 4.5.

With the produced proof of concept that provided the commit and blame operations

57

CHAPTER 6. CONCLUSIONS

to be used on OutSystems visual binary files, the OMLs, we proved that integrating a

text-based SCS with a VPL is possible. However, issues while integrating operations that

manage the file contents will arise when used on visual artifacts. The issues must then be

solved accordingly, which leads us to the next concluding point.

Developing these types of solutions to get around the SCS operations loss while han-

dling visual artifacts will be very attached to the technology where these solutions are

being developed. For instance, in our solution, the contents of the metadata files are

metadata information that represents application building elements provided by the Ser-

vice Studio. However, if we had another technology that differs from OutSystems, the

metadata solution could be different, and perhaps the extracted metadata content may be

different due to the nature of the structure of the visual artifacts. The key aspect here is

that visual artifacts are vast, and different artifact structures require different solutions.

One last example is the compare and merge feature, shown in figure 3.1. This feature

compares and merges OMLs files and it is capable to do so, by having a specific algorithm

that has the knowledge of the inner file structure of OMLs. Moreover, extracting meta-

data from the visual elements as way to assist some text-based SCS operations, revealed

to be a great solution to tackle this problem and similar ones.

Regarding the participants’ feedback obtained in the evaluation phase, described in

chapter 5, the results were very positive. The operations provided by the implemented

solution caused a good impact on the developing workflow. Mainly the blame operation

was the promising one as shown in the results obtained, and throughout comments made

by the participants that showed a high level of satisfaction for this operation. However,

by looking at the difficulties encountered and the improvements suggested by the partici-

pants, we can see that there is still space for improving our tool, mainly by adding more

features that would enrich our solution even further.

6.2 Future Work

There are still some important aspects that remain to be approached. An introduction to

these aspects will be presented next, as the future work for this thesis:

• Working with multiple OMLs: The current solution is only capable of handling one

OML per repository. One of the participants in the evaluation phase in table 5.3,

pointed out that it is not the optimal solution as many applications produced with

OutSystems have two or more OMLs. In the current solution, only the commit

operation would need to be targeted and modified in order to work with more than

one OML. The blame and settings functionalities are already prepared to handle

multiple OMLs in the same repository.

• More repository hosts: Our solution only uses GitHub as the repository host, as the

SCS used is Git. However, other repository hosts could be available: like GitLab

or BitBucket, for example. This would provide the user with an extended range of

58

6.2. FUTURE WORK

available repository hosts, instead of forcing them only to use GitHub. It would be

necessary to modify the settings screen of OSGit, by allowing the users to choose

among the available repository hosts, and provide the necessary authentication

process according to the repository host that was selected.

• More SCS: The integration made with the Service Studio was with Git. Nevertheless,

more SCS could also be interesting to make available for the users, as some of them

might be keener or used to the workflow of a different SCS, like SVN or Mercurial,

for example. For this, we just needed to change the library that establishes the

communications with Git and the used Git commands.

• Implement our solution as a plugin: OutSystems allows the creation of plugins

inside the platform that provide a given functionality. The difference of a particular

functionality being developed as a plugin is that the source code is not inside the

source code of the OutSystems product. So, by having our solution implemented as

an OutSystems plugin, we could have various pieces of the same solution, that only

differed in the SCS chosen to integrate with the platform. For example, there could

be a plugin for Git, Mercurial, and SVN. The user can choose the SCS he/she wants

to use and install the respective plugin. Thus, his preferred SCS integration is ready

to be used, and the integration of various SCS with the platform is easier to manage.

To enable OSGit as an OutSystems plugin, it would be necessary to enable certain

OutSystems APIs so that the communications with the OutSystems components -

mainly the Service Studio and the Platform Server - could be performed.

• The 1-Click-Publish issue: The 1-Click-Publish, as described in section 5.5, has the

possibility of being integrated with the commit operation. This must be investigated

further as the commit operation provided, also stores a version of the application in

a GitHub repository. This may initially cause some confusion, as two repositories are

holding the same versions of the user’s applications, where its operations need to be

called from two different places. So, ideally, the commit and 1-Click-Publish should

be investigated, and an eventual merge of these two operations should also be

considered, as suggested by two participants from the validation phase in table 5.5.

59

Bibliography

[1] About OutSystems - Facts and Figures | OutSystems. url: https://www.outsystems.

com/company/ (visited on 02/01/2019).

[2] AMOR - Adaptable Model Versioning. url: http://www.modelversioning.org/

(visited on 01/08/2019).

[3] Apache Subversion. url: https://subversion.apache.org/ (visited on 02/14/2019).

[4] A. Bangor, P. Kortum, and J. Miller. “Determining what individual SUS scores

mean: Adding an adjective rating scale.” In: Journal of usability studies 4.3 (2009),

pp. 114–123.

[5] Bazaar. url: http://bazaar.canonical.com/en/ (visited on 02/14/2019).

[6] J. Brooke et al. “SUS - A quick and dirty usability scale.” In: Usability evaluation in
industry 189.194 (1996), pp. 4–7.

[7] CDO - The model repository. url: https://www.eclipse.org/cdo/ (visited on

01/08/2019).

[8] CDO Model Repository Overview. url: https://www.eclipse.org/cdo/documentation/

(visited on 09/23/2019).

[9] Compare and merge example with conflicts - OutSystems. url: https://success.

outsystems.com/Documentation/11/Developing_an_Application/Merge_the_

Work/Compare_and_merge_example_with_conflicts (visited on 02/07/2019).

[10] Compare Repositories - Open Hub. url: https://www.openhub.net/repositories/

compare (visited on 07/20/2019).

[11] CVS - Open Source Version Control. url: https://www.nongnu.org/cvs/ (visited

on 02/14/2019).

[12] CVS — Concurrent Versions System v1.11.23l. url: https : / / www . gnu . org /

software/trans-coord/manual/cvs/cvs.html (visited on 02/14/2019).

[13] J. S. Dumas, J. S. Dumas, and J. Redish. A practical guide to usability testing. Intellect

books, 1999, pp. 4–6.

[14] Eclipse Subversive - Subversion (SVN) Team Provider. url: https://www.eclipse.

org/subversive/ (visited on 02/19/2019).

61

https://www.outsystems.com/company/
https://www.outsystems.com/company/
http://www.modelversioning.org/
https://subversion.apache.org/
http://bazaar.canonical.com/en/
https://www.eclipse.org/cdo/
https://www.eclipse.org/cdo/documentation/
https://success.outsystems.com/Documentation/11/Developing_an_Application/Merge_the_Work/Compare_and_merge_example_with_conflicts
https://success.outsystems.com/Documentation/11/Developing_an_Application/Merge_the_Work/Compare_and_merge_example_with_conflicts
https://success.outsystems.com/Documentation/11/Developing_an_Application/Merge_the_Work/Compare_and_merge_example_with_conflicts
https://www.openhub.net/repositories/compare
https://www.openhub.net/repositories/compare
https://www.nongnu.org/cvs/
https://www.gnu.org/software/trans-coord/manual/cvs/cvs.html
https://www.gnu.org/software/trans-coord/manual/cvs/cvs.html
https://www.eclipse.org/subversive/
https://www.eclipse.org/subversive/

BIBLIOGRAPHY

[15] EMF Compare - Compare and Merge Your EMF Models. url: https://www.eclipse.

org/emf/compare/overview.html (visited on 01/08/2019).

[16] Git. url: https://git-scm.com/ (visited on 02/14/2019).

[17] Git - git-log Documentation. url: https://git-scm.com/docs/git-log (visited

on 09/22/2019).

[18] Git Credential Manager for Windows. url: https://github.com/microsoft/Git-

Credential-Manager-for-Windows (visited on 09/02/2019).

[19] GitHub for Unity. url: https://assetstore.unity.com/packages/tools/

version-control/github-for-unity-118069 (visited on 01/16/2019).

[20] GNU CSSC. url: https://www.gnu.org/software/cssc/ (visited on 02/07/2019).

[21] Helix - Triggers. url: https://www.perforce.com/perforce/doc.current/

manuals/p4sag/Content/P4SAG/chapter.scripting.html (visited on 02/20/2019).

[22] Helix Plugin for Unity (P4Connect). url: https://www.perforce.com/plugins-

integrations/p4connect-unity-plugin (visited on 02/20/2019).

[23] Helix Plugin for Visual Studio Source Control. url: https://www.perforce.com/

plugins-integrations/visual-studio-plugin (visited on 02/20/2019).

[24] Helix Plugins Integrations. url: https://www.perforce.com/plugins-integrations

(visited on 02/19/2019).

[25] Hg - Visual Studio Marketplace. url: https://marketplace.visualstudio.com/

items?itemName=mrcrowl.hg (visited on 02/19/2019).

[26] How does OutSystems enable team collaboration? - OutSystems. url: https://

success.outsystems.com/Evaluation/Lifecycle_Management/How_does_

OutSystems_enable_team_collaboration (visited on 02/05/2019).

[27] A. Koc and A. Tansel. “A Survey of Version Control Systems.” In: (Feb. 2019).

[28] M. Koegel and J. Helming. “EMFStore: a model repository for EMF models.” In:

2010 ACM/IEEE 32nd International Conference on Software Engineering. Vol. 2. 2010,

pp. 307–308. doi: 10.1145/1810295.1810364.

[29] LibGit2Sharp. url: https://github.com/libgit2/libgit2sharp (visited on

08/30/2019).

[30] H. Lourenço and R. Eugénio. “TrueChange™ under the hood: how we check the

consistency of large models (almost) instantly.” In: (2019).

[31] Low-Code Adoption Is on the Rise: Key Findings from the State of Application Devel-
opment Report. url: https://www.outsystems.com/blog/posts/low-code-

adoption/ (visited on 09/20/2019).

[32] J. N. Macedo, R. Moreira, J. Cunha, and J. Saraiva. “Get Your Spreadsheets Under

(Version) Control.” In: Proceedings of XXII Ibero-American Conference on Software
Engineering (CIbSE 2019), Software Engineering Track. to appear. Apr. 2019.

62

https://www.eclipse.org/emf/compare/overview.html
https://www.eclipse.org/emf/compare/overview.html
https://git-scm.com/
https://git-scm.com/docs/git-log
https://github.com/microsoft/Git-Credential-Manager-for-Windows
https://github.com/microsoft/Git-Credential-Manager-for-Windows
https://assetstore.unity.com/packages/tools/version-control/github-for-unity-118069
https://assetstore.unity.com/packages/tools/version-control/github-for-unity-118069
https://www.gnu.org/software/cssc/
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.scripting.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.scripting.html
https://www.perforce.com/plugins-integrations/p4connect-unity-plugin
https://www.perforce.com/plugins-integrations/p4connect-unity-plugin
https://www.perforce.com/plugins-integrations/visual-studio-plugin
https://www.perforce.com/plugins-integrations/visual-studio-plugin
https://www.perforce.com/plugins-integrations
https://marketplace.visualstudio.com/items?itemName=mrcrowl.hg
https://marketplace.visualstudio.com/items?itemName=mrcrowl.hg
https://success.outsystems.com/Evaluation/Lifecycle_Management/How_does_OutSystems_enable_team_collaboration
https://success.outsystems.com/Evaluation/Lifecycle_Management/How_does_OutSystems_enable_team_collaboration
https://success.outsystems.com/Evaluation/Lifecycle_Management/How_does_OutSystems_enable_team_collaboration
https://doi.org/10.1145/1810295.1810364
https://github.com/libgit2/libgit2sharp
https://www.outsystems.com/blog/posts/low-code-adoption/
https://www.outsystems.com/blog/posts/low-code-adoption/

BIBLIOGRAPHY

[33] Mendix: We Help Enterprises Achieve their Digital Goals with Low-code. url: https:

//www.mendix.com/company (visited on 02/20/2019).

[34] Mercurial SCM. url: https://www.mercurial-scm.org/ (visited on 02/14/2019).

[35] MercurialEclipse. url: https://marketplace.eclipse.org/content/mercurialeclipse

(visited on 02/19/2019).

[36] ModelBus Overview. url: https://www.modelbus.org/en/modelbusoverview.

html (visited on 01/08/2019).

[37] R. M.M. K. Moreira. “SheetGit: A Tool for Collaborative Spreadsheet Develop-

ment.” Master’s thesis. Faculdade de Ciências e Tecnologia da Universidade Nova

de Lisboa, 2016.

[38] OutSystems tools and components. url: https : / / success . outsystems . com /

Evaluation/Architecture/1_OutSystems_Platform_tools_and_components#

Development_environments (visited on 02/04/2019).

[39] Perforce - Documentation. url: https://www.perforce.com/support/self-

service-resources/documentation (visited on 02/19/2019).

[40] Perforce | HelixCore - Version Control Software for Accelerated Development. url:

https://www.perforce.com/products/helix-core (visited on 02/14/2019).

[41] Perforce Open Sources Popular Version Control Tools | Perforce. url: https://www.

perforce.com/press-releases/perforce-open-sources-popular-version-

control-tools (visited on 02/22/2019).

[42] Plastic SCM - The Distributed Version Control for Big Projects. url: https://www.

plasticscm.com/features (visited on 02/14/2019).

[43] Plastic SCM - Unity plugin. url: https://www.plasticscm.com/unity-plugin

(visited on 02/19/2019).

[44] Plastic SCM version control in Microsoft Office. url: https://www.plasticscm.

com/documentation/office/plastic-scm-version-control-office-guide

(visited on 02/19/2019).

[45] M. Revell. What Is Low-Code? url: https://www.outsystems.com/blog/what-

is-low-code.html (visited on 02/01/2019).

[46] Source Control. url: https://docs.unrealengine.com/en- US/Engine/UI/

SourceControl (visited on 01/16/2019).

[47] Source Control Inside Unreal Editor. url: https://docs.unrealengine.com/en-

US/Engine/Basics/SourceControl/InEditor (visited on 01/16/2019).

[48] Subversion - Help | IntelliJ IDEA. url: https://www.jetbrains.com/help/idea/

using-subversion-integration.html (visited on 02/19/2019).

[49] The Mendix Difference for Platform as a Service Providers. url: https://www.mendix.

com/the-mendix-difference/ (visited on 02/20/2019).

63

https://www.mendix.com/company
https://www.mendix.com/company
https://www.mercurial-scm.org/
https://marketplace.eclipse.org/content/mercurialeclipse
https://www.modelbus.org/en/modelbusoverview.html
https://www.modelbus.org/en/modelbusoverview.html
https://success.outsystems.com/Evaluation/Architecture/1_OutSystems_Platform_tools_and_components#Development_environments
https://success.outsystems.com/Evaluation/Architecture/1_OutSystems_Platform_tools_and_components#Development_environments
https://success.outsystems.com/Evaluation/Architecture/1_OutSystems_Platform_tools_and_components#Development_environments
https://www.perforce.com/support/self-service-resources/documentation
https://www.perforce.com/support/self-service-resources/documentation
https://www.perforce.com/products/helix-core
https://www.perforce.com/press-releases/perforce-open-sources-popular-version-control-tools
https://www.perforce.com/press-releases/perforce-open-sources-popular-version-control-tools
https://www.perforce.com/press-releases/perforce-open-sources-popular-version-control-tools
https://www.plasticscm.com/features
https://www.plasticscm.com/features
https://www.plasticscm.com/unity-plugin
https://www.plasticscm.com/documentation/office/plastic-scm-version-control-office-guide
https://www.plasticscm.com/documentation/office/plastic-scm-version-control-office-guide
https://www.outsystems.com/blog/what-is-low-code.html
https://www.outsystems.com/blog/what-is-low-code.html
https://docs.unrealengine.com/en-US/Engine/UI/SourceControl
https://docs.unrealengine.com/en-US/Engine/UI/SourceControl
https://docs.unrealengine.com/en-US/Engine/Basics/SourceControl/InEditor
https://docs.unrealengine.com/en-US/Engine/Basics/SourceControl/InEditor
https://www.jetbrains.com/help/idea/using-subversion-integration.html
https://www.jetbrains.com/help/idea/using-subversion-integration.html
https://www.mendix.com/the-mendix-difference/
https://www.mendix.com/the-mendix-difference/

BIBLIOGRAPHY

[50] W. F. Tichy. “RCS—a system for version control.” In: Software: Practice and Experi-
ence 15.7 (1985), pp. 637–654.

[51] Unity - Manual: Version control integration. url: https://docs.unity3d.com/

Manual/Versioncontrolintegration.html (visited on 01/16/2019).

[52] Using Perforce as Source Control. url: https://docs.unrealengine.com/en-

us/Engine/Basics/SourceControl/Perforce (visited on 01/16/2019).

[53] Version and source control - OutSystems. url: https://success.outsystems.com/

Evaluation/Lifecycle_Management/Version_and_source_control (visited on

02/04/2019).

[54] Version Control - Mendix 7 Reference Guide | Mendix Documentation. url: https:

//docs.mendix.com/refguide/version-control (visited on 02/20/2019).

[55] Version Control in Visual Studio Code. url: https://code.visualstudio.com/

docs/editor/versioncontrol (visited on 02/19/2019).

[56] Version Control Management Tools Multi-user Application Development | Mendix
Evaluation Guide. url: https://www.mendix.com/evaluation- guide/app-

lifecycle/version-control (visited on 02/20/2019).

[57] VS annotate or Git’s blame. url: https://www.outsystems.com/ideas/5351/VS+

annotate+or+Git’s+blame?IsFromAdvancedSearch=True#IdeaComment19941

(visited on 02/21/2019).

[58] What is EMFStore and why should I use it? url: https://www.eclipse.org/

emfstore/ (visited on 01/08/2019).

[59] What is Source Control? - Amazon Web Services. url: https://aws.amazon.com/

devops/source-control/ (visited on 02/01/2019).

64

https://docs.unity3d.com/Manual/Versioncontrolintegration.html
https://docs.unity3d.com/Manual/Versioncontrolintegration.html
https://docs.unrealengine.com/en-us/Engine/Basics/SourceControl/Perforce
https://docs.unrealengine.com/en-us/Engine/Basics/SourceControl/Perforce
https://success.outsystems.com/Evaluation/Lifecycle_Management/Version_and_source_control
https://success.outsystems.com/Evaluation/Lifecycle_Management/Version_and_source_control
https://docs.mendix.com/refguide/version-control
https://docs.mendix.com/refguide/version-control
https://code.visualstudio.com/docs/editor/versioncontrol
https://code.visualstudio.com/docs/editor/versioncontrol
https://www.mendix.com/evaluation-guide/app-lifecycle/version-control
https://www.mendix.com/evaluation-guide/app-lifecycle/version-control
https://www.outsystems.com/ideas/5351/VS+annotate+or+Git's+blame?IsFromAdvancedSearch=True#IdeaComment19941
https://www.outsystems.com/ideas/5351/VS+annotate+or+Git's+blame?IsFromAdvancedSearch=True#IdeaComment19941
https://www.eclipse.org/emfstore/
https://www.eclipse.org/emfstore/
https://aws.amazon.com/devops/source-control/
https://aws.amazon.com/devops/source-control/

A
p
p
e
n
d
i
x

A
Post-Test Questionnaire

The post-testing questionnaire presented to the testers after completing the testing exer-

cise shown in appendix B.

65

APPENDIX A. POST-TEST QUESTIONNAIRE

9/16/2019 User Acceptance Questionnaire

https://docs.google.com/forms/d/1P38b5e4VYqkzMoWoWO0-3lTzhPgHcwPiDiui2ramvuE/edit 1/4

User Acceptance Questionnaire
* Required

1. Gender *
Mark only one oval.

 Male

 Female

2. Age *
Mark only one oval.

 < 20

 20-30

 30-40

 40-50

 > 50

3. What is your education level? *

4. What is your major?

5. For how long have you been using
OutSystems? *

About our Tool

6. The interface of our tool, is easy to use. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

7. The Settings feature, is easy to use. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

66

9/16/2019 User Acceptance Questionnaire

https://docs.google.com/forms/d/1P38b5e4VYqkzMoWoWO0-3lTzhPgHcwPiDiui2ramvuE/edit 2/4

8. The Commit feature, is easy to use. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

9. The Blame feature, is easy to use. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

10. The Commit feature would be useful to incorporate with your current software development
methodologies, while using OutSystems. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

11. The Blame feature would be useful to incorporate with your current software development
methodologies, while using OutSystems. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

12. Our tool would be useful to incorporate with your current software development
methodologies, while using OutSystems. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

13. What difficulties did you have while using our tool?

67

APPENDIX A. POST-TEST QUESTIONNAIRE

9/16/2019 User Acceptance Questionnaire

https://docs.google.com/forms/d/1P38b5e4VYqkzMoWoWO0-3lTzhPgHcwPiDiui2ramvuE/edit 3/4

14. Which other new features would you like to see in our tool?

15. Which improvements would you suggest to our tool?

The SUS Questionnaire

16. I think that I would like to use this system frequently.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

17. I found the system unnecessarily complex.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

18. I thought the system was easy to use.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

19. I think that I would need the support of a technical person to be able to use this system.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

68

9/16/2019 User Acceptance Questionnaire

https://docs.google.com/forms/d/1P38b5e4VYqkzMoWoWO0-3lTzhPgHcwPiDiui2ramvuE/edit 4/4

Powered by

20. I found the various functions in this system were well integrated.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

21. I thought there was too much inconsistency in this system.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

22. I would imagine that most people would learn to use this system very quickly.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

23. I found the system very cumbersome/awkward to use.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

24. I felt very confident using the system.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

25. I needed to learn a lot of things before I could get going with this system.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

69

A
p
p
e
n
d
i
x

B
SCS User Acceptance Exercise

Setup Phase

Now you will be asked to perform a small exercise, in which you will have to use our

tool. In order to do this task, a previously created GitHub repository and a simple Out-

Systems application will be provided, alongside an existing GitHub account. Usually, the

creation of this repository would have to be done by the user, but due to time constraints,

the GitHub account, the GitHub repository and the OutSystems application are already

provided. You must configure your version control profile, with the data provided below:

• Login to GitHub with these credentials:

� Username: ut1-vcs

� Password: user1-vcs-2019

• Fill the Git configuration window:

� Email: daemon@mail.com

• Remote repository: https://github.com/User383/CinemaApp.git

• Local Repository: choose and create a new folder called “CinemaAppRepo”

• Save the settings screen.

Onto the Exercise

The application used to do this exercise is very simple. You will be modifying a simplified

version of one of the OutSystems tutorial applications: the OSMDb or “Cinemas Appli-

cation”. As you are working on a distributed environment, conflicts may occur and you

71

APPENDIX B. SCS USER ACCEPTANCE EXERCISE

will need to solve them as you see fit.

1. In the “MovieDetail” web screen, create a new button that deletes the current movie;

2. Commit the current changes to the repository;

3. In the “Movies” web screen, create a new table of records that shows every movie

that has a GrossTakingsAmount lesser than 100 milions dollars;

4. Commit the current changes to the repository;

5. Verify who was the first person to modify the "Movies"web screen, while checking

his name and message. Also you can click on any row of the blame table, to compare

or even merge, your current version with any previous versions.

72

A
p
p
e
n
d
i
x

C
SCS User Acceptance Exercise

Each participant’s answers to the post-test questionnaire, shown in appendix A are show-

cased next.

Figure C.1: Participants answers to question one of the post-test questionnaire.

73

APPENDIX C. SCS USER ACCEPTANCE EXERCISE

Figure C.2: Participants answers to question two of the post-test questionnaire.

Figure C.3: Participants answers to question three of the post-test questionnaire.

Figure C.4: Participants answers to question four of the post-test questionnaire.

74

Figure C.5: Participants answers to question five of the post-test questionnaire.

Figure C.6: Participants answers to question six of the post-test questionnaire.

75

APPENDIX C. SCS USER ACCEPTANCE EXERCISE

Figure C.7: Participants answers to question seven of the post-test questionnaire.

76

A
p
p
e
n
d
i
x

D
SCS workflows in IDE’s

Figure D.1: State diagram of the source control workflow, while UE4 using Perforce.

77

APPENDIX D. SCS WORKFLOWS IN IDE’S

Figure D.2: State diagram of the source control workflow in Unity, while using Git.

78

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Motivation
	Proposed Solution
	Key Contributions
	Structure

	Low-Code Software Development
	Low-Code Software Development
	OutSystems
	Service Studio
	The OutSystems Application Files

	The Different Shapes of SCS
	Source Control Systems
	Source Control in Low-Code Platforms
	Versioning in OutSystems
	Versioning in Mendix

	Source Control in IDEs
	Source Control in Unreal Engine 4
	Source Control in Unity
	Summary

	Source Control in Modeling Languages
	Summary

	Source Control in Spreadsheets
	Source Control in Text-Based Languages
	Choosing the SCS to integrate with OutSystems
	Mercurial Vs. Git
	The Chosen Git Operations

	Integrating Git with OutSystems
	Overview
	Representing Visual Objects as Text
	Generating the Metadata Files
	Deleting an Element
	The Metadata Directory

	The Settings Screen
	The Account Configuration Box
	The Git Configuration Box
	The Repository Configuration Box
	Saving settings

	The Commit Operation
	The Operation Implementation
	The Repository State

	The Blame Operation
	The Operation Implementation

	Additional Operations
	The Fetch Operation
	The History Operation

	Evaluation
	Experiment Design
	Participants
	Execution
	Results
	The SUS

	Analysis

	Conclusions
	Final Observations
	Future Work

	Bibliography
	Post-Test Questionnaire
	SCS User Acceptance Exercise
	SCS User Acceptance Exercise
	SCS workflows in IDE's

