
DEPARTMENT OF
COMPUTER SCIENCE

ALEXANDRE RODRIGUES OLIVEIRA

BSc in Computer Science and Engineering

DUAL-MODELING APPROACHES IN CI/CD
AN AGNOSTIC MODELING FRAMEWORK TO STREAMLINE DEVOPS

MASTER IN STUDY PROGRAM NAME

NOVA University Lisbon
month, year

DEPARTMENT OF
COMPUTER SCIENCE

DUAL-MODELING APPROACHES IN CI/CD

AN AGNOSTIC MODELING FRAMEWORK TO STREAMLINE DEVOPS

ALEXANDRE RODRIGUES OLIVEIRA

BSc in Computer Science and Engineering

Adviser: Vasco Amaral
Associate Professor, NOVA University Lisbon

Co-adviser: Jácome Cunha
Associate Professor, Faculty of Engineering - University of Porto

Examination Committee

Chair: Name of the committee chairperson
Full Professor, FCT-NOVA

Rapporteur: Name of a rapporteur
Associate Professor, Another University

Members: Another member of the committee
Full Professor, Another University

Yet another member of the committee
Assistant Professor, Another University

MASTER IN STUDY PROGRAM NAME

NOVA University Lisbon
month, year

Dual-Modeling Approaches in CI/CD
An Agnostic Modeling Framework to Streamline DevOps

Copyright © Alexandre Rodrigues Oliveira, NOVA School of Science and Technology,

NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual andwithout geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LAT
E
X processor and the NOVAthesis template (v7.1.27) [52].

https://github.com/joaomlourenco/novathesis

To my family and friends, the core of my life.

ii

Acknowledgements

I want to express my gratitude to Professor Vasco and Professor Jácome for their dedi-

cation, availability, and guidance in helping me prepare and elaborate this thesis. Their

knowledge and experience in technological advances and academic research were essen-

tial in completing this project. I would also like to thank the FCT and the Department

of Computer Science for five years of personal and academic development, which will

undoubtedly continue to shape future generations. Finally, I extend a heartfelt thank you

to my parents, family, and friends who have always supportedme. Without them, I would

not have been able to complete this chapter.

iii

„ “Inveniam viam aut faciam”

iv

Abstract

Thewidespreadadoption ofContinuous Integration andContinuousDeployment (CI/CD)

practices within DevOps has revolutionized software delivery. However, the lack of

standardized tools for CI/CD environments frequently leads to a cumbersome experience,

where each pipeline is a kind of complex setup that frequently leads to bottlenecks,

delays, and errors, hindering technical and non-technical users. Platform-specific tools

further complicate migration between CI/CD technologies. This research addresses

these challenges by developing a dual modeling solution based on a generic metamodel,

designed to streamline the setup, evolution, and migration of CI/CD pipelines. Through

the integration of graphical and textual modeling methods, this study closes the skill gap

between technical and non-technical users.

The experimental evaluation revealed that our Textual tool demonstrated superior

usability with an 85.2 SUS score, outperforming visual tools like Buddy, scoring 79.8. Our

Visual tool, valuable for users favoring a graphical interface, scored 75.6 and exhibited

mixed user experiences, particularly among those unfamiliar with visual modeling. The

study identified an inverse correlation between usability and workload, highlighting the

trade-offs between ease of use and cognitive load.

These findings underscore the importance of offering both approaches in CI/CD tools

to cater to diverse user preferences and enhance software delivery efficiency.

Keywords: Continuous integration, Continuous deployment, CI/CD Pipelines, DevOps,

Modeling solution, Standardization, Software engineering

v

Resumo

Aadoçãogeneralizadadaspráticas de IntegraçãoContínua eEntregaContínua (CI/CD)no

âmbito do DevOps revolucionou a entrega de software. No entanto, a falta de ferramentas

padronizadas para ambientes de CI/CD conduz frequentemente a uma experiência

complicada, em que cada pipeline é uma espécie de configuração complexa que conduz

frequentemente a estrangulamentos, atrasos e erros, prejudicando os utilizadores técnicos

e não técnicos. As ferramentas específicas de cada plataforma complicam ainda mais a

migração entre tecnologias de CI/CD. Esta investigação aborda estes desafios através

do desenvolvimento de uma solução de modelação dupla baseada num metamodelo

genérico, concebida para simplificar a configuração, evolução e migração de condutas de

CI/CD. Através da integração de métodos de modelação gráfica e textual, este estudo

colmata a lacuna de competências entre utilizadores técnicos e não técnicos.

A avaliação experimental revelou que a nossa ferramenta textual demonstrou uma

usabilidade superior com uma pontuação SUS de 85,2, superando ferramentas visuais

como o Buddy, com uma pontuação de 79,8. A nossa ferramenta Visual, valiosa para

os utilizadores que preferem uma interface gráfica, obteve uma pontuação de 75,6 e

apresentou experiências de utilização mistas, particularmente entre os que não estão

familiarizados com amodelação visual. O estudo identificou uma correlação inversa entre

a usabilidade e a carga de trabalho, destacando as compensações entre a facilidade de

utilização e a carga cognitiva.

Estas conclusões sublinham a importância de oferecer ambas as abordagens nas

ferramentas de CI/CD para satisfazer as diversas preferências dos utilizadores e melhorar

a eficiência da entrega de software.

Palavras-chave: Integração contínua, Implementação contínua,Pipelines CI/CD,DevOps,

Modelação de soluções, Padronizaçao, Engenharia de software

vi

Contents

List of Figures x

List of Tables xii

Acronyms xiv

1 Introduction 1
1.1 Context . 1

1.2 Motivation . 2

1.3 Objectives . 2

1.4 Contributions . 3

1.5 Methodology . 3

1.6 Institutional Context . 4

1.7 Document Structure . 4

2 Background 5
2.1 DevOps: A Collaborative Approach for Agile Software Delivery 5

2.1.1 Orchestrating Software Delivery: The Role of CI/CD Pipelines . 6

2.2 Model-Driven Engineering . 8

2.2.1 Abstraction: Distilling the Essence of Complexity 8

2.2.2 Models: Capturing the Essence in a Unified Language 10

2.2.3 Modeling Languages: UML as a Lingua Franca of MDE 10

2.2.4 Metamodels: Templates for Model Cohesion and Interoperability 11

2.2.5 Transformations: Orchestrating Model Evolution 11

2.2.6 Modeling Approaches . 14

2.2.7 Modeling Tools . 14

2.3 Challenges in Modeling Solutions for CI/CD 16

2.4 Summary . 18

3 Related Work 19

vii

3.1 Literature Review . 19

3.1.1 Planning . 19

3.1.2 Search Strategy . 19

3.1.3 Selection Criteria . 20

3.1.4 Execution . 20

3.2 Existing Modeling Mechanisms for DevOps 20

3.3 Ongoing Trends . 23

3.3.1 AI/ML-driven DevOps . 23

3.3.2 Low-Code . 23

3.3.3 Cloud-Based DevOps . 24

3.3.4 Honorable Mentions . 24

3.4 Summary . 24

4 Model-driven Languages 26
4.1 Requirements Analysis . 26

4.1.1 Functional Requirements (FR) . 26

4.1.2 Non-Functional Requirements (NFR) 27

4.2 Solution Architecture . 28

4.3 Core Metamodel Design . 31

4.3.1 Generic Metamodel . 31

4.3.2 Platform-Specific Metamodels . 31

4.3.3 OCL Invariants for Metamodel Validation 34

4.4 Textual Modeling . 35

4.4.1 Grammar Definition . 35

4.4.2 Syntax . 38

4.4.3 Tool Support . 38

4.4.4 Challenges . 44

4.5 Graphical Modeling . 47

4.5.1 Visual Language Design . 47

4.5.2 Tree View . 49

4.5.3 Tool Support . 49

4.6 Platform-Independent to Platform-Specific Transformations 54

4.6.1 ATL Overview . 54

4.6.2 Transformation Workflow . 55

4.7 Code Generation . 56

4.7.1 Code Generation Mechanism . 57

5 Evaluation 58
5.1 Planning . 58

5.1.1 Objectives Definition . 58

5.1.2 Participants’ Demography and Selection 59

viii

5.1.3 Experiment Materials . 59

5.1.4 Hypothesis Formulation . 61

5.1.5 Experiment Session Plan . 62

5.2 Execution . 64

5.2.1 Sessions Procedure . 64

5.3 Results . 64

5.3.1 Demographic Data . 64

5.3.2 Quantitative Data . 66

5.3.3 Qualitative Data . 84

5.4 Results Discussion . 86

5.4.1 Interpretation of Findings . 86

5.4.2 Inferences . 90

5.4.3 Lessons Learned . 92

5.5 Threats to Validity . 92

6 Conclusion 94
6.1 Overview . 94

6.2 Limitations . 94

6.3 Future Work . 95

Bibliography 97

Annexes

I Platform-Specific Metamodels 105

II Platform-Specific OCL Invariants 109

III Platform-Specific Grammars 111

IV XMI2DSL Plugin 114

V Platform-Specific Formatters 116

VI Platform-Specific ATL Rules 121

VIIPlatform-Specific Acceleo Templates 124

VIIIUsability Average Score per Question 127

ix

List of Figures

2.1 CI CD pipeline . 7

2.2 CI/CD Pipeline Feature Model . 7

2.3 Themetamodeldefinition: relationships betweenmetamodel andmodel (Taken

from [65]) . 12

2.4 Software product, platforms, transformations, and models (Taken from [65]) 12

2.5 Model Transformation . 13

4.1 Process View . 28

4.2 Textual Development View . 29

4.3 Visual Development View . 30

4.4 Generated Artifacts Process . 31

4.5 CI/CD Independent Metamodel . 32

4.6 CICD OCL Invariant . 35

4.7 CICD OCL Invariant Error Message . 36

4.8 Syntax Highlighting . 39

4.9 Code completion suggestions . 39

4.10 Xtext CICD Validator . 40

4.11 Duplicate Name Validator . 43

4.12 Quickfix Duplicate name . 44

4.13 DSL2XMI Editor Action . 45

4.14 XMI2DSL Editor Action . 46

4.15 Sirius Environment . 47

4.16 Sirius Diagram (1) . 48

4.17 Diagram Design and Tools Section (2) . 48

4.18 Tree View . 49

4.19 Properties View (3) . 50

4.20 Tree View Validation . 51

4.21 Sirius Validation . 52

4.22 Sirius Validation Error Message . 53

4.23 Required Job Exists Validator . 54

x

5.1 System Usability Scale . 60

5.2 NASA Task Load Index . 61

5.3 Job Title . 65

5.4 CI/CD Years of experience . 65

5.5 Demographic Data . 65

5.6 Usage frequency . 65

5.7 Most used CICD tool . 65

5.8 Demographic Data . 65

5.9 Job Industry . 65

5.10 Modeling Preference . 65

5.11 Demographic Data . 65

5.12 Modeling Preferences . 66

5.13 Modeling Preferences . 66

5.14 SUS Final Scores . 68

5.15 NASA-TLX Final Scores . 69

5.16 NASA-TLX Dimensions Scores Textual vs VS Code 70

5.17 NASA-TLX Dimensions Scores Visual vs Buddy 71

5.18 Comparison of SUS and NASA-TLX Scores by System 72

5.19 SUS Scores Comparison by Experience Level 73

5.20 NASA-TLX Scores Comparison by Experience Level 75

5.21 SUS-TLX Ratios Comparison by Experience Level 77

5.22 Textual - NASA-TLX Dimensions vs. SUS Scores 78

5.23 VS Code - NASA-TLX Dimensions vs. SUS Scores 79

5.24 Visual - NASA-TLX Dimensions vs. SUS Scores 80

5.25 Buddy - NASA-TLX Dimensions vs. SUS Scores 82

5.26 SUS Scores vs Task Completion Time . 83

I.1 CircleCI Metamodel . 106

I.2 GitHub Actions Metamodel . 107

I.3 Jenkins Metamodel . 108

VIII.1SUS Average Score per Question . 127

VIII.2SUS Average Score per Question . 128

xi

List of Tables

2.1 CI/CD Tools Comparison . 9

3.1 Comparison of Related Approaches . 22

5.1 Goal-Question-Metric . 58

5.2 Usability Scores . 67

5.3 Workload Scores . 67

5.4 SUS Textual vs VS Code . 68

5.5 SUS Visual vs Buddy . 68

5.6 NASA-TLX Textual vs VS Code . 69

5.7 NASA-TLX Visual vs Buddy . 69

5.8 NASA-TLX per Dimension Textual vs VS Code 70

5.9 NASA-TLX per Dimension Visual vs Buddy 71

5.10 Comparison of SUS and NASA-TLX Scores by System 73

5.11 SUS Scores Comparison by Experience Level 74

5.12 NASA-TLX Scores Comparison by Experience Level 76

5.13 SUS-TLX Ratios Comparison by Experience Level 78

5.14 Textual - NASA-TLX Dimensions vs. SUS Scores 79

5.15 VS Code - NASA-TLX Dimensions vs. SUS Scores 80

5.16 Visual - NASA-TLX Dimensions vs. SUS Scores 81

5.17 Buddy - NASA-TLX Dimensions vs. SUS Scores 82

5.18 SUS Scores vs Task Completion Time . 84

VIII.1SUS per Question Textual vs VS Code . 128

VIII.2SUS per Question Visual vs Buddy . 128

xii

Listings

4.1 CICD OCL Invariants . 34

4.2 CICD grammar definition . 37

4.3 CICD DSL . 38

4.4 Content Assist . 40

4.5 Non-Mandatory Attribute Validation . 41

4.6 Platform-Specific Validation . 42

4.7 Quickfix . 43

4.8 DSL2XMI plugin . 45

4.9 Non-Mandatory Attribute Validation . 51

4.10 Platform-Specific Validation . 53

4.11 CICD2CircleCI ATL . 55

4.12 CircleCI Template . 57

II.1 CircleCI OCL Invariants . 109

II.2 GHA OCL Invariants . 109

II.3 Jenkins OCL Invariants . 110

III.1 Circle grammar definition . 111

III.2 GHA grammar definition . 112

III.3 Jenkins grammar definition . 113

IV.1 XMI2DSL plugin . 114

V.1 CircleCI Formatter . 116

V.2 GHA Formatter . 117

V.3 Jenkins Formatter . 119

VI.1 CICD2GHA ATL . 121

VI.2 CICD2Jenkins ATL . 122

VII.1GHA Template . 124

VII.2 Jenkins Template . 125

xiii

Acronyms

AQL Acceleo Query Language (p. 16)
ATL Atlas Transformation Language (p. 16)

CI/CD Continuous Integration and Continuous Deployment (p. 1)
CSE Continuous Software Engineering (p. 1)

DSLs Domain-specific modelling languages (p. 11)
DSR Design science research (p. 3)

EMF Eclipse Modelling Framework (p. 15)
ETL Extract, Transform, and Load (p. 15)

FEUP Faculty of Engineering of the University of Porto (p. 4)

GPLs General-purpose modelling languages (p. 11)

IFML Interaction Flow Modeling Language (p. 23)
IME Integrated modeling Environment (p. 22)

M2M Model-to-model (p. 12)
M2T Model-to-text (p. 12)
MDD Model-Driven Development (p. 23)
MDE Model-Driven Engineering (p. 8)
ML Machine Learning (p. 23)
MLSs Modelling Language Suites (p. 11)

OCL Object Constraint Language (p. 34)

PI Platform-independent (p. 28)

xiv

ACRONYMS xv

PS Platform-specific (p. 28)
PSL Purpose-Specific Language (p. 22)

QVT Query/View/Transformation (p. 16)

SUS System Usability Scale (p. 60)

TLX NASA-Task Load Index (p. 61)

UML Unified Modeling Language (p. 11)

XMI XML Metadata Interchange (p. 44)

1

Introduction

This chapter provides an introduction to the research thesis, starting with its context and

following with motivation, contributions and objectives.

1.1 Context

In the ever-evolving landscape of software development, the integration of Continuous

Integration and Continuous Deployment (CI/CD) practices have emerged as a fundamen-

tal cornerstone, revolutionizing how organizations deliver software [20, 76, 64, 33, 77, 32,

69, 45]. In the dynamic realm of DevOps, where agility and collaboration between devel-

opment and operations teams are paramount, CI/CD has become an essential paradigm,

enabling faster, more reliable, and more efficient software delivery processes [76, 33, 77,

32, 17, 4, 69, 45, 6, 8, 50], in contrast to the traditional approaches where those teams

and phases were separated in the project lifecycle and to achieve the same quality of

product, it would be a much more lengthy process. The magnitude of this significance

in the contemporary technological sphere cannot be overstated, as it accelerates the pace

of development and enhances the overall quality of software products. This widespread

adoption of DevOps has led to a proliferation of technological solutions to meet the mas-

sive market demands and support Continuous Software Engineering (CSE) processes [20,

45].

The absence of standardized tools for CI/CD pipelines has brought about substantial

challenges for organizations. This lack of standardization has entangled organizations

in the complexities of managing and monitoring their CI/CD pipelines, resulting in

bottlenecks, delays, and errors in software delivery. The IT market, valued at nearly $9.4

billion worldwide [31], is grappling with maintenance costs, with a significant portion

attributed to emergencies, unplanned work, and changes. These issues often stem from

conflicts between the goals of IT and development teams [31].

In this context, bridging the gap between the standardization of modeling methodolo-

gies and tools designed expressly for CI/CD pipelines is crucial as the development of

new tools and their adoption is becoming increasingly diverse and fast.

1

CHAPTER 1. INTRODUCTION

1.2 Motivation

Themarket’s lackof standardization in theCI/CD toolsmarket creates substantial obstacles

to effective CI/CD pipeline implementation andmanagement. This is because the existing

situation encourages technology silos, with professionals specializing in one CI/CD

platform and not knowing how to utilize another due to their inherent complexity. As a

result, CI/CD technology migration becomes challenging when they need to use different

technologies. Furthermore, those familiar with one platform are more likely to use it for

future projects as a kind of customer fidelity, regardless of the benefits or drawbacks that

may emerge from unfamiliarity with other platforms.

The vast options of tools with distinct syntaxes and integrations within the same

environment also hinder the efficiency, adaptability, and scalability of CI/CD pipelines.

With the constant evolution of this environment, organizations require a framework to

automate this migration and cover most technologies. This disconnect in shared goals

and the vast array of technologies adopted impedes the team’s collaboration, leading to

software delays [45].

Some effort has been made to achieve this modeling, but it is still in the development

phase, and many solutions oversee technological collaboration [35, 1]. Reaching this stan-

dardization and easing migration between diverse CI/CD platforms remains a complex

challenge for organizations aspiring to thrive in the ever-evolving landscape of software

engineering.

Our main challenge of this work is to develop a unified modeling solution that
addresses the lack of standardization in CI/CD tools, simplifies technology migration,
and caters to the diverse skill sets of technical and non-technical users, ultimately
enhancing software delivery efficiency.

1.3 Objectives

In pursuit of this researchaim, the subsequent researchobjectives aredelineated, providing

a clear roadmap to systematically address specific facets of the CI/CD modeling solution

development:

• Develop a modeling solution for CI/CD pipelines, capturing the key stages and

elements involved in the software delivery pipelines.

• Explore non-uniformities in existing CI/CD tooling and develop strategies to ensure

integration within the modeling framework.

• Examine the impact of different configurations of the proposed modeling solution

on efficiency and user usability.

• Evaluate the influence of errors or inconsistencies during model transformation

configurations and implementation on the reliability of the modeling solution.

2

1.4. CONTRIBUTIONS

Overall, this research will contribute significantly to the field of CI/CD modeling

by providing valuable insights and practical solutions that will lead to faster delivery of

high-quality software products.

1.4 Contributions

To achieve the defined objectives, this thesis is aimed at addressing existing challenges

in CI/CD processes and improving the overall efficiency and interoperability of pipeline

configuration. The specific contributions of this work are outlined as follows:

• Development of a Unified Modeling Framework directed towards standardizing

CI/CD pipeline modeling.

• Design and implementation of a CI/CD technology independent Metamodel.

• Building of a Graphical and Textual Modeling solution to bridge the gap between

technical and non-technical users.

• Facilitation of Platform Migration by providing platform transformations and

platform-specific code generation.

• Usability evaluation from industry practitioners.

1.5 Methodology

Thiswork followsDesign science research (DSR) [34], a rigorous and iterativemethodology

for developing and validating a practical problem. The procedure consists of the following

stages:

Problem Awareness - The growing adoption of CI/CD practices has highlighted the

need for standardized modeling techniques and specific tools tailored for this domain.

Current modeling approaches, often specific or inadequate, pose challenges such as

collaboration, heterogeneous tools and skill gaps between Development and Operation

teams.

Suggestion - The fundamental basis of the proposed solution is a textual and graphical

approach tomitigate the skill gap between technical and non-technical users. This way, the

modeling solutionwill utilize graphical notations and symbols to create visually appealing

and easy-to-understand models, enabling clear communication and collaboration among

stakeholders.

Development - The pipeline elements for the graphical approach and the custom DSL

for the textual approach will be connected using the already tested pipeline metamodel.

The next step is to generate deployable code on various DevOps platforms with existing

transformation tools. Practitioners from the industry will be involved in experiments to

ensure that the modeling solution meets real-world requirements.

3

CHAPTER 1. INTRODUCTION

Evaluation - Through a series of usability experiments derived from the requirements

analyzed, together with documentation, the researcher will test and validate the solution.

1.6 Institutional Context

This study involves a collaboration between two entities: the Faculty of Engineering of

the University of Porto (FEUP) and Nova LINCS, a Computer Science research laboratory

located in NOVA FCT.

1.7 Document Structure

The remainder of this document is organized as follows:

• Chapter 2 - Background: Introduction to some of the key concepts of this thesis and

their relevance and challenges encountered;

• Chapter 3 - Related Work: Review existing CI/CD pipeline modeling literature and

analysis of available modeling tools and their limitations;

• Chapter 4 - Model-driven Languages: Architecture overview, identification of re-

quirements, design principles, and best practices for building the modeling solution;

• Chapter 5 - Evaluation: Experiments to evaluate usability and effectiveness of the

developed tool, alongside results interpretations and their implications with threats

to validity;

• Chapter 6 - Conclusion: Presentation of this study’s conclusions, its limitations and

recommendations for future research;

4

2

Background

This chapter introduces the main concepts applied throughout this document. The

first section introduces DevOps and the notion of pipelines, followed by Model-Driven

Engineering and its fundamental components, modelingmethodologies, and tools. Finally,

we discuss multiple challenges in modeling CI/CD workflows.

2.1 DevOps: A Collaborative Approach for Agile Software
Delivery

The DevOps definition in software development and IT operations is evolving to meet

new technological and organizational needs, making it a challenge to define. According

to Willis, Humble, and Kim in [46], the notion of DevOps is continually changing due to

various interpretations across industries and organizational cultures [5].

DevOps emerged in the early 2000s alongside the Agile Manifesto, recognizing the

need for closer collaboration between development and operations teams to address

software development complexities andmeet demanding release cycles whilemaintaining

quality [6]. The term itself can be stated as a combination of Development and Operations

teams [41].

DevOps is a set of tools and practices that automate and integrate software develop-

ment and IT operations teams [8]. It also provides a solution by breaking down silos

and encouraging a cultural shift emphasizing collaboration, automation, and shared

responsibility for software delivery.

According to Puppet and CircleCI’s 2021 State of DevOps report [58], more than 90%

institutions reported employing DevOps practices to some level. Furthermore, the survey

stated that high-performing DevOps teams deploy code 208 times more frequently than

low-performing teams, with change lead times being 106 times faster.

The Upskilling 2021 Enterprise DevOps Capabilities Report [40] also emphasized the

growing relevance of DevOps capabilities across organizations. Over 50% of respondents

said DevOps skills are critical for their transformation activities, and roughly 80% said

there is a shortage of these capabilities within their teams.

5

CHAPTER 2. BACKGROUND

2.1.1 Orchestrating Software Delivery: The Role of CI/CD Pipelines

To achievemaximumagility in theDevOps culture, theDevOps pipeline needs available IT

infrastructure to run and test existing code. This requires an automated CI/CD workflow

[6]. A DevOps pipeline consists of automatic processes that enable teams to automate and

streamline the software development and deployment process [5]. It is the backbone of the

DevOps philosophy [6], allowing for a seamless flow of code changes from development

to production. We will only consider the DevOps pipeline core, CI and CD, for the scope

of this thesis since our goal is to address only these challenges.

Fowler introduced the concept of CI [29], which refers to the automated and frequent

integration of code changes into a shared repository. This includes creating and testing

changes in a version control system, identifying integration issues, and reducing conflicts

between developers’ code [72, 73, 4, 25, 6]. This continuous improvement cycle produces

a stable, high-quality codebase while decreasing the likelihood of issues surfacing later

on [5, 69].

CD is an extension of CI that was later introduced by Humble and Farley [36]. It

automates code delivery and deployment to production environments after successful CI

testing [36, 6]. Skelton and O’Dell [71] suggest it ensures a deployable state throughout

the process, from code, to commit to production, allowing for frequent and reliable

releases with minimal manual intervention and risk. Additionally, CD fosters continuous

feedback loopswithusers, enabling early issue identification andcontinuous improvement,

ultimately reducing production costs [5, 69].

Together, CI/CD creates a seamless flow in theDevOps pipeline [4], ensuring extensive

testing, validation, and easy deployment of code changes. This feedback loop allows faster

iterations and improvements while maintaining software stability, dependability, and

productivity.

Figure 2.1 depicts a high-level CI/CD pipeline perspective, where CI and CD are

represented as an interconnected loop. The left side of the loop depicts the CI process,

which involves stages like Plan, Code, Build, and Test, ensuring continuous validation

and integration of new code into the main branch without causing functionality breakage.

The CD process (right side) involves stages like Release, Deploy, Operate, and Monitor.

After integration, code is automatically or semi-automatically deployed to production,

and monitored for performance and potential issues. Continuous feedback from these

phases is used to improve the development process.

Figure 2.2 outlines our proposed Feature Model for each CI/CD phase based on

widely recognized best practices and industry standards [5, 18, 19, 78, 19, 84, 81, 82, 83,

78, 17]. In the CI phase, Figure 2.2 introduces extra steps like Code Analysis, where

automated tools evaluate the code quality before moving to the next stages. There is

also an optional focus on Unit Testing and Code Coverage, ensuring that individual

components are thoroughly tested and total test coverage is measured. These steps go

beyond the fundamental "Test" phase mentioned in Figure 2.1, providing more granular

6

2.1. DEVOPS: A COLLABORATIVE APPROACH FOR AGILE SOFTWARE DELIVERY

Figure 2.1: CI CD pipeline

code validation. Additionally, Compile Dependencies and Parallel Deployments are

introduced, allowing for better management of external resources and testing the code in

multiple environments simultaneously.

On the CD side, Figure 2.2 breaks down the deployment process with stages like

DeploymentAutomation, ensuring that the release process is fully automated, andQuality

Assurance, where additional checks verify the reliability of the deployment. Strategies

like Blue-Green Deployment are also introduced to minimize downtime by maintaining

two environments. One environment (e.g., Blue) runs the current application version,

while the other (e.g., Green) is updated. When the updated environment is confirmed to

work correctly, traffic is switched to it, minimizing disruption. In the Staging phase, the

model introduces 1 Box step, testing the deployment in a smaller, isolated environment

before being rolled out to production. After deployment, Analysis is introduced as an

additional post-production step to assess performance and gather insights, beyond just

monitoring the system for issues. The features with the highest presence in enterprise

pipelines are labeled as "Mandatory" and the remaining as "Optional".

Continuous
Integration

CI/CD
Pipeline

Continuous
Deployment

BuildSource Deploy ProductionTest

MonitorCode

Unit Testing

Code
Analysis

Deployment
Automation

Compile Source
Code

Unit Testing Blue Green
Deployment

Integration
Testing

1 Box

Staging

Quality
Assurance

Code
Coverage

Parallel
Deployments

Plan

Analysis

Legend

Mandatory

Optional

Compile
Dependencies

Figure 2.2: CI/CD Pipeline Feature Model

7

CHAPTER 2. BACKGROUND

Table 2.1 compares the technologies widely embraced by the community and organi-

zations. Tools with high scalability, parallel processing capabilities, flexible configuration

options, and strongmanagement features aremostwidely embraced by both the developer

community and organizations, catering to the diverse needs of different project sizes and

complexities. Information was gathered via the community, official documentation, and

a survey of published literature [47, 3, 75, 49, 70]. Some notes regarding table features: (1)

’Management’ refers to the management of roles and permissions; (2) ’Parallelism’ means

that tasks can be run concurrently on the same machine.

2.2 Model-Driven Engineering

Unlike traditional approaches that rely primarily on code, Model-Driven Engineering

(MDE) places models as fundamental artifacts to capture the system’s requirements,

design, and behavior, and transform them into the driving force behind the entire de-

velopment lifecycle. MDE seeks to increase productivity and reduce time-to-market by

allowing for greater abstraction and leveraging concepts closer to the issue area rather

than programming languages [68]. This shift in paradigm aims to achieve significant

benefits, including:

• Improved Quality:MDEpromotes early andcontinuous analysis ofmodels, catching

errors and inconsistencies early on, leading to a more robust and maintainable

system.

• Enhanced Reusability: Models can be reused across different projects, reducing

development time and ensuring consistency in system architecture.

• Increased Automation: MDE leverages transformations and automated processes

to convert models, enabling efficient code generation and validation.

The following subsections delve into key aspects of MDE.

2.2.1 Abstraction: Distilling the Essence of Complexity

Abstraction in software engineering is the process of simplified system representations

that capture the essential structure, behavior, and system relationships without getting

overwhelmed by the complexity of implementation details. The human mind is naturally

oriented to abstraction, as it allows us to generalize complex concepts clearly and concisely

and also communicate them to others [61], even if they do not have a deep understanding

of the underlying details [10]. These abstractions, known as models, serve as blueprints

for understanding and building software systems.

8

2.2. MODEL-DRIVEN ENGINEERING

C
I/

C
D

To
ol

Su
pp

or
t/S

LA
D

is
tr

ib
ut

ed
Bu

ild
s

Sc
al

ab
ili

ty
R

ep
or

ts
In

te
gr

at
io

n
Ec

os
ys

te
m

Pi
pe

lin
e

C
on

fig
ur

at
io

n
M

an
ag

em
en

t
Bu

ild
Pi

pe
lin

es
Pa

ra
lle

lis
m

M
ig

ra
tio

n
Te

am
Ci

ty
Y
e
s

N
/
A

H
i
g
h

Y
e
s

H
i
g
h

G
r
o
o
v
y
,
K
o
t
l
i
n
,
Y
A
M
L

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Ba
m

bo
o

Y
e
s

Y
e
s

M
o
d
e
r
a
t
e

Y
e
s

M
o
d
e
r
a
t
e

G
r
o
o
v
y

Y
e
s

Y
e
s

Y
e
s

Y
e
s

A
zu

re
D

ev
O

ps
Y
e
s

Y
e
s

H
i
g
h

Y
e
s

H
i
g
h

Y
A
M
L
,
C
#
,
T
y
p
e
S
c
r
i
p
t

Y
e
s

Y
e
s

Y
e
s

Y
e
s

AW
S

Co
de

Pi
pe

lin
e

Y
e
s

N
/
A

M
o
d
e
r
a
t
e

Y
e
s

M
o
d
e
r
a
t
e

Y
A
M
L

N
o

Y
e
s

N
/
A

N
o

G
itH

ub
A

ct
io

ns
Y
e
s

N
/
A

H
i
g
h

N
/
A

H
i
g
h

Y
A
M
L
,
J
a
v
a
S
c
r
i
p
t
,
P
y
t
h
o
n

N
/
A

Y
e
s

Y
e
s

Y
e
s

Tr
av

is
CI

Y
e
s

N
/
A

M
o
d
e
r
a
t
e

Y
e
s
(
p
a
r
t
i
a
l
)

M
o
d
e
r
a
t
e

Y
A
M
L

N
/
A

N
o

Y
e
s

N
o

A
pp

Ve
yo

r
Y
e
s

Y
e
s

M
o
d
e
r
a
t
e

Y
e
s

H
i
g
h

Y
A
M
L
,
P
o
w
e
r
S
h
e
l
l

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Ci
rc

leC
I

Y
e
s

Y
e
s

M
o
d
e
r
a
t
e

Y
e
s

L
o
w

Y
A
M
L
,
P
y
t
h
o
n
,
G
o

N
o

Y
e
s

Y
e
s

Y
e
s

Co
nc

ou
rs

e
Y
e
s

Y
e
s

M
o
d
e
r
a
t
e

Y
e
s

L
o
w

Y
A
M
L

Y
e
s

Y
e
s

Y
e
s

Y
e
s

D
ro

ne
N
/
A

Y
e
s

H
i
g
h

N
/
A

H
i
g
h

Y
A
M
L

Y
e
s

Y
e
s

Y
e
s

Y
e
s

G
itL

ab
Y
e
s

Y
e
s

H
i
g
h

Y
e
s

H
i
g
h

Y
A
M
L
,
.
g
i
t
l
a
b
-
c
i
.
y
m
l

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Je
nk

in
s

N
o

Y
e
s
(
p
a
r
t
i
a
l
)

H
i
g
h

Y
e
s

H
i
g
h

G
r
o
o
v
y

N
o

Y
e
s

Y
e
s
(
p
a
r
t
i
a
l
)

Y
e
s

G
oC

D
Y
e
s

Y
e
s

H
i
g
h

Y
e
s

H
i
g
h

Y
A
M
L
,
J
S
O
N

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Table 2.1: CI/CD Tools Comparison

9

CHAPTER 2. BACKGROUND

2.2.2 Models: Capturing the Essence in a Unified Language

According to [65], "a model is an abstraction of a system often used to replace the system

under study, representing a partial and simplified view of a system, making it a design

artifact of a simplified system representation [7, 54]. In software engineering, models

are language-based entities specified by DSLs with precise syntax and semantics [42].

They evolve as the system design progresses and incorporate fundamental properties or

behaviors of the subject they represent.

Models may reveal a system’s static and dynamic dimensions, with static models

focusing on static components and dynamic models depicting system behavior through

operations, algorithms, collaborations, and internal state changes [10]. To better under-

stand the roles and types ofmodels, they can be classified into the following categories [10]:

• Descriptive: Describe an existing system behavior

• Prescriptive: Arbitrate scope and future system details

• Definition: Define system implementation

Additionally, models can be further abstracted based on their focus on the following

aspects:

• Reduction: Only represent a subset of the original object’s attributes

• Mapping: Abstract and generalize an original object that represents a category of

individuals

These concepts help technical and non-technical stakeholders share a common vision

and understanding, improving communication. Furthermore, models assist project plan-

ning by providing a more realistic picture of the system to be built and enabling project

control based on objective criteria.

2.2.3 Modeling Languages: UML as a Lingua Franca of MDE

MDE and modeling languages are inextricably linked, forming the foundation for a

structured and efficient approach to software development. As previously stated, MDE

elevates models to the central role in the development process while modeling languages

provide the tools to create and manipulate these models effectively.

To achieve this, modeling languages often include a set of modeling concepts and

rules that define the syntax and semantics of the language, providing a standardized

approach for creating models that can be used across several software development tools

and platforms [10]. Based on [61], the success of a modeling language depends on its

capacity to offer users relevant domain concepts through primitives that can directly

express these notions.

10

2.2. MODEL-DRIVEN ENGINEERING

There are two main types of modeling languages: General-purpose modelling lan-

guages (GPLs) and Domain-specific modelling languages (DSLs) [10]. GPLs, such as the

Unified Modeling Language (UML) and SysML, are standardized languages that model a

wide variety of systems or domains and capture different aspects of the system, including

requirements, behavior, and structure. DSLs provide a more focused set of modeling

elements developed to describe the domain’s common concepts and relationships. DSLs

can generate compact and expressive models with graphical editors, text editors, and code

generators, leading to increased productivity and shorter development periods.

Modeling languages can also differ depending on their abstraction level. Multi-

viewpointmodeling is significant, which entails creatingmanymodels of the same system.

These models can communicate in various languages, but coordinated notations that

complement one another are more convenient. These coordinated languages, examples

of GPLs, are known as Modelling Language Suites (MLSs), popularized in the MDE

community by the open-source project Eclipse. UML is the best-known example of an

MLS.

2.2.4 Metamodels: Templates for Model Cohesion and Interoperability

Metamodels emerged to normalize model representation and language, tracing its roots

to the 1980s and 1990s when efforts were made to define notations and languages for

varied modeling purposes, such as consistency and interoperability.

Metamodels act as building templates formodels, ensuring that allmodels in a domain

share common characteristics and can interact seamlessly. It specifies the permissible

elements, their properties, and potential interactions within a specific domain ormodeling

language [57]. Therefore, a model is said to conform to its metamodel [7, 10, 57].

Metamodels establish the DSL, regulations, and restrictions that models in a particular

domain must follow and are defined by many as a model that describes other models

(Figure 2.3). Any relationship or concept not present in the metamodel will be ignored

when building the model representing the system [7]. This standardization promotes

consistency and interoperability across different models, facilitating collaboration and

reducing the risk of errors.

2.2.5 Transformations: Orchestrating Model Evolution

Model transformations are the foundation of MDE [68], alongside models, enabling the

automatic conversion of a target model from a source model alongside a set of predefined

constraints [54, 42, 85, 53]. Transformations propagate model changes to other related

models, ensuring the system remains consistent and up-to-date [85]. Models also include

transformations from abstract to concrete models, such as design to code, and vice-versa

with reverse engineering, crucial in code generators and parsers [54].

This automation eliminates the need for manual data migration and reduces the

risk of errors, streamlining the development process and enabling rapid adaptation to

11

CHAPTER 2. BACKGROUND

Figure 2.3: The metamodel definition: relationships between metamodel and model

(Taken from [65])

evolving requirements. Figure 2.4 depicts the key components ofMDE, including software

products, platforms, transformations, and models.

Figure 2.4: Software product, platforms, transformations, and models (Taken from [65])

MDE involves two main types of transformations: Model-to-model (M2M) andModel-

to-text (M2T) transformations. M2M transformations convert one model into another by

analyzing and extracting data from the source model before creating a new one with

12

2.2. MODEL-DRIVEN ENGINEERING

a different structure, syntax, or semantics. In this transformation, the models may use

the same or different modeling languages. M2M transformations can be classified into

endogenous (rephrasing) when the source and destination metamodels are identical and

exogenous (translation) when they diverge [54, 10]. Models can be translated between

multiple representations and refined and simplified to be closer to the solution. This

approach offers seamless interoperability between diverse modeling tools, allowing for

system integration and information flow across different stages of software development

or platforms.

Figure 2.5 illustrates a transformation process where an input model, conforming

to a source metamodel, is transformed into an output model that conforms to a target

metamodel. The Transformation Specification defines the rules and operations for the

transformation, serving as the connection between source and target metamodels. This

specification outlines the rules and operations needed to execute the transformation

between models. Both metamodels adhere to a higher-level standard called the Meta-

metamodel (often represented by Ecore), which ensures structural consistency across the

modeling environment. To execute a transformation, the system uses a Transformation

Language, which conforms to the meta-metamodel, allowing the creation of precise

transformation specifications. These are then executed by the Transformation Execution

process, which reads the input model and applies the transformation rules, producing an

output model that adheres to the target metamodel.

Figure 2.5: Model Transformation

M2T transformations operate on models as their primary input and generate corre-

sponding text as their output, such as code [54]. In practice, these transformations are

13

CHAPTER 2. BACKGROUND

called code generation when text is in the form of source code [85]. They employ a set of

transformation rules that map model elements and their relationships to specific textual

constructs. These rules define the syntax and semantics of the generated text, ensuring

that it accurately represents the underlying model. In addition to code generation, M2T

transformations can generate documentation from models to keep up with an evolving

code base.

2.2.6 Modeling Approaches

In software engineering, modeling has become an essential part of the development

process. Modeling involves creating a representation of a system or process using a

specific language, usually employing a textual or graphical approach.

Graphical representation is a method of visually describing information in two dimen-

sions, as it displays the spatial structures of the parts of a system or process [44]. This

approach is often used by developers who prefer a more intuitive and user-friendly way

of designing and configuring their systems. It promotes a quick understanding of data

and facilitates communication between stakeholders and requirements engineers [51] by

effectively capturing relationships and dependencies between components [51, 79, 12].

The growing complexity of contemporary systems has resulted in a considerable

amount of model requirements and scalability problems with graphical modeling. More-

over, users need to know the model and its notations before modeling, which might

be challenging [51]. Graphical modeling languages like BPMN, UML and Ecore are

commonly used in this approach.

On the other hand, the textual approachmitigates some previous modeling challenges

mentioned. Textual modeling offers a more compact and structured approach using a

textual template to represent model elements [51]. It is well-suited for developers familiar

with scripting languages and those seeking greater control over the model’s configuration

and implementation. Textual modeling languages like YAML and JSON are commonly

used in this approach. While the initial learning curve for textual modeling languages can

be steeper, this approach can save time and effort, especially when dealing with complex

algorithmic model behaviors [1, 65, 51].

2.2.7 Modeling Tools

Modeling tools are crucial in software development as they offer a systematic approach to

creating and evolving software systems. These tools allow software engineers to design

and build software systems using models as the primary artifacts for the development

process. They can be graphical or textual editors. Transformation tools help convertmodels

between different formats, and code generation tools streamline model translation into

executable code, making MDE a powerful approach for complex software development.

14

2.2. MODEL-DRIVEN ENGINEERING

Graphical Editors

Sirius is an Eclipse project that focuses on developing domain-specific modeling tools,

offering a graphical modeling environment for users to define their tools. It supports the

creation of graphical editors for Eclipse Modelling Framework (EMF) models, enabling

developers to define data models and produce Java code. Users can visualize and validate

metamodel structures through diagrams and visualizations, ensuring easy inspection and

confirmation of relationships and structures [28, 42]. This approach is advised for creating

primarily graphical DSLs.

MPS is an open-source workbench that also allows domain-specific language creation.

A model is projected onto a particular graphical representation in the MPS editing ap-

proach. It includes a code generator that generates code from metamodels or existing

code [43]. This approach is advised when developing hybrid text and graphical DSLs.

MetaEdit+ is a domain-specific modeling tool designed for domain experts to create,

edit, andmaintainmodels accurately reflecting their domain. It offers a graphical editor for

creating diagrams and a text editor to edit model code. MetaEdit+ is highly customizable,

allowing users to create modeling languages and generators.

Textual Editors

Xtext is an Eclipse-based textual editor framework designed for creating and editing DSLs.

It allows grammardefinition for textual languages andgenerates parsers, editors, andother

tools to work with these languages [42]. Xtext complements Sirius by enabling textual

representations of models defined by the metamodel. Combining Xtext’s capabilities

with Sirius, developers can verify the correctness and completeness of the metamodel

grammar through textual representations. Any inconsistencies or errors in the grammar

can be identified and rectifiedwithin the textual representation, which ensures consistency

between the graphical and textual views of the metamodel.

EMFText is another Eclipse-based textual editor framework that allows defining the

textual syntax for an Ecore metamodel. It provides a subset of Xtext’s features but is more

lightweight and easier to learn, capable of generating non-dependable EMFText code.

Additionally, EMFText can automatically generate and analyze default syntax to identify

potential issues. This makes it a popular choice for creating small to medium-sized DSLs

[24, 42].

M2M Tools

In MDE, Extract, Transform, and Load (ETL) from Eclipse retrieves models stored in

various formats or abstractions. Once retrieved, these models are transformed to conform

to different metamodels or specific transformation rules, assuring compatibility with the

target system. The transformation is critical in modifying the models for use in various

15

CHAPTER 2. BACKGROUND

phases of development. Finally, the transformed models are loaded into a target model or

metamodel [10].

Atlas Transformation Language (ATL) is an EMF metamodel transformation language

that allows the creation of multiple target models from a set of source models, using

rules that specify how source model elements are matched and initialized [27]. It can be

applied in imperative style to streamline the codification of intricate transformations and

in declarative style to express relationships between source and targetmodel elements [42].

Query/View/Transformation (QVT) is a language family to define model transfor-

mations. It consists of three modules: QVT-operational, QVT-relational, and QVT-core,

each addressing a distinct element of model transformation. QVT is a robust and versatile

language that may be applied to several activities, including code creation [42].

Code Generation

AcceleoQuery Language (AQL) is a code-generation tool forMDE that automates software

development processes by defining templates and generating code from models. It offers

a flexible solution, customizable structure and content, and can be easily integrated into

the software development workflow [26, 42].

Xpand is a declarative language for the EMF, enabling the development of domain-

specific languages. It is built on Xtend, a Java superset with metaprogramming features,

and defines DSL syntax and semantics.

EGL is a metalanguage derived from the QVT family, specializing in model transfor-

mations and code creation. Despite its expressive nature, it can be more challenging to

understand and apply than other techniques discussed.

MTL is a formal language for specifying transformations between metamodels. It is

based on first-order logic and defines the transformations semantics, often used to verify

the correctness of transformations.

Xtend is an EMF code generation language that generates templates that specify the

format of the generated code. Variables and expressions are then used to tailor the

generated code to meet particular needs, simplifying the generation of intricate and

repetitious code.

2.3 Challenges in Modeling Solutions for CI/CD

Software development has become increasingly complex with the integration of CI/CD

practices into the DevOps landscape, raising gaps and challenges in the area. Some of

them are outlined below:

The Lack of Standardization - Varying methods across organizations create a lack

of consensus on a uniform modeling framework, hampering team collaboration and

interoperability [8, 69]. The absence of standardization impacts CI/CD pipeline tools

16

2.3. CHALLENGES IN MODELING SOLUTIONS FOR CI/CD

and integration [8], leading to inconsistencies in modeling techniques and hindering

effective model sharing and reuse. The lack of tools capable of handling various stages,

interactions, and automation in CI/CD workflows leads to inefficiencies and bottlenecks

in the modeling process [69].

Collaboration and Skill Gaps - The identified deficiencies have a major impact on

team cooperation and productivity, making them key obstacles to adopting DevOps [45,

69, 22]. Organizations face a significant challenge in finding skilled employees with both

development and operational skills and knowledge [45, 69], due to distinct DevOps

practices in organizations [45].

Complex Automation - Modeling CI/CD pipelines effectively requires a balance be-

tween capturing the intricate details of automated workflows involved in code integration,

testing, deployment, andmonitoring while remaining simple and adaptable. Additionally,

modeling solutions must cater to the varying needs of different stakeholders.

The Limitations of MDE - MDE, while beneficial, also presents several complexities

that require addressing. Higher abstraction levels may not necessarily lead to better

software, and the abundance of MDE techniques impedes business decision-making since

MDE effectiveness is very contextual [37]. Another factor is the dependency on EMF,

the common foundation for most MDE offerings, implying that most tool sets have some

dependency on it [74]. Furthermore, MDE can lead to lock-in in the abstractions and

generator languages adopted, as it requires several dimensions of evolution [23].

Model Evolution Pitfalls - Model evolution in CI/CD pipelines involves updates to

meet changes in requirements and software architecture. This MDE process faces chal-

lenges like scalability, automation management, heterogeneous dependencies, empirical

studies, tool usability, syntax, run-time, hybrid migration approaches, external interfaces,

language semantics, and metamodels. Addressing these is crucial for long-term maintain-

ability and effectiveness [57, 14, 37].

Beyond Technical Challenges - In addition to the technical challenges, MDE faces

social and community challenges such as empowering non-technical stakeholders to build

tools using MDE, companies reluctant to change due to its high adoption risks [38],

significant initial investment and a steep learning curve [48], addressing Intellectual

Property concerns, and considering domain-specific EAW adapted for different sectors

and stakeholders [14].

17

CHAPTER 2. BACKGROUND

2.4 Summary

This research highlights the necessity for specific modeling solutions for CI/CD in the

DevOps scenario. Achieving this goal will require innovative approaches, collaborative

efforts across teams, and the development of specialized tools encompassing the intricacies

of CI/CD workflows [5]. The MDE community must consider DevOps and CI/CD

as first-class concerns to ensure practical industrial relevance and operate more Agile.

Additionally, horizontal reuse of all MDE tooling within programmed workflows is

critical for practical MDE deployment, paving the way for efficient and successful CI/CD

workflows that help organizations remain competitive in the fast-paced world of software

development.

18

3

Related Work

This chapter investigates current trends and establishedmechanisms in DevOpsmodeling,

centering on a specific application domain within the DevOps framework. It highlights

the limitations encountered by existing modeling frameworks and tools while introducing

recent advancements.

3.1 Literature Review

This section provides an overview of the planning and execution of the literature review

for this thesis on modeling CI/CD pipelines.

3.1.1 Planning

The planning phase involved defining the research questions, search strategy, selection

criteria, and sources. The research questions were formulated to guide the literature

review and were as follows:

• What is the current state-of-the-art in modeling CI/CD pipelines?

• What are the challenges and limitations of existing approaches?

• What are the opportunities for improving the modeling of CI/CD pipelines?

3.1.2 Search Strategy

To find relevant articles for this literature review, the search strategy was designed to

include keywords related to CI/CD pipeline modeling. With this in mind, the result-

ing search query was the following: (("CI/CD" OR "DevOps" OR "software delivery"

OR "continuous integration" OR "continuous delivery" OR "continuous deployment")

AND "pipeline" AND ("model" OR "modeling")). Based on the research questions and

sub-questions, the search terms consisted of combining the terms "CI/CD", "pipeline",

19

CHAPTER 3. RELATED WORK

and "model" or "modeling". Additionally, the search terms were expanded to include re-

lated terms such as "DevOps", "software delivery", "continuous integration", "continuous

delivery", and "continuous deployment".

The search strategy was designed to ensure that all relevant articles were included in

the literature review. Awide range of pertinent subjectswere covered by the keywords that

discussed modeling approaches and tools for CI/CD pipelines. These search terms were

used to find articles in online databases, including ACM, IEEE Xplore, Google Scholar,

ResearchGate, and ScienceDirect. The search strings were adapted to fit the syntax and

conventions of each database, and the publication date of the articles was not a restriction

on the search, but more recent publications were prioritized.

3.1.3 Selection Criteria

The selection criteria were based on the research questions and formulated to ensure that

the selected articles were relevant and contributed to the knowledge and development of

the proposed solution. The criteria were as follows:

• Relevance to the modeling of DevOps pipelines

• Potential to contribute to the knowledge and development of the proposed solution

• Use of model-driven approaches

• Use of graphical or textual modeling approaches

3.1.4 Execution

After searching, some papers were selected using the previously stated selection criteria

to ensure that only relevant publications were included in the final analysis. The screening

process was divided into two stages: initially evaluating the titles and abstracts, followed

by a comprehensive review of the full text. Articles that did not align with the inclusion

requirements were omitted.

Thefinal selection ofpaperswasbasedon their relevance to the research topics, research

quality, and potential contribution to knowledge and the development of the proposed

solution. Themajorityof the selectedpublicationsusedcase studies to validate theiroffered

solutions, which was discovered to be a strong approach for gauging and comprehending

the impact and adaptability of the proposed solution across varied organizational contexts.

3.2 Existing Modeling Mechanisms for DevOps

This section explores several approaches proposed in the literature, alongside their con-

tributions and shortcomings to address the challenges of modeling, configuring, and

automating DevOps processes.

20

3.2. EXISTING MODELING MECHANISMS FOR DEVOPS

Colantoni et al. introduced DevOpsML [20], a framework aimed at modeling and

configuring DevOps engineering processes and platforms. The framework integrates

process and platform models, providing a comprehensive view of the DevOps environ-

ment. By leveraging MDE technologies like EMF and Epsilon, DevOpsML comprises

process models, platformmodels, libraries of reusable platform elements, and linkmodels.

However, while DevOpsML addresses the need to incorporate new requirements into

low-code engineering platforms, it focuses on modeling DevOps as a whole with no code

generation and is primarily intended for documentation.

Building upon the DevOpsML framework, ongoing research by Colantoni et al. intro-

duces blended modeling and scenario simulation for continuous delivery pipelines using

executable JSON-based models [21]. By employing JSON-SchemaDSL and GEMOC Stu-

dio, the authors develop a modeling workbench for JSON-based DSLs, enabling blended

modeling of CD pipelines. Their approach combines textual and graphical notations,

promoting scenario simulation and evaluation of CD pipelines. However, unlike our

approach, their methodology primarily focuses on a single CI/CD technology, limiting

its applicability to diverse toolchains.

Sandobalin presents ARGON [67], a model-driven approach for automating the contin-

uous delivery of cloud-based DevOps. ARGON uses a DSL to model cloud infrastructure

and its requirements defined through an Infrastructure metamodel. The metamodel

provides abstract syntax but lacks concrete notation for ARGON’s graphical language.

EuGENia is used in the graphical notation in modeling editors. ARGON is coupled with

a transformation engine for generating scripts to manage configuration management tools

(CMTs).

Brabra et al. propose a model-driven approach for cloud resource orchestration [9],

providing systematicmapping and translation support between TOSCAandDevOps tools.

To achieve this, they adopt the TOSCA standard for designing resource-related artifacts,

regardless of the DevOps tool. They also propose a model-driven translation technique

that translates the designed artifacts using TOSCA into DevOps-specific artifacts. Finally,

Connectors are provided to establish the bridge between DevOps-specific artifacts and

DevOps tools. The authors demonstrate the effectiveness of their approach by applying it

to a range of DevOps tools, including Docker, Kubernetes, Terraform, and Juju. Although

there are similar approaches to our solution, their approach focuses on DevOps artifact

generation.

Furthermore, Tegeler et al. introduce CINCO [76], a model-driven CI/CD framework

formodern cloud-based applications, offering a graphical modeling language that enables

the rapid development of graphical DSLs and their corresponding IDEs. The solution

simplifies CI/CD pipeline setup and supports tools through a graphical representation of

pipeline models. It allows automatic code generation, job dependency visualization, and

scheduling and execution order, eliminating typical errors in setup and scheduling. While

their method improves readability and reduces errors in the pipeline setup, it primarily

targets modern cloud-based applications and is currently applied to GitLab.

21

CHAPTER 3. RELATED WORK

Wettinger et al. present a TOSCA-based framework [80] for integrating diverseDevOps

artifacts within amodular and cloud-agnostic architecture. It discusses the transformation

of DevOps artifacts such as Chef cookbooks and Juju charms into standardized TOSCA

artifacts, making them interoperable across different platforms. Additionally, it outlines

the APIfication phase, where APIs are generated to interact with these artifacts, enabling

deployment on different platforms without specifying each one individually. Leveraging

Winery, an open-source TOSCA modeling tool, provides a graphical editor for crafting

plain topologymodels. Moreover, the framework incorporates textualmodeling for artifact

APIfication, generating API specifications based on the functionalities of the artifacts.

In [32], Hugo et al. propose a block-based approach for defining CI/CD pipelines,

aiming to overcome the challenges of non-interoperable languages in existing technologies

such as GitHub Actions, GitLab CI/CD, and Jenkins. By offering a visual and interactive

environment with error detection and helpful suggestions, this approach streamlines

pipeline creation and promotes switching between providers. While not implemented,

this concept may serve as a basis for our graphical approach.

Finally, Rig [77] is a graphical modeling tool for CI/CD workflows designed to help

developers maintain complex workflows. It offers a Purpose-Specific Language (PSL) that

abstracts current CI/CD implementation complexities and generates YAML configuration

files automatically, ensuring syntactic correctness and compatibility with platforms such

as GitLab. Rig uses the Eclipse Rich Client Platform and the Cinco framework to provide

an Integrated modeling Environment (IME) for the graphical modeling of CI/CD work-

flows. It provides an easy-to-use interface for creating, editing, and visualizing CI/CD

pipelines with its node and edges representation of jobs and dependencies. The model-

driven technique generates entire code from graphical models, assuring consistency and

correctness in the resulting YAML configuration files and optimizing CI/CD processes

while reducing manual effort and errors.

Table 3.1 highlights and compares the core features of each of the previouslymentioned

proposals. While several of the solutions support both graphical and textual modeling,

none facilitates migration between DevOps platforms.

Characteristic/Approach DevOpsML JSON-SchemaDSL ARGON Brabra Tegeler TOSCA-based Block-based Rig Our Solution

Graphical Modeling X X X X X X X X

Textual Modeling X X X X X

Code Generation X X X X X X X X

Platform-Agnostic X X X X X

Platform-Migration X

Table 3.1: Comparison of Related Approaches

22

3.3. ONGOING TRENDS

3.3 Ongoing Trends

The environment of DevOpsmodeling evolves alongside the DevOps philosophy, which is

required since modern DevOps environments require efficient, agile, and robust software

development and delivery processes. Organizations are exploring emerging patterns,

modeling solutions to these problems, and implementing them. We conducted research

to identify trends and forthcoming initiatives being investigated and developed.

3.3.1 AI/ML-driven DevOps

AI/ML integration in DevOps has become increasingly popular, with ML-driven DevOps

technologies being employed inMachine Learning (ML) projects [66]. According toDhia et

al., using DevOps technologies improves the success rate ofML initiatives. This highlights

the potential benefits of using AI/ML to boost DevOps efficiency for future dynamic and

distributed data-intensive systems [2, 14].

AI/ML is also expected to improve modeling automation and effectiveness, with

additional applications such as modeling bots that give advice and even create source

code [16, 13, 74] andmodel recommenders being incorporated into IDEs. Themain reason

is that manyMDE techniques heavily rely on knowledge and data, as well as the repetitive

source code generation for MDE template processes [13, 74].

However, integrating AI/ML into DevOps can present challenges, including the

availability of real-world datasets, continuous model evaluation and tuning, and the

difficulty of maintaining modularity in large-scale DevOps projects [2].

In light of these challenges, Moin et al. propose adopting Automated ML to enable

Model-Driven AI Engineering. This empowers software engineers without deep AI

knowledge to develop AI-intensive systems by selecting the most appropriate ML model,

algorithm, and hyper-parameters for the task at hand [55].

Raedler et al. [62] used MDE techniques to develop AI algorithms, while Planas et

al. presented a Model-Driven Development (MDD) approach to multi-experience user

interfaces, integrating a new DSL with the Interaction Flow Modeling Language (IFML)

to provide seamless user experiences across several devices and modalities [60].

3.3.2 Low-Code

MergingDevOps andLow-code approaches to improve software developmentprocesses is

an emerging trend [15, 63, 13]. Low code is a subset of MDD and not a novel concept [15].

Rafi et al.’s work highlights the benefits of adopting low-code platforms in DevOps

processes [63]: One of the primary advantages of low-code platforms is bridging the skill

gap by allowing non-technical developers to create software and increase participation in

software development processes.

Low-code platforms offer a visual and user-friendly approach to application develop-

ment, expediting and reducing the development time to market. Low-code platforms can

23

CHAPTER 3. RELATED WORK

enhance DevOps teams’ development processes by integrating with other technologies,

reducing errors, and enhancing software quality.

3.3.3 Cloud-Based DevOps

Cloud solutions have a strong presence in today’s community, and newways are emerging

in favor of business efficiencies, cost savings, agility, and so on. One trend mentioned

was modeling cloud-based environments to reduce complexity and extend the accessible

capabilities. According to Bucchiarone [13], versioning tools are expected to become an

essential feature of modeling environments in the future.

In [74], Süß et al. discuss the use of Kubernetes in cloud-based MDE workflows with

interactive IDEs hosted on the cloud provider. The authors believe that this approach can

assist in mitigating some of the issues associated with model-driven technology, such as

slow interpretation times and limited access to resources.

3.3.4 Honorable Mentions

Other trends have been mentioned that are worth considering [13, 16]:

• Multiparadigm modeling - Integrates different modeling paradigms into a single

framework, supporting cross-disciplinary communication and collaboration;

• Adoption models - Help organizations assess, evaluate, and improve theirmodeling

practices;

• Model inferers - Extract patterns from unstructured data and generate correspond-

ing models;

• Smart code generators - Generate code from models, taking into account the style

and best practices of a particular organization;

• Real-time model reviewers - Provide continuous feedback on the quality of models,

identifying potential problems and suggesting solutions;

• Advanced self-morphing and collaborative modeling tools - Adapt to the needs of

different users and collaborate with them in real-time;

• Semantic reasoning platforms, explainability, and storification - These tools can

make models more self-explanatory and easier to understand, and can also store

and manage models in a centralized repository.

3.4 Summary

The reviewed DevOps modeling approaches offer valuable contributions to the field, pro-

viding structured representations of complex DevOps processes, enabling optimization,

24

3.4. SUMMARY

and enhancing collaboration. By leveraging these insights, organizations can effectively

manage their DevOps pipelines and deliver high-quality software with greater agility

and efficiency. The proposed solution builds upon the strengths of existing approaches

and addresses identified research gaps, aiming to advance DevOps modeling practices

further.

25

4

Model-driven Languages

This chapter presents the proposed solution aimed at addressing the challenges in con-

figuring and migrating DevOps pipelines. The solution’s technology, procedures, and

implementation process will be presented and justified.

4.1 Requirements Analysis

A thorough examination of requirements is required to develop a novel approach to

addressing the issues found in the literature review. This section examines the functional

and non-functional requirements that guide the solution’s design and implementation.

4.1.1 Functional Requirements (FR)

• Textual Modeling (FR-1) - The solution shall offer a textual modeling interface using

Xtext that enables the configuration of scripts using syntax and grammar tailored to

the supported CI/CD platforms.

• Visual Modeling (FR-2) - The solution shall provide a visual modeling interface

using Sirius, allowing users to configure and visualize models through graphical

editors, ensuring alignment with the supported CI/CD platforms.

• Tool Agnosticism (FR-3) - Themodeling approach should be agnostic of any specific

DevOps platform. This means the generated code and the modeling approach

should be adaptable to different CI/CD tools and platforms. This prevents vendor

lock-in and allows for future migration between these platforms. Developers can

apply the solution to projects that use a variety of CI/CD tools without requiring

major adjustments.

• Automated Code Generation (FR-4) - The solution must be capable of automatically

generating executable code (such as configuration files and scripts) based on the

CI/CD pipeline’s provided textual and visual models. This generated code should

be interoperable with common CI/CD tools and platforms, avoiding the need for

manual configuration and the risk of errors associated with human coding.

26

4.1. REQUIREMENTS ANALYSIS

• Model Transformations (FR-5) - The solution should facilitate transformations be-

tween different types of models used for representing CI/CD pipeline requirements,

as this feature still has a high prevalence. This allows users to switch between

different model views for better understanding or communication.

• Error Handling and Reporting (FR-6) - The solution should include functionalities

for handling errors that occur during model instance configurations. This will allow

the user to understand and correct mistakes at any configuration step, reducing their

chances of frustration from being unable to correct their issues. This includes cap-

turing error messages, logging them for troubleshooting, and potentially notifying

users of failures.

4.1.2 Non-Functional Requirements (NFR)

• User-Friendly Textual Modeling (NFR-1) - The modeling tool shall provide a user-

friendly interface for defining CI/CD pipelines using a clear and concise textual

syntax. This syntax should be readily understandable by developers with varying

levels of CI/CD expertise. It should allow for the specification of various stages

within the pipeline.

• User-Friendly Visual Modeling (NFR-2) - The solution shall offer a complementary

visual representation of the CI/CD pipeline structure and its modeling. This vi-

sual representation should directly correspond to the textual syntax, enabling users

to easily grasp the pipeline’s flow and dependencies. This visual component fos-

ters better communication and collaboration within development teams regarding

CI/CD pipelines. It also enables less technically inclined or visually oriented users

to configure their instances more effectively.

Both NFR-1 and NFR-2 requirements directly address the skill gap identified in

the research, where 56% of published articles highlight a lack of knowledge and

understanding ofCI/CDconcepts [45] and its difficult learning curve. Byprioritizing

a user-friendly textual syntax with a low learning curve, the tool empowers users

with varying levels of experience to effectively model CI/CD pipelines.

• Intuitive User Interface (NFR-3) - Both textual and visual solution interfaces should

be intuitive to learn and use. Catering to users with varying levels of experience is

crucial.

• Scalability for Complex Pipelines (NFR-4) - The solution should be able to handle

complex CI/CD pipelines with numerous stages and intricate dependencies. This

scalability ensures the solution remains effective as projects mature and pipeline

complexity increases.

27

CHAPTER 4. MODEL-DRIVEN LANGUAGES

• Maintaining Clean Code (NFR-5) - The solution should generate clean and well-

documented code that is easy to understand and modify. This promotes the main-

tainability of the CI/CD pipelines over time. Clean code allows developers to easily

troubleshoot issues and adapt the pipelines in the future.

4.2 Solution Architecture

The proposed solution employs a dual modeling approach to accommodate diverse user

preferences and skill levels. Textual and graphical modeling approaches enable users to

configure CI/CD scripts for several DevOps platforms using a generic metamodel. The

graphicalmodeling approach uses Sirius tomodel the pipeline, while the textualmodeling

approach uses Xtext to create DSLs for pipeline modeling. Both approaches rely on ATL

to convert between platform-independent and platform-specific models, and Acceleo to

generate scripts for deployment in the target DevOps platforms.

The 4+1 viewmodel of software architecture best describes our solution’s architecture,

providing a comprehensive viewpoint on different aspects of the system. This thesis

focuses on two specific views: the Process View and the Development View.

The Process View offers a dynamic view of the system’s architecture, focused on

runtime behavior and interactions among components. These interactions are outlined in

Figure 4.1 as an Activity Diagram for both configurations, the textual approach is depicted

on the left and the visual on the right.

Figure 4.1: Process View

The textual approach (shown on the left) begins by configuring a generic script in the

developed CICD DSL. This is followed by the ’Transformation configuration’ sub-process,

which includes several steps. First, the DSL is converted into XMI format. Then, the

Platform-independent (PI) model is translated into a Platform-specific (PS) model using

ATL. Finally, the XMI is converted back into DSL. After these transformations, the new

28

4.2. SOLUTION ARCHITECTURE

XMI is configured for the selected target platform during the ATL phase. Then, the DSL

is converted back to XMI format for use in the code generation process. The process

concludes with the generation of code in a YAML file.

Similar to the textual approach, the visual approach begins with configuring a generic

script on the developed Sirius CICD diagram. However, the difference lies in the direct

transformation of the PI model into the PS model using ATL. The new XMI is configured

for the selected target platform in the ATL phase and then used to generate the code in a

YAML file.

Figure 4.2 and Figure 4.3 presents the Development View, also known as the Imple-

mentation View, which provides a static perspective of the system’s architecture from a

software development standpoint.

Figure 4.2: Textual Development View

The Xtext Environment development view focuses on the textual representation of

models using grammar and quick fixes. The SpecificModel Validator checks if the specific

configuration follows the constraints and rules outlined in the Specific Model Grammar

and the Specific Ecore Model. On the other hand, the Generic Model Validator validates

the generic configuration using the constraints and rules described in the Generic Model

Grammar and the Generic Ecore Model. The SpecificModel Grammar specifies the syntax

and structure of a specific configuration, while the Generic Model Grammar provides a

generic syntax framework for generating generic configurations. Specific Model Quick

fixes automate the correction of common validation errors in specific configurations, while

Generic Model Quick fixes offer similar solutions for generic ones. The Xtext Editor is

29

CHAPTER 4. MODEL-DRIVEN LANGUAGES

the main interface for writing and editing DSLs, and it supports both generic and specific

model grammar, as well as quick fixes.

The DSL2XMI Plugin converts DSL files to XMI format, whereas the XMI2DSL Plugin

turns XMI files back to DSL format for use in the Code Generator module. ATL enables

the conversion of generic and specific XMI formats. The Final XMI is the outcome of these

transformations, and it is then used by the Code Generator to produce the corresponding

code, in this case, a YAML script.

Figure 4.3: Visual Development View

The development view of the Sirius environment includes various components and

their interactions to support model validation, editing and code generation. In this

approach, the Specific Model Validator validates the specific Ecore model for correctness

and consistency, while the GenericModel Validator validates the generic Ecoremodel. The

Sirius Editor acts as the central editor for creating and modifying model configurations

available within the features defined in Generic and Specific Model Design, interacting

with the specific and generic model validators to ensure model integrity.

Based on the configuration nature, ATL is used to transform the Generic XMI config-

uration into a specific XMI format, while the Specific XMI file is the final configuration

output. The Code Generator (Acceleo) uses the Specific XMI to generate code, in this case,

a YAML Script.

Figure 4.4 shows the process of the artifacts generated forbothapproaches, withTextual

configuring the artifacts in Xtext based on the Domain Model and grammar defined and

Graphical configuring them using the editor implemented. Both approaches generate the

final artifacts with the Acceleo templates.

30

4.3. CORE METAMODEL DESIGN

Figure 4.4: Generated Artifacts Process

4.3 Core Metamodel Design

The core of our CI/CD modeling tool is built around a generic metamodel (Figure 4.5),

which serves as the foundational framework for both the textual and visual modeling

approaches. This genericmetamodel is designed tobeplatform-independent, allowing it to

serve as the basis for developing platform-specificmetamodels tailored to various DevOps

environments. By maintaining a high level of abstraction, the generic metamodel ensures

that the tool remains flexible and adaptable to different CI/CD platforms, addressing the

diverse needs of development teams.

4.3.1 Generic Metamodel

We departed from an existing metamodel made available by the authors that work at

FEUP that had beenmodified to interact with various DevOps platforms. This metamodel

has been improved to accommodate common features present in popular community

platforms while remaining at a high level of abstraction. According to [31], GitHub

Actions is the dominant DevOps platform by a significant margin. As a result, more

emphasis was placed on the functionalities of GitHubActions while developing the final

generic metamodel. We included GitHubActions features that were also present on at

least two additional platforms specified in [31]. For the remaining platforms, features

had to be present in at least four. Currently, the tool implementation is available for three

popular ones. According to [59, 39, 30, 31] these platforms are GitHub Actions, Jenkins

and CircleCI.

4.3.2 Platform-Specific Metamodels

Building on the foundation of the generic metamodel, platform-specific metamodels are

crafted to address the unique requirements and features of various CI/CD platforms.

31

CHAPTER 4. MODEL-DRIVEN LANGUAGES

Figure 4.5: CI/CD Independent Metamodel

These metamodels retain the core structure of the generic metamodel but extend and

customize it to alignwith the syntax, features, andworkflows of specific CI/CD tools. This

approach ensures that the modeling tool can generate accurate and functional pipeline

configurations for different platforms while maintaining a high level of abstraction and

reusability. As the platform-specific metamodels are very large and complex, they are

available in Annex I.

GitHub Actions Metamodel

The GitHub Actions metamodel is designed for GitHub Actions, an integrated CI/CD

service within GitHub uses workflow files defined in YAML. Key components of the

GitHub Actions metamodel include:

• Triggers - GitHub Actions workflows can be triggered by a wide array of events

beyond just code push and pull requests. These triggers include webhooks for issue

comments, repository dispatches, and schedule-based triggers (cron jobs).

32

4.3. CORE METAMODEL DESIGN

• Runners - GitHub Actions supports different types of runners, such as GitHub-

hosted runners and self-hosted runners define the environment in which jobs run.

• Actions - Actions are reusable units of code that can be combined to build complex

workflows. These can be pre-built actions available in the GitHub Marketplace or

custom actions defined in repositories.

• Permissions - GitHub Actions offers detailed permission settings for workflows,

enabling users to restrict access to specific areas, read-only or read-write jobs, and

authenticate with GitHub-provided tokens for further control.

• Secrets - GitHub Actions support encrypted secrets that can be used for sensitive

data such as API keys and credentials.

Jenkins Metamodel
The Jenkins metamodel is designed to cater to the extensive and flexible nature of

Jenkins. Jenkins pipelines are defined using a Groovy-based syntax within Jenkinsfiles,

which can be either declarative or scripted. Key components of the Jenkins metamodel

include:

• Pipeline Configuration - This element represents the overall structure of the Jenkins

pipeline, including both declarative and scripted pipeline syntax. Our tool does not

support scripted pipeline syntax.

• Agents - Jenkins agents specify where the pipeline or specific stages should run,

whether on any available node or specifically labeled nodes.

• Triggers - Jenkins supports a variety of triggers, such as SCM changes, schedule-

based triggers (cron), and manual triggers via the Jenkins UI.

• Post Actions - Post-build actions specify tasks to be executed after the pipeline stages,

such as sending notifications or archiving artifacts.

CircleCI Metamodel
The CircleCI metamodel is tailored for CircleCI, a popular CI/CD tool known for its

ease of use and powerful features. CircleCI pipelines are defined using a YAML-based

configuration file. Key components of the CircleCI metamodel include:

• Pipeline Configuration - Represents the overall structure of the CircleCI configura-
tion file, including version and setup directives.

• Workflows - Workflows orchestrate the execution of multiple jobs, allowing for

parallel job execution and defining dependencies between jobs.

• Executors - CircleCI uses executors to define the environment in which jobs run,

including machine executors, Docker containers, and remote Docker.

33

CHAPTER 4. MODEL-DRIVEN LANGUAGES

• Caching - CircleCI supports caching mechanisms to speed up builds by reusing

dependencies and build artifacts.

• Artifacts - Jobs can produce artifacts that are stored and accessible for later stages

or for download.

• Triggers - Triggers in CircleCI include branch and tag filters, scheduled workflows,

and manual approvals.

4.3.3 OCL Invariants for Metamodel Validation

The core metamodel design uses Object Constraint Language (OCL) invariants to ensure

data integrity and consistency in CI/CD pipeline definitions. OCL is a declarative

language that specifies constraints that must hold for elements and relationships within

the metamodel. These invariants are defined within the metamodel and prevent invalid

or semantically incorrect pipeline configurations. These restrictions are relevant due to

the limited set of rules in a metamodel domain, such as the cardinality of attributes and

references. By using OCL, the metamodel domain is enriched as it extends the set of

restrictions.

Invariants specific to each platform were developed to maintain consistency across

various DevOps platforms. Listing 4.1 contains a snippet of an invariant for the Generic

metamodel defined in the OCLinEcore Editor, with the full content in GitHub. Platform-

specific invariants can be found inAnnex II. This invariant ensures that if the type attribute

of an Input instance is of the Boolean type, then the default attribute must be set to either

"true" or "false".

Listing 4.1: CICD OCL Invariants

package cICD_metamodel : cICD_metamodel = ’http://.../cICD_metamodel ’ {

class Input

{

attribute type : INPUT_TYPE[1];

attribute default : String[?];

...

invariantDefaultBooleanValue(’Boolean type must have default value

set to "true" or "false"’):

self.type = INPUT_TYPE::BOOLEAN implies

(self.default = ’true’ or self.default = ’false ’);

}}

Integration with Tree View
Although OCL invariants are defined in the metamodel, the Tree View feature in the

visual modeling environment offers a useful tool for interacting with them. The Tree View

allows users to navigate the metamodel’s elements and relationships, and whenever a

34

https://github.com/nedzer0/Modeling-Agnostic-CI-CD-Pipelines/tree/main

4.4. TEXTUAL MODELING

change is made, the EMF validation framework checks the relevant OCL invariants. If

any invariant is violated, the framework generates validation messages that pinpoint the

specific issues and provide guidance on how to fix them.

An example of this mechanism can be found in Figure 4.6 with a CICD metamodel

invariant.

Figure 4.6: CICD OCL Invariant

As we can see, a Boolean-type Input has been defined with the ‘default’ attribute set

to ‘test’. However, the OCL will produce an error when evaluating this configuration due

to the restriction shown in Listing 4.1. In Figure 4.7, we can see the configuration error

and the message guiding its correction, in this case by changing the ‘default’ attribute to

‘true’ or ‘false’.

4.4 Textual Modeling

The textualmodeling approach is a critical componentof the solution, providing apowerful

way to define and delimit the rules and restrictions of CI/CD pipeline configurations

through a DSL developed using Xtext. This section elaborates on the grammar definition

process, the DSL’s syntax and semantics, and the tools and plugins that support this

method.

4.4.1 Grammar Definition

The process of defining the grammar for the textual modeling language using Xtext

involves several steps. Initially, an Xtext project was created for each existing Ecore model

mentioned in Subsection 4.3.2. Xtext automatically generated the initial grammar based

35

CHAPTER 4. MODEL-DRIVEN LANGUAGES

Figure 4.7: CICD OCL Invariant Error Message

on this model, providing a starting point that closely reflected the underlying metamodel.

However, to bettermeet the specific requirements of usability, extensibility, maintainability,

and user friendliness, this grammar was further refined and customized:

• Usability - Designed to be intuitive and easy to understand, this involves using

natural language style, eliminating special characters (common in YAML syntax

of CI/CD platforms), and organized structure. This aligns with typical DevOps

practices, making it accessible even to users who are not experts in modeling or

programming, and providing a streamlined configuration.

• Extensibility - Allows for easy extension and customization by modifying the meta-

model and consequently its grammar, accommodating different DevOps platforms

and their evolving requirements. This flexibility ensures that the DSL can adapt to

various organizational needs over time.

• Maintainability - Can be easily updated and enhanced as new features are intro-

duced or existing ones are modified. This is crucial for the longevity and sustain-

ability of the modeling solution.

• User Friendliness - It leverages existing concepts and terms for each platform that

users are already familiar with, such as YAML-based configurations, to reduce the

learning curve and increase adoption rates.

In Listing 4.2, we have a short grammar extract defined for the generic metamodel

(CICD). Whilewe removed some special characters introduced byXtext for formatting and

parsing purposes, such as curly brackets, we retained indentation for readability. Curly

36

4.4. TEXTUAL MODELING

braces previously handled indentation, but to maintain structure after their removal, we

introduced dedicated BEGIN and END terminal rules within the grammar.

Listing 4.2: CICD grammar definition

grammar org.xtext.example.cicd.CICD with org.eclipse.xtext.

common.Terminals

import "http://www.example.org/cICD_metamodel"

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

Pipeline returns Pipeline:

’Pipeline ’

((BEGIN’name’ name=EString END))?

((jobs+=Job)+ NEWLINE?)

((pipeline_environment+=Environment)+ NEWLINE?)?

((triggers+=ScheduleTrigger)+ NEWLINE?)?

((agents+=Agent)+ NEWLINE?)?

((inputs+=Input)+ NEWLINE?)?

((output+=Output)+ NEWLINE?)?

;

Environment returns Environment:

’Environment ’

(BEGIN

’key’ key=EString

’value’ value=EString

END)

;

terminal NEWLINE:

// New line on DOS or Unix

’\r’? ’\n’;

terminal BEGIN: ’synthetic:BEGIN ’; // increase indentation

terminal END: ’synthetic:END’; // decrease indentation

An important consideration is the synchronization between the metamodel and the

grammar. This means that when changes are made to the metamodel, the grammar alerts

the developer to any encountered incompatibilities. This synchronization is achieved

through the strong integration within the Eclipse environment, as indicated in the gram-

mar by the import "http://www.example.org/cICD_metamodel" line. Despite the synchroniza-

tion of these structures, manual grammatical adjustments are still necessary. The rationale

and implementation provided so far have been applied to the remainingmodel’s grammar.

37

CHAPTER 4. MODEL-DRIVEN LANGUAGES

Some additional excerpts from the platform-specific grammars can be found in An-

nex III. For the complete grammar, please visit GitHub.

4.4.2 Syntax

The syntax of the textual modeling language is designed to be intuitive and expressive,

allowing users to define CI/CD pipeline configurations clearly and concisely. As previ-

ously stated, it follows a natural language style with YAML-based conventions to improve

readability andusability. The syntax’s natural language elementsmapdirectly tomatching

entities and attributes in the underlying metamodel. Listing 4.3 provides an example of a

program written for the grammar described in Listing 4.2, with mappings to the CircleCI

platform.

Listing 4.3: CICD DSL

Pipeline

Job

name "build"

Step

Cache

mode LOAD

keys ’v1-{{ checksum "yarn.lock" }}’

Cache

mode STORE

paths "node_modules"

key ’v1-{{ checksum "yarn.lock" }}’

Command

name "yarn install --frozen-lockfile"

Agent

labels "default"

DockerContainer

image "circleci/node:10"

4.4.3 Tool Support

The success of the textualmodeling approach depends heavily on the availability of robust

tools and plugins that improve the user experience, simplify the development process,

and guarantee the correctness of configurations. Leveraging the robust capabilities of

Xtext, the following suite of tools was used:

Syntax Highlighting - This feature visually distinguishes different elements of the textual

language by rendering keywords, identifiers, literals, and comments in distinct colors

38

https://github.com/nedzer0/Modeling-Agnostic-CI-CD-Pipelines/tree/main

4.4. TEXTUAL MODELING

(Figure 4.8). It improves readability, comprehension, and aids in code navigation and

error identification.

Figure 4.8: Syntax Highlighting

Code Completion - Also known as content assist, this feature accelerates the model-

ing process by providing intelligent suggestions and auto-completion options as users

type. This feature leverages the underlying grammar and metamodel to offer contextually

relevant proposals, including keywords, attribute names, and valid syntax patterns. It

reduces manual input, minimizes errors, and promotes productivity and accuracy, es-

pecially for users less familiar with the language syntax. Figure 4.9 displays relevant

proposals that are accepted after the ‘parallel’ keyword, which is available in Xtext with

the CTRL+SPACE shortcut, and Listing 4.4 demonstrates Content Assist by clicking on

the proposed suggestion.

Figure 4.9: Code completion suggestions

39

CHAPTER 4. MODEL-DRIVEN LANGUAGES

Listing 4.4: Content Assist

Pipeline name "my-pipeline" Pipeline name "my-pipeline"

Job Job

name Build name Build

parallel "2" parallel "2"

Ag -> Agent

Error Checking - Error checking with custom validators ensures the correctness and

integrity of the modeling artifacts by performing real-time validation against predefined

rules and constraints, such as potential syntax errors, semantic inconsistencies, andmodel

violations. Xtext’s built-in validation features are relatively minimal, offering two forms

of validation:

• Domain-Specific Constraints - Enforce the data model’s mandatory fields, data

point references, and the number of times each value can appear (cardinality).

• Data Type Verification - Verify data types associated with properties. For instance,

a property expecting an integer value can be checked to ensure it receives a valid

numeric input.

Taking the CICDmodel as an example, the ‘Job’ name is required to be define (Domain-

SpecificConstraint). Ifnotdefined in theDSL script, theXtext editorwilldetect theproblem,

as illustrated in Figure 4.10.

Figure 4.10: Xtext CICD Validator

Building upon Xtext’s built-in validation capabilities, we further developed custom

validators to address specific requirements of the CI/CD pipeline DSL, increasing the like-

lihood of detecting mistakes as early as possible before deploying to the target pipelines.

These validators can be split into the following categories:

Non-Mandatory Attribute Validation - While some attributes within the pipeline config-

uration might be optional, it is crucial to prevent empty or invalid values that could lead

to unexpected behavior. Custom validators were implemented to specifically handle non-

mandatory string and string list attributes. For non-mandatory string attributes, a custom

validator verifies if the provided value is empty (”). If an empty string is encountered, the

40

4.4. TEXTUAL MODELING

validator raises a warning or error, prompting the developer to provide a valid value. Sim-

ilar to individual strings, custom validators ensure that string lists, even if non-mandatory,

do not contain empty string values (”). The validator iterates through the list elements

and flags any empty strings, notifying the user to provide a valid value. To reuse code, the

checkMandatoryStringNotEmpty method was implemented for Empty String Validation

and checkMandatoryListNotEmpty for Empty String in List Validation. An example of

both these validations can be found in Listing 4.5. In this scenario, the custom validator

(annotated with @Check) ensures that the MatrixConfig’s ‘name’ attribute and the ‘val-

ues’ list do not contain empty strings. If the ‘name’ validation fails, the error message

‘MatrixConfig name cannot be empty’ (specified in MANDATORY_STRING_EMPTY) will

appear.

Listing 4.5: Non-Mandatory Attribute Validation

@Check

public void checkAttributeNotEmpty(MatrixConfig matrixConfig) {

checkMandatoryStringNotEmpty(matrixConfig.getName(),

String.format(MANDATORY_STRING_EMPTY , "MatrixConfig name"),

matrixConfig ,

"name",

MANDATORY_MATRIX_CONFIG_NAME_EMPTY_ERRORCODE);

checkMandatoryListNotEmpty(matrixConfig.getValues(),

String.format(MANDATORY_STRING_EMPTY , "MatrixConfig values"),

matrixConfig ,

"values",

MANDATORY_MATRIX_CONFIG_VALUES_EMPTY_ERRORCODE);

}

//Auxiliary methods

private void checkMandatoryStringNotEmpty(String value,

String errorMessage ,

Object object,

String featureName ,

String errorCode) {

if (value == null || value.trim().isEmpty()) {

EStructuralFeature feature = ((EObject) object).eClass()

.getEStructuralFeature(featureName);

error(errorMessage , (EObject) object, feature, errorCode);

}

}

41

CHAPTER 4. MODEL-DRIVEN LANGUAGES

private void checkMandatoryListNotEmpty(List<String> values,

String errorMessage ,

Object object,

String featureName ,

String errorCode) {

if (values.isEmpty() || values.stream().anyMatch(

value -> value.equals(""))) {

EStructuralFeature feature = ((EObject) object).eClass()

.getEStructuralFeature(featureName);

error(errorMessage , (EObject) object, feature, errorCode);

}

}

Platform-Specific Validation - Pipeline setups are frequently subject to particular require-

ments and limitations specific to CI/CD platforms. To ensure compatibility and prevent

platform-specific errors, custom validators were created after a thorough examination

of each platform’s documentation. Listing 4.6 includes a custom validator that detects

duplicate jobs in the pipeline configuration and displays the error message ‘Duplicate

job name found’ (given in DUPLICATE_JOB_NAME). This is a straightforward example

of a restriction that, if not implemented, could not be checked using domain-specific

constraints.

Listing 4.6: Platform-Specific Validation

@Check

public void checkNonDuplicateJobName(Job job) {

if (job.eContainer() instanceof Pipeline) {

Pipeline pipeline = (Pipeline) job.eContainer();

for (Job otherJob : pipeline.getJobs()) {

if (otherJob != job && otherJob.getName().equals(

job.getName())) {

EStructuralFeature nameFeature = job.eClass()

.getEStructuralFeature("name");

error(String.format(DUPLICATE_JOB_NAME ,job.getName()),

job,

nameFeature ,

DUPLICATE_JOB_NAME_ERRORCODE);

}

}

}

}

42

4.4. TEXTUAL MODELING

Figure 4.11 shows an example of this error occurring, where two Jobs exist with ‘Test’

name. The following Xtext feature demonstrates how to handle this issue.

Figure 4.11: Duplicate Name Validator

For the complete validation methods of all platform-specific models, visit GitHub.

QuickFix - The quick-fix feature helps users resolve detected issues quickly and efficiently

by providing automated solutions and corrective actions. When the previously stated

validators identify faults or warnings during validation, Xtext provides a suitable quick-

fix suggestion suited to each unique situation. In our case, these solutions involve code

changes directly within the editor that address the underlying issues. Users can apply

quick adjustments with little effort, shortening the iteration cycle and fostering a more

seamless modeling experience. Xtext’s strength lies in its ability to link validators and

quick-fix functionalities. This integration is possible bydefiningunique errorcodes foreach

customizable validator implemented, and when any inconsistencies are identified in the

editor, the code ismapped to a quick-fix procedure that produces the same issue. The Xtext

editor uses this association to give the user a contextualized suggestion for the situation at

hand. Listing 4.7 provides a quick-fix (@Fix annotation) for the DUPLICATE_JOB_NAME

error detected by the validator in Listing 4.6. This is made possible by each validator

assigning a unique error code, in this case, DUPLICATE_JOB_NAME_ERRORCODE.

Listing 4.7: Quickfix

@Fix(CICDValidator.DUPLICATE_JOB_NAME_ERRORCODE)

public void fixDuplicateJobName(Issue issue,

IssueResolutionAcceptor acceptor) {

acceptor.accept(issue, "Rename Job",

"Rename the job to ensure uniqueness.",

null,

new IModification() {

public void apply(IModificationContext context)

throws BadLocationException {

IXtextDocument xtextDocument = context.getXtextDocument();

Integer offset = issue.getOffset();

Integer length = issue.getLength();

43

https://github.com/nedzer0/Modeling-Agnostic-CI-CD-Pipelines/tree/main

CHAPTER 4. MODEL-DRIVEN LANGUAGES

String originalName = xtextDocument.get(offset, length);

int randomInt = (int) (Math.random() * 100);

String newName = originalName + randomInt;

xtextDocument.replace(offset, length, newName);

}

});

}

We can observe from Figure 4.12 that the editor has resolved the issue of having two

identical job names when selecting the ‘Rename Job’ option, and changed the name to

‘Test60’. For the complete quickfix methods, visit GitHub.

Figure 4.12: Quickfix Duplicate name

4.4.4 Challenges

Several challenges arose throughout the solution’s development, particularly when trans-

forming models from various source formats using ATL. The graphical modeling com-

ponent used XML Metadata Interchange (XMI) for its input models, while the textual

component used Xtext files. Since ATL does not natively support text files as input, it

was necessary to create two custom plugins to bridge this gap and ensure these model

transformations.

Convert Xtext Files to XMI - One of the primary challenges faced was the incompatibility

between Xtext files and ATL, as ATL is designed to work with models serialized in

XMI format. To address this, a custom plugin was developed to convert Xtext files into

XMI (Listing 4.8). This plugin operates by parsing the Xtext files, interpreting their

structure and content according to the defined grammar, and producing corresponding

XMI representations. The conversion process involves:

• Parsing Xtext Files - Use the Xtext parser to read the textual syntax and semantics

specified in the Xtext file

• Model Resolution - Resolve all references within the loaded DSL model

• Serializing to XMI - Convert Xtext contents into XMI format and add it to the new

resource

44

https://github.com/nedzer0/Modeling-Agnostic-CI-CD-Pipelines/tree/main

4.4. TEXTUAL MODELING

Listing 4.8: DSL2XMI plugin

public class DSLReader {

public static void convertXText2XMI (String filePath, Shell shell) {

ResourceSet resourceSet = new XtextResourceSet();

URI uri = URI.createFileURI(filePath);

Resource resource = resourceSet.getResource(uri, true);

EcoreUtil.resolveAll(resourceSet);

URI xmiUri = URI.createURI(uri.trimFileExtension().toString()+".xmi");

Resource xmiResource = resourceSet.createResource(xmiUri);

xmiResource.getContents().addAll(resource.getContents());

try { xmiResource.save(null); }

catch (IOException e) { e.printStackTrace(); }

}

}

Figure 4.13 shows the editor’s actions when running this transformation. After a

successful execution, the editor displays a pop-up to refresh the project.

Figure 4.13: DSL2XMI Editor Action

Convert XMI to Xtext Files - After transforming models with ATL, the transformed XMI

models must be converted back into Xtext files. This reverse conversion enables users to

configure pipelines for specific DevOps platforms using the textual modeling approach.

45

CHAPTER 4. MODEL-DRIVEN LANGUAGES

Due to how the source files (.xmi files) were interpreted, the implementation logic of both

plugins differed significantly. These files required further formatting since the .xmi file to

DSL conversion compacted the configuration contents onto a single line in the target file.

As a result, each platform required its formatter to handle the unique configuration while

maintaining the correct pipeline semantics with the established language. Another issue

examined was the final file extension name, which differed depending on the platform.

We developed a simple mechanism (presented in Annex IV) to determine the platform

configured in the .xmi file and append the appropriate extension. The conversion process

involves:

• Determine Extension - Read the XMI files generated from the ATL transformations

and interpreting their structure and content

• Generate DSL Content - Map and format the XMI with the appropriate formatter

to generate DSL content

• Serializing to Xtext Files - Write the generated DSL content to a new file with the

determined extension

Figure 4.14 shows the editor’s actions when running this transformation. After

successful execution, the editor displays a pop-up to refresh the project and a new file is

generated with the corresponding configuration platform (.circleci).

Figure 4.14: XMI2DSL Editor Action

To visualize extracts of each platform formatter, check Annex V. For the complete

formatters, visit GitHub.

46

https://github.com/nedzer0/Modeling-Agnostic-CI-CD-Pipelines/tree/main

4.5. GRAPHICAL MODELING

4.5 Graphical Modeling

The ever-changing DevOps landscape demands adaptable and user-centric solutions for

creating and managing CI/CD pipelines. Traditionally, developers have been limited to

text-based configurations. While this approach provides a high level of control, it can

be burdensome for complex pipelines and requires familiarity with specific syntax rules.

Moreover, some developers, particularly those with less programming experience, might

find it easier to visualize and configure pipelines through a graphical interface. Under-

standing the importance of flexibility and user-centric design, we embarked on a multi-

faceted approach that accommodated both textual and graphical modeling paradigms,

empowering users with the freedom to choose the modeling approach that best suited

their individual needs and preferences. We now present the graphical approach.

4.5.1 Visual Language Design

In Eclipse Sirius, designing the visual language involves defining themain visual elements

and their representations that illustrate the flow and structure of pipeline configurations.

Figure 4.15 shows an overview of the Sirius modeling environment with a numbering of

the main views.

Figure 4.15: Sirius Environment

The design focuses on simplicity and clarity and includes two types ofmapping: nodes,

47

CHAPTER 4. MODEL-DRIVEN LANGUAGES

representing the primary elements of a CI/CD pipeline, and containers, used to group

related nodes such as steps in a job. This layout helps organize the visual representation,

ensuring that related elements are grouped visually to improve readability. In Figure 4.16,

containers are shown as large labeled boxes that encompass the related nodes, while the

nodes are represented by icons chosen to depict their purpose in the pipeline. The unique

colors and icons for each node type enable users to easily distinguish between the different

components of the pipeline.

Figure 4.16: Sirius Diagram (1)

The mappings defined for each platform allow the configuration to be visualized

using the diagram. However, to create it, sections with specific tools were created. Each

section was designed to group the features of the pipeline’s main components, with

nomenclatures and an intuitive breakdown of what each component can do. This logic

was applied to the remaining platforms. On the left side of Figure 4.17, it shows each

node and container mappings implementation structure, and sections that possibilities

their creation in the diagram, structured by the pallet on the right side.

Figure 4.17: Diagram Design and Tools Section (2)

48

4.5. GRAPHICAL MODELING

4.5.2 Tree View

Unlike the textual approach where configurations reside directly in code files, visual

modeling in Eclipse Sirius leverages a different approach. Diagrams within Sirius are

built upon XMI files, a standard format for exchanging metamodel information and act

as the data storage for the diagram’s visual elements. The Tree View is the default editor

for XMI files (Figure 4.18), providing a hierarchical representation of the model elements

and allow users to interact with and manipulate the underlying model data.

Figure 4.18: Tree View

4.5.3 Tool Support

The visual modeling approach is supported by tools that improve the user experience,

streamline development, and ensure configuration accuracy. This technique employs a

set of features designed to assist users throughout the modeling process, including:

Visual Editing Environment - The tool provides an intuitive and user-friendly interface,

allowing users to create, edit, and organize pipeline elements using drag-and-drop inter-

action on the graphical canvas.

Automatic Layout and Alignment - The tool incorporates automatic layout and alignment

tools, facilitating the creation of clean and organized diagrams.

Error Checking - Real-time validation checks validate the configured models against

predefined rules and constraints from the associated metamodels.

Contextual Editing Options - Context menus and property views provide editing choices

for selected elements, alongside help expressions to help users manipulate pipeline

49

CHAPTER 4. MODEL-DRIVEN LANGUAGES

components as per their specific requirements. Figure 4.19 shows an example of the

Properties View for the selected ‘build’ Job to edit them accordingly.

Figure 4.19: Properties View (3)

Unlike Xtext, Sirius itself does not provide built-in validations in the diagram. This is

because it specializes in visual modeling, emphasizing data representation and manipu-

lation using graphics. However, the Tree View functionality comes in handy as it allows

the validations inherited from the associated metamodels to be performed. Essentially,

the Tree View serves as a bridge between the visual representation and the underlying

data, enabling to refinement of pipeline configurations and benefit from the inherited

validations from the metamodels. These validations have two types, as in the textual

approach: Domain-Specific Constraints and Data Type Verification.

Continuingwith the CICDmodel as an example, validating the configuration depicted

in Figure 4.20 results in an error based on a Domain-Specific Constraint, where the ‘jobs’

reference should have at least one element.

50

4.5. GRAPHICAL MODELING

Figure 4.20: Tree View Validation

Similar to the textual modeling approach, custom validators were implemented to

ensure the integrity and validity of configurations.

Non-Mandatory String Attributes - Just as with the textual approach, certain attributes

within the pipeline configuration might be optional, yet it is vital to prevent empty

or invalid values that could lead to unexpected behavior. For non-mandatory string

attributes, a custom validator checks if the provided value is empty. If an empty string

is encountered, the validator raises a warning or error, prompting the user to provide

a valid value. Similarly, custom validators were implemented for non-mandatory string

list attributes to ensure they do not contain empty string values. The validator iterates

through each element in the list and flags any empty strings, notifying the user to provide

a valid value.

Listing 4.9: Non-Mandatory Attribute Validation

public class Services {

public boolean checkMatrixNameNotEmpty(MatrixConfig matrixConfig){

return checkMandatoryStringNotEmpty(matrixConfig.getName());

}

public boolean checkMatrixValNotEmpty(MatrixConfig matrixConfig) {

return checkMandatoryListNotEmpty(matrixConfig.getValues());

}

private boolean checkMandatoryStringNotEmpty(String value) {

if (value == null || value.trim().isEmpty()) {

return false;

51

CHAPTER 4. MODEL-DRIVEN LANGUAGES

}

return true;

}

private boolean checkMandatoryListNotEmpty(List<String> values) {

if (values.isEmpty() ||

values.stream().anyMatch(value -> value.equals(""))) {

return false;

}

return true;

}

}

To link thesemethods to Sirius’ validation process, it is necessary to establish validation

rules for each element in the Properties View. These annotations serve as instructions

for Sirius, indicating which validation method in Services.java should be called when a

specific element is encountered in the pipeline. Figure 4.21 demonstrates this connection

by creating a validation (NameNotEmpty) for the ‘name’ attribute of the MatrixConfig

element and calling the ‘checkAttributeNotEmpty’ method from Listing 4.9 to proceed

with runtime evaluations of this restriction.

Figure 4.21: Sirius Validation

52

4.5. GRAPHICAL MODELING

When a user selects an element during runtime, Sirius invokes the designated val-

idation methods based on the annotations and executes the specified validation logic,

examining the element’s data according to the established rules. If any issues are detected

by the custom validators, Sirius presents them in the Validation Page of the Properties

View. This offers users immediate feedback on potential errors or inconsistencies in

their pipeline configuration. Figure 4.22 demonstrates this case where the user defined a

MatrixConfig with an empty ‘name’, resulting in a ‘Name cannot be empty’ error.

Figure 4.22: Sirius Validation Error Message

Platform-Specific Validation - Specific validations were needed to address the unique

requirements and limitations of different CI/CD platforms. Each platform has its own set

of rules and constraints that must be followed for successful deployment and execution

of pipelines. Listing 4.10 shows a custom method in the ‘Services.java’ class to verify if all

Jobs in the pipeline configuration exist in the ‘requireJobs’ attribute, and Figure 4.23 the

corresponding error.

Listing 4.10: Platform-Specific Validation

public class Services {

public boolean checkRequiredJobExists(Job job) {

if (job.eContainer() instanceof Pipeline &&

!job.getRequireJobs().isEmpty()) {

for (String requireJob : job.getRequireJobs()) {

boolean jobExists = false;

for (Job j : (Pipeline) job.eContainer().getJobs()) {

if (requireJob.equals(j.getName())) {

53

CHAPTER 4. MODEL-DRIVEN LANGUAGES

jobExists = true;

break;

}

}

if (!jobExists) { return false; }

}

}

return true;

}

}

Figure 4.23: Required Job Exists Validator

4.6 Platform-Independent to Platform-Specific Transformations

Previously, we discussed the importance of being able to convert pipeline configurations

between different models. This capability is essential for creating a flexible and adaptable

CI/CD pipeline configuration tool that canworkwithmultiple DevOps platformswithout

being limited by their characteristics. In this context, ATL [27] was used to facilitate PI to

PS transformations.

4.6.1 ATL Overview

ATL is a declarative, rule-based language that is specifically designed for specifyingmodel

transformations within the MDE framework. It allows for the definition of mappings

54

4.6. PLATFORM-INDEPENDENT TO PLATFORM-SPECIFIC TRANSFORMATIONS

between a PI model and a PS model. The PIM captures the essence of the system without

being tied to a specific platform, while the PSM translates this essence into the specific

constructs and syntax of a target platform.

4.6.2 Transformation Workflow

The transformation process using ATL involves several key steps to ensure that generic

pipeline models are accurately converted into the specific syntax and semantics required

by different DevOps platforms. The workflow can be divided into the following stages:

• Model Loading - The source models, defined using the generic metamodel, are

loaded into the ATL transformation engine. These models represent the abstract

configuration of CI/CD pipelines, independent of any specific platform.

• Transformation Execution - The core of the ATL process involves executing trans-

formation rules. These rules are defined to map elements from the platform-

independent metamodel to corresponding elements in the platform-specific meta-

model. The rules encapsulate the logic required to translate generic pipeline con-

figurations into the specific constructs and configurations expected by the target

platform.

• Model Validation and Verification - Post-transformation, the generated platform-

specific models are validated to ensure they conform to the target platform’s meta-

model. This step is crucial to catch any inconsistencies or errors that might have

arisen during the transformation process.

To illustrate the transformation process from a generic CI/CD pipeline model to a

specific model for CircleCI, consider the following ATL transformation rules (Listing 4.11).

Listing 4.11: CICD2CircleCI ATL

−− @path CICD=/CICD_metamodel/model/cICD_metamodel . ecore

−− @path Circ l eCI=/CircleCI_metamodel/model/circleCI_metamodel . ecore

module CICD2CircleCI ;

c r ea t e OUT : Ci rc l eCI from IN : CICD ;

ru le P ipe l ine2P ipe l ine {

from

s : CICD! P ipe l ine

to

t : C i r c l eCI ! P ipe l ine (

vers ion <− ’ 2 . 1 ’ ,

setup <− fa lse ,

j obs <− s . jobs−>c o l l e c t (job | thisModule . Job2Job (job ,

i f s . agents−>notEmpty () then

i f not s . agents−> f i r s t () . l abe l s−>notEmpty () then

s . agents−> f i r s t () . l abe l s−> f i r s t ()

e lse

55

CHAPTER 4. MODEL-DRIVEN LANGUAGES

OclUndefined

endi f

e lse
OclUndefined

endi f)) ,

commands <− s . inputs −>c o l l e c t (i | thisModule . Input2Command (i)) ,

workflows <− thisModule . ScheduleTrigger2Workflow (s) ,

executors <− s . agents −>c o l l e c t (agent |

thisModule . DockerContainer2Docker (agent . conta iner ,

agent . l abe l s−> f i r s t ()))

)

}

lazy ru le Input2Command {

from

s : CICD! Input

to

t : C i r c l eCI !Command (

name <− ’Com’ + s . name ,

desc r ip t i on <− OclUndefined ,

parameters <− thisModule . Input2Parameter (s) ,

s t eps <− thisModule .DummyStep(s)

)

}

In this example, the Pipeline2Pipeline rule maps a generic pipeline to a CircleCI

pipeline. It transforms the pipeline’s jobs, inputs, schedule triggers, and agents into

their CircleCI-specific counterparts. Similarly, the Input2Command rule transforms each

generic input into a CircleCI command, and the DummyStep rule maps generic inputs to

CircleCI run steps. The DummyStep rule illustrates how some platform-specific functions

are required, leading to the need to create indirect mapping rules using the source model

to satisfy certain limitations. The remaining platforms snippets for ATL transformations

can be found in Annex VI. See GitHub for the complete transformation rules.

4.7 Code Generation

While ATL excels in M2M transformations within MDE, another crucial part of modern

software development is generating executable code for deployment throughDevOps plat-

forms. Acceleo [26] is an effective tool in this domain since it automates the development

of code from textual and visual models.

Acceleo provides numerous advantages as it seamlessly integrates with EMF which

allows for easy access and manipulation of model elements, improving efficiency in

navigating and retrieving data from the models. Furthermore, the use of control flow

components and logic, such as conditional statements and loops, allows developers to

design complex code structures from model data. Additionally, the support for various

expressions enables dynamic content generationwithin code templates, giving developers

the freedom to do calculations, string operations, and conditional checks.

56

https://github.com/nedzer0/Modeling-Agnostic-CI-CD-Pipelines/tree/main

4.7. CODE GENERATION

4.7.1 Code Generation Mechanism

The code generation process leverages AQL templates to translate the abstract representa-

tions of CI/CD pipelines into platform-specific scripts. These templates define the rules

for transforming model elements into executable code.

The process begins with input models created using either a textual DSL (developed

in Xtext) or a graphical model (developed using Sirius). These models are instances of a

platform-independent metamodel. Acceleo templates containing AQL queries are then

executed against these input models to generate corresponding code snippets. The final

output of this process is a set of platform-specific YAML scripts, which can be directly

deployed on the respective DevOps platforms.

Listing 4.12 shows a template snippet of a CircleCI configuration file based on the

input pipeline model. The generateElement template is the primary entry point, which

creates a YAML file using the pipeline’s name and checks if it has version and setup

properties. If present, these fields are included in the generated file. The template then

calls other templates, such as generateOrbs, to make the reusable "orbs" section of this

configuration. It checks if the orbs collection in the Pipeline object is empty and iterates

through each orb, retrieving its key-value pairs. These pairs are then inserted into the

generated YAML file as part of the CircleCI configuration. Annex VII contains snippets

of the remaining paltforms. See GitHub for the complete templates.

Listing 4.12: CircleCI Template

[comment encoding = UTF−8 /]

[module generate (’ ht tp ://www. example . org/circleCI_metamodel ’)]

[template public generateElement (aP ipe l ine : P ipe l ine)]

[f i l e (’ C i r c l eCI ’ + ’ . yml ’ , fa lse , ’UTF−8 ’)]

vers ion : [aP ipe l ine . vers ion /]

[i f (aP ipe l ine . setup)]

setup : [aP ipe l ine . setup /]

[/ i f]
[generateOrbs (aP ipe l ine)/]

[generateCommands (aP ipe l ine)/]

[generateExecutors (aP ipe l ine)/]

[generate Jobs (aP ipe l ine)/]

[generateWorkflows (aP ipe l ine)/]

[/ f i l e]

[/ template]

[template public generateOrbs (aP ipe l ine : P ipe l ine)]

[i f (aP ipe l ine . orbs−>notEmpty ())]

orbs :

[for (o : Orb | aPipe l ine . orbs)]

[o . key /] : [o . value /]

[/ for]
[/ i f]
[/ template]

57

https://github.com/nedzer0/Modeling-Agnostic-CI-CD-Pipelines/tree/main

5

Evaluation

This chapter describes the usability evaluation conducted to determine the effectiveness,

efficiency, and user satisfaction of the developed solution, along with its conclusions. We

also assessed the effort required for the prototype’s usage.

5.1 Planning

A cornerstone of successful human-computer interaction lies in user-centered design. To

ensure the proposed CI/CD pipeline definition solution caters effectively to user needs,

a comprehensive usability evaluation was conducted. The following structured phases

comprise the experiment planning and serve as a guide for assessing the experiment’s

usability.

5.1.1 Objectives Definition

The main goal of this usability evaluation is to assess the efficiency, effectiveness, and

user satisfaction of both the textual and graphical modeling approaches. Additionally, the

evaluation aims to determine if the developed tools improve the use and accuracy of scripts

in the pipeline configuration process compared to the traditional CircleCI approach. The

planning phase laid the groundwork for the evaluation process. The primary objectives

were fourfold:

Evaluation Goal Question Metric

Prototype Usability How usable is the Prototype? SUS score

Prototype Task Load

How much effort is required a user to

use the Prototype?

NASA-TLX score

Prototype Usage Precision

How accurately can users perform

tasks using the Prototype?

Precision score

Prototype Usage Recall

How effectively can users recall when

using the Prototype?

Recall score

Table 5.1: Goal-Question-Metric

58

5.1. PLANNING

5.1.2 Participants’ Demography and Selection

Participants in the experiment include technical and non-technical users with different

levels of experience in managing CI/CD pipelines to ensure practical, real-world feedback.

This includes professional developers, DevOps engineers and computer science students

who are completing or have already obtained their degrees. Demographic data such

as age, gender, job title and years of experience with CI/CD tools were collected to

better understand the sample’s diversity. Participants were recruited through professional

networks and social media platforms, ensuring a balanced representation in terms of age,

gender, and professional experience. This approach aimed to produce evaluation results

that reflected a wide range of users.

5.1.3 Experiment Materials

A selection ofmaterials was used to collect data and insights while evaluating the usability

of the proposed CI/CD modeling solution. All experimental material is available in

Zenodo.

• Demographic Questionnaire - The Demographic Questionnaire was used to gather

information about the participants’ background, such as age, gender, education level,

and experience in relevant fields. This information is valuable for understanding

the characteristics of the participants and how their backgrounds may influence

their perceptions and experiences during the evaluation process. By collecting

demographic data, we can gain insights into how different demographic factors

may impact the usability of the CI/CD modeling solution, allowing for a more

comprehensive analysis of the evaluation results.

• Tasks - Participants were instructed to complete pre-defined tasks involving CI/CD

pipeline configuration at different levels of complexity, reflecting real-world devel-

opment scenarios. They started with a tutorial to guide them on using CircleCI

syntax to configure a CircleCI script according to the instructions and examples

provided in the given platform. They then progress to amore intricate configuration,

aiming to evaluate participants’ understanding of the tutorial and their ability to

interpret and rectify error messages. Intentional errors were introduced for this

purpose, and participants were informed about their number. Each participant

tested one approach provided by the researcher, either textual or visual, and used

similar industry tools as a comparison, such as VS Code for the textual, and Buddy

for the visual approach.

All the scripts were previously validated using the CircleCI extension in VSCode

and through the API in PowerShell to validate syntactically and semantically when

deploying the script in a forked project on the CircleCI platform. To ensure the

correctness and reliability of the generated code, several validation and testing steps

were carried out:

59

https://zenodo.org/records/13748531?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjU5NDk4NTc2LTVhMWItNGVlNS1hNGY2LTAyYjNlMDQzYzU5NiIsImRhdGEiOnt9LCJyYW5kb20iOiJmNWUzYTU4MDE1MTkwODYxOTkwYTQzNDMwZDA2ZmY0MSJ9.eS-2Of6pb2BQ4L-4c6v26TdCPjsJFDu9A-4n_bbhP-TiX_e-iBlp9LuVNyUadbv4_AY_5lNzXTwq7-DwI2lVrw

CHAPTER 5. EVALUATION

– Model Validation - Before code generation, the input models were validated

against the metamodel to ensure they conform to all defined constraints

– Template Testing - Acceleo templates were thoroughly tested to verify that

they produce the correct output for a wide range of input models. This involves

unit tests that compare the generated scripts against expected outputs

– Syntax Checking -The generated scriptswere checked for syntax errors specific

to the target CI/CD platform. For instance, YAML linting tools and static

checking were used to ensure the generated YAML files were syntactically

correct

• System Usability Scale (SUS) - SUS is a questionnaire-based method for assessing

the usability of a wide variety of systems [11]. It consists of 10 statements graded on

a scale from 1 to 5, with higher scores indicating better usability. Positive statements,

such as 1,3,5,7 and 9, have a score contribution of the scale position minus one. For

negative statements 2, 4, 6, 8 and 10, the contribution is 5 minus the scale position.

The SUS score is then calculated by summing the score contributions from each

statement and multiplying the sum by 2.5. This score ranges from 0 to 100, with

higher scores corresponding to theoretically higher usability.

Figure 5.1: System Usability Scale

60

5.1. PLANNING

• NASA-Task Load Index (TLX) - The NASA-TLX [56] questionnaire evaluates a

tester’s workload in six dimensions: mental demand, physical demand, temporal

demand, performance, effort, and frustration. Each dimension is scored on a scale

of 1 to 100 with 20 possible values (5, 10, 15, up to 100). The final NASA-TLX score is

determined as the average of these scores, with higher scores indicating more effort

required. The score can beweighted or unweighted. The tester selects the dimension

that contributes the most to the burden from 15 pairings of the six dimensions. The

weight of each dimension is determined by how many times it is selected as more

impactful. In this study, all dimensions have equal weight, and the tester selects

values ranging from 1 to 10 for each dimension. This questionnaire offers valuable

insights into the cognitive, physical, and temporal demands of a task, as well as the

subjective experience of effort and frustration.

Figure 5.2: NASA Task Load Index

5.1.4 Hypothesis Formulation

The evaluation was guided by the following hypotheses:

Usability of Dual Modeling Approach
The first set of hypotheses aims to evaluate the effectiveness of the dualmodeling approach

in enabling users to configure CI/CD pipelines efficiently, regardless of their level of

expertise in DevOps.

𝐻0DualModeling: The dual modeling approach is not effective or usable from the user’s

perspective for configuring and managing CI/CD pipelines.

61

CHAPTER 5. EVALUATION

𝐻1DualModeling: The dual modeling approach is effective and usable from the user’s

perspective for configuring and managing CI/CD pipelines.

User Experience and Perceived Value of Features and Implementations
The second set of hypotheses is centered on the general user experience and the perceived

value of the features and implementations, assessing whether they facilitate the use and

correctness of the scripts in the pipeline configuration process.

𝐻0FeaturesValue: The participants consider that the features and implementations do not

provide any added value in terms of facilitating the use and correctness of the scripts in

the pipeline configuration process.

𝐻1FeaturesValue: The participants consider that the features and implementations pro-

vide added value in terms of facilitating the use and correctness of the scripts in the

pipeline configuration process.

Comparison with CircleCI Approach
The third set of hypotheses aims to compare the usability of the dual modeling approach

with CircleCI’s approach, evaluating whether the proposed solution helps users to better

configure and maintain the correctness of the scripts.

𝐻0ComparisonCircleCI: The dual modeling approach, alongside its features, suggestions,

and implementations, does not help users better configure and maintain the correctness

of the scripts compared to CircleCI’s approach.

𝐻1ComparisonCircleCI: The dual modeling approach, alongside its features, suggestions,

and implementations, helps users better configure and maintain the correctness of the

scripts compared to CircleCI’s approach.

Consequently, this study seeks to reject the null hypotheses (H0) and provide evidence

that supports the effectiveness, usability, and added value of the proposed solution. The

results will be analyzed to determine whether the proposed solution meets the intended

usability and effectiveness criteria, and how it compares to existing solutions such as

CircleCI.

5.1.5 Experiment Session Plan

The design of our experiment session plan was a critical aspect in ensuring the validity

and reliability of our usability evaluation. Initially, we considered two primary options

for structuring our evaluation:

• Option 1 - Participants would perform 2-3 tasks, including one simpler task and one

more complex task, that was consistent across all participants. This approach would

allow us to analyze performance across different task complexities and identify if

our tool performs better for certain types of tasks.

62

5.1. PLANNING

• Option 2 - Awithin-subjects design where each participant would engage with both

the graphical and textual modeling approaches. This would involve participants

performing different tasks that are equivalent in terms of difficulty but vary in nature

to avoid redundancy. Some participants would start with one approach and then

switch to the other to counterbalance any learning effects.

While the initial plan was to leverage a full within-subjects design where participants

would test both textual and visual approaches, practical considerations regarding partic-

ipant burden and evaluation duration led to an alternative approach. Participants were

exposed to tutorials for the approach provided by the researcher to establish a baseline

understanding.

However, the actual evaluation tasks involved completing tasks for only one assigned

approach (textual or visual), alongside a relevant industry-standard tool (VS Code for tex-

tual and Buddy for visual). This modified approach offered a balance between capturing

some of the benefits of a within-subjects design (reduced bias, smaller sample size poten-

tial) while addressing practical limitations of time and participant burden. Additionally,

it allowed for the inclusion of industry-standard tools (VS Code and Buddy) as a point of

comparison for user experience evaluation.

Task Script Development
The task script was developed through an iterative process. Pilot tests were conducted

to ensure clarity, appropriate complexity levels, and effectiveness in evaluating user

interaction with the solution and industry-standard tools. Based on pilot test results,

the script was continuously refined to guarantee a robust and informative evaluation

experience.

To ensure the tasks reflected real-world scenarios, all scripts were designed as CircleCI

configurations. This choice aligns with the study’s goal of comparing our solution to a

market platform like CircleCI. Notably, CircleCI provided access to a visual and textual

approach, although very feature-limited [CircleCI Visual Editor].

Unfortunately, the CircleCI visual editor became unavailable during the final stages of

task development. To maintain consistency within the evaluation, the CircleCI editor was

replaced with industry-standard tools offering similar functionalities. Buddy was chosen

for the visual approach, and VS Code for the textual approach. Importantly, all scripts

retained their target configuration for CircleCI, ensuring a valid comparison despite the

tool substitution.

Counterbalancing Order
To further strengthen the evaluation and control for potential learning effects, a coun-

terbalanced order was implemented. Here’s the breakdown of the four scenarios:

• Scenario 1 - Visual Approach and Buddy

63

https://circleci.com/blog/visual-config-editor/

CHAPTER 5. EVALUATION

• Scenario 2 - VS Code and Textual Approach

• Scenario 3 - Buddy and Visual Approach

• Scenario 4 - Textual Approach and VS Code

By implementing this counterbalanced order, we aimed to minimize the influence of

the order in which participants encountered the approaches on their performance. Each

scenario appears an equal number of times at the beginning of the evaluation sequence,

ensuring that any order effects are evenly distributed across the participant pool. This

approach helps to ensure that any observed differences in user experience or performance

can be attributed to the specific approach and industry-standard tool combination rather

than the order of exposure.

5.2 Execution

The execution phase involved conducting the usability evaluation sessions based on the

plan developed during the planning phase. Each session followed a structured procedure

to ensure consistency and reliability in data collection.

5.2.1 Sessions Procedure

The usability evaluation started with the researcher briefing participants about the infor-

mation and objectives. The participant was then given a Zoom session with a remote

control and assigned an approach to test, which began with reading the document and an-

swering some demographic questions. After reading, participants performed predefined

tasks using the assigned approach and tool. The researcher was available to address tech-

nical questions or unexpected technical issues. After completing the tasks, participants

filled out SUS and NASA-TLX questionnaires and provided additional feedback through

open-ended questions. The entire study was conducted using Google Forms and lasted

between 40 and 60 minutes, with all participants answering within this range.

5.3 Results

This section delves into the data collected during the usability evaluation to understand

user experience, task performance, and overall solution effectiveness. Both quantitative

and qualitative methods were employed to gain a comprehensive understanding of the

results. Additionally, participants’ demographics are also presented to contextualize and

ensure a comprehensive understanding of the diversity of the user base.

5.3.1 Demographic Data

The demographic data collected from 24 respondents reveals that 14 participants are 23

years old, 7 are 22 years old, and the remaining fall within the ages of 24, 26, and 27. All

64

5.3. RESULTS

respondents are male. Regarding their primary field of study, 79.2% of respondents are

from Computer Science, with the remaining 20.8% coming from Engineering, and all have

Master’s Degree as their highest degree obtained.

Figure 5.5: Demographic Data

Figure 5.8: Demographic Data

Figure 5.11: Demographic Data

65

CHAPTER 5. EVALUATION

Figure 5.12: Modeling Preferences

Figure 5.13: Modeling Preferences

Figure 5.13 illustrates the preferences of users from different backgrounds and experi-

ence levels between textual and visual tools.

5.3.2 Quantitative Data

Wewanted to make statistically sound conclusions about observed trends. To achieve this,

we conducted inferential statistical tests by assessing data normality using the Shapiro-

Wilk, which refers to whether the data distribution resembles a bell curve. If the p-value is

greater than the chosen significance level (usually 0.05), the null hypothesis of normality

is rejected, suggesting the data may be reasonably close to a normal distribution. If the

p-value is less than 0.05, the null hypothesis is not rejected, indicating the data distribution

is likely not normal.

66

5.3. RESULTS

Comparing means required testing for homogeneity of variance with Levene’s test,

assuming equal variances across groups. If the p-value is less than the chosen significance

level (usually 0.05), the null hypothesis is rejected, indicating heterogeneity. After checking

normality, we selected either a t-test (for normal data with equal variances) or a Mann-

Whitney U test (for non-normal data or unequal variances) to compare group means.

Table 5.2 and 5.3 presents the summary statistics of user test results for usability

(measured by SUS) and task load (measured by NASA-TLX). The scores are derived from

the participants’ scores. Other usability graphs can be found at Annex VIII.

Table 5.2: Usability Scores

Approach Mean Std Deviation Min 25% 50% 75% Max

Textual 85.2 7.93 67.5 81.875 86.25 89.375 95.0

VS Code 56.04 15.49 30.0 43.75 62.5 62.5 85.0

Visual 75.6 10.9 60.0 71.25 75.0 80.0 100

Buddy 79.8 13.3 50.0 71.25 82.5 90.0 97.5

Table 5.3: Workload Scores

Approach Mean Std Deviation Min 25% 50% 75% Max

Textual 36.14 8.02 20.37 32.9 35.4 42.6 50.0

VS Code 43.52 12.86 18.52 37.04 42.6 53.24 64.81

Visual 34.5 9.7 16.7 27.3 33.3 45.8 48.2

Buddy 30.6 9.6 16.7 23.1 27.8 37.0 46.3

Usability
Figure 5.14 illustrates the distribution of SUS scores across the tools studied.

The SUS scores for the Textual approach show a median of 85 with an interquartile

range (IQR) from 81 to 89, and whiskers extending from 75 to 95, with one outlier at 67.5.

The mean is slightly below the median, causing a minor skew towards lower scores. For

VS Code, the median score is about 63, with an IQR from 44 to 62, and whiskers ranging

from 30 to 85. There is a high skew toward lower scores with the mean below the median.

Textual display higher median SUS scores compared to the VS Code tool, with a smaller

spread of scores representing a more consistent usability rating.

67

CHAPTER 5. EVALUATION

Figure 5.14: SUS Final Scores

In Visual, the median score is around 75, with an IQR from 70 to 80, and whiskers

extending from 60 to 90, with one outlier at 100. The mean is slightly above the median,

indicating a slight skew for higher scores. However, this skew may be influenced by the

outlier. Buddy’s median score is about 82, with an IQR from 71 to 90, and whiskers

ranging from 50 to 97, and the mean is below the median. Both tools have similar median

scores, but Buddy exhibits a slightly larger spread, representing more variability in user

rating.

Table 5.4: SUS Textual vs VS Code

Statistic Result P-value

T-Test 5.56 1.38e-05

Table 5.5: SUS Visual vs Buddy

Statistic Result P-value

T-Test -0.81 0.43

The statistical analysis (Table 5.4 and 5.5) reveals a significant difference in SUS scores

between the Textual and VS Code approaches, with the Textual interface achieving higher

usability ratings. Conversely, the Visual and Buddy interfaces show similar SUS scores,

but the difference in scores is not statistically significant, indicating comparable levels of

usability.

68

5.3. RESULTS

Workload
Figure 5.15 shows the distribution of NASA-TLX scores for the four tools, highlighting

perceived workload levels among users.

Figure 5.15: NASA-TLX Final Scores

The Textual median score is approximately 38, with an IQR from around 33 to 42.

Whiskers extend from about 20 to 50. The mean is slightly above the median, indicating

a slight skew towards higher scores. For VS Code, the median score is around 43, with

an IQR ranging from 37 to 53. Whiskers extend from 18 to about 65, showing greater

variability in the workload. The mean is slightly above the median, suggesting a slight

skew towards higher scores.

Table 5.6: NASA-TLX Textual vs VS Code

Statistic Result P-value

T-Test -1.614 0.12

The Visual median score is roughly 35, with a moderate variability IQR from 30 to 42.

Whiskers extend from about 20 to 50, with a mean above the median, indicating a slight

skew towards higher scores. For Buddy, the median score is around 35, with an IQR from

25 to 42. Whiskers extend from approximately 20 to 50, with no outliers. The mean is

slightly above the median, suggesting a skew towards higher scores.

Table 5.7: NASA-TLX Visual vs Buddy

Statistic Result P-value

T-Test 0.96 0.347

69

CHAPTER 5. EVALUATION

The statistical analysis (Table 5.6 and 5.7) reveals moderate to strong correlations in

NASA-TLX scores between the compared tools. However, the T-Test results indicate that

these differences are not statistically significant, suggesting that the perceived workload

among the tools is comparable.

Figure 5.16 and 5.17 compare NASA-TLX scores across six workload dimensions,

identifying areas where one interface induces significantly higher workloads. Both charts

indicate minimal Physical Demand scores for all interfaces, with values close to zero. This

aligns with the nature of the tasks, which do not require any physical demands.

Figure 5.16: NASA-TLX Dimensions Scores Textual vs VS Code

In Figure 5.16, the Temporal, Physical, and Performance dimensions have identical

scores for both interfaces. However, there are some disparities in other dimensions, such as

the Mental Demand dimension, with VS Code showing a slightly higher mental demand

than Textual, being 1.3 times higher. The effort required is somewhat higher for VS Code

compared to Textual, at almost twice the effort. Frustration levels are also disparate, with

values for VS Code being 3.5 times higher. To statistically analyze these differences, the

following tests were conducted:

Table 5.8: NASA-TLX per Dimension Textual vs VS Code

Statistic Result P-value

T-Test -0.578 0.574

The statistical analysis supports the observation that there is no significant difference

between Textual and VS Code in terms of usability as measured by NASA-TLX scores, as

indicated by the high p-value of 0.574.

70

5.3. RESULTS

Figure 5.17: NASA-TLX Dimensions Scores Visual vs Buddy

Visual interfaces show less variation and lower values than textual interfaces. In this

graph, the most significant variation is in the Effort dimension, with the visual interface

showing a slightly higher mental demand than the buddy interface (1.25 times higher).

Regarding Frustration, Mental Demand andTemporal Demand, the Visual interface shows

slightly higher values than the Buddy interface, but with less disparity.

Table 5.9: NASA-TLX per Dimension Visual vs Buddy

Statistic Result P-value

Mann-Whitney U Test 30 0.521

Similar to the Textual vs. VS Code comparison, the statistical analysis for Visual vs.

Buddy shows no significant difference in usability scores. This reinforce that both Visual

and Buddy provide a comparable level of usability and user satisfaction.

SUS/NASA-TLX
Figure 5.18 shows the relationship between SUS and NASA-TLX scores for each tool,

indicate the correlation between usability and perceived workload. The best outcomes

are found in the bottom right corner, maximizing usability and reducing workload. In

contrast, the poorest outcomes are found in the top left cornerwith a reversal of the results.

71

CHAPTER 5. EVALUATION

Figure 5.18: Comparison of SUS and NASA-TLX Scores by System

The textual scatter plot shows a slight positive correlation (r = 0.29) between these

variables, where as usability increases, the workload slightly increases as well. The data

points are clustered around medium NASA-TLX and high SUS scores. The statistical

analysis indicates a non-significant p-value of 0.360, meaning that improvements in

perceived usability do not have a statistically significant impact on the task load for the

Textual tool, contrary to the scatter plot.

For VS Code, the Spearman correlation indicates a moderate to strong negative re-

lationship (r=-0.56) between usability and task load, with a p-value of 0.059. The data

points are more concentrated along the negative trend line, with higher usability scores

generally associated with lower perceived task load.

For the Visual tool, Spearman (r=-0.53) correlation shows a moderate inverse relation-

ship between usability and task load, with a p-value of 0.075. While these trends are not

statistically significant, they indicate that higher usability could be associated with lower

perceived task load, though this relationship is not definitive. The points on the graph are

moderately scattered but generally follow the negative trend indicated by the trend line.

Lastly, Buddy shows the strongest negative correlation, with Spearman (r=-0.77) cor-

relation being statistically significant (p-value of 0.004). This indicates a significant

relationship where higher usability is associated with a reduced task load for the Buddy

tool. The graph reflects this strong negative correlation with points closely aligned along

the trend line.

72

5.3. RESULTS

Table 5.10: Comparison of SUS and NASA-TLX Scores by System

Tool Pearson Correlation (P) Spearman Correlation (S) P-value (P / S)

Textual 0.13 0.29 0.697 / 0.360

VS Code -0.60 -0.56 0.039 / 0.059

Visual -0.53 -0.53 0.073 / 0.075

Buddy -0.80 -0.77 0.002 / 0.004

Participants Experience Level
Figure 5.19 examines the impact of user experience, classified as novice or experienced,

on perceived usability.

Figure 5.19: SUS Scores Comparison by Experience Level

Novice users of Textual present a median SUS score of around 82.5, with an IQR of

approximately 78 to 90. The range of usability experiences among novices varied broadly,

indicated by the whiskers extending from about 70 to 95. The mean is close to the median,

suggesting a relatively symmetrical distribution. Experienced users’ median SUS score

increases to about 90 and a narrower IQR ranging from roughly 87.5 to 95. The whiskers

span from 85 to 95 indicating a more consistent perception of usability. The mean is

slightly above the median, suggesting a minor skew towards higher scores.

For VS Code, novice users have a median SUS score of around 50, with the IQR

extending from about 40 to 62. The whiskers range broadly from 30 to 62, reflecting

73

CHAPTER 5. EVALUATION

significant variability in usability experiences among novices. The mean score, slightly

above the median, indicates a slight skew towards higher ratings. For experienced users,

the median SUS score increases to around 62, with an IQR from 62 to 77.5. The whiskers

extend from 45 to almost 90, showing less variability compared to novices. The mean is

above the median, indicating a minor skew towards lower scores.

Novice users of Visual have a median SUS score of around 77.5, with the IQR spanning

from 75 to about 87.5. The whiskers extend from 60 to 100, indicating some variability but

generally favorable usability perceptions. The mean is higher than the median, suggesting

a skew towards higher scores. Experienced users, however, show a lower median score of

about 75, with the IQR ranging from approximately 70 to 75. The whiskers extend from

about 70 to 80, indicating less variability but a generally lower perception of usability

compared to novices. The mean, slightly below the median, suggests a minor skew

towards lower scores.

For Buddy, novice users have a high median SUS score of about 87.5, with an IQR

of roughly 85 to 95. The whiskers extend from about 85 to roughly 100, generally high

usability perceptions. The mean is below the median, suggesting a minor skew towards

lower ratings. Experienced users show a lower median score of around 77.5, with the

IQR ranging from approximately 70 to 82. The whiskers extend from 65 to 90, indicating

more consistent usability perceptions compared to novices. The mean is the same as the

median.

Textual modeling indicates higher usability scores and is more concentrated for expe-

rienced users, with VS Code showing the most significant difference between novices and

experts, while still presenting lower SUS scores. Visual modeling approaches differed

more between novice and experienced users, whereas the Visual tool clearly showed

this difference among these users with more concentrated scores for experienced ones.

Nevertheless, Buddy demonstrate better uusability results for both user categories.

Table 5.11: SUS Scores Comparison by Experience Level

Tool T-Test Statistic P-value

Textual -1.876 0.09

VS Code -2.046 0.068

Visual 1.393 0.194

Buddy 0.877 0.401

The statistical analyses (Table 5.11) of all interfaces show that although there are notice-

able differences in SUS scores between novice and experienced users, these differences are

not statistically significant. Therefore, the level of user experience does not significantly

impact the perceived usability of the interfaces examined.

Similar to this chart, Figure 5.20 explores the influence of user experience on perceived

workload.

74

5.3. RESULTS

Figure 5.20: NASA-TLX Scores Comparison by Experience Level

The perception of workload, as measured by NASA-TLX scores, varied significantly

among different tools and user experience levels. For novice users of Textual, the median

score was approximately 34, with an IQR spanning from around 33 to 39. The range of

task load experiences varied broadly, as indicated by the whiskers extending from about

25 to 43, with one outlier at 50. The mean score is higher than the median, suggesting

a skew towards higher scores. Experienced users of Textual rated their task load higher,

with a median score of about 37 and an IQR ranging from roughly 36 to 43. The whiskers,

spanning from approximately 36 to 47, indicated a wider range of task load perceptions

among experienced users. The mean score was slightly below the median, suggesting a

minor skew towards lower scores.

Novice users of VS Code had a median score of around 45, with the IQR extending

from about 40 to 55. The whiskers ranged broadly from 30 to 65, reflecting significant

variability in task load experiences among novices. The mean score, slightly above the

median, indicated a slight skew towards higher ratings. For experienced users, themedian

score was lower at around 40, with an IQR from approximately 30 to 45. The whiskers

extended from about 20 to 60, showing a wide range of task load perceptions. The mean,

slightly below the median, indicated a minor skew towards lower scores.

For Visual, novice users had a median score of around 35, with the IQR spanning from

about 30 to 40. The whiskers extended from roughly 15 to 45, indicating a wide variability

75

CHAPTER 5. EVALUATION

but generally moderate task load perceptions. The mean score was close to the median,

suggesting a balanced distribution. However, experienced users showed a lower median

score of about 32.5, with the IQR ranging from approximately 27.5 to 37.5. The whiskers

extended from about 25 to 48, indicating more variability but a generally lower perception

of task load compared to novices. The mean, above the median, suggested a skew towards

higher scores.

For Buddy, novice users had a low median score of about 27.5, with an IQR of roughly

22.5 to 27.5. The whiskers extended from about 15 to 27.5, indicating a narrow range of

task load perceptions. The mean score is the same as the median. Experienced users

showed a higher median score of around 35, with the IQR ranging from approximately

27.5 to 42.5. The whiskers extended from 20 to 47.5, indicating more consistent task load

perceptions compared to novices. The mean score, slightly below the median, suggested

a minor skew towards lower scores.

Comparing Textual with VS Code, Textual displayed a more concentrated distribution

of workload scores for experienced users, while VS Code showed a more significant

difference between novices and experienced users. Novices using VS Code reported

much higher workload scores with greater variability compared to those using Textual.

Experienced users of VS Code had lower, more consistent scores, suggesting they found

the tool less taxing than novices did.

RegardingVisual andBuddy comparison, experienced users reported higherworkload

scores than novices for both Visual and Buddy tools, but with varying levels of consistency.

Visual showed similar median workload scores between the two groups, though experi-

enced users exhibited more variability. In contrast, Buddy’s experienced users reported

a broader range of workload scores, indicating more varied experiences, while novices

reported lower and more consistent workload scores.

Table 5.12: NASA-TLX Scores Comparison by Experience Level

Tool T-Test Statistic P-value

Textual -0.077 0.94

VS Code 1.10 0.297

Visual -0.208 0.840

Buddy -1.321 0.216

The statistical analyses (Table 5.12) across all interfaces indicate that there are observ-

able differences in NASA-TLX scores between novice and experienced users, but these

differences are not statistically significant. This aligns with the findings from the SUS

scores, reinforcing that experience level does not substantially affect users’ perceptions of

usability and workload for the tools analyzed.

Figure 5.21 compares the SUS/TLX ratios between novice and experienced users for

each tool, highlighting the relationship between usability and workload across different

experience levels.

76

5.3. RESULTS

Figure 5.21: SUS-TLX Ratios Comparison by Experience Level

Novice users demonstrated a higher preference for Textual and Buddy, as indicated by

their respective median ratios of around 2.5 and 3.5. Textual had an interquartile range

spanning from 2 to 2.5 with one outlier observed at 3.6, while Buddy had an interquartile

range from 3 to 4.2. In contrast, VS Code presented a lowermedian ratio of 1, accompanied

by an IQR extending from 0.5 to 2. Visual exhibited a median ratio of 2.5 and an IQR

between 2 and 2.8, with an outlier at 5.

When examining experienced users, Textual displayed a median of 2.5 and an IQR

spanning from 2.25 to 2.5, with an outlier, this time at 4.25. VS Code increased the median

ratio to 2, with an interquartile range of 1.5 to 2, and with one outlier at 0.75 and another

at 4. Visual presented a similar median ratio of 2 and an IQR ranging from 1.5 to almost

3. Buddy also exhibited a median ratio of 2, accompanied by an IQR ranging from 1.8

and 3.5. Regarding experience plots, both textual modeling approaches have a narrow

interquartile range compared to novices.

When comparing Textual with VS Code, both user categories show higher and similar

ratio scores with less variability in Textual than in VS Code. Both Textual and VS Code

reported outliers, with more significant ones among experienced users. For VS Code,

experienced users are more comfortable with the tool than novice ones, as shown in the

plot. Regarding Visual and Buddy, both tools exhibit higher scores than Textual modeling

approaches. Visual’s experienced users report a workload score with a similar median

to that of novices but with greater variability. In contrast, Buddy’s experienced users

77

CHAPTER 5. EVALUATION

report a broader range of scores, indicating varied experiences. Novices, however, report

higher and more consistent SUS/TLX ratios for Buddy, suggesting it is easier and more

efficient for those with less experience compared to Visual, which is steadier but not

notably efficient for either group.

Table 5.13: SUS-TLX Ratios Comparison by Experience Level

Tool Statistical Test Statistic P-value

Textual T-Test -0.67 0.52

VS Code T-Test -1.75 0.11

Visual Mann-Whitney U Test 19.0 0.937

Buddy T-Test 1.334 0.212

The statistical tests in Table 5.13 confirm no significant differences in the SUS/TLX

ratios between novice and experienced users across all four tools. However, the boxplots

may visually suggest slight differences, particularly in Buddy and VS Code.

NASA-TLX Dimensions
The following scatterplots explore howworkloaddimensions impactedperceivedusability

for all tools studied and quantified the strength and direction of these associations.

Figure 5.22: Textual - NASA-TLX Dimensions vs. SUS Scores

For the Textual tool, temporal Demand exhibits a weak positive correlation with SUS

scores (r=0.12), indicating that as temporal demand increases, perceived usability tends

78

5.3. RESULTS

to improve, although the effect is modest. Frustration presents a moderate negative

correlation (r=-0.27). Performance shows a very weak negative correlation with SUS

scores (r=-0.05). Mental Demand and Effort have almost negligible correlations with SUS

scores (r=0.03 and r=0.02, respectively), indicating little to no linear relationship between

these dimensions and perceived usability. Table 5.14 presents the statistical results:

Table 5.14: Textual - NASA-TLX Dimensions vs. SUS Scores

Dimension Statistical Test Statistic P-value Pearson Spearman

Mental Demand T-Test -9.173 15.66e-09 0.07 X

Temporal Demand Mann-Whitney U Test 2.0 5.57e-05 X 0.40

Performance Mann-Whitney U Test 101 0.094 X 0.08

Effort Mann-Whitney U Test 2.0 5.595e-05 X 0.06

Frustration Mann-Whitney U Test 0 3.2e-05 X -0.59

The analysis shows that among the NASA-TLX dimensions, Temporal Demand and

Frustration have the most significant impact on perceived usability for the Textual tool,

as indicated by their moderate correlations with SUS scores. However, despite being

statistically significant, MentalDemandandEffort showweak correlationswith SUS scores

and thus do not meaningfully influence perceived usability. The Performance dimension

shows a very weak and statistically insignificant correlation, indicating minimal impact

on usability perception.

Figure 5.23: VS Code - NASA-TLX Dimensions vs. SUS Scores

Regarding VS Code, Frustration, Effort and Mental Demand demonstrate a strong

negative correlation with SUS scores (r=-0.50, r=-0.40 and r=-0.39), indicating that as

79

CHAPTER 5. EVALUATION

these factors increase, perceived usability decreases significantly. Performance exhibits

a moderate positive correlation with SUS scores (r=0.58). Temporal Demand has a weak

negative correlation with SUS scores (r=-0.06), with aminimal impact of temporal demand

on perceived usability.

Table 5.15: VS Code - NASA-TLX Dimensions vs. SUS Scores

Dimension Statistical Test Statistic P-value Pearson Spearman

Mental Demand T-Test -1.109 0.279 -0.53 X

Temporal Demand Mann-Whitney U Test 39 0.0589 X -0.09

Performance Mann-Whitney U Test 139 0.0001 X 0.40

Effort T-Test -0.0569 0.955 -0.60 X

Frustration Mann-Whitney U Test 40 0.279 X 0.067

The analysis from Table 5.15 reveals that Performance is the only dimension with

a statistically significant and meaningful impact on perceived usability, where better

performance directly correlates with higher SUS scores. Mental Demand and Effort show

moderate negative correlations with usability, meaning that increased cognitive load and

effort can make the tool-less user-friendly, but these effects are not statistically significant,

meaning they could be due to random variation. Frustration and Temporal Demand

exhibit very weak correlations, indicating that these dimensions do not have a substantial

impact on usability in the context of this study.

Figure 5.24: Visual - NASA-TLX Dimensions vs. SUS Scores

For the Visual tool, the analysis reveals notable trends in how NASA-TLX dimensions

80

5.3. RESULTS

correlate with perceived usability, as measured by SUS scores. Mental Demand and Perfor-

mance show a moderate negative correlation (r=-0.28 and r=-0.23), indicating that higher

cognitive effort and better performance outcomes are linked with lower usability percep-

tions. Physical Demand also negatively correlates with SUS scores (r=-0.80), representing

a slight decline in usability as physical effort increases. This relationship is supported by

a significant difference in usability scores across varying levels of physical demand. The

remaining dimensions display a similar pattern with a weak negative correlation (r=-0.19

for Effort and Temporal Demand, and r=-0.18 for Frustration).

Table 5.16: Visual - NASA-TLX Dimensions vs. SUS Scores

Dimension Statistical Test Statistic P-value Pearson Spearman

Mental Demand T-Test -6.384 2.009e-06 -0.52 X

Physical Demand Mann-Whitney U Test 0 1.373e-05 X -0.31

Temporal Demand Mann-Whitney U Test 0 3.315e-05 X -0.26

Performance Mann-Whitney U Test 113.0 0.0176 X -0.06

Effort T-Test -4.108 0.00046 -0.43 X

Frustration Mann-Whitney U Test 2.0 4.934e-05 X -0.58

This analysis from Table 5.16 reveals that the most significant dimensions influencing

perceived usability are Mental Demand, Effort, and Frustration. These dimensions have

moderate to strong negative correlations with SUS scores, as supported by highly signif-

icant statistical tests. This indicates that reducing mental effort, physical demand, and

frustration would increase users’ perceived usability of the Visual tool.

Physical Demand and Temporal Demand also exhibit significant correlations with SUS

scores, albeit with slightly weaker impacts than other dimensions and thus, their effects

on usability may be subtle or inconsistent.

Interestingly, Performance has a statistically significant correlation, but the low corre-

lation affirms that it may not be as crucial to perceived usability as other dimensions. This

could imply that, while performance has a role in usability perception, it is overshadowed

by the negative impacts of effort and frustration, making these areas more critical for

usability improvements in the Visual tool.

Regarding Buddy (Figure 5.25), Mental Demand shows a strong negative correlation

with SUS scores (r = -0.62), alongside Frustration (r = -0.53). This indicates that higher

mental demands and increased frustration are associated with lower usability perceptions.

Physical Demand has a negative correlation (r = -1.45), suggesting that increased physical

demand slightly reduces perceived usability. Temporal Demand exhibits a moderately

negative correlation (r = -0.45), indicating that time pressure negatively affects usability,

though not as strongly as mental demand. Performance displays an almost neutral

correlation with SUS scores (r = -0.08), implying that performance success is not strongly

linked to usability perceptions. Effort is negatively correlated with SUS scores (r = -0.31),

signifying that higher effort leads to lower usability scores.

81

CHAPTER 5. EVALUATION

Figure 5.25: Buddy - NASA-TLX Dimensions vs. SUS Scores

Table 5.17: Buddy - NASA-TLX Dimensions vs. SUS Scores

Dimension Statistical Test Statistic P-value Pearson Spearman

Mental Demand T-Test -8.12 4.56 -0.89 X

Physical Demand Mann-Whitney U Test 0 1.41 X -0.39

Temporal Demand T-Test -9.29 4.52 -0.53 X

Performance Mann-Whitney U Test 102.0 0.08 X 0.03

Effort Mann-Whitney U Test 7.0 0.0002 X -0.53

Frustration Mann-Whitney U Test 0 2.57 X -0.79

The statistical tests from Table 5.17 show that Mental Demand, Effort, and Frustration

strongly impact the usability of the Buddy system. These aspects have strong negative

correlations with SUS scores, indicating their high statistical significance.

Physical Demand and Temporal Demand also play a role in usability perceptions, but

their impact is not as strong as the factors mentioned above. These aspects still have

significant negative correlations, so they are important to consider for improving usability.

On the other hand, Performance has minimal influence on usability, with a very weak

and non-significant correlation with SUS scores, meaning that performance may not sig-

nificantly affect users’ perception of the Buddy tool’s usability.

Task Completion Time on Usability
Figure 5.26 shows the correlation between SUS scores and task completion time for each

82

5.3. RESULTS

tool, indicating how usability ratings relate to the time taken to complete tasks.

Figure 5.26: SUS Scores vs Task Completion Time

The Textual plot reveals a slight positive correlation between SUS scores and task

completion time, with a Spearman correlation coefficient of 0.27. Most data points are

clustered around 75 to 90 in SUS scores and between 9.5 to 12 minutes in task completion

time. The fit line indicates that as task completion time increases, SUS scores tend to

increase slightly, although this effect is minimal.

In contrast, the VS Code plot demonstrates a weak negative correlation, with a Spear-

man correlation coefficient of -0.13. The data points are widely scattered, with SUS scores

ranging from 30 to 80 and task completion times varying from around 9 to 13 minutes.

The trend line points that as task completion time increases, SUS scores slightly decrease.

For Visual, the plot demonstrates a weak negative correlation, with a Spearman

correlation coefficient of -0.20. The majority of data points are clustered around 9.5 to 12.5

minutes for task completion time, with SUS scores mostly between 65 and 95. The fit line

83

CHAPTER 5. EVALUATION

indicates a slight decrease in SUS scores as task completion time increases, meaning that

longer taskdurationsmight negatively affect perceivedusability, although this relationship

is not strong.

The Buddy plot shows the most substantial negative correlation among the four tools,

with a Spearman correlation coefficient of -0.71. The data points are more widely spread,

with task completion times ranging from 8 to 12 minutes and SUS scores varying between

50 and 100. The fit line clearly shows a significant decrease in SUS scores as task completion

time increases, indicating that users perceive the tool as less usable when tasks take longer

to complete.

Table 5.18: SUS Scores vs Task Completion Time

Tool Statistical Test Statistic P-value Spearman

Textual Mann-Whitney U Test 0 3.289e-05 0.27

VS Code Mann-Whitney U Test 0 3.147e-05 -0.13

Visual Mann-Whitney U Test 0 3.34e-05 -0.20

Buddy Mann-Whitney U Test 0 3.34e-05 -0.71

The results indicate that Buddy exhibits the strongest negative correlation, confirmed

by both the strength of the correlation and its statistical significance. This shows that users

perceive the tool as less usable when it takes longer to complete tasks. In contrast, Textual

and VS Code show weak correlations, indicating that while task completion time does

have a statistically significant effect on usability, the impact is relatively minor. Visual also

shows a weak negative correlation, suggesting a minor but statistically significant effect

on usability based on task duration.

5.3.3 Qualitative Data

The feedback collected from open-ended questionnaire questions and linear scale ques-

tions is categorized into textual and visual approaches. This feedback helps us understand

the features that made script configuration easier and provides insights for our platform

improvements.

Textual Modeling
The content assist was one of the most mentioned features that accelerated the config-

uration process and reduced errors, with 11 out of 12 participants classifying it with 5 out

of 5 when questioned about the following questions:

• Did the content assist feature cover all the necessary elements and options you

needed?

• How much did the content assist feature improve your overall usability of the DSL?

84

5.3. RESULTS

Its implementation was notable for "providing guidance on available attributes in each

workflow component", "being case insensitive", and the "ability to be used mid-word".

This improved the user experience and sped up the configuration process.

Another notable feature was quickfix, which "efficiently handled difficult tasks" and

"offered clear and effective suggestions for the necessary solutions". This feature was

classified with 5 out of 5 by 66.7% of participants when questioned about the following

questions:

• How useful were the quickfix suggestions in correcting the detected errors?

• How much did the quickfix feature improve your efficiency in correcting errors?

In addition, the elimination of redundant punctuation, such as simple indentation,

no dashes, and colons, was emphasized. Furthermore, using an easy-to-understand syn-

tax, including a distinction between components and their attributes with capital letters,

enhanced workflow definition simplicity. This not only simplifies the process but also

reduces errors.

Improvements

• Quickfix: Some participants suggested changing the naming conventionwhen using

quickfix to duplicate component names, to make the new name more explicit or to

indicate what it will be renamed to. Another suggestion was to display the names of

defined but undeclared components and allow them to be changed. However, this

solution would only work for specific cases.

• Content Assist: The mandatory fields of a component could be implicitly defined

by defining the selected component with the content assist functionality with the

respective fields. The mandatory fields of a component could be implicitly defined

by using the content assist to select the component along with its respective fields.

This suggestion is relevant because it removes the responsibility from the user to

know/not forget all the mandatory attributes, thereby reducing the likelihood of

configuration errors.

It was suggested that when defining components, the content assist should open

directly after pressing the tab instead of having to press the tab and then open

the content assist. It was also suggested that a space should be automatically

provided when selecting the content assist option. These two suggestions were the

participant’s preferences, although it was noted that they are not the most relevant

points to highlight.

One participant suggested that it would be interesting to have a feature similar to

GitHub Copilot that could suggest a relevant keyword when you’re writing. This

idea would be to integrate the existing content assist, which is currently triggered

by pressing Ctrl+Space, with an AI engine that tries to predict what I’m writing.

85

CHAPTER 5. EVALUATION

Visual Modeling
As observed, the visual approach is more visually complex than the textual one and

therefore requires more time to learn the platform than the study provides. Based on

this statement, 58.3% of participants rated the ease of navigation and interaction of the

approach at 4 out of 5 when asked: How easy was it to interact with and navigate the

visual diagram in Sirius Eclipse?

Some feedback worth mentioning is that the diagram visualization significantly en-

hanced the participant’s understanding of the workflow and its components, with 25% of

the participants classifying it with 5 out of 5 and 50% with 4 out of 5, when questioned

about: How would you rate the visual representation of the CI/CD pipeline in terms

of clarity and comprehensibility?. This statement was justified because the "diagram

was organized in boxes inside other boxes and components as icons to establish some

belonging".

The structured palette from Sirius Eclipse was also another mention that simplified

workflow management by offering a clear and organized layout for all components, and

making it easier to comprehend the workflow structure and attribute placement, while

the validation feature effectively describes specific errors, contributing to a smoother

configuration process.

Improvements

• Error’s detection feedback: Participants’ most mentioned suggestion was the diffi-

culty in locating the errors identified by the custom validations since error feedback

is only given when the user clicks on the component in question.

• Diagram: The diagram should have a more structured layout, with a clear order or

hierarchy for its components.

• Properties View: For component attributes that require referencing component

names defined in the workflow, instead of the user typing in those names, provide

a dropdown list of existing component names relevant to the attribute. This would

clarify the options available to the user and reduce configuration errors.

5.4 Results Discussion

This section summarizes the key findings from the quantitative data analysis, focusing on

the SUS and NASA-TLX score’s implications for user experience and task performance,

alongside task completion times.

5.4.1 Interpretation of Findings

The usability and workload scores from Tables 5.2 and 5.3 are crucial starting points for

our discussion.

86

5.4. RESULTS DISCUSSION

Usability
Our solution yielded positive usability results, with Textual’s usability score of 85.2

and Visual’s score of 75.6 surpassing the average SUS usability score of 68. However,

VS Code scored 56.04, significantly lower than the threshold, highlighting the challenges

users face with this tool. Despite this, Buddy, with a score of 79.8, remains the preferred

visual pipeline modeling tool, while our Visual tool is not far behind.

The findings from Figure 5.14 further reinforce these observations. Textual and Buddy

demonstrate high median scores and narrow IQRs, indicating consistent user satisfaction.

On the other hand, the Visual tool shows a broader score distribution and presence

of outliers, pointing to mixed user experiences, likely due to varying familiarity with

visual modeling interfaces. VS Code’s low median score and wide score range highlight

significant usability challenges, likely worsened by participants’ varying experience levels

with CI/CD tools and the complexities of CircleCI syntax. Figures VIII.1 and VIII.2

highlight the usability aspects impacting the presented results, where most discrepancies

are presented in the textual modeling approach.

Participants who tested the textual approach expressed a clear preference for Textual

over VS Code, finding it easier to use and learn. This preference is likely due to the

implemented features and syntax guidance, contributing to its ease of configuration.

In contrast, Visual and Buddy exhibit similar high usability scores, and participants

stated a preference for visual modeling noted by 14 out of 24 participants, as it allowed

them to see differentworkflow states and their components. This statementwas somewhat

due to the initial proposal in which more experienced users preferred a textual approach

due to the simplicity of the visual interface and faster configuration by only stating the

syntax needed to configure the scripts. Nonetheless, our visual approach still holds

significant value, particularly for users who prefer a more graphical interface for complex

workflows and want an observable state of the workflow.

Buddy’s effectiveness can be attributed to its ability to simplify complex processes into

visual components, making it easier for a wider range of users to manage, including those

with less technical knowledge. It is worth noting that an initial assumption was that the

developed tool would be less appealing, given that Eclipse and Sirius environments do

not prioritize this visual aspect.

The correlation between task completion time and SUS scores, as shown in Figure 5.26,

supports these observations. The Textual approach stands out for its quick task comple-

tion speed. As participants use the platform more, it leads to increased usability due

to the help of the implemented features. In contrast, VS Code shows a slightly negative

correlation due to the lack of assistance. Users are required to understand the CircleCI

syntax to correctly configure the scripts, which can generate frustration and lead to lower

perceived usability over time. Overall, visual modeling has a stronger negative correlation

between SUS scores and task completion times, whereas the Visual tool shows slightly

longer task completion times on average. This may stem from the inherently exploratory

nature of visual interfaces, where users interact with graphical elements to construct or

87

CHAPTER 5. EVALUATION

modify workflows. While this approach provides an intuitive and accessible entry point,

the navigation and manipulation of visual elements can introduce additional steps that

extend the time required to complete tasks. However, this does not necessarily detract

from the usability of the Visual approach; rather, it highlights the trade-off between ease

of use and the time investment required for task completion.

Workload
All platforms exhibit positive workload perceptions, with the visual modeling ap-

proach tasks demanding the least effort, as indicated by scores of 34.5 for Visual and 30.6

for Buddy. Textual tool again stood out from the textual modeling approaches with a

lower workload score of 36.14, reinforcing that experienced users find this method less

cognitively taxing for identical task efforts. The notably higher workload associated with

VS Code (43.52) is corroborated by its consistently higher scores across most NASA-TLX

components, as Figure 5.16 indicates thatVSCode’s higherworkload is driven by increased

mental demands, effort, and frustration. Participants’ perception of complexity may be

influenced by unfamiliarity with the tool and CircleCI syntax, and a lack of configuration

guides/help, as evidenced by their feedback. This may be reflected in the results of the

dimensions with the highest discrepancy.

Contrastly, Visual and Buddy tools fall between these extremes. Visual shows more

variability in workload perception, as it is morementally demanding and requires more ef-

fort, while Buddy’s workload perception remains relatively stable. These lower scores may

reflect the ease with which users can understand and interact with CI/CD pipelines in a

visual format, which reduces mental effort compared to more text-heavy approaches. The

slightly higher Visual workload score compared to Buddy’s may be attributed to Visual’s

interface being more demanding in visual information, such as navigating through the

diagram or understanding the relationships between different components in the interface.

While it simplifies complex workflows, translating them into visual elements might intro-

duce additional cognitive steps, such as interpreting icons or adjusting the interface layout.

SUS/NASA-TLX Impact
The relationship between usability and perceived workload, examined in Figure 5.18,

reveals an inverse correlation, where higher usability aligns with a lower workload. This

is not a definitive statement for every case, but rather a study-specific affirmation that this

study demonstrated an inverse correlation since there are cases where high usability does

not imply low workload scores.

Textual reveals as the outlier tool, presenting a weak positive correlation, suggesting

that as users find it easier to use, they perceive slightly more workload. This positive

correlation reflects the trade-off for experienced users between high usability and the

cognitive load involved in efficiently using the tool. While users find Textual easier and

faster, their mental demands (as measured by NASA-TLX) remain high due to the nature

of working with textual models, especially when performing complex tasks.

88

5.4. RESULTS DISCUSSION

VS Code contradicts this trend with a moderate negative correlation, where low us-

ability (SUS = 56.04) corresponds to a higher perceived workload. Configuring difficulties

with the scripts in this tool can also be explained with data points concentration being

more on the low usability side of the chart, alongside five lower usability scores and a

very high workload.

Visual also exhibits a moderate negative correlation with a broader range of scores,

indicating mixed user satisfaction, while Buddy’s trend is less distinct, indicating less

consistency in the relationship between usability and workload.

These observations suggest that for Textual and VS Code, usability improvements

have a more pronounced effect on reducing workload, whereas for Visual and Buddy, the

relationship is more complex. This complexity may be due to specific features or tasks

within these tools affecting perceived workload differently.

NASA-TLX Dimensions Impact
The results of the correlation analysis between NASA-TLX dimensions and SUS scores

provide further insights, revealing that Mental demand, Effort, and Frustration are the

most influential dimensions across all platforms, with strong negative correlations in-

dicating that higher levels in these dimensions significantly reduce usability scores. In

contrast, temporal demand shows a weak correlation, suggesting it has a lesser, but still

notable, impact on usability perceptions. Physical demand, as expected, has no impact on

tool usability due to the nature of the tasks performed by the participants. Performance

generally has a weak correlation with usability scores, indicating that users’ perceptions of

how well they perform tasks with the tool do not strongly influence their overall usability

ratings. The results depicted in Figures 5.22, 5.23, 5.24, and 5.25 generally align with the

initially formulated hypotheses, with these dimensions having a more significant impact

on the perceived tools usability.

Participants Experience Level Impact
Upon conducting a thorough analysis of usability and workload scores for users

with different experience levels, the data presented in Figures 5.19, 5.20, and 5.21

reveals interesting patterns. Notably, Textual and Buddy consistently exhibit high median

SUS scores across both novice and experienced users, with experienced users of Textual

reporting slightly higher median scores. This suggests that familiarity contributes to its

perceived usability. On the other hand, VS Code demonstrates a significant difference

between novice and experienced users, with novices rating its usability much lower,

indicating a steep learning curve.

When examining NASA-TLX scores, Textual once again stands out, with experienced

users reporting lower workload scores, affirming earlier findings that increased usability

corresponds to reduced perceived effort. The results for Visual and Buddy are less

conclusive, implying that while these tools are generally user-friendly, certain tasks or

features may pose challenges for less experienced users.

89

CHAPTER 5. EVALUATION

For VS Code, the data emphasizes its complexity, particularly for novice users, who

report low usability and high workload. Even among experienced users, the workload

remains substantial, indicating that the tool is mentally demanding irrespective of skill

level. This reinforces the perception of VS Code as a tool with a steep learning curve and

significant usability challenges.

Visual and Buddy show a different pattern. Novice users find Buddy highly usable

with low cognitive demand, suggesting that its visual interface is effective in simplifying

complex processes. However, experienced users exhibit more variability in their workload

scores for Buddy, potentially indicating that its simplicity may not fully meet the needs

of advanced users. Visual, on the other hand, presents a more variable experience for

both novice and experienced users, with moderate workload scores across the board.

This variability likely stems from the exploratory nature of visual interfaces, which can

introduce cognitive challenges regardless of experience level.

Demographic Impact
Interestingly, the study found that user preferences were not significantly associated

with demographic factors, suggesting that the choice between textual and visual ap-

proaches is more closely related to individual work habits and personal comfort rather

than specific background characteristics. This finding underscores the importance of

offering both approaches in CI/CD tools, allowing users to choose the method that best

suits their workflow and cognitive style.

5.4.2 Inferences

The evaluation of the dual modeling approach and the perceived value of features and

implementations is essential to ascertain the effectiveness and usability of the proposed

solution. The observations from the usability and workload scores align with the hypothe-

ses formulated and shed light on the tangible impact of the dual modeling approach on

user experience and perceived value.

The usability scores reveal that both Textual and Visual demonstrate higher than

average SUS usability scores, with Textual scoring 85 and Visual scoring 75, compared

to the average SUS usability score of 68. This suggests that our solution, particularly the

textual approach, offers above-average usability, supporting the hypothesis 𝐻1DualModeling

- that the dual modeling approach, comprising both textual and graphical representations,

is effective and usable in configuring and managing CI/CD pipelines.

The results support 𝐻1FeaturesValue, indicating that the features and implementations

add significant value. Participants’ feedback highlighted a preference for Textual over

VS Code, finding it easier to use and learn due to the implemented features and syntax,

which facilitated script configuration. This preference is evident from the high usability

scores and positive feedback regarding the features’ utility. In contrast, Visual and Buddy

tools also show high usability scores, with a notable preference for visual modeling by 12

90

5.4. RESULTS DISCUSSION

out of 20 participants. These findings confirm that the features and implementations in

both textual and graphical approaches significantly enhance user experience and script

correctness, thereby supporting the hypothesis.

The data provide mixed support for 𝐻1ComparisonCircleCI. While Textual and Buddy

tools received high usability and low workload scores, indicating effective script configu-

ration and management, the variability in Visual’s workload perceptions suggests areas

needing improvement. Textual’s clear negative correlation between high usability and

low workload suggests it facilitates easier script configuration than VS Code. Visual and

Buddy tools also show favorable usability scores but with a more complex relationship

between usability and workload. This complexity could be attributed to specific features

or tasks within these tools affecting user perceptions differently. While the dual modeling

approach appears generally effective, certain tools and features need refinement to fully

surpass CircleCI’s approach in usability and efficiency, suggesting partial support for the

hypothesis.

The alignment between our hypothesis-driven evaluation and the functional and non-

functional requirements demonstrates that the dual modeling approach, along with its

specific features, not only fulfills the expected criteria but also provides tangible benefits

in terms of usability and efficiency, as evidenced by the high SUS scores and positive user

feedback (FR-1, FR-2, NFR-1, NFR-2, NFR-3).
The Textual modeling tool, with a strong usability score of 85.2, clearly demonstrates

that the interface we developed for configuring CI/CD scripts not only fulfills the need

for a user-friendly textual approach but also exceeds expectations. Users found it intuitive

and efficient, confirming that our design choices hit themark. Althoughwith less strength,

the same can be said about the Visual modeling tool’s intuitive and user-friendly interface,

scoring 75.6. It’s worth noting that the tool’s capacity to streamline complex workflows

was acknowledged and valued, demonstrating that we effectively met the need for visual

modeling.

Tool agnosticism was another critical requirement (FR-3), and our solution proved

its adaptability by maintaining compatibility with various CI/CD platforms. This was

reinforced by the automated code generation feature, which seamlessly generated inter-

operable code across different tools, reducing the need for manual configurations and

minimizing errors (FR-4).
Furthermore, our approach to model transformations enabled users to switch be-

tween different model views, facilitating a more comprehensive understanding of CI/CD

pipelines. This flexibility in navigating between textual and visual models confirms that

we effectively addressed the need for smooth model transitions.

Our error handling and reporting features, particularly within the Textual tool, played

a significant role in reducing user frustration during configuration with the interface’s

guidance to understand and correct mistakes at any configuration step (FR-6).
Scalability was another key consideration, and our solution demonstrated its ability

to handle complex CI/CD pipelines effectively (NFR-4). While the Visual tool showed

91

CHAPTER 5. EVALUATION

slightly longer task completion times, these were manageable and indicative of the tool’s

ability to support intricate workflows without compromising overall efficiency.

Although the participants did not test it, the requirements of model transformations

(FR-5) and maintaining clean code (NFR-5) were met in its implementation and testing

iteration.

In conclusion, the dual modeling approach, comprising Textual and Visual interfaces,

presents a solid solution for configuring CI/CD pipelines, effectively catering to users

with varying preferences and expertise levels. The high usability scores and the inverse

relationship between usability and workload underscore its effectiveness and user-centric

design. However, to further enhance the usability and address the identified challenges,

targeted improvements in both interfaces are necessary. By refining the visual elements,

streamlining the textual syntax, and providing more robust user support, our approach

can achieve even higher levels of user satisfaction and effectiveness, solidifying its position

as a versatile and efficient tool for CI/CD pipeline configuration.

5.4.3 Lessons Learned

During the user testing and usability evaluation process, we gained valuable insights that

have significantly contributed to our understanding of user preferences and challenges.

One of the key lessons learned is the importance of conducting diverse and representative

user testing to capture awide rangeofperspectives andexperiences. This approachallowed

us to identify varying user preferences and expertise levels, which in turn, informed the

design of our dual modeling approach.

Furthermore, we learned that continuous user feedback is essential for refining and

improving the usability of our interfaces. The feedback we received during iterative pilot

tests and the evaluation process highlighted the need for targeted improvements in textual

and visual interfaces. It also emphasized the significance of providing robust user support

to address the identified challenges effectively.

Additionally, we recognized the value of prioritizing user-centric design, as evidenced

by the inverse relationship between usability and workload. This reinforced our commit-

ment to creating interfaces that not only facilitate CI/CD pipeline configuration but also

ensure a seamless and satisfying user experience.

5.5 Threats to Validity

When considering the threats to the validity of this study, several potential biases come to

light. Participant bias is a significant concern, as the sample consists mainly of Computer

Science students from the same university, potentially not representing the broader

population of CI/CD pipeline users. Participants’ prior experience with CI/CD tools

and familiarity with specific platforms could bias their perceptions and performance.

Additionally, the potential for learning effects exists, as participants used multiple tools

92

5.5. THREATS TO VALIDITY

in the study, and although efforts were made to minimize this effect by presenting tools

in a randomized order, it cannot be entirely ruled out.

The use of Buddy as a competing platform for the visual approach poses a significant

threat to the study. Since Buddydoes not configure pipelines for a specificCI/CDplatform,

its functionalities may limit the fair comparison and evaluation of the visual approach.

Another important concern is the sample size, which consists of 24 participants. A

larger sample size would provide stronger andmore precise results. However, this sample

size is enough to identify potential improvements for both approaches. Nielsen has

indicated that 5 users can uncover most issues in an application.

Furthermore, the study’s design and methodology, particularly the specific tasks

evaluated, may also introduce potential sources of bias or limitations to the findings.

Focusing on specific tasks may not fully capture the broader range of activities that users

perform in real-world CI/CD pipeline configurations.

93

6

Conclusion

This chapter provides an overview of the key findings, contributions, limitations, and

future work arising from this research.

6.1 Overview

In this thesis, we developed a framework for CI/CD pipelines, using both textual and

visualmethods. The frameworkaimed to simplify the complexities ofCI/CD solutions and

enable their use across various platforms. By integrating textual and visual approaches,

we aimed to create a solution suitable for users with different experience levels in CI/CD

processes and would aid in migrating between them. It was crucial to implement features

that allow users to model configurations in both textual and visual formats, providing

flexibility based on their preferences. We utilized M2M transformations with ATL to

ensure model coherence and interoperability.

Additionally, we used Acceleo for code generation to automatically create CI/CD

pipeline scripts from themodels. We also included plugins focused on improving usability

through the metamodels definition, grammar, and interfaces. Finally, we conducted a

usability study to evaluate the quality and usability of our framework by comparing it

with commercial tools.

6.2 Limitations

Despite its strengths, the framework has some limitations that should be acknowledged.

Firstly, it is dependent on the Eclipse platform, which may not be preferable or convenient

for all users, especially those who are used to other IDEs. This dependency can limit

the adoption and use of the framework in various development environments. However,

development in Eclipse has enabled exceptional integration of the workflow developed by

integrating MDE methodologies with DevOps, something difficult or even unsupported

in most of the IDEs available.

94

6.3. FUTURE WORK

The Jenkins and CircleCI solutions, as implemented in this framework, do not support

scripted pipelines, which restricts their flexibility and limits the scenarios in which they

can be effectively used.

In the visual approach, a problem arises when performing M2M transformations

with ATL, where the Eclipse IDE wizard does not recognize the transformed XMI files,

requiring users to manually enter their path.

In addition, the framework supportsmost cron expressions but struggles with complex

ones, which can affect the accuracy and completeness of tasks in CI/CD pipelines.

A relevant challenge worth mentioning is the evolution problem inherent to MDE.

When a CI/CD platform updates its functionalities, the framework needs to be re-

engineered to introduce the new features. This evolution problem presents a two-edged

sword. On one hand, it requires effort to adapt the framework to the latest platform

updates, posing a maintenance challenge. On the other hand, the use of MDE provides a

powerful abstraction that facilitates platform migration and adaptation. This abstraction

enables the framework to support multiple CI/CD platforms, simplifies the process of

migrating pipeline configurations across different tools, and supports a seamless plugin

integration that provides this solution to be made. Thus, while the evolution problem is a

limitation, it also underscores the fundamental advantage of MDE in creating a flexible

and adaptable system capable of addressing the diverse and changing needs of CI/CD

pipeline management.

Furthermore, the study’s design and methodology, particularly the specific tasks

evaluated, may also introduce potential sources of bias or limitations to the findings.

Focusing on specific tasks may not fully capture the broader range of activities that users

perform in real-world CI/CD pipeline configurations.

6.3 Future Work

There are otherdirections to continue thisworkwith futurework, drawn from the feedback

from the usability study and the analysis of the most important requirements for a robust

solution that meets users’ needs. Such improvements include enhancing certain features

of both approaches and even creating/integrating new functionalities as mentioned in

the participants’ feedback.

A web-based solution would allow users to access and use the board from any device

with an Internet connection, considerably increasing its convenience and usability. Along-

side real-time collaboration and peer modeling, the configuration would be more efficient

and reduce configuration errors.

One important aspect is the possibility of interoperability between textual and visual

modeling. Ensuring that changes made in one format are automatically reflected in the

other not only simplifies the user experience by allowing them to start in one approach

and continue in another but also avoids inconsistencies in configurations. Even with

95

CHAPTER 6. CONCLUSION

experienced participants in the field, the vast majority cited that they preferred to have a

visualization of the pipeline configuration, even if they wrote it down verbatim.

Expanding the framework to support more CI/CD platforms would also increase its

versatility and applicability. By incorporating additional platforms, the framework can

cater to a wider range of users and use cases, increasing its relevance and usefulness in

the CI/CD ecosystem.

Finally, it would be relevant to redo a usability study with participants with a greater

weight of experience and a more diverse background, and with CircleCI’s visual editor as

the competing tool.

96

Bibliography

[1] L. Addazi and F. Ciccozzi. “Blended graphical and textual modelling for UML

profiles: A proof-of-concept implementation and experiment”. In: Journal of Systems
and Software 175 (2021), p. 110912. issn: 0164-1212. doi: https://doi.org/10

.1016/j.jss.2021.110912. url: https://www.sciencedirect.com/science/

article/pii/S0164121221000091 (cit. on pp. 2, 14).

[2] A. Alnafessah et al. “Quality-Aware DevOps Research: Where Do We Stand?” In:

IEEE Access 9 (2021), pp. 44476–44489. doi: 10.1109/ACCESS.2021.3064867 (cit. on

p. 23).

[3] AltexSoft. https://www.altexsoft.com/blog/cicd-tools-comparison/. Ac-

cessed 01/23/2024 (cit. on p. 8).

[4] S. Arachchi and I. Perera. “Continuous Integration and Continuous Delivery

PipelineAutomation forAgile SoftwareProjectManagement”. In: 2018 Moratuwa En-
gineering Research Conference (MERCon). 2018, pp. 156–161. doi: 10.1109/MERCon.2

018.8421965 (cit. on pp. 1, 6).

[5] N. Azad and S. Hyrynsalmi. “DevOps critical success factors — A systematic

literature review”. In: Information and Software Technology 157 (2023), p. 107150.

issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2023.107150. url:

https://www.sciencedirect.com/science/article/pii/S0950584923000046

(cit. on pp. 5, 6, 18).

[6] K. Bahadori and T. Vardanega. “DevOps Meets Dynamic Orchestration”. In:

Software Engineering Aspects of Continuous Development and New Paradigms of Software
Production and Deployment. Ed. by J.-M. Bruel, M. Mazzara, and B. Meyer. Cham:

Springer International Publishing, 2019, pp. 142–154. isbn: 978-3-030-06019-0. doi:

https://doi.org/10.1007/978-3-030-06019-0_11 (cit. on pp. 1, 5, 6).

[7] J. Bézivin. “Model Driven Engineering: An Emerging Technical Space”. In: (2006).

Ed. by R. Lämmel, J. Saraiva, and J. Visser, pp. 36–64. doi: 10.1007/11877028_2.

url: https://doi.org/10.1007/11877028_2 (cit. on pp. 10, 11).

97

https://doi.org/https://doi.org/10.1016/j.jss.2021.110912
https://doi.org/https://doi.org/10.1016/j.jss.2021.110912
https://www.sciencedirect.com/science/article/pii/S0164121221000091
https://www.sciencedirect.com/science/article/pii/S0164121221000091
https://doi.org/10.1109/ACCESS.2021.3064867
https://www.altexsoft.com/blog/cicd-tools-comparison/
https://doi.org/10.1109/MERCon.2018.8421965
https://doi.org/10.1109/MERCon.2018.8421965
https://doi.org/https://doi.org/10.1016/j.infsof.2023.107150
https://www.sciencedirect.com/science/article/pii/S0950584923000046
https://doi.org/https://doi.org/10.1007/978-3-030-06019-0_11
https://doi.org/10.1007/11877028_2
https://doi.org/10.1007/11877028_2

BIBLIOGRAPHY

[8] G. Bou Ghantous and A. Gill. “DevOps: Concepts, practices, tools, benefits and

challenges”. In: PACIS2017 (2017). doi: https://doi.org/10.1007/978-3-319-4

9094-6_44 (cit. on pp. 1, 5, 16, 17).

[9] H. Brabra et al. “Model-Driven Orchestration for Cloud Resources”. In: 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). 2019, pp. 422–429. doi:

10.1109/CLOUD.2019.00074 (cit. on p. 21).

[10] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in
Practice. 1st. Morgan & Claypool Publishers, 2012. isbn: 1608458822. doi: 10.2200

/S00441ED1V01Y201208SWE001 (cit. on pp. 8, 10, 11, 13, 16).

[11] J. Brooke. “SUS: A quick and dirty usability scale”. In: Usability Eval. Ind. 189
(1995-11). doi: https://doi.org/10.1201/9781498710411 (cit. on p. 60).

[12] M. Broy, K. Havelund, and R. Kumar. “Towards a Unified View of Modeling

and Programming”. In: Leveraging Applications of Formal Methods, Verification and
Validation: Discussion, Dissemination, Applications. Ed. by T. Margaria and B. Steffen.

Cham: Springer International Publishing, 2016, pp. 238–257. isbn: 978-3-319-47169-

3. doi: https://doi.org/10.1007/978-3-030-03418-4_1 (cit. on p. 14).

[13] A. Bucchiarone, A. Cicchetti, and A. Marconi. “Exploiting Multi-level Modelling for

Designing and Deploying Gameful Systems”. In: 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems (MODELS). 2019,

pp. 34–44. doi: 10.1109/MODELS.2019.00-17 (cit. on pp. 23, 24).

[14] A. Bucchiarone et al. “GrandChallenges inModel-Driven Engineering: AnAnalysis

of the State of the Research”. In: Softw. Syst. Model. 19.1 (2020-01), pp. 5–13. issn:

1619-1366. doi: 10.1007/s10270-019-00773-6. url: https://doi.org/10.1007

/s10270-019-00773-6 (cit. on pp. 17, 23).

[15] J. Cabot. “Positioning of the low-code movement within the field of model-driven

engineering”. In: Proceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings. MODELS

’20. Virtual Event, Canada: Association for Computing Machinery, 2020. isbn:

9781450381352. doi: 10.1145/3417990.3420210. url: https://doi.org/10.1145

/3417990.3420210 (cit. on p. 23).

[16] J. Cabot et al. “Cognifying Model-Driven Software Engineering”. In: Software
Technologies: Applications and Foundations. Ed. by M. Seidl and S. Zschaler. Cham:

Springer International Publishing, 2018, pp. 154–160. isbn: 978-3-319-74730-9. doi:

https://doi.org/10.1007/978-3-319-74730-9_13 (cit. on pp. 23, 24).

[17] L. Chen. “Continuous delivery: Huge benefits, but challenges too”. In: IEEE software
32.2 (2015), pp. 50–54 (cit. on pp. 1, 6).

98

https://doi.org/https://doi.org/10.1007/978-3-319-49094-6_44
https://doi.org/https://doi.org/10.1007/978-3-319-49094-6_44
https://doi.org/10.1109/CLOUD.2019.00074
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/https://doi.org/10.1201/9781498710411
https://doi.org/https://doi.org/10.1007/978-3-030-03418-4_1
https://doi.org/10.1109/MODELS.2019.00-17
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1145/3417990.3420210
https://doi.org/https://doi.org/10.1007/978-3-319-74730-9_13

BIBLIOGRAPHY

[18] CI/CD Pipelines Explained. Benefits and Best Practices. https://www.opsera.io/

blog/all-you-need-to-know-about-ci-cd-pipeline. Accessed 17/10/2023

(cit. on p. 6).

[19] CI/CD: The what, why, and how. https://github.com/resources/articles/

devops/ci-cd. Accessed 17/10/2023 (cit. on p. 6).

[20] A. Colantoni, L. Berardinelli, and M. Wimmer. “DevOpsML: Towards Modeling

DevOps Processes and Platforms”. In: Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion Proceedings.
MODELS ’20. Virtual Event, Canada: Association for Computing Machinery, 2020.

isbn: 9781450381352. doi: 10.1145/3417990.3420203. url: https://doi.org/10

.1145/3417990.3420203 (cit. on pp. 1, 21).

[21] A.Colantoni et al. “TowardsBlendedModeling andSimulation ofDevOpsProcesses:

The Keptn Case Study”. In: MODELS ’22 (2022), pp. 784–792. doi: 10.1145/35503

56.3561597. url: https://doi.org/10.1145/3550356.3561597 (cit. on p. 21).

[22] I. David et al. “Collaborative Model-Driven Software Engineering — A systematic

survey of practices and needs in industry”. In: Journal of Systems and Software 199
(2023), p. 111626. issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2023.1

11626. url: https://www.sciencedirect.com/science/article/pii/S0164121

223000213 (cit. on p. 17).

[23] A. V. Deursen et al. “Model-Driven Software Evolution: A Research Agenda”. In:

(2007). url: https://api.semanticscholar.org/CorpusID:15837208 (cit. on

p. 17).

[24] DevBoost. EMFText. https : / / github . com / DevBoost / EMFText. Accessed

01/13/2024 (cit. on p. 15).

[25] P. Duvall, S. M. Matyas, and A. Glover. Continuous Integration: Improving Software
Quality and Reducing Risk (The Addison-Wesley Signature Series). Addison-Wesley

Professional, 2007. isbn: 0321336380 (cit. on p. 6).

[26] Eclipse. Acceleo. https://eclipse.dev/acceleo/. Accessed 01/13/2024 (cit. on

pp. 16, 56).

[27] Eclipse. ATL. https://eclipse.dev/atl/. Accessed 01/13/2024 (cit. on pp. 16,

54).

[28] Eclipse. Sirius. https://eclipse.dev/sirius/. Accessed 01/13/2024 (cit. on

p. 15).

[29] M. Fowler. Continuous Integration. https : / / martinfowler . com / articles /

continuousIntegration.html. Accessed 01/11/2024 (cit. on p. 6).

[30] G2 Grid for DevOps Platforms in 2024. https://www.g2.com/categories/devops-
platforms. Accessed 02/07/2024 (cit. on p. 31).

99

https://www.opsera.io/blog/all-you-need-to-know-about-ci-cd-pipeline
https://www.opsera.io/blog/all-you-need-to-know-about-ci-cd-pipeline
https://github.com/resources/articles/devops/ci-cd
https://github.com/resources/articles/devops/ci-cd
https://doi.org/10.1145/3417990.3420203
https://doi.org/10.1145/3417990.3420203
https://doi.org/10.1145/3417990.3420203
https://doi.org/10.1145/3550356.3561597
https://doi.org/10.1145/3550356.3561597
https://doi.org/10.1145/3550356.3561597
https://doi.org/https://doi.org/10.1016/j.jss.2023.111626
https://doi.org/https://doi.org/10.1016/j.jss.2023.111626
https://www.sciencedirect.com/science/article/pii/S0164121223000213
https://www.sciencedirect.com/science/article/pii/S0164121223000213
https://api.semanticscholar.org/CorpusID:15837208
https://github.com/DevBoost/EMFText
https://eclipse.dev/acceleo/
https://eclipse.dev/atl/
https://eclipse.dev/sirius/
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://www.g2.com/categories/devops-platforms
https://www.g2.com/categories/devops-platforms

BIBLIOGRAPHY

[31] H. da Gião and J. Cunha. “Chronicles of CI/CD: A Deep Dive into its Usage Over

Time”. In: (2023). doi: https://doi.org/10.48550/arXiv.2402.17588 (cit. on

pp. 1, 31).

[32] H. da Gião, R. Pereira, and J. Cunha. “CI/CD Meets Block-Based Languages”. In:

2023 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
2023, pp. 232–234. doi: 10.1109/VL-HCC57772.2023.00039 (cit. on pp. 1, 22).

[33] M. Guerriero et al. “Amodel-driven DevOps framework for QoS-aware cloud appli-

cations”. In: 2015 17th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC). IEEE. 2015, pp. 345–351. doi: 10.1109/SYNASC.20

15.60 (cit. on p. 1).

[34] A. Hevner et al. “Design Science in Information Systems Research”. In: Management
Information Systems Quarterly 28 (2004-03), pp. 75–. doi: https://doi.org/10.100

7/978-1-4419-5653-8_2 (cit. on p. 3).

[35] R. P. Hugo da Gião and J. Cunha. “Model-Driven Approaches for DevOps: A

Systematic Literature Review”. In: (2023) (cit. on p. 2).

[36] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. 1st. Addison-Wesley Professional, 2010. isbn:

0321601912 (cit. on p. 6).

[37] J. Hutchinson, J. Whittle, and M. Rouncefield. “Model-driven engineering practices

in industry: Social, organizational and managerial factors that lead to success or

failure”. In: Science of Computer Programming 89 (2014). Special issue on Success

Stories in Model Driven Engineering, pp. 144–161. issn: 0167-6423. doi: https:

//doi.org/10.1016/j.scico.2013.03.017. url: https://www.sciencedirect.

com/science/article/pii/S0167642313000786 (cit. on p. 17).

[38] J. Hutchinson et al. “Empirical assessment of MDE in industry”. In: 2011 33rd
International Conference on Software Engineering (ICSE). 2011, pp. 471–480. doi:

10.1145/1985793.1985858 (cit. on p. 17).

[39] IDC. IDC DevOps Platform Software Tools Market Shares 2022. Tech. rep. Accessed
15/07/2024. 2022 (cit. on p. 31).

[40] D. Institute. Upskilling IT 2021 Report. Tech. rep. Accessed 15/07/2024. 2021 (cit. on

p. 5).

[41] R. Jabbari et al. “What is DevOps? A Systematic Mapping Study on Definitions

and Practices”. In: XP ’16 Workshops (2016). doi: 10.1145/2962695.2962707. url:

https://doi.org/10.1145/2962695.2962707 (cit. on p. 5).

[42] S. P. Jácome-Guerrero, M. Ferreira, and A. Corral. “Software Development Tools

in Model-Driven Engineering”. In: 2017 5th International Conference in Software
Engineering Research and Innovation (CONISOFT). 2017, pp. 140–148. doi: 10.1109

/CONISOFT.2017.00024 (cit. on pp. 10, 11, 15, 16).

100

https://doi.org/https://doi.org/10.48550/arXiv.2402.17588
https://doi.org/10.1109/VL-HCC57772.2023.00039
https://doi.org/10.1109/SYNASC.2015.60
https://doi.org/10.1109/SYNASC.2015.60
https://doi.org/https://doi.org/10.1007/978-1-4419-5653-8_2
https://doi.org/https://doi.org/10.1007/978-1-4419-5653-8_2
https://doi.org/https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/https://doi.org/10.1016/j.scico.2013.03.017
https://www.sciencedirect.com/science/article/pii/S0167642313000786
https://www.sciencedirect.com/science/article/pii/S0167642313000786
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1109/CONISOFT.2017.00024
https://doi.org/10.1109/CONISOFT.2017.00024

BIBLIOGRAPHY

[43] Jetbrains. MPS. https://www.jetbrains.com/mps/. Accessed 01/13/2024 (cit. on

p. 15).

[44] R. Jolak et al. “Software engineering whispers: The effect of textual vs. graphical

software design descriptions on software design communication”. In: Empirical
Softw. Engg. 25.6 (2020-11), pp. 4427–4471. issn: 1382-3256. doi: 10.1007/s1066

4-020-09835-6. url: https://doi.org/10.1007/s10664-020-09835-6 (cit. on

p. 14).

[45] M. S. Khan et al. “Critical Challenges to Adopt DevOps Culture in Software

Organizations: A Systematic Review”. In: IEEE Access 10 (2022), pp. 14339–14349.

doi: 10.1109/ACCESS.2022.3145970 (cit. on pp. 1, 2, 17, 27).

[46] G. Kim et al. The DevOps Handbook: How to Create World-Class Agility, Reliability, and
Security in Technology Organizations. IT Revolution Press, 2014 (cit. on p. 5).

[47] Knapsack Pro. https://knapsackpro.com/ci_comparisons. Accessed 01/23/2024

(cit. on p. 8).

[48] V. Kulkarni and S. Reddy. “Model-DrivenDevelopment of Enterprise Applications”.

In: UML Modeling Languages and Applications. Ed. by N. Jardim Nunes et al. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 118–128. isbn: 978-3-540-31797-5.

doi: https://doi.org/10.1007/978-3-540-31797-5_13https://doi.org/10.1

007/978-3-540-31797-5_13 (cit. on p. 17).

[49] LambdaTest. https://www.lambdatest.com/blog/best-ci-cd-tools/. Accessed
01/23/2024 (cit. on p. 8).

[50] Q. Liao. “Modelling CI/CD Pipeline Through Agent-Based Simulation”. In: 2020
IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW).
2020, pp. 155–156. doi: 10.1109/ISSREW51248.2020.00059 (cit. on p. 1).

[51] W. Liu et al. “Graphical Modeling VS. Textual Modeling: An Experimental Com-

parison Based on iStar Models”. In: 2021 IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC). 2021, pp. 844–853. doi: 10.1109/COMPSAC5177

4.2021.00117 (cit. on p. 14).

[52] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/main/

template.pdf (cit. on p. i).

[53] L. Lúcio et al. “Model transformation intents and their properties”. In: Software &
systems modeling 15 (2016), pp. 647–684. doi: https://doi.org/10.1007/s10270-

014-0429-x (cit. on p. 11).

101

https://www.jetbrains.com/mps/
https://doi.org/10.1007/s10664-020-09835-6
https://doi.org/10.1007/s10664-020-09835-6
https://doi.org/10.1007/s10664-020-09835-6
https://doi.org/10.1109/ACCESS.2022.3145970
https://knapsackpro.com/ci_comparisons
https://doi.org/https://doi.org/10.1007/978-3-540-31797-5_13https://doi.org/10.1007/978-3-540-31797-5_13
https://doi.org/https://doi.org/10.1007/978-3-540-31797-5_13https://doi.org/10.1007/978-3-540-31797-5_13
https://www.lambdatest.com/blog/best-ci-cd-tools/
https://doi.org/10.1109/ISSREW51248.2020.00059
https://doi.org/10.1109/COMPSAC51774.2021.00117
https://doi.org/10.1109/COMPSAC51774.2021.00117
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf
https://doi.org/https://doi.org/10.1007/s10270-014-0429-x
https://doi.org/https://doi.org/10.1007/s10270-014-0429-x

BIBLIOGRAPHY

[54] T. Mens and P. Van Gorp. “A Taxonomy of Model Transformation”. In: Electronic
Notes in Theoretical Computer Science 152 (2006). Proceedings of the International

Workshop on Graph and Model Transformation (GraMoT 2005), pp. 125–142. issn:

1571-0661. doi: https://doi.org/10.1016/j.entcs.2005.10.021. url: https:

//www.sciencedirect.com/science/article/pii/S1571066106001435 (cit. on

pp. 10, 11, 13).

[55] A. Moin et al. “Enabling Automated Machine Learning for Model-Driven AI

Engineering”. In: (2022-03). doi: https://doi.org/10.48550/arXiv.2203.02927

(cit. on p. 23).

[56] NASA TLX. https://humansystems.arc.nasa.gov/groups/TLX/. Accessed

05/23/2024 (cit. on p. 61).

[57] R. F. Paige, N. Matragkas, and L. M. Rose. “Evolving models in Model-Driven

Engineering: State-of-the-art and future challenges”. In: Journal of Systems and
Software 111 (2016), pp. 272–280. issn: 0164-1212. doi: https://doi.org/10.1016

/j.jss.2015.08.047. url: https://www.sciencedirect.com/science/article/

pii/S0164121215001909 (cit. on pp. 11, 17).

[58] P. by Perforce. State of DevOps Report 2021. Tech. rep. 2021 (cit. on p. 5).

[59] P. by Perforce. State of DevOps Report 2023. Tech. rep. 2023 (cit. on p. 31).

[60] E. Planas et al. “Towards a model-driven approach for multiexperience AI-based

user interfaces”. In: Softw. Syst. Model. 20.4 (2021-08), pp. 997–1009. issn: 1619-1366.

doi: 10.1007/s10270-021-00904-y. url: https://doi.org/10.1007/s10270-02

1-00904-y (cit. on p. 23).

[61] Proceedings of the 2007 Conference on Databases and Information Systems IV: Selected
Papers from the Seventh International Baltic Conference DBIS’2006. NLD: IOS Press,

2007. isbn: 9781586037154 (cit. on pp. 8, 10).

[62] S. Raedler et al. “Model-Driven Engineering for Artificial Intelligence–A Systematic

Literature Review”. In: arXiv preprint arXiv:2307.04599 (2023). doi: 10.48550

/arXiv.2307.04599 (cit. on p. 23).

[63] S. Rafi et al. “DevOps Practitioners’ Perceptions of the Low-code Trend”. In: Proceed-
ings of the 16th ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement. ESEM ’22. Helsinki, Finland: Association for Computing Machin-

ery, 2022, pp. 301–306. isbn: 9781450394277. doi: 10.1145/3544902.3546635. url:

https://doi.org/10.1145/3544902.3546635 (cit. on p. 23).

[64] F. M. Ribeiro et al. “A Model-Driven Solution for Automatic Software Deployment

in the Cloud”. In: Information Technology: New Generations. Ed. by S. Latifi. Cham:

Springer International Publishing, 2016, pp. 591–601. isbn: 978-3-319-32467-8. doi:

https://doi.org/10.1007/978-3-319-32467-8_52 (cit. on p. 1).

102

https://doi.org/https://doi.org/10.1016/j.entcs.2005.10.021
https://www.sciencedirect.com/science/article/pii/S1571066106001435
https://www.sciencedirect.com/science/article/pii/S1571066106001435
https://doi.org/https://doi.org/10.48550/arXiv.2203.02927
https://humansystems.arc.nasa.gov/groups/TLX/
https://doi.org/https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/https://doi.org/10.1016/j.jss.2015.08.047
https://www.sciencedirect.com/science/article/pii/S0164121215001909
https://www.sciencedirect.com/science/article/pii/S0164121215001909
https://doi.org/10.1007/s10270-021-00904-y
https://doi.org/10.1007/s10270-021-00904-y
https://doi.org/10.1007/s10270-021-00904-y
https://doi.org/10.48550/arXiv.2307.04599
https://doi.org/10.48550/arXiv.2307.04599
https://doi.org/10.1145/3544902.3546635
https://doi.org/10.1145/3544902.3546635
https://doi.org/https://doi.org/10.1007/978-3-319-32467-8_52

BIBLIOGRAPHY

[65] A. Rodrigues da Silva. “Model-driven engineering: A survey supported by the

unified conceptual model”. In: Computer Languages, Systems & Structures 43 (2015),
pp. 139–155. issn: 1477-8424. doi: https://doi.org/10.1016/j.cl.2015.06.001.

url: https://www.sciencedirect.com/science/article/pii/S1477842415000

408 (cit. on pp. 10, 12, 14).

[66] D. E. Rzig, F. Hassan, andM. Kessentini. “An empirical study on ML DevOps adop-

tion trends, efforts, and benefits analysis”. In: Information and Software Technology 152
(2022), p. 107037. issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.202

2.107037. url: https://www.sciencedirect.com/science/article/pii/S0950

584922001537 (cit. on p. 23).

[67] J. Sandobalin. “A Model-Driven Approach to Continuous Delivery of Cloud Re-

sources”. In: Service-Oriented Computing – ICSOC 2017 Workshops: ASOCA, ISyCC,
WESOACS, and Satellite Events, Málaga, Spain, November 13–16, 2017, Revised Selected
Papers. Malaga, Spain: Springer-Verlag, 2018, pp. 346–351. isbn: 978-3-319-91763-4.

doi: 10.1007/978-3-319-91764-1_29. url: https://doi.org/10.1007/978-3-

319-91764-1_29 (cit. on p. 21).

[68] S. Sendall and W. Kozaczynski. “Model transformation: the heart and soul of

model-driven software development”. In: IEEE Software 20.5 (2003), pp. 42–45. doi:

10.1109/MS.2003.1231150 (cit. on pp. 8, 11).

[69] M. Shahin, M. Ali Babar, and L. Zhu. “Continuous Integration, Delivery and

Deployment: A Systematic Review onApproaches, Tools, Challenges andPractices”.

In: IEEE Access PP (2017-03). doi: 10.1109/ACCESS.2017.2685629 (cit. on pp. 1, 6,

16, 17).

[70] C. Singh et al. “Comparison of Different CI/CD Tools Integrated with Cloud

Platform”. In: 2019 9th International Conference on Cloud Computing, Data Science &
Engineering (Confluence). 2019, pp. 7–12. doi: 10.1109/CONFLUENCE.2019.8776985

(cit. on p. 8).

[71] M. Skelton and C. O’Dell. Continuous delivery with windows and .NET. O’Reilly

Media, 2016 (cit. on p. 6).

[72] E. Soares et al. “The effects of continuous integration on software development: a

systematic literature review”. In: Empirical Software Engineering 27.3 (2022-03), p. 78.

issn: 1573-7616. doi: 10.1007/s10664-021-10114-1. url: https://doi.org/10

.1007/s10664-021-10114-1 (cit. on p. 6).

[73] D. Ståhl and J. Bosch. “Modeling continuous integration practice differences in

industry software development”. In: Journal of Systems and Software 87 (2014), pp. 48–
59. issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2013.08.032. url:

https://www.sciencedirect.com/science/article/pii/S0164121213002276

(cit. on p. 6).

103

https://doi.org/https://doi.org/10.1016/j.cl.2015.06.001
https://www.sciencedirect.com/science/article/pii/S1477842415000408
https://www.sciencedirect.com/science/article/pii/S1477842415000408
https://doi.org/https://doi.org/10.1016/j.infsof.2022.107037
https://doi.org/https://doi.org/10.1016/j.infsof.2022.107037
https://www.sciencedirect.com/science/article/pii/S0950584922001537
https://www.sciencedirect.com/science/article/pii/S0950584922001537
https://doi.org/10.1007/978-3-319-91764-1_29
https://doi.org/10.1007/978-3-319-91764-1_29
https://doi.org/10.1007/978-3-319-91764-1_29
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1109/CONFLUENCE.2019.8776985
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/https://doi.org/10.1016/j.jss.2013.08.032
https://www.sciencedirect.com/science/article/pii/S0164121213002276

BIBLIOGRAPHY

[74] J. G. Süß, S. Swift, and E. Escott. “Using DevOps toolchains in Agile model-

driven engineering”. In: Software and Systems Modeling 21 (2022-05), pp. 1–16. doi:

10.1007/s10270-022-01003-2 (cit. on pp. 17, 23, 24).

[75] TechRepublic. https://www.techrepublic.com/article/best-ci-cd-pipeline-
tools/. Accessed 01/23/2024 (cit. on p. 8).

[76] T. Tegeler, F. Gossen, and B. Steffen. “A Model-driven Approach to Continuous

Practices for Modern Cloud-based Web Applications”. In: 2019 9th International
Conference on Cloud Computing, Data Science & Engineering (Confluence). 2019, pp. 1–6.
doi: 10.1109/CONFLUENCE.2019.8776962 (cit. on pp. 1, 21).

[77] T. Tegeler et al. “An Introduction to Graphical Modeling of CI/CDWorkflows with

Rig”. In: Leveraging Applications of Formal Methods, Verification and Validation. Ed. by
T. Margaria and B. Steffen. Cham: Springer International Publishing, 2021, pp. 3–17.

isbn: 978-3-030-89159-6. doi: https://doi.org/10.1007/978-3-030-89159-6_1

(cit. on pp. 1, 22).

[78] The REVISED CI / CD Pipeline - Making Improvements. Accessed 22/10/2023. url:

https://www.youtube.com/watch?v=OcaUQrRo7-Q (cit. on p. 6).

[79] M. Völter. “MD*/DSL Best Practices Update March 2011”. In: Journal of Object
Technology 8 (2009-01). Ed. by AITO (cit. on p. 14).

[80] J. Wettinger et al. “Streamlining DevOps automation for Cloud applications using

TOSCA as standardized metamodel”. In: Future Generation Computer Systems 56

(2016), pp. 317–332. issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2

015.07.017. url: https://www.sciencedirect.com/science/article/pii/S01

67739X15002496 (cit. on p. 22).

[81] What are CI/CD and the CI/CD pipeline? https://www.ibm.com/think/topics/ci-

cd-pipeline. Accessed 17/10/2023 (cit. on p. 6).

[82] What is a CI/CD Pipeline? https://codefresh.io/learn/ci- cd- pipelines/.

Accessed 17/10/2023 (cit. on p. 6).

[83] What is a CI/CD pipeline? https://circleci.com/blog/what- is- a- ci- cd-

pipeline/. Accessed 17/10/2023 (cit. on p. 6).

[84] What is CI/CD?https://about.gitlab.com/topics/ci-cd/. Accessed17/10/2023
(cit. on p. 6).

[85] Z. Zhu et al. “Exploring MDE techniques for engineering simulation models”. In:

Wireless Networks 27 (2020), pp. 3549–3560. doi: https://doi.org/10.1007/s1127

6-019-02226-w. url: https://api.semanticscholar.org/CorpusID:209517121

(cit. on pp. 11, 14).

The NOVAthesis template (v7.1.27) [1]. (12cc90221730b8ba41bb3b1f8b517acd)Bibliography

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/main/template.pdf (cit. on p. 104).

104

https://doi.org/10.1007/s10270-022-01003-2
https://www.techrepublic.com/article/best-ci-cd-pipeline-tools/
https://www.techrepublic.com/article/best-ci-cd-pipeline-tools/
https://doi.org/10.1109/CONFLUENCE.2019.8776962
https://doi.org/https://doi.org/10.1007/978-3-030-89159-6_1
https://www.youtube.com/watch?v=OcaUQrRo7-Q
https://doi.org/https://doi.org/10.1016/j.future.2015.07.017
https://doi.org/https://doi.org/10.1016/j.future.2015.07.017
https://www.sciencedirect.com/science/article/pii/S0167739X15002496
https://www.sciencedirect.com/science/article/pii/S0167739X15002496
https://www.ibm.com/think/topics/ci-cd-pipeline
https://www.ibm.com/think/topics/ci-cd-pipeline
https://codefresh.io/learn/ci-cd-pipelines/
https://circleci.com/blog/what-is-a-ci-cd-pipeline/
https://circleci.com/blog/what-is-a-ci-cd-pipeline/
https://about.gitlab.com/topics/ci-cd/
https://doi.org/https://doi.org/10.1007/s11276-019-02226-w
https://doi.org/https://doi.org/10.1007/s11276-019-02226-w
https://api.semanticscholar.org/CorpusID:209517121
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf

I

Platform-Specif ic Metamodels

105

ANNEX I. PLATFORM-SPECIFIC METAMODELS

Figure I.1: CircleCI Metamodel

106

ANNEX I. PLATFORM-SPECIFIC METAMODELS

Figure I.2: GitHub Actions Metamodel

107

ANNEX I. PLATFORM-SPECIFIC METAMODELS

Figure I.3: Jenkins Metamodel

108

II

Platform-Specif ic OCL Invariants

Listing II.1: CircleCI OCL Invariants

package circleCI_metamodel : circleCI_metamodel = ... {

abstract class Executor

{

attribute name : String[?];

...

invariant nonDuplicateExecutorName(’Duplicate Executor Name. Choose a

different Executor name to ensure uniqueness within the pipeline.’):

Pipeline.allInstances().jobs.executors ->union(Pipeline

.allInstances().executors)->forAll(p | p <> self implies p.name

<> self.name);

invariant mandatoryPipelineExecutorName(’Pipeline Executor Name is

empty. Define Executor name.’):

Pipeline.allInstances().executors ->forAll(p | p.name->notEmpty()

and p.name <> null);

}

}

Listing II.2: GHA OCL Invariants

package gHA_metamodel : gHA_metamodel = ’http://.../gHA_metamodel ’ {

abstract class Trigger

{

invariant UniqueTriggerTypes(’Only one instance of each

trigger type (except ScheduleTrigger) is allowed ’):

not self.oclIsTypeOf(ScheduleTrigger) implies

Trigger.allInstances()->select(t | t.oclType() =

self.oclType())->size() <= 1;

}

class Need

{

attribute jobs : String[+|1] { ordered };

109

ANNEX II. PLATFORM-SPECIFIC OCL INVARIANTS

invariant existingJobsNeeded(’Referenced jobs do not exist.’):

self.jobs->forAll(jobName | Job.allInstances()->exists(j |

j.name = jobName));

}

}

Listing II.3: Jenkins OCL Invariants

package jenkins_metamodel : jenkins_metamodel = ... {

class Upstream extends Trigger

{

attribute jobs : String[+|1] { ordered };

...

invariant existingJobs(’Referenced jobs do not exist.’):

self.jobs->forAll(jobName | Stage.allInstances()->exists(s |

s.name = jobName));

}

}

110

III

Platform-Specif ic Grammars

Listing III.1: Circle grammar definition

grammar org.xtext.example.circleci.Circleci with org.eclipse.xtext

.common.Terminals

import "http://www.example.org/circleCI_metamodel"

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

Pipeline returns Pipeline:

’Pipeline ’

((BEGIN (setup?=’setup ’)? ’version’ version=EString END))

((orbs+=Orb)+ NEWLINE?)?

((commands+=Command)+ NEWLINE?)?

((executors+=Executor)+ NEWLINE?)?

((jobs+=Job)+ NEWLINE?)

((workflows+=Workflow)+ NEWLINE?)?

;

Command returns Command:

’Command’

(BEGIN

’name’ name=EString

(’description ’ description=EString)?

(parameters+=Parameter)*

(steps+=Step)+

END);

Parameter returns Parameter:

’Parameter ’

(BEGIN

’name’ name=EString

’type’ type=PARAMETER_TYPES

(’default’ default=EString)?

111

ANNEX III . PLATFORM-SPECIFIC GRAMMARS

(’description ’ description=EString)?

(’enumValues ’ enumValues+=EString (’,’ enumValues+=EString)*)?

END);

Listing III.2: GHA grammar definition

grammar org.xtext.example.gha.GHA with org.eclipse.xtext

.common.Terminals

import "http://www.example.org/gHA_metamodel"

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

Pipeline returns Pipeline:

’Pipeline ’

((BEGIN’name’ name=EString (’run-name’ run_name=EString)? END))?

((envs+=Env)+ NEWLINE?)?

((permissions+=Permission)+ NEWLINE?)?

(defaultsetting=DefaultSetting NEWLINE?)?

(concurrency=Concurrency NEWLINE?)?

((triggers+=Trigger)+ NEWLINE?)?

((jobs+=Job)+ NEWLINE?);

Permission returns Permission:

’Permission ’

(BEGIN

(readAll?=’readAll ’)?

(writeAll?=’writeAll ’)?

(disableAll?=’disableAll ’)?

’permission ’ permission=PERMISSIONS

’scope’ scope=PERMISSION_SCOPES

END);

SaveCache returns SaveCache:

’SaveCache ’

(BEGIN

’uses’ uses="\"actions/cache/save@v4\""

’key’ key=EString

’paths’ paths+=EString ("," paths+=EString)*

(’upload_chunk_size ’ upload_chunk_size=EString)?

(composite_action+=Step)*

(^with+=InputParams)*

(with_inputPair=InputPair)?

END);

112

ANNEX III. PLATFORM-SPECIFIC GRAMMARS

Listing III.3: Jenkins grammar definition

grammar org.xtext.example.jenkins.Jenkins with org.eclipse.xtext

.common.Terminals

import "http://www.example.org/jenkins_metamodel"

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

Pipeline returns Pipeline:

’Pipeline ’ NEWLINE

((agents+=Agent)+ NEWLINE?)

((options+=Option)+ NEWLINE?)?

((triggers+=Trigger)+ NEWLINE?)?

((parameter_directives+=Parameter_Directive)+ NEWLINE?)?

((environments+=Environment)+ NEWLINE?)?

((tools+=Tool)+ NEWLINE?)?

((stages+=Stage)+ NEWLINE?)

((post+=Post)+ NEWLINE?)?

;

StringParam returns StringParam:

’StringParam ’

(BEGIN

’name’ name=EString

(’description ’ description=EString)?

’defaultValue ’ defaultValue=EString

END);

Matrix returns Matrix:

’Matrix’

(BEGIN

(axis+=Axis)+

(stages+=Stage)+

(inputs+=Input)*

(when+=When)*

(environments+=Environment)*

(agents+=Agent)*

(tools+=Tool)*

(post+=Post)*

(stage_options+=StageOption)*

END);

113

IV

XMI2DSL Plugin

Listing IV.1: XMI2DSL plugin

public class XMIReader {

public static void convertXMI2DSL(String filePath , Shell shell) {

String extension = "";

try (BufferedReader br = new BufferedReader(new FileReader(filePath))) {

br.readLine();

String secondLine = br.readLine();

if (secondLine != null) {

if (secondLine.contains("circleCI")) {

extension = ".circleci";

} else if (secondLine.contains("gHA")) {

extension = ".gha";

}

else {

extension = ".jenkins";

}

}

} catch (IOException e) {

e.printStackTrace();

return;

}

ResourceSet resourceSet = new ResourceSetImpl();

URI xmiUri = URI.createFileURI(filePath);

Resource resource = resourceSet.getResource(xmiUri, true);

EObject rootElement = resource.getContents().get(0);

if (rootElement == null) {

System.err.println("Root␣element␣not␣found␣in␣the␣XMI␣file.");

return;

}

List<String> xtextLines = null;

if(extension.contains(".circleci")) {

CircleCiFormatter circleFormatter = new CircleCiFormatter();

xtextLines = circleFormatter.generateXtext(rootElement);

}

else if(extension.contains(".gha")) {

GHAFormatter ghaFormatter = new GHAFormatter();

114

ANNEX IV. XMI2DSL PLUGIN

xtextLines = ghaFormatter.generateXtext(rootElement);

}

else if(extension.contains(".jenkins")) {

JenkinsFormatter jenkinsFormatter = new JenkinsFormatter();

xtextLines = jenkinsFormatter.generateXtext(rootElement);

}

writeXtextToFile(xtextLines , filePath, extension);

}

private static void writeXtextToFile(List<String> xtextLines , String filePath,

String extension) {

String directoryPath = new File(filePath).getParent();

String baseFileName = new File(filePath).getName();

String fileNameWithoutExt =

baseFileName.substring(0, baseFileName.lastIndexOf(’.’));

String outputPath =

Paths.get(directoryPath , fileNameWithoutExt + extension).toString();

try (BufferedWriter writer = new BufferedWriter(new FileWriter(outputPath))) {

for (String line : xtextLines) {

writer.write(line);

writer.newLine();

}

} catch (IOException e) {

e.printStackTrace();

}

}

}

115

V

Platform-Specif ic Formatters

Listing V.1: CircleCI Formatter

public class CircleCiFormatter {

public List<String> generateXtext(EObject object) {

List<String> xtextLines = new ArrayList <>();

generateXtextLines(object, xtextLines , 0);

return xtextLines;

}

private void generateXtextLines(EObject object, List<String> xtextLines ,

int indentLevel) {

EClass eClass = object.eClass();

String className = eClass.getName();

String indent = "\t".repeat(indentLevel);

switch (className) {

case "Pipeline":

xtextLines.add(indent + "Pipeline");

appendAttributesAndReferences(object, xtextLines , eClass,

indentLevel);

break;

case "Command":

xtextLines.add(indent + "Command");

appendCommandAttributesAndRef(object, xtextLines , eClass,

indentLevel + 1);

xtextLines.add("");

break;

...

default:

appendAttributesAndReferences(object, xtextLines , eClass,

indentLevel + 1);

break;

}

}

116

ANNEX V. PLATFORM-SPECIFIC FORMATTERS

private void appendAttributesAndReferences(EObject object,

List<String> xtextLines , EClass eClass, int indentLevel) {

String indent = "\t".repeat(indentLevel);

for (EAttribute attribute : eClass.getEAllAttributes()) {

Object value = object.eGet(attribute);

if (value != null) {

if (value instanceof PARAMETER_TYPES) {

xtextLines.add(indent + attribute.getName() + "␣" +

((Enum<?>) value).name());

} else if (value instanceof String &&

!((String) value).isEmpty()) {

xtextLines.add(indent + attribute.getName() + "␣\"" +

value + "\"");

} else if (value instanceof Boolean && (Boolean) value) {

xtextLines.add(indent + attribute.getName());

}

}

}

processReferences(object, xtextLines , eClass, indentLevel);

}

private void processReferences(EObject object, List<String> xtextLines ,

EClass eClass,

int indentLevel) {

List<EObject> references = getReferences(object, eClass);

for (EObject reference : references) {

generateXtextLines(reference , xtextLines , indentLevel);

}

}

}

Listing V.2: GHA Formatter

public class GHAFormatter {

public List<String> generateXtext(EObject object) {

List<String> xtextLines = new ArrayList <>();

generateXtextLines(object, xtextLines , 0);

return xtextLines;

}

private void generateXtextLines(EObject object, List<String> xtextLines ,

int indentLevel) {

EClass eClass = object.eClass();

String className = eClass.getName();

117

ANNEX V. PLATFORM-SPECIFIC FORMATTERS

String indent = "\t".repeat(indentLevel);

switch (className) {

case "Pipeline":

xtextLines.add(indent + "Pipeline");

appendAttributesAndReferences(object, xtextLines , eClass,

indentLevel);

break;

case "Job":

xtextLines.add(indent + "Job");

appendJobAttributesAndReferences(object, xtextLines , eClass,

indentLevel + 1);

xtextLines.add("");

break;

...

default:

appendAttributesAndReferences(object, xtextLines , eClass,

indentLevel + 1);

break;

}

}

private void appendAttributesAndReferences(EObject object,

List<String> xtextLines , EClass eClass, int indentLevel) {

String indent = "\t".repeat(indentLevel);

for (EAttribute attribute : eClass.getEAllAttributes()) {

Object value = object.eGet(attribute);

if (value != null) {

if (value instanceof String && !((String) value).isEmpty()) {

xtextLines.add(indent + attribute.getName() + "␣\"" +

value + "\"");

} else if (value instanceof Boolean && (Boolean) value) {

xtextLines.add(indent + attribute.getName());

} else if (value instanceof List<?>) {

appendEnumValues(attribute.getName(), (List<?>) value,

xtextLines , indentLevel);

}

}

}

processReferences(object, xtextLines , eClass, indentLevel);

}

private void processReferences(EObject object, List<String> xtextLines ,

EClass eClass, int indentLevel) {

List<EObject> references = getReferences(object, eClass);

for (EObject reference : references) {

generateXtextLines(reference , xtextLines , indentLevel);

118

ANNEX V. PLATFORM-SPECIFIC FORMATTERS

}

}

}

Listing V.3: Jenkins Formatter

public class JenkinsFormatter {

public List<String> generateXtext(EObject object) {

List<String> xtextLines = new ArrayList <>();

generateXtextLines(object, xtextLines , 0);

return xtextLines;

}

private void generateXtextLines(EObject object, List<String> xtextLines ,

int indentLevel) {

EClass eClass = object.eClass();

String className = eClass.getName();

String indent = "\t".repeat(indentLevel);

switch (className) {

case "Pipeline":

xtextLines.add(indent + "Pipeline");

appendAttributesAndReferences(object, xtextLines , eClass,

indentLevel);

break;

case "Job":

xtextLines.add(indent + "Job");

appendJobAttributesAndReferences(object, xtextLines , eClass,

indentLevel + 1);

xtextLines.add("");

break;

...

default:

appendAttributesAndReferences(object, xtextLines , eClass,

indentLevel + 1);

break;

}

}

private void appendAttributesAndReferences(EObject object,

List<String> xtextLines , EClass eClass, int indentLevel) {

String indent = "\t".repeat(indentLevel);

for (EAttribute attribute : eClass.getEAllAttributes()) {

Object value = object.eGet(attribute);

119

ANNEX V. PLATFORM-SPECIFIC FORMATTERS

if (value != null) {

if (value instanceof String && !((String) value).isEmpty()) {

xtextLines.add(indent + attribute.getName() + "␣\"" +

value + "\"");

} else if (value instanceof Boolean && (Boolean) value) {

xtextLines.add(indent + attribute.getName());

} else if (value instanceof List<?>) {

appendEnumValues(attribute.getName(), (List<?>) value,

xtextLines , indentLevel);

}

}

}

processReferences(object, xtextLines , eClass, indentLevel);

...

}

private void processReferences(List<EObject> references ,

List<String> xtextLines ,

int indentLevel) {

for (EObject reference : references) {

generateXtextLines(reference , xtextLines , indentLevel);

}

}

}

120

VI

Platform-Specif ic ATL Rules

Listing VI.1: CICD2GHA ATL

−− @path GHA=/GHA_metamodel/model/gHA_metamodel . ecore

−− @path CICD=/CICD_metamodel/model/cICD_metamodel . ecore

module CICD2GHA;

c r ea t e OUT : GHA from IN : CICD ;

ru le P ipe l ine2P ipe l ine {

from

s : CICD! P ipe l ine

to

t : GHA! P ipe l ine (

name <− i f not s . name . oclIsUndefined () then

s . name

e lse
OclUndefined

endif ,

run_name <− OclUndefined ,

envs <− s . pipeline_environment−>c o l l e c t (env |

thisModule . transformEnvironment (env)) ,

j obs <− s . jobs ,

t r i g g e r s <− i f s . t r i gge r s −>notEmpty () and (s . inputs−>notEmpty () or

s . output−>notEmpty ()) then

s . t r i gge r s −>union (s . inputs)−>union (s . output)−>

c o l l e c t (t r i g g e r |

i f t r i g g e r . oclIsTypeOf (CICD! ScheduleTrigger) then

thisModule . transformScheduleTrigger (t r i g g e r)

e lse
Sequence {

thisModule . CreateWorkflowDispatch (s . inputs ,

s . output)

}

endi f

)

e lse i f s . t r i gge r s −>isEmpty () and (s . inputs−>notEmpty () or

s . output−>notEmpty ()) then

Sequence { thisModule . CreateWorkflowDispatchTrigger (s . inputs ,

s . output) }

e lse
s . t r i gge r s −>c o l l e c t (t r i g g e r |

121

ANNEX VI. PLATFORM-SPECIFIC ATL RULES

thisModule . transformScheduleTrigger (t r i g g e r))

endi f

endi f

)

}

lazy ru le transformScheduleTrigger {

from

s : CICD! ScheduleTrigger

to

t : GHA! ScheduleTrigger (

cron <− s . t imer

)

}

unique lazy ru le CreateWorkflowDispatch {

from

inputs : Sequence (CICD! Input) ,

outputs : Sequence (CICD! Output)

to

workflowCallTrigger : GHA! WorkflowCallTrigger (

inputs <− inputs ,

outputs <− outputs

)

}

Listing VI.2: CICD2Jenkins ATL

−− @path Jenkins=/Jenkins_metamodel/model/jenkins_metamodel . ecore

−− @path CICD=/CICD_metamodel/model/cICD_metamodel . ecore

module CICD2Jenkins ;

c r ea t e OUT : Jenkins from IN : CICD ;

ru le P ipe l ine2P ipe l ine {

from

s : CICD! P ipe l ine

to

t : Jenkins ! P ipe l ine (

environments <− s . pipel ine_environment −>c o l l e c t (env |

thisModule . transformEnvironment (env)) ,

s t ages <− s . jobs−>c o l l e c t (job | thisModule . Job2Stage (job)) ,

t r i g g e r s <− s . t r i gge r s −>c o l l e c t (t r i g g e r |

thisModule . transformScheduleTrigger (t r i g g e r)) ,

agents <− i f s . agents−>isEmpty () then

thisModule . CreateAnyAgent (’ ’)

e lse
s . agents−>c o l l e c t (agent |

i f agent . conta iner . ocl IsUndefined () then

thisModule . Agent2Node (agent)

e lse
thisModule . DockerContainer2Docker (agent . conta iner ,

agent . l abe l s−> f i r s t ())

endi f

)

122

ANNEX VI. PLATFORM-SPECIFIC ATL RULES

endif ,

parameter_d i rec t ives <− i f s . inputs−>notEmpty () then

s . inputs−>c o l l e c t (input |

i f input . type = #STRING then

thisModule . Input2StringParam (input)

e lse i f input . type = #TEXT then

thisModule . Input2TextParam (input)

. . .

e lse
OclUndefined

endi f

. . .

)

e lse
OclUndefined

endi f

)

}

lazy ru le CreateAnyAgent {

from

blank : S t r ing

to

agent : Jenkins !Any ()

}

123

VII

Platform-Specif ic Acceleo Templates

Listing VII.1: GHA Template

[comment encoding = UTF−8 /]

[module generate (’ ht tp ://www. example . org/gHA_metamodel ’)]

[template public generateElement (aP ipe l ine : P ipe l ine)]

[comment @main/]

[f i l e (’GitHub␣Actions ’ + ’ . yml ’ , fa lse , ’UTF−8 ’)]

[i f (aP ipe l ine . name−>notEmpty ())]

[’name : ␣ ’ + aP ipe l ine . name/] :

[/ i f]
[i f (aP ipe l ine . run_name−>notEmpty ())]

[’ run−name : ␣ ’ + aP ipe l ine . run_name /] :

[/ i f]
[i f (envs−>notEmpty ())]

env :

[for (e : Env | envs)]

[generateEnv (e)/]

[/ for]
[/ i f]
[i f (permissions−>notEmpty ())]

[i f (permissions−>e x i s t s (p | p . d i sab l eA l l = t rue))]

permissions : { }

[e l s e i f (permissions−>e x i s t s (p | p . readAll = t rue))]

permissions : read−a l l

[e l s e i f (permissions−>e x i s t s (p | p . wr i teAl l = t rue))]

permissions : write−a l l

[/ i f]
[i f (permissions−>fo rA l l (p | p . wr i teAl l = f a l s e and p . d i sab l eA l l = f a l s e and

p . readAll = f a l s e))]

permissions :

[/ i f]
[for (p : Permission | permissions−>s e l e c t (p | p . wr i teAl l = f a l s e and

p . d i sab l eA l l = f a l s e and p . readAll = f a l s e))]

[generatePermiss ions (p)/]

[/ for]

124

ANNEX VII. PLATFORM-SPECIFIC ACCELEO TEMPLATES

[/ i f]
[i f (de f au l t s e t t i ng −>notEmpty ())]

de f au l t s :

[for (default : De fau l t Se t t ing | de f au l t s e t t i n g)]

[genera teDefaul t s (default)/]
[/ for]
[/ i f]
[i f (aP ipe l ine . concurrency−>notEmpty ())]

concurrency :

[generateConcurrency (aP ipe l ine . concurrency)/]

[/ i f]
[genera teTr iggers (aP ipe l ine)/]

[generate Jobs (aP ipe l ine)/]

[/ f i l e]

[/ template]

Listing VII.2: Jenkins Template

[comment encoding = UTF−8 /]

[module generate (’ ht tp ://www. example . org/jenkins_metamodel ’)]

[template public generateElement (aP ipe l ine : P ipe l ine)]

[comment @main/]

[f i l e (’ Jenkins ’ + ’ . yml ’ , fa lse , ’UTF−8 ’)]

p ipe l ine {

[for (a : Agent | aP ipe l ine . agents)]

[generateAgent (a)/]

[/ for]
[generateOptions (aP ipe l ine)/]

[genera teTr iggers (aP ipe l ine)/]

[generateParameterDirec t ive (aP ipe l ine)/]

[i f (aP ipe l ine . environments−>notEmpty ())]

environment {

[for (e : Environment | aP ipe l ine . environments)]

[generateKeyValue (e)/]

[/ for]
}

[/ i f]
[i f (aP ipe l ine . too l s−>notEmpty ())]

t oo l s {

[for (t : Tool | aP ipe l ine . t oo l s)]

[t . t oo l . t oS t r ing () /] [t . tool_name/]

[/ for]
}

[/ i f]
[genera teStages (aP ipe l ine)/]

[i f (aP ipe l ine . _post−>notEmpty ())]

125

ANNEX VII. PLATFORM-SPECIFIC ACCELEO TEMPLATES

post {

[aP ipe l ine . _post . condi t ion . t oS t r ing () /] {

[for (p : Post | aP ipe l ine . _post)] [generatePostS teps (p)/] [/ for]
}

}

[/ i f]
}

[/ f i l e]

[/ template]

[template public generateNodeAgent (aNode : Node)]

agent {

node {

label ’ [aNode . l a b e l /] ’

[i f (aNode . customWorkspace−>notEmpty ())]

customWorkspace ’ [aNode . customWorkspace/] ’

[/ i f]
}

}

[/ template]

126

VIII

Usability Average Score per Question

Figure VIII.1 compares the average SUS scores per question between Textual and VS Code,

illustrating the contrast in scores across different questions to highlight the strengths and

weaknesses of each interface.

Figure VIII.1: SUS Average Score per Question

The Textual interface not only outperforms the VS Code interface across all SUS

questions but also shows particularly strong performance in positively phrased questions

(odd-numbered), with notable differences in Q1, Q3, and Q7. While even-numbered

questions (negatively phrased) still favor Textual, the margin is narrower.

The statistical analysis reinforces the observation that, although there is a moderate

positive correlation between the SUS scores of Textual and VS Code, the differences in

usability scores are not statistically significant.

127

ANNEX VIII . USABILITY AVERAGE SCORE PER QUESTION

Table VIII.1: SUS per Question Textual vs VS Code

Statistic Result P-value

Mann-Whitney U Test 52.0 0.9096

Similarly, Figure VIII.2 compares the Visual andBuddy interfaces across SUS questions.

The graph shows that Buddy has better results than Visual, although the differences are

less significant compared to the Textual vs VS Code approaches.

Figure VIII.2: SUS Average Score per Question

Concerning visual approaches, Buddy generally outperforms Visual across most ques-

tions. Notably, both tools achieve high scores on questions related to specific usability

aspects (Q3 and Q5), indicating strong performance in these areas. Despite Buddy’s

overall higher performance, the discrepancies between the two tools are not substantial,

affirming that Visual still provides a competitive user experience in certain aspects.

Table VIII.2: SUS per Question Visual vs Buddy

Statistic Result P-value

Mann-Whitney U Test 48.0 0.9095

These results indicate a very strong positive correlation between the usability scores

of Visual and Buddy. The Mann-Whitney U test results show no significant difference in

the scores, confirming that users perceive similar usability in both tools.

128

year Dual-Modeling Approaches in CI/CD Alexandre Oliveira

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Methodology
	1.6 Institutional Context
	1.7 Document Structure

	2 Background
	2.1 DevOps: A Collaborative Approach for Agile Software Delivery
	2.1.1 Orchestrating Software Delivery: The Role of CI/CD Pipelines

	2.2 Model-Driven Engineering
	2.2.1 Abstraction: Distilling the Essence of Complexity
	2.2.2 Models: Capturing the Essence in a Unified Language
	2.2.3 Modeling Languages: UML as a Lingua Franca of MDE
	2.2.4 Metamodels: Templates for Model Cohesion and Interoperability
	2.2.5 Transformations: Orchestrating Model Evolution
	2.2.6 Modeling Approaches
	2.2.7 Modeling Tools

	2.3 Challenges in Modeling Solutions for CI/CD
	2.4 Summary

	3 Related Work
	3.1 Literature Review
	3.1.1 Planning
	3.1.2 Search Strategy
	3.1.3 Selection Criteria
	3.1.4 Execution

	3.2 Existing Modeling Mechanisms for DevOps
	3.3 Ongoing Trends
	3.3.1 AI/ML-driven DevOps
	3.3.2 Low-Code
	3.3.3 Cloud-Based DevOps
	3.3.4 Honorable Mentions

	3.4 Summary

	4 Model-driven Languages
	4.1 Requirements Analysis
	4.1.1 Functional Requirements (FR)
	4.1.2 Non-Functional Requirements (NFR)

	4.2 Solution Architecture
	4.3 Core Metamodel Design
	4.3.1 Generic Metamodel
	4.3.2 Platform-Specific Metamodels
	4.3.3 OCL Invariants for Metamodel Validation

	4.4 Textual Modeling
	4.4.1 Grammar Definition
	4.4.2 Syntax
	4.4.3 Tool Support
	4.4.4 Challenges

	4.5 Graphical Modeling
	4.5.1 Visual Language Design
	4.5.2 Tree View
	4.5.3 Tool Support

	4.6 Platform-Independent to Platform-Specific Transformations
	4.6.1 ATL Overview
	4.6.2 Transformation Workflow

	4.7 Code Generation
	4.7.1 Code Generation Mechanism

	5 Evaluation
	5.1 Planning
	5.1.1 Objectives Definition
	5.1.2 Participants' Demography and Selection
	5.1.3 Experiment Materials
	5.1.4 Hypothesis Formulation
	5.1.5 Experiment Session Plan

	5.2 Execution
	5.2.1 Sessions Procedure

	5.3 Results
	5.3.1 Demographic Data
	5.3.2 Quantitative Data
	5.3.3 Qualitative Data

	5.4 Results Discussion
	5.4.1 Interpretation of Findings
	5.4.2 Inferences
	5.4.3 Lessons Learned

	5.5 Threats to Validity

	6 Conclusion
	6.1 Overview
	6.2 Limitations
	6.3 Future Work

	Bibliography
	I Platform-Specific Metamodels
	II Platform-Specific OCL Invariants
	III Platform-Specific Grammars
	IV XMI2DSL Plugin
	V Platform-Specific Formatters
	VI Platform-Specific ATL Rules
	VII Platform-Specific Acceleo Templates
	VIII Usability Average Score per Question
	Back Matter
	Back Cover
	Spine

