
Programmer User Studies:
Supporting Tools & Features

Lázaro Costa∗, Susana Barbosa†, Jácome Cunha∗

lazaro@fe.up.pt, susana.a.barbosa@inesctec.pt, jacome@fe.up.pt
∗HASLab/INESC TEC, Faculty of Engineering, University of Porto, Portugal

†INESC TEC, Portugal

Abstract—User studies are paramount for advancing science.
In particular, the empirical evaluation of programmer-oriented
tools is important to validate research ideas and prototypes, as
well as production-ready tools. Previous research has collected
several tools used by the software engineering and behavioral
science communities to design and run studies.

In this work, we study tools used in software engineering
studies and identify their features. Furthermore, we analyze three
behavioral science experiment tools to identify design ideas that
might be adapted to programmer user studies.

With this work, we present the set of features currently
offered by software engineering tools to support researchers
in the design and execution of programmer user studies. We
also present the characteristics of some tools used in behavioral
science experiments to identify design ideas that can be adapted
to programmer user studies.

Index Terms—Empirical Software Engineering, Empirical
Evaluation Tools

I. INTRODUCTION

Several research communities, such as software engineering
(SE) or human-centric, have, for many years now, imposed
the need for empirical evaluation of proposed techniques,
methodologies, and corresponding tools. In particular, user
studies are now standard when evaluating prototypes and
implementing new approaches. Moreover, empirical software
engineering evaluation is also common in many software
companies. While these studies are common, they are also
hard to design and run [1]. Indeed, they require the execution
of the study in specific (controlled) conditions and the capture
of all the relevant information for further analysis. However, it
is difficult to create the required environment and to centralize
all the collected information in a simple package for later
analysis [2], [3].

The elaboration of user studies and making all the collected
information available is crucial to support research claims,
research work, and the evaluation of prototypes and tools.
Indeed, a significant amount of scientific research is currently
supported by user studies. However, it is not easy to plan,
execute, capture, and make available all the relevant informa-
tion of a user study [4]. Thus, planning, executing, capturing,

This work is financed by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia, within project
UIDB/50014/2020. DOI 10.54499/UIDB/50014/2020

This research was supported by the doctoral Grant SFRH/BD/1513 66/2021
financed by the Portuguese Foundation for Science and Technology (FCT),
and with funds from Portugal 2020, under MIT Portugal Program.

and making all the captured information available in user
studies is now more than ever a technological challenge in
many research fields [2] such as software engineering [5]–[7],
behavior science [8], [9], or quality of (user) experience [10].

There are SE experiment tools available to aid researchers
making their user studies, such as ARRESTT [11], eSEE [12],
Experiment Manager [13], ExpDSL [14], [15], Ginger2 [16],
K-Alpha [17] or SESE [18]. However, these approaches have
limitations in terms of recruitment of participants, designing
studies using wizards and guides, reusing study configuration
files, and reusing configurable task interfaces and components.
In the field of behavioral science, there are some tools (Go-
rilla [19], jsPsych [20] and LookIt [21]) able to solve these
limitations, but they are specific to this domain.

In this research, we conduct a literature review of the
experiment tools used in software engineering studies and
identify their features. Furthermore, we consider three behav-
ioral science experiment tools to identify their features and
design ideas that might be adapted to programmer user studies.

To aid the development of more effective evaluation tools,
we define the following research question (RQ):
What tools and corresponding features are currently
available for supporting user studies?

To answer this RQ, we collected the tools identified in
[22] covering the years from 2002 to 2023 and tried to find
additional tools built since 2023. Following, we analyzed each
tool and identified its relevant features for user studies (see
Section III).

Based on the answer to the RQ (see Section IV for a
discussion), our main contribution is:

• An overview of the state-of-the-art of the current tools to
support user experiments and their features.

• An overview of three behavioral science experiment
tools to identify design ideas that might be adapted to
programmer user studies.

In the next section (II), we revise related work. In Section V
we address the threats to the validity of our work and in
Section VI we present conclusions and future work.

II. RELATED WORK

Our work builds on the work of Davis et al. [22], who
presented a study in which 26 researchers were interviewed to
understand their challenges when conducting programmer user
studies. The study identifies several challenges and provides



high-level solutions to address them. Furthermore, Davis et
al. look for additional solution strategies in 10 experiment
platforms (7 software engineering and 3 behavioral science
experiments). However, our work focuses on the concrete tool
features available on the platforms to develop user studies.

Buse et al. [1] explores both the advantages and obsta-
cles associated with user evaluation in software engineering
research. Their comprehensive analysis sheds light on the
benefits of user evaluation methodologies while addressing the
challenges and limitations encountered in their implementa-
tion. This work provides valuable guidance for researchers
seeking to optimize user evaluation practices in software
engineering studies. However, this work does not address the
available experimental platforms to develop user studies and
their features as we do.

Sjoeberg et al. [23] conducted a survey of controlled experi-
ments in software engineering, thoroughly examining method-
ologies and outcomes in the field. However, this study only
provides insights into trends, challenges, and best practices
surrounding controlled experiments in SE research.

Kitchenham et al. [24] propose a set of research guidelines
intended to encourage discussion and collaboration among
software researchers. Their primary objective is to offer valu-
able assistance to researchers, reviewers, and meta-analysts
as they engage in various stages of empirical study design,
execution, and evaluation within the field of SE. The research
guidelines are proposed to encourage debate and collaboration
between researchers at the various stages of the empirical
studies, but they do not characterize the SE tools as we do.

Ivie and Thain [25] discuss diverse reproducibility objec-
tives in scientific computing. They delve into the techni-
cal challenges hindering reproducibility, review existing ap-
proaches, and highlight areas for further research. They focus
on reproducibility, while our work focuses on tools to aid
the execution of user studies and not necessarily on their
reproducibility.

Namoun et al. [26] conducted a comprehensive review of the
research issues and challenges in automated website usability
evaluation tools. They provide a detailed exploration of exist-
ing tools and introduce a usability framework comprising 19
usability dimensions, examining how 10 popular web usability
testing tools align with this framework. However, this work is
focused on a specific domain.

Martin and Yelmo [27] offer guidance for the development
of accessibility evaluation tools within the context of the Uni-
fied Software Development Process. It outlines a systematic
approach to create tools that assess software accessibility. The
guidance provided aids developers in ensuring that accessibil-
ity considerations are integrated seamlessly into the software
development life cycle. Again, this is a very focused work.

Costa et al. [28] compared and classified 19 characteristics
of existing tools designed to assist researchers across various
fields in achieving reproducibility in their work. By evaluating
these tools for replicating experiments, they offer guidance for
researchers seeking appropriate tools to enhance the repro-
ducibility of their experiments. However, this work is focused

on reproducibility tools and not necessarily on tools to aid in
user studies.

III. EXPERIMENT TOOLS

Davis et al. [22] conducted a literature review covering
the year from 2002 to 2023 and identified seven experi-
ment tools used in software engineering studies, including
ARRESTT [11], eSEE [12], Experiment Manager [13], Ex-
pDSL [14], [15], Ginger2 [16], K-Alpha [17] and SESE [18].
Additionally, they considered three behavioral science experi-
ment tools, namely Gorilla [19], jsPsych [20] and LookIt [21].

Our review of prior work found no additional tools built
since 2023, so we considered the same set of ten tools.

We read the published work of each tool to understand its
functionalities. We have also read the available documenta-
tion/website. Based on this, we briefly describe each tool in
the following paragraphs and highlight its features. We include
a description whenever we describe a new feature.

A. Collected Tools

ARRESTT: The Application of Reproducible Research on
Evaluation of Software Testing Technique (ARRESTT) frame-
work offers practical support for executing and reproducing
experimental studies involving software testing techniques [3],
[11]. Its main features are:

• Reuse and adaptation of user studies. Reuse and adapt
publicly available user studies to reduce the time spent
developing a new study.

• Packaging of user studies. All the necessary information
from the study is packaged (code, data, etc.) so that they
can be reproduced in the future.

• Remote experiments. Enable remote monitoring of users’
studies in order to remotely track participants’ progress
and reduce face-to-face interaction with participants.

• Public sharing. Public sharing user studies (including
tasks, code, and results) to inspire others.

eSEE: The experimental Software Engineering Environment
(eSEE) is a versatile framework designed to establish environ-
ments that facilitate scientific knowledge management across
the entire SE experimentation process. This includes tasks
such as defining, planning, executing, and packaging studies
within the field of SE [12]. As the system expanded, the
task of maintenance became increasingly time-consuming and
impossible to continue. However, a new platform was created
to maintain all the data and packages of the central integrated
platform [22], [29]. Its main features are:

• Remote experiments.
• Packaging of user studies.
• Reuse and adaptation of user studies.

Experiment Manager: This framework supports software en-
gineering experiments in high-performance computing (HPC)
classroom environments [13]. Study participants solve pro-
gramming tasks in a supervised manner using their local
tools or their integrated development environment (IDE). The
researcher, in this case, the professor, can monitor the exper-
iment’s progress and all the data collected. In the end, the



data collected is packaged and sent to the central web-based
server for analysis. This approach provides the following main
features:

• Remote experiments.
• Participants registration. Allow participants to register on

the platform to facilitate interaction between researchers
and potential participants. It works online, containing sev-
eral user studies accessible to the platform’s community.

• Sending collected data. Automatically send the collected
data to the researcher to facilitate the data collection.

• Packaging of user studies.
ExpDSL: This integrated end-to-end tool provides an en-
vironment to conduct controlled human experiments using
prototype domain-specific languages [14], [15]. The experi-
ment environment is based on the Meta Programming System
(MPS) and supports all steps of experimentation [30]. ExpDSL
exposes the following features:

• Remote experiments.
• Packaging of user studies.

Ginger2: This platform is an integrated environment that
focuses on supporting in vitro studies in empirical software
engineering [16]. This approach, which includes hardware
and software, is mainly focused on automatically collecting
a variety of types of data, including three-dimensional move-
ment, skin resistance level, mouse and keystrokes, eye traces,
and videotape data. Furthermore, the experiments executed in
that approach should follow a pre-determined process [22].
Given the age of this proposal, we did not find any useful
characteristics to aid in current user studies.
K-Alpha: This tool for managing SE experiments is an exten-
sible empirical software engineering computational platform
aiming to address the missing functionalities in software
engineering experiments using plugins [17]. The main goal
of this approach is to promote the creation of reproducible
experimental resources, empowering researchers to create,
share, and repeat studies in the field of software testing,
including techniques for test case selection and test suite
minimization [17]. Its main features are:

• Remote experiments.
• Participants registration.
• Participants preferences.
• Participants notification. Notify registered participants of

the opening of new user studies according to the proposed
preferences of each participant.

• Packaging of user studies.
SESE: Simula Experiment Support Environment (SESE) [18]
is a web-based platform that supports remote programmer user
studies at scale and face-to-face experiments. This approach
allows users to register on the platform, where they can fill
in their personal data and recover the experimental data after
a failure without data loss. Moreover, researchers can invite
users to execute the study and benefit from a messaging system
allowing the researcher to interact with the user (e.g., for in-
structions). Furthermore, this approach supports the managing
and monitoring of all the experiment’s data and the backup

of the experimental data on a central server [22]. Its main
features are:

• Participants registration.
• Participants preferences. Set participants’ preferences to

only receive notifications from the platform about the
opening of user studies considered relevant.

• Participants notification.
• Remote experiments.
• Researcher-participant communication. Allow communi-

cation between researchers and participants for easier
contact.

• Sending collected data.
• Recovery of experimental data. Automatically recover the

experiment data after a failure without data loss.
• Data backup. Automatically backup the experimental

data on a central server to prevent data loss.
Gorilla: This is an online experiment builder on which
multiple researchers may design and host experiments [19].
Researchers can use its graphical user interface to configure
task interfaces. Additionally, Gorilla offers a comprehensive
collection of guidance materials to assist researchers in creat-
ing well-structured experiments [22]. Its main features are:

• Reuse and adaptation of user studies.
• Remote experiments.
• Participants registration.
• Packaging of user studies.
• User studies templates. Pre-defined templates for types

of user studies to facilitate the creation of new studies.
jsPsych: This JavaScript library is an online behavioral ex-
periment platform that structures experiments as a series of
sequential steps and decisions [20]. Every experiment step
offers a researcher-customizable task interface for participants
to engage in specific tasks. The outcomes of these tasks
are logged and can impact the subsequent stages of the
experiment. jsPsych offers a core set of task interfaces tailored
for behavioral science made available for the community [22].
The main features that this approach supports are:

• Task templates. Have pre-defined templates for task types
to facilitate the creation of new tasks.

• Participants registration.
• Remote experiments.
• Recovery of experimental data.
• Packaging of user studies.

LookIt: This is a shared online platform for remote data col-
lection on which researchers from different organizations may
design and execute experiments [21]. It offers the capacity to
outline the sequential actions and choices within an experiment
while also equipping researchers with a range of customizable
task interfaces that can be presented to participants throughout
the study. Furthermore, participants are allowed to join a
shared participant pool, enabling them to participate in up-
coming experiments at a frequency of their preference [22].
LookIt includes the following features:

• Remote experiments.
• Participants registration.



• Participants preferences.
• Participants notification.
• Recording user’s environment. Automatically record the

user’s environment (sound, screen, etc.) to allow future
analysis by the researcher.

• Data privacy level. Choose the privacy level for the data
collected.

IV. DISCUSSION

To answer the RQ, we examined ten experiment tools:
seven used by the SE community and three from behavioral
science. During this evaluation, we found a total of 15 dif-
ferent features. In Table I, we summarize all the features
and indicate which tools possess each feature. We can see
that some features are available in several tools; for instance,
Remote experiments is offered by nine tools and Packaging
of user studies is offered by seven tools. On the other hand,
Researcher-participant communication, Data privacy level and
Recovery of experimental data are offered only by one tool
each. The web-based SESE platform is the tool that covers
more features, including a total of 8 of the 15 features found
in all the tools.

Comparing the features of the software engineering tools
with the behavioral science experiment tools, we can see that
the features relating to user management and the packaging
of experiences are common to both fields. On the other hand,
the behavioral science experiment tools are the only ones with
templates for creating tasks and user studies.

Behavioral science experiment tools offer models specif-
ically designed to create tasks and conduct user studies.
Although software engineering tools make it possible to reuse
and adapt previously conducted user studies, none of these
tools has built-in templates. Integrating these types of features
would make it easier for the user to carry out user studies and
would also serve as a guide for future tools.

V. THREATS TO VALIDITY

In any research study, it is important to consider potential
threats to the validity of the findings. These threats can arise
from various sources and may impact the generalization and
reliability of the results [31], [32]. We now discuss potential
threats to the validity of our study.

The interaction of selection and treatment poses a potential
threat to external validity in our analysis of experimental tools.
To mitigate selection bias, we conducted a literature review
covering a comprehensive time frame (from 2002 to 2023)
and utilized established databases and search methodologies.
Despite these efforts, the possibility remains that certain tools
may not have been included in our analysis. This limitation
could impact our findings regarding the landscape of experi-
mental tools in software engineering and behavioral science.

One significant concern is the incomplete selection of
features of each tool, which poses a threat to the internal
validity of our analysis. During the literature review process,
we selected and evaluated tools based on specific features that
were documented or identifiable in the literature. However, it

TABLE I
FEATURES OF EXPERIMENT TOOLS

Feature Tools
Public sharing. ARRESTT
Task templates. jsPsych
User studies templates. Gorilla
Reuse and adaptation of user
studies.

ARRESTT; eSEE

Recording user’s environment. LookIt
Sending collected data. Experiment Manager; SESE
Remote experiments. ARRESTT; eSEE; ExpDSL;

Experiment Manager; K-Alpha;
SESE; Gorilla; jsPsych; LookIt;

Participants registration. Experiment Manager; K-
Alpha; SESE; Gorilla; jsPsych;
LookIt

Researcher-participant commu-
nication.

SESE

Participants preferences. K-Alpha; SESE; LookIt
Participants notification. K-Alpha; SESE; LookIt
Packaging of user studies. ARRESTT; eSEE; ExpDSL; Ex-

periment Manager; K-Alpha; Go-
rilla; jsPsych

Data privacy level. LookIt
Recovery of experimental data. SESE
Data backup. SESE; jsPsych

is possible that not all features or functionalities of each tool
were captured or adequately represented in our assessment.

While analyzing the ten existing tools to aid researchers
in designing and running user studies, we found 15 different
features. However, the characterization of tools by features
involves a certain subjectivity, which can lead to a different
characterization when carried out by other researchers. Al-
though the initial characterizations were carried out by one
author, there was a discussion among the three authors to
define the final list of features.

VI. CONCLUSION

We conducted a literature analysis of the current tools
used in software engineering studies, and in three behavioral
science experiment tools, we identified a list of tool features
currently available to support the execution of all the stages
of programmer user studies.

Our research was driven by the imperative need to facilitate
and enhance the empirical evaluation of programmer-oriented
tools, which is crucial for validating research prototypes and
advancing production-ready solutions.

Based on this, we conclude that the features of software
engineering tools and behavioral science experiment tools
relating to user management and the packaging of experiences
are common in both domains. On the other hand, the behav-
ioral science experiment tools are the only ones with templates
for creating tasks and user studies.

In future work, we intend to propose features addressing
the barriers previously identified in [22] and the corresponding
relation between features and barriers. We will also analyze the
gap between current and necessary features to support user-
study tools.



REFERENCES

[1] R. P. Buse, C. Sadowski, and W. Weimer, “Benefits and barriers of
user evaluation in software engineering research,” in Proceedings of the
2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’11. New York,
NY, USA: Association for Computing Machinery, 2011, p. 643–656.
[Online]. Available: https://doi.org/10.1145/2048066.2048117

[2] L. Briand and Y. Labiche, “Empirical studies of software testing
techniques: Challenges, practical strategies, and future research,”
SIGSOFT Softw. Eng. Notes, vol. 29, no. 5, p. 1–3, sep 2004. [Online].
Available: https://doi.org/10.1145/1022494.1022541

[3] F. G. De Oliveira Neto, R. Torkar, and P. D. L. Machado, “An initiative
to improve reproducibility and empirical evaluation of software testing
techniques,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 2, 2015, pp. 575–578.

[4] M. Freire, D. Costa, E. Neto, T. Medeiros, U. Kulesza, E. Aranha, and
S. Soares, “Automated support for controlled experiments in software
engineering: A systematic review,” Proceedings of the International
Conference on Software Engineering and Knowledge Engineering,
SEKE, vol. 2013, pp. 504–509, 01 2013.

[5] M.-A. Storey, N. A. Ernst, C. Williams, and E. Kalliamvakou,
“The who, what, how of software engineering research: a socio-
technical framework,” Empirical Software Engineering, vol. 25,
no. 5, pp. 4097–4129, Sep 2020. [Online]. Available: https:
//doi.org/10.1007/s10664-020-09858-z

[6] A. Madugalla, T. Kanij, R. Hoda, D. Hidellaarachchi, A. Pant,
S. Ferdousi, and J. Grundy, “Challenges, adaptations, and fringe
benefits of conducting software engineering research with human
participants during the covid-19 pandemic,” Empirical Software
Engineering, vol. 29, no. 4, p. 86, Jun 2024. [Online]. Available:
https://doi.org/10.1007/s10664-024-10490-4

[7] K. Sagar and A. Saha, “A systematic review of software usability
studies,” International Journal of Information Technology, Dec 2017.
[Online]. Available: https://doi.org/10.1007/s41870-017-0048-1

[8] A. A. Arechar, S. Gächter, and L. Molleman, “Conducting interactive
experiments online,” Experimental Economics, vol. 21, no. 1,
pp. 99–131, Mar 2018. [Online]. Available: https://doi.org/10.1007/
s10683-017-9527-2

[9] S. D. Gosling and J. A. Johnson, Advanced methods for conducting
online behavioral research. American Psychological Association, 2010.

[10] S. Subramanian, K. De Moor, M. Fiedler, K. Koniuch, and L. Janowski,
“Towards enhancing ecological validity in user studies: a systematic
review of guidelines and implications for qoe research,” Quality and
User Experience, vol. 8, no. 1, p. 6, Jul 2023. [Online]. Available:
https://doi.org/10.1007/s41233-023-00059-2

[11] I. Araújo, W. Silva, J. Nunes, and F. Neto, “Arrestt: A framework to
create reproducible experiments to evaluate software testing techniques,”
09 2016, pp. 1–10.

[12] G. H. Travassos, P. S. M. dos Santos, P. G. Mian, P. G. M. Neto, and
J. Biolchini, “An environment to support large scale experimentation
in software engineering,” in 13th IEEE International Conference on
Engineering of Complex Computer Systems (iceccs 2008), 2008, pp.
193–202.

[13] L. Hochstein, T. Nakamura, F. Shull, N. Zazworka, V. R. Basili, and
M. V. Zelkowitz, “Chapter 5 an environment for conducting families
of software engineering experiments,” in Software Development, ser.
Advances in Computers. Elsevier, 2008, vol. 74, pp. 175–200.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0065245808006050

[14] F. Häser, M. Felderer, and R. Breu, “An integrated tool environment
for experimentation in domain specific language engineering,” in
Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineering, ser. EASE ’16. New York, NY,
USA: Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2915970.2916010

[15] F. Häser, M. Felderer, and R. Breu, “Evaluation of an integrated tool en-
vironment for experimentation in dsl engineering,” in Software Quality:
Methods and Tools for Better Software and Systems, D. Winkler, S. Biffl,
and J. Bergsmann, Eds. Cham: Springer International Publishing, 2018,
pp. 147–168.

[16] K. Torii, K. Matsumoto, K. Nakakoji, Y. Takada, S. Takada, and
K. Shima, “Ginger2: an environment for computer-aided empirical
software engineering,” IEEE Transactions on Software Engineering,
vol. 25, no. 4, pp. 474–492, 1999.

[17] F. F. Silveira, R. Avancini, D. de Souza França, E. M. Guerra, and
T. S. da Silva, “Towards an extensible architecture for an empirical
software engineering computational platform,” in Computational Science
and Its Applications – ICCSA 2021, O. Gervasi, B. Murgante, S. Misra,
C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha,
E. Tarantino, and C. M. Torre, Eds. Cham: Springer International
Publishing, 2021, pp. 231–246.

[18] E. Arisholm, D. I. K. Sjøberg, G. J. Carelius, and Y. Lindsjørn, “A
web-based support environment for software engineering experiments,”
Nordic J. of Computing, vol. 9, no. 3, p. 231–247, sep 2002.

[19] A. L. Anwyl-Irvine, J. Massonnié, A. Flitton, N. Kirkham, and J. K.
Evershed, “Gorilla in our midst: An online behavioral experiment
builder,” Behavior Research Methods, vol. 52, no. 1, pp. 388–407, Feb
2020. [Online]. Available: https://doi.org/10.3758/s13428-019-01237-x

[20] J. R. de Leeuw, “jspsych: A javascript library for creating
behavioral experiments in a web browser,” Behavior Research
Methods, vol. 47, no. 1, pp. 1–12, Mar 2015. [Online]. Available:
https://doi.org/10.3758/s13428-014-0458-y

[21] K. Scott and L. Schulz, “Lookit (Part 1): A New Online Platform
for Developmental Research,” Open Mind, vol. 1, no. 1, pp. 4–14, 02
2017. [Online]. Available: https://doi.org/10.1162/OPMI a 00002

[22] M. C. Davis, E. Aghayi, T. D. Latoza, X. Wang, B. A. Myers,
and J. Sunshine, “What’s (not) working in programmer user studies?”
ACM Trans. Softw. Eng. Methodol., vol. 32, no. 5, jul 2023. [Online].
Available: https://doi.org/10.1145/3587157

[23] D. Sjoeberg, J. Hannay, O. Hansen, V. Kampenes, A. Karahasanovic,
N.-K. Liborg, and A. Rekdal, “A survey of controlled experiments
in software engineering,” IEEE Transactions on Software Engineering,
vol. 31, no. 9, pp. 733–753, 2005.

[24] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin,
K. El Emam, and J. Rosenberg, “Preliminary guidelines for empirical
research in software engineering,” IEEE Transactions on Software
Engineering, vol. 28, no. 8, pp. 721–734, 2002.

[25] P. Ivie and D. Thain, “Reproducibility in scientific computing,”
ACM Comput. Surv., vol. 51, no. 3, jul 2018. [Online]. Available:
https://doi.org/10.1145/3186266

[26] A. Namoun, A. Alrehaili, and A. Tufail, “A review of automated
website usability evaluation tools: Research issues and challenges,” in
International Conference on Human-Computer Interaction. Springer,
2021, pp. 292–311.

[27] Y.-S. Martı́n and J. C. Yelmo, “Guidance for the development of
accessibility evaluation tools following the unified software development
process,” Procedia Computer Science, vol. 27, pp. 302–311, 2014, 5th
International Conference on Software Development and Technologies
for Enhancing Accessibility and Fighting Info-exclusion, DSAI 2013.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1877050914000350

[28] L. Costa, S. Barbosa, and J. Cunha, “Evaluating tools for enhancing
reproducibility in computational scientific experiments,” in Proceedings
of the 2nd ACM Conference on Reproducibility and Replicability,
ser. ACM REP ’24. New York, NY, USA: Association for
Computing Machinery, 2024, p. 46–51. [Online]. Available: https:
//doi.org/10.1145/3641525.3663623

[29] P. S. M. dos Santos and G. H. Travassos, “Structured synthesis method:
The evidence factory tool,” in 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), 2017, pp.
480–481.

[30] A. Bucchiarone, A. Cicchetti, F. Ciccozzi, and A. Pierantonio, Domain-
specific Languages in Practice: With JetBrains MPS. Springer Nature,
2021.

[31] T. Cook and D. Campbell, Quasi-Experimentation: Design and Analysis
Issues for Field Settings. Boston: Houghton Mifflin, 1979.

[32] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer-Verlag
Berlin Heidelberg, 2012, vol. 9783642290442.

https://doi.org/10.1145/2048066.2048117
https://doi.org/10.1145/1022494.1022541
https://doi.org/10.1007/s10664-020-09858-z
https://doi.org/10.1007/s10664-020-09858-z
https://doi.org/10.1007/s10664-024-10490-4
https://doi.org/10.1007/s41870-017-0048-1
https://doi.org/10.1007/s10683-017-9527-2
https://doi.org/10.1007/s10683-017-9527-2
https://doi.org/10.1007/s41233-023-00059-2
https://www.sciencedirect.com/science/article/pii/S0065245808006050
https://www.sciencedirect.com/science/article/pii/S0065245808006050
https://doi.org/10.1145/2915970.2916010
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.1162/OPMI_a_00002
https://doi.org/10.1145/3587157
https://doi.org/10.1145/3186266
https://www.sciencedirect.com/science/article/pii/S1877050914000350
https://www.sciencedirect.com/science/article/pii/S1877050914000350
https://doi.org/10.1145/3641525.3663623
https://doi.org/10.1145/3641525.3663623

	Introduction
	Related Work
	Experiment Tools
	Collected Tools

	Discussion
	Threats to Validity
	Conclusion
	References

