
Visually-Assisted Decomposition of
Monoliths to Microservices
Breno Salles

Faculty of Engineering, University of Porto, Portugal
scholar@brenosalles.com

Jácome Cunha
Faculty of Engineering, University of Porto

& HASLab/INESC TEC, Portugal
jacome@fe.up.pt

Abstract—The architectural style of microservices has received
much attention from both business and academia and converting
a monolithic application into a microservice-based one has
become a regular practice. However, companies struggle with
migrating their existing monolithic applications to microservices
and software engineers frequently face challenges due to a lack
of awareness of alternative migration methodologies, making the
migration process even harder.

In this paper, we present a framework to help software
engineers during the migration process by addressing gaps in
understanding various migration tools and approaches, allowing
for easy comparison between multiple options. Our tool combines
multiple existing approaches into one platform, allowing a com-
prehensive visualization of migration proposals and comparing
different options offered by already existing approaches.

Index Terms—visual assistant, software migration, software
evolution, microservices

I. INTRODUCTION

Microservices is an architectural style that evolved from
Service Oriented Architecture (SOA). Just like SOA, microser-
vices are an alternative to monolithic architecture. The main
contrasts are that, while monolithic applications are software
systems with a single, integrated codebase that includes all
necessary components, and features [1], microservices tend to
be separated, and loosely coupled [2]. Also, while monoliths
tend to be easier to develop, at least in an initial phase, they
may scale poorly and are harder to maintain when compared to
microservices [3]. Microservices are increasingly being used
in the development of modern applications, particularly in the
areas of cloud computing [4]. Many organizations, including
large enterprises and startups, are adopting microservices as
a way to build and deploy applications more quickly and
efficiently [5]. Microservices are particularly well-suited for
distributed, cloud-based environments, where they can take
advantage of the flexibility and scalability of the cloud [6].
This type of architecture is already being applied in multiple
well-known companies, like Uber, Netflix, eBay [7], [8], and
also being followed by the rest of the herd when compared to
monoliths [9].

Refactoring monoliths to microservices is a heavily debated
topic both in the academic world and the industry. The main
outcomes from this debate are that refactoring is difficult and

This work is financed by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia, within project
UIDP/50014/2020.

time-consuming, and companies struggle with migrating their
already existing monolithic applications to microservices [10].
To help address this, some tools have been developed [11]–
[13]. However, in today’s world, where the amount of data and
information is constantly increasing, it would be ideal to have
a centralized location where software engineers can access
and utilize all the tools that are currently available. However,
currently, no tool offers such a possibility.

In this paper, in Section III, we present an application
that aims to aggregate existing tools into a single platform
and provide the means to extend and incorporate new tools.
This application offers a convenient and comprehensive way
to access and use various tools that help the decomposition
from monoliths to microservices and provide them with a
perspective on several decomposition proposals, allowing for
easily comparable and different combinations options.

It is important to mention that the final objective is not
to create a new technique for discovering microservices in a
monolith system, but rather to aggregate the already existing
ones into a single and comprehensive framework.

II. RELATED WORK

The majority of the existing works for the decomposition
of monoliths into microservices target Java as their primary
programming language for input [12], [14]–[22]. This may be
attributed to the language’s strict syntax rules, which facilitate
the examination of source code during the inspection process.
Additionally, some of them rely in the Spring Boot framework
in conjunction with Java [11], [13], [21], [23]–[25], which
further enforces structure through the utilization of decorators.
In contrast, those who employed programming languages other
than Java, such as Python, utilized corresponding frameworks
like Django, to compensate for the language’s more lenient
syntax constraints [26], [27].

Nevertheless, the number of tools available to decompose
monolithic architectures into microservices is very limited.
From the works presented, we identified seven free and open-
source tools [11], [13], [15], [20], [24], [26], [28], each with
varying degrees of completeness. However, it is worth noting
that the most promising tool identified, IBM’s Mono2Micro
[12], [19], [22], is not publicly accessible to the general public.

Moreover, we found no existing application that served as
an aggregator of multiple decomposition tools, offering users a
graphical and unified interface, which is the goal of this work.



Fig. 1. Tool main page

III. PROPOSED APPROACH

The main features of our tool can be seen in Figure 1:
A) Visualise microservices generated by each decomposition,

enabling users to gain insights into the composition and
structure of the system components. This visual represen-
tation helps users differentiate between the decompositions
and perceive the interconnection of modules within related
decompositions.

B) Toggle the visibility of each decomposition, allowing
users to focus on the ones they want to compare. This
functionality is beneficial in various scenarios, such as
when users want to concentrate on a single decomposi-
tion, compare decompositions side by side, or exclude a
discarded decomposition from the view.

C) Focus on a microservice and check its constituent modules,
allowing users to delve into the details of each microser-
vice and understand its internal components. When a user
clicks on a specific microservice, the selected microservice
becomes highlighted (C1). Additionally, a new window
opens, providing detailed information about the modules
contained within the focused microservice (C2).

D) Compare modules across different decompositions, which
helps users to identify similarities, differences, and vari-
ations in the composition of the system components.
This feature enables users to observe the connections and
relationships between modules across different microser-
vices and microservices from different decompositions by
hovering each of the squares.

To create the visualization of the decomposition, we consid-
ered four tools: Graphviz1, D3.js2, Gephi3, and Chart.js4. Each

1https://graphviz.org/
2https://d3js.org/
3https://gephi.org/
4https://chartjs.org/

tool was assessed based on four categories: customizability,
ease of use, charts available, and real-time interactivity. Con-
sidering the industry’s preference for node graphs in presenting
microservices [29], and after careful consideration of the
advantages and disadvantages, we chose D3.js.

In addition to having a powerful tool, the way information
is presented and the visual elements used are crucial. As sug-
gested by Moody [30], using different shapes, colors, strokes,
and line dashes to depict entities and their relationships is an
effective way of expressing variation between entities in vi-
sualizations. Table I illustrates how each visual representation
expresses different entities, highlighting the specific shapes
and visual cues employed to convey information effectively.

A prototype of the tool can be used at https://frontend-mesw.
brenosalles.com/.

TABLE I
VISUAL EXPRESSIVENESS OF EACH ENTITY

Entity Shape Size Colour

Service Circle Variable according
amount of modules

Based on the selected
decomposition

Module Square Static Mix between selected
decompositions

Relationships Line Static Static

IV. CONCLUSION

In this paper, we present the first framework capable of
aggregating in a single tool different microservices’ proposals
produced by different approaches. This environment allows the
users to explore each proposal and compare them, aiding in
the decomposition of monoliths.

https://graphviz.org/
https://d3js.org/
https://gephi.org/
https://chartjs.org/
https://frontend-mesw.brenosalles.com/
https://frontend-mesw.brenosalles.com/


REFERENCES

[1] J. Kazanavičius and D. Mažeika, “Migrating legacy software to mi-
croservices architecture,” in 2019 Open Conference of Electrical, Elec-
tronic and Information Sciences (eStream). IEEE, 2019, pp. 1–5.

[2] S. Newman, Building microservices. ” O’Reilly Media, Inc.”, 2021.
[3] ——, Monolith to microservices: evolutionary patterns to transform

your monolith. O’Reilly Media, 2019.
[4] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to cloud-native

architectures using microservices: an experience report,” in Advances in
Service-Oriented and Cloud Computing: Workshops of ESOCC 2015,
Taormina, Italy, September 15-17, 2015, Revised Selected Papers 4.
Springer, 2016, pp. 201–215.

[5] C. Richardson, “Microservice architecture,” https://microservices.io/
patterns/microservices.html, last accessed 4 January 2023.

[6] M. Fowler, “Microservice prerequisites,” https://martinfowler.com/bliki/
MicroservicePrerequisites.html, 2014, last accessed 4 January 2023.

[7] C. Richardson, “Who is using microservices,” https://microservices.io/
articles/whoisusingmicroservices.html, last accessed 4 January 2023.

[8] Z. Ren, W. Wang, G. Wu, C. Gao, W. Chen, J. Wei, and T. Huang,
“Migrating web applications from monolithic structure to microservices
architecture,” in Proceedings of the tenth asia-pacific symposium on
internetware, 2018, pp. 1–10.

[9] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[10] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo, “Extracting candi-
dates of microservices from monolithic application code,” in 2018 25th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2018,
pp. 571–580.

[11] M. Brito, J. Cunha, and J. Saraiva, “Identification of microservices from
monolithic applications through topic modelling,” in Proceedings of the
36th Annual ACM Symposium on Applied Computing, 2021, pp. 1409–
1418.

[12] A. K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D. Banerjee,
“Mono2micro: a practical and effective tool for decomposing monolithic
java applications to microservices,” in Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, 2021, pp. 1214–
1224.

[13] F. Freitas, A. Ferreira, and J. Cunha, “Refactoring java monoliths into
executable microservice-based applications,” in 25th Brazilian Sympo-
sium on Programming Languages, 2021, pp. 100–107.

[14] O. Al-Debagy and P. Martinek, “A microservice decomposition method
through using distributed representation of source code,” Scalable Com-
puting: Practice and Experience, vol. 22, no. 1, pp. 39–52, 2021.

[15] A. Bucchiarone, K. Soysal, and C. Guidi, “A model-driven approach to-
wards automatic migration to microservices,” in International Workshop
on Software Engineering Aspects of Continuous Development and New
Paradigms of Software Production and Deployment. Springer, 2020,
pp. 15–36.

[16] W. K. Assunção, T. E. Colanzi, L. Carvalho, A. Garcia, J. A. Pereira,
M. J. de Lima, and C. Lucena, “Analysis of a many-objective opti-
mization approach for identifying microservices from legacy systems,”
Empirical Software Engineering, vol. 27, no. 2, pp. 1–31, 2022.

[17] J. Zhao and K. Zhao, “Applying microservice refactoring to object-
2riented legacy system,” in 2021 8th International Conference on
Dependable Systems and Their Applications (DSA). IEEE, 2021, pp.
467–473.

[18] V. Nitin, S. Asthana, B. Ray, and R. Krishna, “Cargo: Ai-guided depen-
dency analysis for migrating monolithic applications to microservices
architecture,” in 37th IEEE/ACM International Conference on Automated
Software Engineering, 2022, pp. 1–12.

[19] A. K. Kalia, J. Xiao, C. Lin, S. Sinha, J. Rofrano, M. Vukovic,
and D. Banerjee, “Mono2micro: an ai-based toolchain for evolving
monolithic enterprise applications to a microservice architecture,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 1606–1610.

[20] S. Agarwal, R. Sinha, G. Sridhara, P. Das, U. Desai, S. Tamilselvam,
A. Singhee, and H. Nakamuro, “Monolith to microservice candidates
using business functionality inference,” in 2021 IEEE International
Conference on Web Services (ICWS). IEEE, 2021, pp. 758–763.

[21] I. Pigazzini, F. Arcelli Fontana, and A. Maggioni, “Tool support for
the migration to microservice architecture: An industrial case study,” in
European Conference on Software Architecture. Springer, 2019, pp.
247–263.

[22] R. Krishna, A. Kalia, S. Sinha, R. Tzoref-Brill, J. Rofrano, and
J. Xiao, “Transforming monolithic applications to microservices with
mono2micro,” in Proceedings of the 36th IEEE/ACM International
Conference on Automated Software Engineering, 2021, pp. 3–3.

[23] Y. Wei, Y. Yu, M. Pan, and T. Zhang, “A feature table approach to
decomposing monolithic applications into microservices,” in 12th Asia-
Pacific Symposium on Internetware, 2020, pp. 21–30.

[24] L. Nunes, N. Santos, and A. Rito Silva, “From a monolith to a mi-
croservices architecture: An approach based on transactional contexts,”
in European Conference on Software Architecture. Springer, 2019, pp.
37–52.

[25] A. Santos and H. Paula, “Microservice decomposition and evaluation
using dependency graph and silhouette coefficient,” in 15th Brazilian
Symposium on Software Components, Architectures, and Reuse, 2021,
pp. 51–60.

[26] T. Matias, F. F. Correia, J. Fritzsch, J. Bogner, H. S. Ferreira, and
A. Restivo, “Determining microservice boundaries: a case study using
static and dynamic software analysis,” in European Conference on
Software Architecture. Springer, 2020, pp. 315–332.

[27] L. v. Asseldonk, “From a monolith to microservices: the effect of multi-
view clustering,” Master’s thesis, Utrecht University, 2021.

[28] X. Sun, S. Boranbaev, S. Han, H. Wang, and D. Yu, “Expert system
for automatic microservices identification using api similarity graph,”
Expert Systems, p. e13158, 2022.

[29] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi,
“Microservice architecture reconstruction and visualization techniques:
A review,” in 2022 IEEE International Conference on Service-Oriented
System Engineering (SOSE). IEEE, 2022, pp. 39–48.

[30] D. Moody, “The “physics” of notations: toward a scientific basis for con-
structing visual notations in software engineering,” IEEE Transactions
on software engineering, vol. 35, no. 6, pp. 756–779, 2009.

https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://martinfowler.com/bliki/MicroservicePrerequisites.html
https://martinfowler.com/bliki/MicroservicePrerequisites.html
https://microservices.io/articles/whoisusingmicroservices.html
https://microservices.io/articles/whoisusingmicroservices.html

	Introduction
	Related Work
	Proposed Approach
	Conclusion
	References

