CI/CD Meets Block-Based Languages

Hugo da Giao*, Rui Pereiraf, Jicome Cunha*
hugo.a.giao@inesctec.pt, rui.alexandre.pereira@outsystems.com, jacome @fe.up.pt

*Faculty of Engineering, University of Porto & HASLab/INESC TEC, Portugal

Abstract—Continuous Integration and Continuous Deployment
(CI/CD) pipelines play a vital role in the DevOps process,
enabling developers to automate and enhance software delivery.
However, the existence of multiple technologies, such as GitHub
Actions, GitLab CI/CD, or Jenkins, poses challenges due to their
lack of interoperability and the use of different programming
languages for pipeline construction.

To address these challenges and improve the CI/CD process,
our objective is to develop a block-based language specifically
designed for representing CI/CD pipelines. With our language, we
intend to empower users to more easily create correct pipelines.
Through an interactive and user-friendly process, our approach
guides users in constructing pipelines, ensuring accuracy and
reducing errors. Additionally, our language will facilitate seam-
less transitions between different pipeline technologies, providing
users with flexibility and ease of adoption.

Index Terms—DevOps, CI/CD, Block-Based Languages,
Blockly, Visual Languages

I. INTRODUCTION

In the realm of modern software development, CI/CD has
emerged as a means for organizations to achieve rapid and
frequent delivery of changes. A CI/CD pipeline encompasses
a series of essential steps involved in integrating and deploy-
ing codebase changes [1]]. This process involves the regular
integration of new code changes, which undergo automated
building and testing procedures. Subsequently, the validated
code is deployed into production through the CD process [1]].

Traditionally, organizations have had the option to employ
various technologies like GitHub Action{'} GitLab CI/CDf}
or Jenkinsﬂ to accomplish these tasks. However, these tech-
nologies often employ non-interoperable languages, come with
distinct learning curves, and lack the flexibility to seamlessly
switch between underlying technologies [/1].

In light of these challenges, our objective is to harness
the potential of block-based languages to streamline the cre-
ation of CI/CD pipelines. By adopting our approach, users
can define their pipelines in a visual and interactive en-
vironment that proactively detects errors and offers helpful
suggestions. Through block-based programming, we can also
enforce pipeline construction rules, reducing the likelihood of
constructing invalid pipelines compared to using languages

The first author was supported by the doctoral grant 2022.13084.BD
financed by the Portuguese Foundation for Science and Technology (FCT).

The third author was financed by National Funds through the Portuguese
funding agency, FCT - Fundag@o para a Ciéncia e a Tecnologia, within project
UIDP/50014/2020.

Uhttps://github.com/features/actions

Zhttps://docs.gitlab.com/ee/ci/

3https://www.jenkins.io/

TOutSystems, Portugal

such as YAML. Additionally, our method enables users to ef-
fortlessly switch between different providers without requiring
pipeline rewrites. This is possible since, from the block-based
program, we can generate different target languages.

In this paper, we describe our vision which, upon comple-
tion, we intend to empirically validate with CI/CD experts to
assess the gains in efficiency and efficacy.

II. RELATED WORK

Buddyﬂ is a comercial visual platform designed for the
creation and execution of CI/CD pipelines. It offers several
advantages, including increased adoption of CI/CD practices
and several optimization features such as caching and paral-
lelism. Additionally, Buddy provides seamless integration with
leading development tools and platforms like Amazon AWf]
and Microsoft Azureﬂ Our approach distinguishes itself by
leveraging block-based languages for pipeline construction.
Moreover, the pipelines created using our approach can be
ported to various existing platforms. Furthermore, our ap-
proach enhances the development experience by assisting users
in identifying and rectifying errors during pipeline construc-
tion, a feature not available in Buddy’s interface.

Tegeler et al. [2] present their innovative approach to
graphically modeling CI/CD workflows. The authors propose
a model-driven strategy to tackle the challenges associated
with maintaining complex CI/CD workflows and introduce the
concept of graphical modeling using Rig. To validate their
approach, the authors construct a typical web applications
pipeline. In contrast, our objective is to develop a block-based
language, which has demonstrated success in other contexts.
Additionally, we plan to conduct extensive validation using
a wide range of use cases and incorporate features that aid
users in constructing accurate pipelines. Furthermore, our goal
involves validating the tool through user feedback and input.

Similarly, Piedade et al. [3] propose a low-code approach
for container orchestration. Their approach utilizes a visual no-
tation that allows users to create Dockelﬂ files. By supporting
all elements of the orchestration file, their approach enhances
usability, reduces errors, and accelerates development time.
The authors validate their approach through a user study
involving novice developers. Similarly, we aim to design a
language capable of generating scripts for existing tools, albeit
with a block-based paradigm instead of a new language.

4https://buddy.works
Shttps://aws.amazon.com
Shttps://azure.microsoft.com
Thttps://www.docker.com/

https://github.com/features/actions
https://docs.gitlab.com/ee/ci/
https://www.jenkins.io/
https://buddy.works
https://aws.amazon.com
https://azure.microsoft.com
https://www.docker.com/

Furthermore, our focus in on different aspects of the DevOps
process, offering unique functionalities and capabilities.

III. BLOCK-BASED CI/CD

In this section, we present an illustrative example that
demonstrates our envisioned block-based language, designed
to enable users to express their CI/CD pipelines with effi-
ciency and clarity. Our language comprises a diverse set of
blocks defining the components constituting a pipeline. These
components encompass instructions for executing, defining
environment variables, and specifying the jobs, steps, and tools
required for each job within the pipeline.

Pipeline repository_dispatch

types example

Job :
Needs ubuntu-fatest |
. Step: A
WELLLA Print entire webhook payload |
Tool/Framework: |
LI echo "${PAYLOADY' |
Environment: PAYLOAD ${{ toJSON(github.event.client_payload) }} ‘
-

L\ET[S Print entire received webhook payload]

name: Print entire received webhook payload

on:

Allow invoking via webhook event.

repository_dispatch:

types: B

- example

jobs:
printPayload:

runs-on: ubuntu-latest

steps:
- name: Print entire webhook payload
env:
PAYLOAD: ${{ toJSON(github.event.client_payload) }.
run: |

echo "${PAYLOAD}"

Fig. 1. Representation using our block-based language (top part of the image)
of a GitHub Actions pipeline (bottom).

In Figure [T} we present an example of a pipeline written
using GitHub Actionﬂ (B) and the corresponding block-based
representation using our proposal (A). The depicted pipeline
represents a GitHub Actions pipeline designed to print the
webhook payload to the console.

To construct the pipeline using our language, we em-
ploy a Pipeline block. This block takes arguments for the

8The pipeline example pertains to a GitHub API and GraphQL
client application and was taken from https://github.com/MPLew-is/
github- api-client/blob/cd20£7441f0e7789896cb745b901965821898d4 1/
Examples/GithubActionsWebhookClient/print-payload.yaml#L4

pipeline’s name (as a string) and the content of the pipeline
(as a list of blocks). The available blocks include Job, On,
Environment, and Needs.

To specify the pipeline’s execution trigger, we incorporate
an On block and select the option repository_dispatch. This
indicates that the pipeline should be triggered when a reposi-
tory dispatch event occurs. We also include an Environment
block within the block to define the specific type of dispatch
that activates the pipeline. An environment allows the user to
define key-value pairs that can be used to record variables and
their values, which can then be accessed within the context
where they are defined.

After defining the pipeline’s trigger, we add a job to the
pipeline responsible for printing the webhook content. To
accomplish this, we include a Job block within the pipeline’s
block list. We assign a name to this job and then provide a
list of blocks representing the necessary tool and framework
requirements for the job and its subsequent steps. Firstly,
we include a Needs block within the job’s content. This
block accepts a Tool/Framework block, indicating that
this job requires the latest version of Ubuntu. Next, we add
a Step block, which encompasses the Name of the step,
a Tool/Framework block (denoted as |), representing a
shell script in GitHub Actions, and the arguments comprising
the contents of the shell script. Finally, we incorporate an
Environment block to store the webhook content under
the key Payload. Within the step’s arguments, we access the
contents of the webhook by referring to this key.

The names we use for the blocks are the same used by
the GitHub Actions syntax, as this is one of the most used
languages for CI/CD (since it is part of GitHub). However,
we intend to generate CI/CD code in other languages, such as
Jenkins or GitLab’s.

IV. CONCLUSIONS AND FUTURE WORK

This paper presents a vision for a block-based approach
for defining CI/CD pipelines, introducing a set of blocks that
constitute the language. We demonstrate the practicality of
these blocks through a real-world example.

Moving forward, our objectives involve properly defining
all the constructs and their semantics, including defining how
the blocks can be composed together.

Additionally, we aim to integrate the language into a visual
environment tailored for CI/CD pipeline development. In this
environment, users will utilize the block-based language to
construct their pipelines, while our environment compiles and
translates the pipeline in real-time to their desired program-
ming language or technology, such as GitHub Actions, GitLab
CI/CD, or Jenkins. By imposing restrictions on how blocks
can be assembled and providing informative warnings and
error messages, our approach enhances pipeline correctness
and assists users in rectifying mistakes.

To evaluate the usability and effectiveness of our visual
environment, we will conduct a comprehensive usability study.

https://github.com/MPLew-is/github-api-client/blob/cd20f744ff0e7789896cb745b90f965821898d41/Examples/GithubActionsWebhookClient/print-payload.yaml#L4
https://github.com/MPLew-is/github-api-client/blob/cd20f744ff0e7789896cb745b90f965821898d41/Examples/GithubActionsWebhookClient/print-payload.yaml#L4
https://github.com/MPLew-is/github-api-client/blob/cd20f744ff0e7789896cb745b90f965821898d41/Examples/GithubActionsWebhookClient/print-payload.yaml#L4

REFERENCES

[1] G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook: How
to Create World-Class Agility, Reliability, and Security in Technology
Organizations, ser. ITpro collection. IT Revolution Press, 2016.
[Online]. Available: https://books.google.pt/books?id=ui8hDgA AQBAJ

[2] T. Tegeler, S. Teumert, J. Schiirmann, A. Bainczyk, D. Busch, and
B. Steffen, “An introduction to graphical modeling of ci/cd workflows

(3]

with rig,” in Leveraging Applications of Formal Methods, Verification and
Validation, T. Margaria and B. Steffen, Eds. Cham: Springer International
Publishing, 2021, pp. 3-17.

B. Piedade, J. P. Dias, and F. F. Correia, “Visual notations in container
orchestrations: an empirical study with docker compose,” Software and
Systems Modeling, vol. 21, no. 5, pp. 1983-2005, Oct 2022. [Online].
Available: https://doi.org/10.1007/s10270-022-01027-8

https://books.google.pt/books?id=ui8hDgAAQBAJ
https://doi.org/10.1007/s10270-022-01027-8

	Introduction
	Related work
	Block-Based CI/CD
	Conclusions and future work
	References

