
Linear Programming Meets Block-based Languages
Hugo da Gião

University of Minho & HASLab/INESC TEC
Portugal

hugo.a.giao@inesctec.pt

Jácome Cunha
University of Minho & HASLab/INESC TEC

Portugal
jacome@di.uminho.pt

Rui Pereira
HASLab/INESC TEC

Portugal
rui.a.pereira@inesctec.pt

Abstract—Linear programming is a mathematical optimization
technique used in numerous fields including mathematics, eco-
nomics, and computer science, with numerous industrial contexts,
including solving optimization problems such as planning routes,
allocating resources, and creating schedules. As a result of
its wide breadth of applications, a considerable amount of its
user base is lacking in terms of programming knowledge and
experience and thus often resorts to using graphical software
such as Microsoft Excel. However, despite its popularity amongst
less technical users, the methodologies used by these tools are
often ad-hoc and prone to errors. To counteract this problem
we propose creating a block-based language that allows users
to create linear programming models using data contained
inside spreadsheets. This language will guide the users to write
syntactically and semantically correct programs and thus aid
them in a way that current languages do not.

Index Terms—linear programming, spreadsheets, block-based
languages, end-user programming

I. INTRODUCTION

The versatility of linear programming in specifying all sorts
of problems lends itself useful in many industrial contexts
since many of its users have little to no programming or
technical knowledge. Thus, visual software such as Microsoft
Excel is often the preferred tool when it comes to specifying
and solving this type of problem [5].

However the typical methodologies used when solving those
types of problems using spreadsheet software often come with
underlying problems such as relying on an imprecise process
to feed data from the spreadsheet to the solver as well as the
difficulties in visualizing as a whole the models. During our
research, we found that other tools commonly used by profes-
sionals working with linear programming such as MATLAB
[9] and GAMS [4] either require considerable programming
knowledge or use ad-hoc and error-prone methodologies.

Some projects have used visual languages to tackle aspects
of linear programming, however, the majority of them focus on
the educational and teaching of mathematical aspects of linear
programming [14, 6], and the few existing projects focusing
on the applied side of linear programming tend to be several
decades old and have dated and unappealing interfaces and
do not make use of recent advances in the field of visual
languages and human-centered computing [7, 15].

This work is supported by the national funds through the Portuguese
Funding Agency (FCT - Fundação para a Ciência e a Tecnologia, within
project UIDB/50014/2020).

Numerous projects have applied visual languages to various
areas of computing with the focus on increasing accessibil-
ity to novice and non-technical users as well as teaching.
A considerable amount of these languages use the Blockly
[2] framework for their implementation. Examples include
BlockPy, a web-based platform that lets the user write and run
Python code using a block-based language [1], and Scratch,
a block-based visual programming language and educational
tool targeted at children [8].

Given the potential of Blockly to improve the usability
and practice of linear programming and the extensive study
of block-based languages and their practices [3, 13], we aim
to build upon the work previously done in this field to the
create a visual language and tool capable of expressing linear
programming models in a user-friendly manner.

II. A BLOCK-BASED LANGUAGE FOR LINEAR
PROGRAMMING

In this section, we introduce our proposed language using
an example featured in a Master of business administration
exam (MBA) [10]. The example problem aims to increase the
profit of delivery airplanes. The problem statement provides
values for the weight and space capacity of three different
compartments (front, rear and center) and maximum values
for the weight, volume and profit for four different cargoes
(C1, C2, C3 and C4) as seen in Figure 1.

Fig. 1. Input from our example problem in the specified format

A. Input data

Our solution requires the input data to follow a predefined
structure. This structure allows for the definition of index
columns (as seen highlighted in blue in Figure 1), to reference
values and iterate over the data columns (seen in white in the
same figure). To distinguish between the two we assume that
the data columns addressed by a given index column appear
in the spreadsheet immediately after the said column, and that
the sets of index and data columns are separated by an empty
column as can be seen in the figure. In this case there are two
sets, the first being for the three compartments and the second
for the four types of cargo.978-1-6654-4592-4/21$31.00 @2021 IEEE

Fig. 2. The language constructs are used to build an example model which is used to generate the mathematical format

B. Main language building blocks

The building blocks of a linear programming model seen
in Figure 2.A are the variables, the constraints, and the
objective function. In our language we include two nesting
blocks for the variables and constraints, an objective block
with the option to minimize or maximize a given objective
and an intermediate block for the individual constraints since
constructing the constraints requires the use of several blocks.
To further facilitate this process for novice and inexperienced
users, when building a new linear programming model, the
variables, constraints and objective block are connected when
creating a fresh solution.

C. Defining variables

Users have several options to define variables (Figure 2.B):
• a single variable through its name;
• a column variable defining its name and an index column

for which the variable will be iterated and accessed;
• a matrix variable that take a name and two index columns

for which it can be iterated and the values accessed.
These can then be used through the variable blocks (Fig-

ure 2.B), in different ways. In the example seen in Figure
2.D we use a matrix variable block to create a new N ×M
matrix variable named CompartmentCargo with N being
the length of the column Compartment and M the length
of the column Cargo.

D. Defining constraints

Each constraint is defined by dragging a constraint block
inside the constraints block (second and third blocks from
the top in 2.A) and then using the value blocks (blocks in
2.C) and operation blocks (blocks following the Constraint
Block in 2.E) to express the constraints. In our language,
operation blocks are used to join value and other operation
blocks. This blocks can express several operations including
arithmetic operations and inequalities. The value blocks can
represent columns, previously defined variables, and numbers.
The variables can be accessed using different blocks and
options which influence how the constraints will be generated.
As an example a user can access a matrix variable with a
single slot variable block in Figure 2.E to generate multiple
constraints or use the three slot variable blocks to access a
particular value of the given variable.

The first constraint in Figure 2.E, expressed in natural
language as “one cannot pack more of each of the four
cargoes than one has available” is defined in our language by
using a <= operation block, a variable block with the option
CompartmentCargo and a column block with the option
Weight. Since the constraints block only appears after the
variables block the compiler knows the index values for both
the column and variable used and thus can generate the correct
constraints which in this case are expressed in Figure 2.G.

The second constraint can be expressed in natural language
as “the volume (space) capacity of each compartment must be
respected”. This constraint (the second in 2.E) uses X and <=
operation blocks and value blocks to compile the more com-
plex constraint. For these constraints, our compiler generates
the linear programming constraints featured in Figure 2.H.

E. Defining the objective function

To define the objective function users must fit the objective
block into the constraints block and use several value and
operation blocks to define the function.

In the example seen in Figure 2.G the objective function
is created by using an operation block with value <=, a
column block with option Profit, and a variable block with
the option CompartmentCargo. The objective function
generated by this statement is the one featured in 2.I.

F. User interaction

This language will extend previous work exploring the
creation of spreadsheets through systematic processes [11, 12]
thus increasing the number of operations available. The user
will use the spreadsheet with the linear programming data as
input to a spreadsheet creation process and define the linear
programming model using our language which will use the
spreadsheet as input.

III. CONCLUDING REMARKS

In this work we present a language to aid end users defining
linear programming models. With our language, users are
forced to create correct programs as the constructs are based
on the inputs of the problems. However, it is still possible
to build models with problems and thus we intend to include
error-handling in the support tool. We will also design and run
empirical evaluations to assess the usability of the language.

REFERENCES

[1] Austin Cory Bart et al. “BlockPy: An Open Access
Data-Science Environment for Introductory Program-
mers”. In: Computer 50.5 (2017), pp. 18–26. DOI: 10.
1109/MC.2017.132.

[2] Blockly. URL: https://developers.google.com/blockly.
[3] Neil Fraser. “Ten things we’ve learned from Blockly”.

In: 2015 IEEE Blocks and Beyond Workshop (Blocks
and Beyond). 2015, pp. 49–50. DOI: 10.1109/BLOCKS.
2015.7369000.

[4] GAMS. URL: https://www.gams.com.
[5] Hector Guerrero. Excel Data Analysis: Modeling and

Simulation. Springer, 2010. URL: https://www.springer.
com/gp/book/9783642108341.

[6] Vassilios Lazaridis et al. “Visual LinProg: A web-
based educational software for linear programming”. In:
Comput. Appl. Eng. Educ. 15.1 (2007), pp. 1–14. DOI:
10.1002/cae.20084.

[7] Pai-Chun Ma, Frederic H. Murphy, and Edward A.
Stohr. “A Graphics Interface for Linear Programming”.
In: Commun. ACM 32.8 (Aug. 1989), pp. 996–1012.
ISSN: 0001-0782. DOI: 10.1145/65971.65978.

[8] John Maloney et al. “The Scratch Programming Lan-
guage and Environment”. In: ACM Trans. Comput.
Educ. 10.4 (Nov. 2010). DOI: 10 . 1145 / 1868358 .
1868363.

[9] MATLAB. URL: https : / / www. mathworks . com / help /
optim/ug/linprog.html.

[10] MBA. URL: http://people.brunel.ac.uk/∼mastjjb/jeb/jeb.
html.

[11] Jorge Mendes et al. “Systematic spreadsheet construc-
tion processes”. In: 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC).
2017, pp. 123–127. DOI: 10 . 1109 / VLHCC . 2017 .
8103459.

[12] Jorge Mendes et al. “Towards systematic spreadsheet
construction processes”. In: 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering Compan-
ion (ICSE-C). 2017, pp. 356–358. DOI: 10.1109/ICSE-
C.2017.141.

[13] Erik Pasternak, Rachel Fenichel, and Andrew N. Mar-
shall. “Tips for creating a block language with blockly”.
In: 2017 IEEE Blocks and Beyond Workshop (B B).
2017, pp. 21–24. DOI: 10 . 1109 / BLOCKS . 2017 .
8120404.

[14] José Pereira and Susana Fernandes. “Two-variable Lin-
ear Programming: A Graphical Tool with Mathemat-
ica”. In: SYMCOMP 2013 - 1st International Confer-
ence on Algebraic and Symbolic Computation. Sept.
2013, pp. 159–173.

[15] E.L.F. Senne, C. Lucas, and S. Taylor. “Towards an
Intelligent Graphical Interface for Linear Programming
Modelling”. In: Journal of Intelligent Systems 6.1
(1996), pp. 63–94. DOI: doi :10.1515/JISYS.1996.6.
1.63.

https://doi.org/10.1109/MC.2017.132
https://doi.org/10.1109/MC.2017.132
https://developers.google.com/blockly
https://doi.org/10.1109/BLOCKS.2015.7369000
https://doi.org/10.1109/BLOCKS.2015.7369000
https://www.gams.com
https://www.springer.com/gp/book/9783642108341
https://www.springer.com/gp/book/9783642108341
https://doi.org/10.1002/cae.20084
https://doi.org/10.1145/65971.65978
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://www.mathworks.com/help/optim/ug/linprog.html
https://www.mathworks.com/help/optim/ug/linprog.html
http://people.brunel.ac.uk/~mastjjb/jeb/jeb.html
http://people.brunel.ac.uk/~mastjjb/jeb/jeb.html
https://doi.org/10.1109/VLHCC.2017.8103459
https://doi.org/10.1109/VLHCC.2017.8103459
https://doi.org/10.1109/ICSE-C.2017.141
https://doi.org/10.1109/ICSE-C.2017.141
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/doi:10.1515/JISYS.1996.6.1.63
https://doi.org/doi:10.1515/JISYS.1996.6.1.63

	Introduction
	A block-based language for linear programming
	Input data
	Main language building blocks
	Defining variables
	Defining constraints
	Defining the objective function
	User interaction

	Concluding remarks

