
Systematic Spreadsheet Construction Processes
Jorge Mendes∗, Jácome Cunha†, Francisco Duarte‡, Gregor Engels§, João Saraiva∗ and Stefan Sauer§
∗HASLab, INESC TEC & Universidade do Minho, Portugal, email: {jorgemendes,saraiva}@di.uminho.pt

†NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa, Portugal, email: jacome@fct.unl.pt
‡Bosch Car Multimedia, Portugal, email: Francisco.Duarte@pt.bosch.com

§Universität Paderborn, Germany, email: {engels,sauer}@upb.de

Abstract—Spreadsheets are used in professional business con-
texts to make decisions based on collected data. Usually, these
spreadsheets are developed by end users in an ad-hoc way. Thus,
the business logic of a concrete spreadsheet is not explicit to end
users, making its correctness hard to assess and users have to
trust.

We present an approach where structure and computational
behavior of a spreadsheet are specified by a model with a process-
like notation based on pre-defined functional spreadsheet services
with typed interfaces. This enables a consistent construction
process of a spreadsheet that comprises defining its structure
and computational behavior as well as filling it with data and
executing the defined computational behavior. Thus, concrete
spreadsheets are equipped with a specification of their con-
struction process. This supports their understanding and correct
usage, even in case of legacy spreadsheets.

The approach has been developed in cooperation with an
industrial partner.

Keywords-model-driven engineering; situational method engi-
neering; construction process; spreadsheet

I. INTRODUCTION

Spreadsheets are used in professional business contexts to
make calculations and decisions based on collected data: it is
estimated that 95% of all U.S. organizations use spreadsheets
for financial reporting [16], 90% of all analysts in industry
perform calculations in spreadsheets [16], and 50% of all
spreadsheets are the basis for decisions [12]. Spreadsheets are
not only used to define sheets containing data and formulas,
but also to collect information from different systems, to adapt
data produced by one system to the format required by another,
to perform operations to enrich/simplify data, to present data
in graphic (visual) representation, etc.

It has been observed that despite admitting serious risks,
many organizations manipulate large spreadsheets in a fright-
ening ad-hoc way: they are adapted/enriched/evolved by using
an unspecified/undocumented process, usually performed by
users directly updating the computational structure or data of
a spreadsheet. This is even more frightening as the business
logic of a concrete spreadsheet is hidden, baffling and diffi-
cult to understand by end users. Thus, the correctness of a
spreadsheet is hard to assess and users have to trust.

A careful analysis of this situation reveals a few shortcom-
ings in the ad-hoc construction of spreadsheet applications:

• Spreadsheets do not have the notion of a type level.
Thus, spreadsheets are developed on the instance level

where no type checking is possible. This leads quite
often to structural changes, like insertion of rows and
columns, that are not complete and consistent as certain
dependencies are only implicit and cannot be detected
by the spreadsheet system. This situation occurred in the
spreadsheet used for an economical study on the level of
austerity that countries should comply with [2].

• The missing concept of types can lead to inconsistent
computation sequences where the data flow between two
computation steps is not appropriate [11].

• The internal data and control flow of computation steps
within a spreadsheet is only implicitly defined by a
spreadsheet developer [11]. The missing explicitness and
documentation hinders any kind of traceability and un-
derstanding of a given, often legacy spreadsheet as well
as any kind of maintenance of a spreadsheet [11].

There exist several approaches in the literature to overcome
these issues in other contexts. We combine them in a new way
proposing a novel solution which enables precise, understand-
able, and repeatable construction of spreadsheets.

First, the concept of ClassSheets has been previously in-
troduced, which allows developers to define the logic and
structure of a spreadsheet on the type level [7]. Although
several extensions have been proposed such as types for cell
values [3] or embedding ClassSheet models in a spreadsheet
hosting system [4]–[6], so far only the specific part of the
spreadsheet cells and formulas has been targeted, leaving out
several features commonly used in industrial situations.

Secondly, Model-Driven Engineering (MDE) has been intro-
duced as a methodology to specify structural and behavioral
aspects of a system on an abstract model level, before it is
implemented [13]. This is also applied for process-modeling
tasks, e.g. in business or production process modeling. Having
a fully-fledged process also allows us to enact it and to
automate the execution of individual steps of the process.

Thirdly, Situational Method Engineering (SME) is an ap-
proach to define processes for a certain development task
by composing predefined parameterized building blocks with
typed interfaces to a consistent process [10]. In this context,
the meta-model based approach MetaMe [8] was developed
to yield sound and typed methods. Based on this, the frame-
work MESP (Method Engineering with Method Services and
Method Patterns) [9] was built. The basic idea is that methods
should be composed from method services.

The combination and adaptation of these three approaches978-1-5386-0443-4/17/$31.00 c©2017 IEEE

yields our novel and integrated approach to define the con-
struction process of spreadsheets for business applications.
This approach consists of a process (on the meta-level) for
creating and executing the spreadsheet construction process
based on elicited requirements (see Fig. 1). This process com-
prises (a) defining the structure and computational behavior
of a spreadsheet (construction process design) as well as (b)
filling it with data and executing the defined computational
behavior (construction process enactment). Thus, the basic
idea of our approach is to equip a spreadsheet with an opera-
tional specification based on functional spreadsheet services.
These functional services are inspired on the method services
introduced before. This yields consistent spreadsheets with a
documented internal computation structure.

The (meta-)process of creating and executing a construction
process for spreadsheets is organized in three distinct phases
as illustrated in Fig. 1.

Requirements
Elicitation

Toolbox
Design

Construction Process Design

Construction Process Enactment

Fig. 1: A three layers approach for the construction process of spreadsheets.

In order to validate the proposed spreadsheet construction
process, we consider a large and complex industrial case study:
the Bosch Car Multimedia quality report spreadsheet-based
system. In this system large amounts of data are collected
from two SAP enterprise resource planning (ERP) systems.
The data is then manually transformed by Bosch engineers
so that a monthly report is delivered to the administration. In
this paper, we show how such an ad-hoc, error-prone and time-
consuming task is documented/specified and automated using
our approach. Although our approach has been developed and
evaluated in close collaboration with Bosch engineers to fulfill
their requirements, we plan to further demonstrate its validity
with other industrial partners.

II. SPREADSHEET CONSTRUCTION FRAMEWORK

The framework we propose aims at providing a safe way
for designing and constructing spreadsheets. The key concepts
behind it are the specification of the actions that are to be
undertaken to create and use a spreadsheet, which we call
functional services, and the artifacts and their types that are
required by or originate from these actions.

The functional services that are referred in this work are the
ones that users have available in common spreadsheet systems
(e.g. insert a pivot table). This work provides a way to specify
actions for existing features, but also for new features that
may be introduced in the future in spreadsheet systems by
proving generic ways of defining them. The functional services
are specified as actions (in UML activity diagrams [1], [15])

that can receive artifacts as input and can produce artifacts as
output.

The artifacts are typed, that is, we make a distinction
between any two artifacts that are not compatible with each
other or that do not serve the same purpose. For instance, a
chart is a different type than a pivot table. This allows us to
restrict the inputs to the actions that are to be performed, since
they usually only work on specific artifacts.

The actions and artifacts are combined in a UML activity
diagram, indicating the control and data flows of the spread-
sheet construction process.

The three phases of the (meta-)process for defining and
executing the spreadsheet construction process are supported
respectively by a three layers architecture (Fig. 1):

• requirements elicitation and toolbox design,
• construction process design, and
• construction process enactment.
The first phase has two different tasks. First, there is

the common requirements elicitation for the spreadsheet to
be produced. Since this is a process well studied, we will
not discuss it further. Second, the toolbox design should be
performed by experts in information systems. In this step the
functional services are identified as well as their input and
output (types). We provide a first version of the toolbox which
can later be extended. In the next phase – construction process
design – functional services are instantiated for the spread-
sheet under consideration. This step should not be done by
spreadsheet end-users, but by domain experts trained to use the
toolbox content. Finally, the construction process enactment
can be executed whenever necessary either automatically by
the spreadsheet system, if possible, or assisting a spreadsheet
end-user by providing the required parameters.

In the following sections we detail each of these three steps.

A. Toolbox Design

The toolbox provides the process designer (the one respon-
sible for creating a particular spreadsheet construction process)
with a set of tools to specify a concrete construction process.
It is composed of a set of functional services and a set of types
of the inputs and outputs of the functional services.

1) Functional Services: Functional services are defined
based on the features that spreadsheet systems provide. The
types and parameters are gathered from the dialogues pre-
sented to the users or from the APIs where they are detailed.
In this case, we refer to the most common spreadsheet features
available in most spreadsheet systems such as: add a new
column or row, delete a value from a cell, or modify a formula.
Some of these features have interactions with the outside
world, e.g., input by the user, or read the content of a file.

A functional service defines a step or composition of steps to
be performed within a spreadsheet. It performs an action with
given input and output types, but also with other parameters
required for such an action. For instance, importing a CSV
file into a ClassSheet table is defined by the functional service
defined in Fig. 2. In this case the functional service requires
two inputs: one is the table (import_to) to import the data to,

param : filename:Text
param : (CSVFile.index = ClassSheet.attribute)*

import from csv

import_to : ClassSheet

import_to : ClassSheet

csv_to_import : CSVFile

Fig. 2: Activity diagram for the import from csv functional service.

defined by a ClassSheet, and the other is the format of the CSV
file (csv_to_import) specifying the columns in the file. This
functional service requires two extra parameters: one being the
CSV file itself so the spreadsheet system can import it, and
the other being a mapping between each column of the CSV
file and each attribute of the table given by the ClassSheet. In
this case the output produced is again the table but filled with
the data imported from the CSV file.

Note the difference between inputs and parameters. The
inputs are used to guarantee that the functional service is only
coupled with other functional services that produce those arti-
facts as output. The parameters are extra information necessary
to configure the service, as requested by the dialogues of the
spreadsheet system.

2) Types: In our framework we provide base types available
in spreadsheet systems as numbers; text; lists of elements of
some type (e.g. a list of labels); references; (data) tables, spec-
ified using ClassSheets; and generic types that can be further
defined during the construction process design. ClassSheets are
only able to specify the contents of the cells of a worksheet,
including their position. Thus, other elements such as charts
and images are in our case defined using a generic type that
can be further instantiated. Generic values have a name (e.g.,
“chart”), an identification (id) that can be referenced, and
a possibly empty set of attributes and corresponding values
of any available type. Generic types represent the several
artifacts that spreadsheets support, but they can also be used
to represent input and output types of the functional services.
This allows us to have a uniform representation of many of
the types that are used as input and output of actions.

B. Construction Process Design

The construction and usage of a spreadsheet can be de-
fined as a workflow using the previously described functional
services. All actions to be performed are specified using
functional services, which define the kind of interaction the
end user should perform with the spreadsheet and thus how
the spreadsheet should be used.

By defining a workflow we want to give some correctness
guarantees, namely that the sequencing of functional services
is type safe, i.e., the output type of a functional service matches
the input type of the following one. This deviates from the
common usage of spreadsheets which allows for a very flexible
usage of many of its components, but can lead to errors in
intermediate steps.

A spreadsheet construction process model (being the out-
come of this construction process design phase) is used to
specify the steps to obtain a spreadsheet from the provided

requirements. The designer has to insert into the process the
available inputs and define the expected outputs. Then, the
intermediate actions to obtain the required outputs from the
available inputs have to be defined.

The design process is restricted by the types of the inter-
mediate actions, which prevents a class of errors and ensures
a safe flow of data. Moreover, the use of types allows us to
specify exactly which kind of data or artifact is provided by
some action or is given to another. In some cases, explicit
typing may not be required and thus a functional service is
connected directly to another.

C. Construction Process Enactment

The enactment of a construction process consists of per-
forming the actions defined by the functional services in that
process and in the order they are specified. Whenever some
required parameter of a functional service is not defined, the
end user enacting the process is prompted to provide the value.
User interaction may also happen when an action explicitly
requires input from the user (e.g., filling a table). For instance,
consider the import from csv functional service. To enact this
service the spreadsheet user needs to actually select a CSV
file so the process can continue.

Nevertheless, most of the process should be automated to
prevent human errors. We plan to implement a tool that can
automate the enactment of a construction process as much as
possible without human intervention. The use of a standard
UML language to represent the process itself will be useful as
this allows us to use available tools to manipulate this kind of
representations, such as the ones in the Epsilon family [14].

III. INDUSTRIAL CASE STUDY

A quality department at Bosch Car Multimedia Portugal
uses a spreadsheet to analyze the data exported from a SAP
ERP system. This data contains the reported defect claims of
the parts they produce. In addition to the defect claims, they
require information about the parts involved which is obtained
from a different SAP ERP system. The data is analyzed and
summarized to create a report for the stakeholders.

The analysis process is performed once a week, and the re-
port is sent to Bosch’s administration once a month. A similar
report in the same format must be sent to the administration by
two other Bosch Car Multimedia factories in other countries
(China and Malaysia). However, the process for obtaining the
report is defined by each factory individually provided that the
result fits the administration’s requirements.

A. Description of the Legacy Process

The analysis is spread across eight worksheets to gather the
input, perform the analysis, and to report the results (Fig. 3).

Worksheets parts and 0km contain the input data that is
extracted from two different systems. Both of these worksheets
contain database-like tables: the first row contains the descrip-
tions of the columns while the remaining rows contain the data
where each row is a record. The worksheet parts has 4 columns
and about 1400 entries, while 0km has 72 columns and about

2300 entries. The data in 0km is filtered to obtain only the
records for the year being analyzed (about 500 entries) and
those records are copied to format.

The worksheets claimed, customer, and production are used
to analyze the data from the format worksheet using the same
process but with distinct parameters. First, a pivot table is
created, then the data is copied next to the pivot table, and
finally an advanced sort is applied to the data. This sort is not
directly appliable to the pivot table.

A selection of the results from the three analysis worksheets
is grouped in the worksheet summary, with a better visualiza-
tion of that worksheet provided in the result.

parts

format0km

production

customer

claimed

summary result

Input Analysis Output

Fig. 3: Worksheets data dependency.

B. Specification of the Construction Process

The legacy process described in the previous section can be
implemented in our framework using the functional services
that we provide. Due to length constraints, the full process is
not detailed in this paper. However, it fully describes the legacy
process, as depicted in Fig. 4, and provides a completely
automatic approach to create this weekly spreadsheet.

C. Discussion

The process described in this industrial case is mechanical,
tedious, and error prone. Bosch employees spend a consider-
able amount of time in this process to create a report every
week, which could be better spent doing in-depth analyses.

Our framework lifts the burden to manually create the
spreadsheet. At this stage, it provides an explicit sequence
of steps to recreate the spreadsheet whenever it is necessary
(e.g. when initial data changes). In the future, all this process
can be automated and thus freeing employees from this task.

IV. CONCLUSION

In the past, it has been often reported that the use of
spreadsheets in any kind of business application is of high risk.
This is (also) due to missing structured development processes
of spreadsheets as well as due to missing quality assurance
activities in ensuring the quality of spreadsheets. Quite often,
spreadsheet end-users do not question the correctness of
spreadsheets and come to decisions with high impact based
on spreadsheet analysis even if they do not fully understand
the underlying functionality of the spreadsheet.

In this paper, we present a novel approach to make the
structure and computation flow within a spreadsheet explicit
by a construction process. These construction processes are
composed of predefined parameterized and typed functional

insert table

insert table

import from csv

import from csv

0km : Defects (ClassSheet)

parts : Parts (ClassSheet)

parts : Parts (ClassSheet)

format : Defects (ClassSheet)

claimed
analysis

customer
analysis

production
analysis

insert table

claimed : Result
(ClassSheet)

insert table

customer : Result
(ClassSheet)

insert table

production : Result
(ClassSheet)

filter

0km : Defects (ClassSheet)

partsCSV : CSVFile

defectsCSV : CSVFile

Fig. 4: Bosch’s spreadsheet construction process model.

services, which allows us to guarantee their correct compos-
ability. The construction process also allows us to automate
the creation and usage of the spreadsheet.

The presented approach has been developed in collaboration
with an industrial partner, whose spreadsheet construction
process and dependency structures have been made explicit
with our construction process model, as discussed before.

The next steps are to enlarge the case studies and to re-
engineer existing spreadsheets used in industrial applications.
This will be done in close cooperation with industrial partners
from the Software Innovation Campus Paderborn (SICP). It is
expected that this might lead to additional functional services
in the provided toolbox. This research will be accompanied
by the development of a tool for further support.

ACKNOWLEDGMENT

This work is financed by the ERDF – European Regional
Development Fund through the Operational Programme for
Competitiveness and Internationalisation - COMPETE 2020
Programme within project POCI-01-0145-FEDER-016718,
and by FCT as part of project UID/CEC/04516/2013. This
work is also financed by the bilateral project FCT/DAAD
with ref. 441.00. The first author is funded by FCT grant
SFRH/BD/112651/2015.

REFERENCES

[1] J. Arlow and I. Neustadt. UML 2.0 and the Unified Process: Practical
Object-Oriented Analysis and Design (2Nd Edition). Addison-Wesley
Professional, 2005.

[2] P. Coy. Faq: Reinhart, rogoff, and the excel error that changed history.
Bloomberg: http://www.bloomberg.com/news/articles/2013-04-18/
faq-reinhart-rogoff-and-the-excel-error-that-changed-history, 2013
April.

[3] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva. Extension and
implementation of classsheet models. In 2012 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pages 19–
22, Sept 2012.

[4] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva. MDSheet: A
Framework for Model-driven Spreadsheet Engineering. In Proceedings
of the 34rd International Conference on Software Engineering, ICSE’12,
pages 1395–1398. ACM, 2012.

[5] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva. Embedding, evo-
lution, and validation of model-driven spreadsheets. IEEE Transactions
on Software Engineering, 41(3):241–263, March 2015.

[6] J. Cunha, J. Mendes, J. a. P. Fernandes, and J. a. Saraiva. Embedding and
evolution of spreadsheet models in spreadsheet systems. In Proceedings
of the 2011 IEEE Symposium on Visual Languages and Human-Centric
Computing, VLHCC ’11, pages 186–201, Washington, DC, USA, 2011.
IEEE Computer Society.

[7] G. Engels and M. Erwig. Classsheets: Automatic generation of spread-
sheet applications from object-oriented specifications. In Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’05, pages 124–133. ACM, 2005.

[8] G. Engels and S. Sauer. A Meta-Method for Defining Software Engi-
neering Methods, pages 411–440. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[9] M. Fazal-Baqaie and G. Engels. Software Processes Management by
Method Engineering with MESP, pages 185–209. Springer International
Publishing, Cham, 2016.

[10] B. Henderson-Sellers, J. Ralyté, P. J. Ågerfalk, and M. Rossi. Situational
Method Engineering. Springer, 2014.

[11] F. Hermans. Analyzing and visualizing spreadsheets. PhD thesis, Delft
University of Technology, 2012.

[12] F. Hermans, M. Pinzger, and A. van Deursen. Supporting professional
spreadsheet users by generating leveled dataflow diagrams. In Pro-
ceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, pages 451–460, New York, NY, USA, 2011. ACM.

[13] S. Kent. Model Driven Engineering, pages 286–298. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002.

[14] D. Kolovos, L. Rose, R. Paige, and A. Garcia-Dominguez. The Epsilon
Book. Eclipse, 2010.

[15] Object Management Group. UML specification 2.0, 2005. available at
http://www.omg.org/spec/UML/.

[16] R. R. Panko and N. Ordway. Sarbanes-oxley: What about all the
spreadsheets? CoRR, abs/0804.0797, 2008.

