
Variability and Complexity in Software Design –
Towards Quality through Modeling and Testing

Matthias Galster
University of Canterbury

Christchurch, New Zealand

mgalster@ieee.org

Uwe Zdun
University of Vienna

Austria, Vienna

uwe.zdun@univie.ac.at

Danny Weyns
KU Leuven, Belgium

Linnaeus University, Sweden

danny.weyns@kuleuven.be

Jácome Cunha
NOVA LINCS, DI, FCT, NOVA University

of Lisbon
Lisbon, Portugal

jacome@fct.unl.pt

Michael Goedicke
University of Duisburg-Essen

Essen, Germany

michael.goedicke@s3.uni-due.de

Jaime Chavarriaga
Universidad de los Andes

Bogotá, Colombia

ja.chavarriaga@uniandes.edu.co

ABSTRACT
Today’s software systems must accommodate a wide range of usage
and deployment scenarios. The increasing size and heterogeneity of
software-intensive systems, dynamic and critical operating conditions,
fast moving and highly competitive markets, and increasingly powerful
and versatile hardware makes it more and more difficult to handle the
additional complexity in design caused by variability. This paper reports
results of the Second International Workshop on Variability and
Complexity in Software Design. It also outlines directions the field
might move in the future.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software
Architectures
General Terms
Management, Documentation, Design.

Keywords
Variability, complexity, software design.

1. INTRODUCTION
1.1 Overview
VACE 2017 addressed software engineering challenges related to
requirements, design, implementation, evaluation, deployment,
operation and maintenance “variability-intensive” software and the
complexity in the design of those systems. VACE 2017 embraced the
notion of “variability-intensive” which includes any type of system that
needs to accommodate diverse application and deployment scenarios
(e.g., due to variations in users and user needs, dynamics in the
availability of resources or external services, market segments,
customer profiles, different emphases in different phases of the software
development process, or variation in hardware resources). Examples of
such “variability-intensive” systems include self-adaptive systems,
configurable or customizable single systems, open platforms, context-
aware mobile apps, plug-ins of web browsers, service-based and cloud-
based systems, IoT and cyber-physical systems. Such systems can range
from small-scale embedded systems to large-scale enterprise systems to
ultra-large systems of systems.

Variability became a concern of most modern software systems to
accommodate different deployment and usage scenarios since today’s
stakeholders and software users expect flexibility in many dimensions,
e.g., features, location and resource awareness, fault tolerance, and
energy consumption of mobile devices. Therefore, variability needs to

be faced in mainstream and pervasive software and is not limited to
“traditional” fields such as software product lines and families anymore.
A trend in the next decade will be managing variability in a non-product
line context and under open-world assumptions. Also, currently
separated research communities will need to cooperate closer.

In software engineering a design space comprises the set of possible
design options and design parameters that could potentially meet a
specific software system’s requirements. Designing for variability
means considering highly diverse stakeholders and extremely large
design spaces. This complexity of the design space because of
variability becomes even more challenging in the light of current trends:

• Increasing size and heterogeneity of software-intensive systems
(e.g., software ecosystems, cyber-physical system, systems of
systems, ultra-large scale systems)

• New and emerging application domains (e.g., unmanned aerial
vehicles and self-driving cars, smart health apps and sensor-based
systems, large-scale surveillance systems, software-defined
networking)

• Dynamic and critical operating conditions under which software
must function (e.g., available resources and services, disaster
monitoring and response systems)

• Fast moving and highly competitive markets (e.g., gaming, mobile)
as well as more powerful/versatile hardware (e.g., Raspberry Pi)

Consequently, designing for, implementing, operating and maintaining
variability in software systems not only affects the software’s
functionality and quality (i.e., what do we build), e.g., systems for
“continuous configuration management” from compilation to
deployment to runtime [5]. It also affects the development process (i.e.,
how we build it), e.g., systematic quality assurance and validation
despite a potentially large and complex design and solution space.
Moreover, in some new consumer domains of critical systems, e.g.,
autonomous and unmanned vehicles, research is only slowly catching
up with industry trends and needs. Such systems soon become an
integral part of many industries, including construction, agriculture,
emergency responder support, etc. Once this happens, practices need to
be in place to help develop such systems. Additionally, successful
companies are innovative companies that target new market
opportunities, independent of solutions or ideas that currently exist. On
the other hand, the time to market can make the difference between
product success and failure. This highlights the need for more “light-
weight” approaches to variability-intensive systems, which balance the
need for innovation but also consider reducing development effort, even

ACM SIGSOFT Software Engineering Notes Page 35 October 2017 Volume 42 Number 4

for innovative products. New product models for variability-intensive
systems could help manage system growth over time and offer
opportunities for innovation throughout development. Finally, there is a
need-supply gap in engineering capability (processes, practices but also
in skills and workforce). Issues described above have created new
engineering needs in which old work practices do not apply.

1.2 Workshop History
The Second International Workshop on Variability and Complexity in
Software Design (VACE) was held in conjunction with the International
Conference on Software Engineering (ICSE) in Buenos Aires,
Argentina. The workshop website can be found at http://vaquita-
workshop.org/vace2017/. Previously, the first edition of VACE was
collocated with ICSE 2016 in Austin, Texas [7].

VACE is an evolution of the VARSA workshop series (International
Workshop on Variability in Software Architecture) held at WICSA in
2011 [3], 2012 [6], and 2014 [4], and VAQUITA (Workshop on
Variability for Qualities in Software Architecture) held at ECSA 2015.
Evolving these two workshops into one ICSE workshop broadened the
community beyond software architecture to reach an audience with a
much broader and diverse background and expertise.

1.3 Workshop Structure
After a peer review process where each submitted paper was reviewed
by members of the international program committee, the workshop
accepted papers for presentation and inclusion in the workshop
proceedings. The workshop was organized in four sessions: testing,
mobile and web, delta-oriented programming, and modeling.

2. OPEN RESEARCH TOPICS
After the paper presentations, discussions led to the following themes as
topics for future work: modeling variability, testing, and usability and
scalability as cross-cutting concerns.

2.1 Modeling Diverse Types of Variability
Modeling is about the “conceptual dimension” of variability.
Nowadays, variability is considered in multiple dimensions and
domains. While traditional modeling approaches focus on modeling the
variability in features, functionalities and components of a software
product line, more recently many authors have been focusing on the
variability in other domains, such as the context or in the platform
where the applications run. The existence of these “multiple
variabilities” introduces new challenges for modeling.

On the one hand, the modelers must select which representations to use.
Variability can be specified using external models such as feature
models [11] and orthogonal variability models [13], using extensions to
existing models such as UML stereotypes [8] or directly in the code
such as using Java annotations, aspects or conditional compilation.
Different representation schemas (such as aspect-oriented modeling
[e.g., in AspectJ], delta-oriented modeling [e.g., DeltaJ], different
architectural or system views and annotations in models) have been
proposed. Although several authors propose to use only one type of
representation, using a combination may be more appropriate.

On the other hand, modeling must maintain the consistency across all
the representations and across levels of abstraction, from specification
to implementation. When the variabilities in different domains are
represented in multiple ways, it is desirable to define relationships
among these representations and automated processes to determine
interactions, inconsistencies and errors. There are some works aimed to
check the consistency of the variability represented in models with the
represented in code, e.g., cross-checking feature models and conditional
compilation using #ifdefs. However, few works relate these variabilities
with the existing in non-traditional domains such as the context or the
platform.

As an example of these new challenges, consider the modeling of the
context, i.e., the modeling of the external elements for a line of
products. The number of surrounding elements and the number of
combinations of these elements may exceed the number of selectable
features for the line. A modeler may find difficulties not only to
determine which of these elements worth to be modeled, but also which
rules describe which combinations are valid. Representations such as
feature models, where all the features and valid combinations must be
fully identified, may be hard to use. Other types of representations, such
as probabilistic feature models [2] may be considered.

As another example, consider the issues related to the Android
Fragmentation [12]. There are many different versions of the Android
OS, different types of devices, manufacturer skins and extensions, so
that it is practically impossible to test a software product for all possible
combinations. Someone interested on modeling the Android's platform
variability must consider which types of models and validation
techniques are the most suitable. For instance, although a probabilistic
feature model may represent the features and combinations of features
with greater probability of occurrence in a geographical region or
market, automated processing of these models may require different
techniques to the used for the traditional feature models.

2.2 Testing of Variability-intensive Systems
Testing is about the “quality dimension” of variability. The activities for
quality assurance of variability-intensive systems must consider the
diverse types of variabilities. For instance, existing approaches for
software product lines aim to determine which set of combinations of
features or components to test in order to obtain a pair-wise or a t-wise
coverage. However, these approaches usually rely on processing a
single representation of variability, e.g., a single feature model, and do
not consider multiple representations or multiple types of variabilities.
A key concern regarding testing of configurable systems is efficiency;
besides collective offline/online testing, interesting approaches to be
considered in this context are incremental testing and identifying
equivalence classes of configurations to be tested.

In Dynamic Software Product Lines (DSPLs), the behavior of the
system may vary not only depending of the features configured in the
product but also on the elements detected in the context. To test one of
these systems, it is necessary to determine variations in both, their inner
features or components and in the surrounding elements of that system.
In addition, some tests may involve changes in these elements in the
context during an operation. Assuring the quality of DSPLs may require
processing multiple representations of variability and diverse techniques
for testing.

Novel techniques for testing DSPLs and variability-intensive systems
must be explored. On the one hand, the techniques used to determine
which variants to test can consider the variability observed in the
reality. Instead of considering coverage such as pair-wise or t-wise
combinations, the testing procedures can consider the combinations in
the features of the system or in the context that are most common [9].
For instance, to test a mobile application, a novel technique may
prioritize the platforms and the elements in the context with more
probability of occurrence in a region or market. Techniques to capture
the most common variability and determine an observation space must
be developed. On the other hand, part of the testing can be performed at
runtime when a concrete non-tested combination of context, platform
and features is detected. Testing can combine off-line testing where a
more-exhaustive test is performed using combinations determined
upfront, with on-line testing performed using combinations detected at
runtime [9].

Note that the variability observed in a market, detected in the
environment or imposed by the multiple platforms may exhibit a
combinatorial explosion. Trying to test all the combinations is likely to
be infeasible. It is important to reduce the number of combinations

ACM SIGSOFT Software Engineering Notes Page 36 October 2017 Volume 42 Number 4

considering similarities and equivalence on multiple types and
representations of variability.

2.3 Usability and Scalability of Variability Models
Usability and scalability are cross-cutting concerns when it comes to
variability handling and management approaches (e.g., modeling
techniques, processes, practices and tools). Chen and Babar discuss
several principles, mechanisms, and techniques proposed in the
literature for achieving scalability when modeling variability [1]. The
authors describe different kinds of “divide and conquer approaches”,
such as decomposition/composition or separation of concerns. They
also discuss strategies for hiding unnecessary information at each time,
or querying approaches for accessing only the relevant part of a large
and complex model.

Although these approaches have been proposed having in mind the
scalability of the variability models themselves, such techniques can aid
making testing approaches for variability-intensive systems more
scalable. In particular, since most of these approaches intend to
manipulate just a part or a view of the model at a time, such approaches
could be adopted to more easily to design unit testing approaches for the
models. Indeed, given smaller parts of the models, to test each one can
probably be easier than designing tests for complete, potentially too big,
variability models. This deserves further investigation.

We believe the strategies presented in [1] can also be used to increase
the usability of the modelling approaches, and of the testing ones too.
Usability can be defined as the “extent to which a product can be used
by specified users to achieve specified goals effectively, efficiently and
with satisfaction in a specified context of use” [10]. In this case, the
users are the modelers or the testers, and their goals are to define the
models or the tests, respectively. Although arguable, to define smaller
models and tests are tasks these users can perform more efficiently and
effectively, thus raising their satisfaction. We argue these ideas deserve
further studies to investigate their real impact in current modelling and
testing techniques’ usability.

3. CONCLUSIONS
We summarized the outcome of the Second International Workshop on
Variability and Complexity in Software Design. We gave an overview
of the event, summarized discussions and offered an outlook on themes
that emerged from the discussions at the workshop and which might be
subject to future work. Key themes for further investigation are
modeling variability, testing variability intensive systems, and usability
and scalability as cross-cutting concerns.

4. ACKNOWLEDGMENTS
The VACE workshop is a collective endeavor. The organizers would
like to thank all workshop authors, presenters and submitters. We also
thank the ICSE 2017 organizers and in particular the workshop chairs.
Finally, we thank the members of the program committee.

5. REFERENCES
[1] Chen, L., and Babar, M. A. 2009. A survey of scalability aspects of

variability modeling approaches. In Workshop on Scalable
Modeling Techniques for Software Product Lines at SPLC’09.

[2] Czarnecki, K. She, S. and Wasowski, A. 2008. Sample spaces and
feature models: There and back again. In Software Product Line
Conference SPLC’08.

[3] Galster, M., Avgeriou, P., Weyns, D., and Mannisto, T. 2011.
Variability in Software Architecture: Current Practices and
Challenges. ACM SIGSOFT Software Engineering Notes 36, 5
(2011), 30-32.

[4] Galster, M., Mannisto, T., Weyns, D., and Avgeriou, P. 2014.
Variability in Software Architecture: The Road Ahead. ACM
SIGSOFT Software Engineering Notes 39, 4 (2014), 33-34.

[5] Galster, M., Weyns, D., Tofan, D., Michalik, B., and Avgeriou, P.,
Variability in Software Systems - A Systematic Literature Review,
IEEE Transactions on Software Engineering 40, 3 (2014), 282-
306.

[6] Galster, M., Weyns, D., Avgeriou, P., and Becker, M. 2013.
Variability in Software Architecture: Views and Beyond. ACM
SIGSOFT Software Engineering Notes 38, 1 (2013), 46-49.

[7] Galster, M., Zdun U., Weyns, D., Rabiser, R., Zhang, B.,
Goedicke, M., and Perrouin, G. 2016. Variability and Complexity
in Software Design: Towards a Research Agenda. ACM SIGSOFT
Software Engineering Notes 41, 6 (2016), 27-30.

[8] Gomaa, H. 2004. Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures, Addison
Wesley.

[9] Hansel, J and Giese, H. 2017. Towards Collective Online and
Offline Testing for Dynamic Software Product Line Systems. In
IEEE/ACM 2nd International Workshop on Variability and
Complexity in Software Design.

[10] ISO/IEC. 9241-11 Ergonomic requirements for office work with
visual display terminals (VDTs) – Part 11 Guidance on usability,
ISO/IEC 9241-11: 1998 (en), 1998.

[11] Kang, K., Cohen, S. Hess, J. 1990. Feature-oriented domain
analysis (FODA) feasibility study. Technical Report. Software
Engineering Institute.

[12] OpenSignal. 2015. Android Fragmentation Report August 2015.
https://opensignal.com/reports/2015/08/android-fragmentation/

[13] Pohl, K. Bockle, G. Van der Linden, F. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer.

ACM SIGSOFT Software Engineering Notes Page 37 October 2017 Volume 42 Number 4

https://opensignal.com/reports/2015/08/android-fragmentation/

