
Refactoring Java Monoliths into Executable

Microservice-Based Applications

Francisco Freitas
a81580@alunos.uminho.pt

University of Minho & INESC TEC
Portugal

André Ferreira
alferreira@di.uminho.pt

University of Minho & Bosch Car
Multimedia S.A.

Portugal

Jácome Cunha
jacome@di.uminho.pt

University of Minho & INESC TEC
Portugal

Abstract

The way we develop software is constantly changing. In the
last few years, we have seen a drastic change, where large-
scale software projects are being assembled by a flexible
composition of many (small) components. Thus, currently,
most applications are developed by assembling, and many
times reusing, several “small” components, possibly written
in different programming languages and deployed anywhere
in the cloud – the so-called microservice-based applications.

The dramatic growth in popularity of microservice-based
applications has pushed several companies to apply major
refactorings of their software systems. However, this is a
challenging task that may take several months or even years.
In this paper we propose a methodology, supported by a

tool termed MicroRefact, to automatically evolve a Java
monolithic application into a microservice-based one. Our
methodology receives as input the Java application and a
proposition ofmicroservices and refactors the original classes
to make each microservice independent. Our methodology
creates a REST API for each method call to classes that are in
other services. The database entities are also refactored to be
included in the corresponding service. The initial evaluation
shows that our tool can successfully refactor 80% of the Java
applications tested.

CCS Concepts: • Software and its engineering → Soft-

ware maintenance tools; • Computer systems organi-

zation → Cloud computing.

Keywords: microservice architecture, microservice-based
applications, monolithic decomposition, refactoring, Java

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SBLP’21, September 27-October 1, 2021, Joinville, Brazil
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9062-0/21/09. . . $15.00
https://doi.org/10.1145/3475061.3475086

ACM Reference Format:

Francisco Freitas, André Ferreira, and Jácome Cunha. 2021. Refac-
toring Java Monoliths into Executable Microservice-Based Appli-
cations. In 25th Brazilian Symposium on Programming Languages
(SBLP’21), September 27-October 1, 2021, Joinville, Brazil. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3475061.3475086

1 Introduction

“The death of big software” has been announced in 2017
[1]. This was in part caused by the rise of the cloud and
“small” software. Small software is built in simpler and more
integrateable pieces which provide a flexibility big software
does not. These pieces can be used to mix-and-match as to
create new or even to evolve existing software [1]. Indeed,
software is currently being developed as a set of loosely-
coupled components, eventually deployed anywhere in the
cloud, and communicating through the internet [16]. This
has been motivated by the challenges associated with the
development, maintenance, and evolution of large software
systems, but also by the appearance of the cloud and the
ease it brought in terms of horizontal scaling, reusability and
flexibility in ownership and deployment.

An example of how to manage this new way of developing
software is the popular architectural style termed microser-
vices [16]. Microservice-based applications consist of (small)
services that focus on a single functionality. One of the main
motivations of a microservice architecture is that it has the
potential to increase the flexibility and agility of software
development as each service can be developed individually
using different technologies. These services communicate
with each other through some lightweight communication
mechanism (e.g. HTTP REST requests) [16]. Although the
advantages of the development of this kind of applications do
surpass the disadvantages, the fact is that there are still many
applications that were built as monoliths, that is, applications
composed of all the core logic related to the domain of the
problem contained in a single process [16]. The manual pro-
cess of migrating them to this new paradigm is complex and,
depending on the project’s complexity, may take months or
even years to complete [7, 15]. The decomposition of soft-
ware systems is one of the main struggles, and as shown in
the work of Fritzsch et al. [7], none of the participants in the
study was aware of automated techniques that could assist

https://doi.org/10.1145/3475061.3475086
https://doi.org/10.1145/3475061.3475086

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Francisco Freitas, André Ferreira, and Jácome Cunha

the migration of a monolithic application to a microservice-
based one. Thus, the research community has been working
on techniques and methodologies to aid in this migration, i.e.
in transforming a monolithic application into a microservice-
based one, while preserving the semantics of the original
application [4, 8–11, 14]. Moreover, several companies have
also applied major refactorings of their backend systems to
transform their applications [15]. More about related work
can be found in Section 5.

Most of the previous works are focused on the identifica-
tion of the services, but lack the step of actually refactoring
the application to make it a microservice-based one. In this
work we present a methodology, supported by a tool termed
MicroRefact, that receives as input a list and composition
of microservices for a Java monolithic application, and refac-
tors that original application into a microservice-based one.
Our methodology analyzes the source code and the services
proposed and refactors the classes that have method calls to
other classes that are part of other services. Each of these
calls is replaced by a call to a new method we automatically
generate, implementing a REST call to the original method
which now is a different service. We also refactor the data-
base classes as they need to be spread by the different services
too. In Section 2 we present our methodology in detail and
in Section 3 its implementation.

We performed an initial evaluation using 10 open-source
projects extracted from GitHub. MicroRefact automati-
cally refactored 8 of the 10 projects andMicroRefact can
be further extended to include the remaining 2 projects. Sec-
tion 4 presents in detail our evaluation. In Section 6 we draw
our conclusions and describe some possible future work.

2 Refactoring Java Monoliths

In this section, we present the proposed methodology for
refactoring Java monoliths. The proposed methodology is di-
rected to the applications that use object-relational mapping
(ORM) between database entities and Java classes, in par-
ticular applications that make the mapping between classes
and entities through annotations in the source code. To
demonstrate what transformations our methodology makes
to monolithic projects, we use as an example a Spring Java
application called restaurantServer1, which is a backend ap-
plication for restaurant management.
Our methodology receives as input the source code of

the application under analysis and a microservices proposal.
The microservices proposal is a set of lists in which each
list represents a microservice containing the name of the
classes that form the microservice. Our methodology has
as its output a microservices-based application that from
the functional point of view is the same as the monolithic
application under analysis.

1https://github.com/asledziewski/restaurantServer

Figure 1 depicts the steps of the refactoring process. In the
Information Extraction phase, we extract the structural in-
formation from the source code of the project under analysis
and combine it with the microservices proposal to identify
the dependencies between microservices.
In the next step, Database Refactoring, we use the struc-

tural information and the dependencies between microser-
vices to identify entities, relationships between entities, and
to identify which relationships need refactoring, proceeding
to the refactoring of those relationships.

Finally, in Code Refactoring, we use the structural informa-
tion and the dependencies between microservices to analyze
the class variables and the dependencies between classes, in
order to identify and refactor the classes that have depen-
dencies with classes that belong to different microservices.

2.1 Information Extraction

The building blocks of our methodology are the structural
information and proposed microservices. In the Information
Extraction phase structural information is extracted from the
source code and dependencies between microservices are
identified. We describe next how to obtain this information.

2.1.1 Extraction of Structural Information. To iden-
tify the dependencies between microservices, it is necessary
to identify the dependencies between classes and relate the
dependencies with the microservices proposal. Through the
structural information of the source code we identify the
dependencies between the classes. We perform extraction of
structural information in a structured version of the source
code: its underlying Abstract Syntax Tree (AST). For each
class in the project we extract the following information
from the AST: the list of imports, the list of implemented in-
terfaces, the class from which it extends, if applicable, the list
of annotations, the list of variables, the list of methods and
the list of methods invoked from other classes. To identify
the classes a class depends on and to create the dependency
list for each class, we combine the list of invoked methods,
the list of implemented interfaces and information about ex-
tends. The dependency list contains the name of the classes
from which the class invokes methods, the name of the in-
terfaces it implements and the name of the superclass, if
applicable.

For example, from the restaurantServer class MailService
we extract the following information :

Name : MailService
Imports: [org.springframework.beans.factory.annotation.Au-

towired, org.springframework.mail.javamail.JavaMailSender,
org.springframework.mail.javamail.MimeMessageHelper, org-
.springframework.stereotype.Service, javax.mail.MessagingEx-
ception, javax.mail.internet.MimeMessage]

Implements : []
Extends : []
Annotations : [@Service]

https://github.com/asledziewski/restaurantServer

Refactoring Java Monoliths into Executable Microservice-Based Applications SBLP’21, September 27-October 1, 2021, Joinville, Brazil

Figure 1. Overview of the proposed methodology

Variables :[{ “annotations”: [], “modifier”: private , “iden-
tifier”: [], “type”: JavaMailSender, “variable”: javaMailSender
]}]

Methods : [{“name”: sendEmail, “annotations”: [], “return-
DataType”: [void], “identifier”: [], “parametersDataType”: [
“type”: String, “variable”: destination, “type”: String, “variable”:
subject, “type”: String, “variable”: content], “variables”: [“type”:
MimeMessage, “variable”: mail, “type”: MimeMessageHelper,
“variable”: helper], “body”: MimeMessagemail = javaMailSender-
.createMimeMessage(); try MimeMessageHelper helper = new
MimeMessageHelper(mail, true); helper.setTo(destination); hel-
per.setReplyTo("restaurantprojectPZ@gmail.com"); helper.set-
From ("restaurantprojectPZ@gmail.com"); helper.setSubject(subj-
ect); helper.setText(content); catch (MessagingException e)
e.print- StackTrace(); javaMailSender.send(mail);}]

MethodsInvocation : []
Dependencies : []

2.1.2 Identify Microservice Dependencies. Since the
composition of the microservices given as input may not
have followed any microservice identification methodology,
it is necessary to check if there are dependencies between
microservices. We define dependencies between microser-
vices as a reference to a certain non-primitive type that does
not belong to the microservice. By comparing the list of de-
pendencies of a class with the list of classes that form the
microservice to which the class belongs, we observe that the
classes that are not in both lists correspond to dependencies
between microservices. Thus, a list is created for each class,
containing the name of the classes that the class depends on
and belong to different microservices, which represents the
list of dependencies of the class with other microservices.

With the lists of dependencies between microservices gen-
erated for each class, it is sometimes necessary to make
adjustments to the microservice proposal given as input. If
the microservices proposal indicates that an interface im-
plemented by a class is in different microservices, we repli-
cate the interface and place the copy in the microservice
where the implementing class belongs, since an interface
only provides the signature of the methods that a class must
implement, not having a significant impact on the microser-
vice domain. On the other hand, regarding inheritance, our
methodology does not allow the super class and sub classes
to be in different microservices because they have an “is

a” relationship and must belong to the same domain and
therefore the same microservice.

2.2 Database Refactoring

One of the big challenges of migrating a monolithic system
to microservices is database refactoring. It is necessary to
consider issues of transactional integrity, referential integrity,
joins, latency, and more [17]. The database refactoring phase
aims to identify entities, relationships between entities, and
refactoring the relationships between entities that belong to
different microservices.

Using the structural information extracted in the previous
phase we identify the classes that are mapped as entities and
the relationships between the entities. We use the annotation
list of each class to identify the classes that are mapped as
entities and through the annotations of the instance variables
we identify the relationships.

Table 1 shows the entities and relationships present in
restaurantServer. The logical schema of the database is de-
fined by 7 classes and 6 relationships.

Entity Relationship Entity
User Many-to-Many Role
User One-to-Many Reservation
Bill One-to-Many BillPosition

BillPosition Many-to-One Dish
RTable One-to-Many Reservation
RTable One-to-Many Bill

Table 1. Relationship between entities

2.2.1 Relationships Refactoring. With the breakdown
of the monolith into microservices, it is necessary to check
the integrity of the relationships between entities. As we
are in the scope of applications that use annotations for
mapping between classes and entities, when relationships
between entities are identified, in terms of code this trans-
lates into a dependency between classes that needs to be
handled. By refactoring the classes involved in the relation-
ship we refactor the relationship of the database entities. Our
methodology maintains the relationships between entities
that belong to different microservices, using foreign keys to
secure these relationships.

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Francisco Freitas, André Ferreira, and Jácome Cunha

We use a relationship found in restaurantServer to demon-
strate how our methodology refactors relationships. Figure
2 shows the one-to-many relationship between RTable and
Reservation in the monolithic system. We omit some at-
tributes from the RTable and Reservation because it has
no impact on the refactoring of the relationship.
Both classes have the Entity annotation that indicates

that they are mapped as entities and their instance vari-
ables are mapped as attributes. The Reservation table has
a foreign key that corresponds to the RTable's primary
key. In terms of code, the one-to-many relationship is rep-
resented by the RTable class having an instance variable of
type list of Reservation with OneToMany annotation and
the Reservation class having an instance variable to store
a primary key of RTable.

Figure 2. One-to-many relationship between RTable and
Reservation in monolithic application

Let us assume that the microservice proposal given as
input indicates that RTable and Reservation are in differ-
ent microservices and therefore the classes are in different
environments, leading to the fact that the Reservation type
does not exist in the RTable microservice and therefore, to
maintain the relationship at the code level and not bemapped
to the database, it is necessary to remove the OneToMany an-
notation from the list of Reservation of the RTable class
and create the Reservation type in the RTable microser-
vice. We use Data Transfer Object (DTO) pattern [5] to create
Reservation type in RTable microservice. Full replication
of the Reservation class would create an entity in the data-
base with the same name in the RTable microservice.

In themonolithic version, when information about RTable
is retrieved, the information of the Reservation associated
with the RTable is also retrieved because the database per-
forms the join of information. In the microservices this is not
possible because the information lives in different databases.
We apply the Move Foreign-Key Relationship to Code pat-

tern [17], to move the join operation to code. By moving the
join operation to the code the database calls are replaced
by service calls and the primary key is used to filter the in-
formation that is retrieved. In the case of the relationship
between RTable and Reservation, in microservices, when

information from an RTable is retrieved, a call is made to
the Reservation microservice with the primary key of the
RTable to retrieve the reservations that have as foreign key
the primary key of the RTable. To apply the Move Foreign-
Key Relationship to Code pattern [17], in the relationship
between RTable and Reservation, we use the structural
information extracted from the AST to identify in the class
RTable the methods that use the list of Reservation. Since
this is a class that is mapped as an entity, typically it only
has getters and setters (methods).

With the methods identified we create an interface termed
Request with the methods signature and the class named
RequestImpl that implements the interface which is respon-
sible for making REST calls to the Reservation microser-
vice. A new variable is added to the RTable class that has
the type of the interface created and the body of the identi-
fied methods is changed to make calls to the Reservation
microservice by invoking the methods of the Request class.

In the Reservationmicroservice, it is necessary to create
a REST API to respond the requests made by RTable mi-
croservice. To create a API, a class named Controller is cre-
ated in which the resource paths for the requests are defined,
and another class called Service is created to process the
information from the requests and invoke the methods of the
Reservation's Data Access Object (DAO). Finally, methods
with the same name as the methods identified in the RTable
class are added to the DAO class ReservationRepository.
These methods take as argument the primary key of the
RTable to be used as a filter. Figure 3 show the relationship
between RTable and Reservation after refactoring.

In the example we use a one-to-many relationship, but the
procedure also applies to other relationships, in particular
to many-to-one and one-to-one relationships. The many-to-
many relationship is a special case. In many-to-many rela-
tionships a “join table” is created, being formed by the two
foreign keys (i.e. copies of the primary keys of the entities in-
volved). If we apply the same procedure as we just explained
we would lose this table. To keep the relationship intact we
apply the Database Wrapping Service pattern [17]. Doing so,
we create a new microservice to “hide” the database that
contains the relationship. This new microservice provides an
API to access the data stored in the database and, therefore,
the microservices that need to access that data, replace direct
database calls with calls to the new microservice.

2.3 Code Refactoring

In the code refactoring phase we use the variables and de-
pendency list of each class to identify method invocation of
classes that belong to other microservices. Our methodology
aims to replace the local method invocation by a service call,
respecting the data flow of the monolithic system. Figure 4
illustrates an overview of code refactoring process.

As in the previous phase, we use an example from restau-
rantServer to demonstrate the code refactoring process. Bill-

Refactoring Java Monoliths into Executable Microservice-Based Applications SBLP’21, September 27-October 1, 2021, Joinville, Brazil

Figure 3. One-to-many relationship between RTable and
Reservation in microservice-based application

Figure 4. Overview of code refactoring

Service is a class that has two instance variables, one of type
BillRepository and another of type RTableRepository,
6 methods: getBills, getBillById, addBill, updateBill,
deleteBill and getBillPositions, and has two classes in
the dependency list: RTable and RTableRepository.
The code refactoring process starts with the analysis of

the data type of the instance variables to check if the types
are among the dependencies between microservices of the
class. The class BillService has an instance variable of type
RTableRepository that belongs to another microservice.

Next, a search is made for method invocations that belong
to the class of the instance variable type. For the case of the
class BillService, inside of addBillmethod, an invocation

of the findByIdmethod of the RTableRepository class was
found.
For each identified invoked method it is verified if the

return data type and the parameters data type are among
the dependencies of the class with other microservices, and
if so we apply the DTO pattern [5] to replicate the class it
depends on. The findById method has as return data type
Optional<RTable> and so, the RTable class is replicated to
the microservice which the BillService class belongs to.
Next, an interface is created to represent the type of in-

stance variable, in which the signatures of the identified in-
voked methods are declared, and a class is created that imple-
ments the interface that is responsible for making the remote
service calls. Using the BillService example to demon-
strate, an interface called RTableRepository, which con-
tains the findByIdmethod signature, is created and added to
the BillService microservice, and an RTableRepository-
Impl class is generated which declares the findByIdmethod
as a call to the RTableRepositorymicroservice. In this way
the replacement of local method invocation with service
method invocation is transparent to the BillService class.
Finally, on the microservice side of the RTableRepository it
is created a REST API that allows the invocation of methods.

Figure 5 shows the code refactoring and the invocation of
the findById method by BillService via a service call. In
the RTable microservice the class RTableRepositoryCon-
troller is created to define the resource paths for the re-
quests and to invoke the original findById.

Figure 5. BillService’s invocation of the findById
method of class RTableRepository through service call

For the refactoring process to be complete, we analyze
whether there are dependencies in the local variables. If so,
we apply the DTO pattern [5] to create the types and check
for method invocations by these variables. If method invoca-
tions are found and the methods invoked are not declared
in the DTO, we declare them. These methods make calls to

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Francisco Freitas, André Ferreira, and Jácome Cunha

the microservice that has the type of the local variable to
respect the data flow.

3 MicroRefact

In this section we present the implementation of our tool,
MicroRefact, which was built upon the methodology pre-
sented.MicroRefact serves as a proof of concept to validate
the methodology. The MicroRefact is designed for Java ap-
plications, in particular for the Spring framework. Regarding
the ORM, there are several ORM frameworks.MicroRefact
supports the refactoring of applications that use the Java
Persistence API 2 (JPA) to do the mapping. We decided to go
with JPA since it describes a common interface to data per-
sistence frameworks. The full implementation is available at
https://github.com/FranciscoFreitas45/MicroRefact. Figure 6
represents an overall flow of MicroRefact.

Figure 6. Overall flow of MicroRefact

3.1 Information Extraction

Our tool receives as input a JSON file with the composition
of the microservices and the path to the source code of the
monolith. The information extraction phase is responsible
for processing the input provided by the user in order to
identify the proposed microservices and extract information
from the source code of the monolith.

2https://docs.oracle.com/javaee/7/api/javax/persistence/package-
summary.html

The information extraction phase starts by parsing the
source code to an AST. We use the Java Parser3 library to do
the parsing. The AST contains the following information for
each Java file: name, list of imports, list of extends, list with
the name of the interfaces it implements, list with the name
of classes it depends on, list of annotations, list of instance
variables, list of methods and list of invoked methods. The
AST is extracted into a JSON file to be processed together
with the proposed microservices by a Python program.

A data structure is created to store the information ex-
tracted from the AST and to represent the microservices in
the program. We create a class called Cluster to represent
a microservice and a class called Class to represent a class.
The Cluster class is composed by a dictionary, where the
key is the name of a class and the value is an object of type
Class, by a list for adding new classes to the microservice
and by the path to the folder where the microservice Java
files are created. The structure created is composed of a list
of Cluster. One object of type Class is created for each Java
file. These objects contain the information extracted from
the AST and are added to the dictionary of the Cluster that
represents your microservice.

In the next step, to identify the dependencies between mi-
croservices for each Class object, it is checked if the name
of the classes that the class depends on are keys in the dic-
tionary that the Class object belongs to. If so, the name of
these classes is removed from the list of dependencies of the
Class object. Thus, the dependency list of a Class object
represents dependencies with classes that belong to other
microservices.

3.2 Database Refactoring

At database refactoring, entities are identified by search-
ing for the word Entity among the annotation list of each
Class object, and the relationships are identified by search-
ing for one of the following words in the annotation list of
each instance variable of the Class object under analysis:
OneToMany, ManyToOne, ManyToMany and OneToOne.
If relationships are found, it is verified whether the type

of the instance variable that has the annotation is in the
object’s dependency list and, if so, a search is performed
on all methods in the method list of the Class object under
review to check whether the type of the instance variable is
used in the return or in the parameters or in the declaration
of variables and a list is created with methods that use the
type of the instance variable.

For the application of the DTO pattern [5], the type of the
instance variable is used to identify the position (index) in the
Cluster list, of the Cluster object that has in its dictionary
a key with the same name as the type of the variable. Then,
the index and the type of the variable are used to do a get

3https://javaparser.org/

https://github.com/FranciscoFreitas45/MicroRefact
https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://javaparser.org/

Refactoring Java Monoliths into Executable Microservice-Based Applications SBLP’21, September 27-October 1, 2021, Joinville, Brazil

of the corresponding Class object to make a clone of it and
add it to the Cluster dictionary of the class under analysis.
Next, an interface is created with the signature of the

methods that are in the identified list and a new Class object
is instantiated that represents the class that implements the
interface and is responsible for making the service calls. This
object is added to the list of new classes of Cluster.

Finally, for the communication between microservices to
be possible, two objects of type Class are instantiated and
added to list of new classes of Cluster. One uses the meth-
ods declared in the interface to define routes and the other
processes the requests. For the retrieved data, the signatures
of the methods declared in the interface are added to the
DAO class. The type of instance variable has come to exist in
the microservice through the DTO, so it is removed from all
dependency lists of Class objects which belong to Cluster.

3.3 Code Refactoring

The code refactoring phase has some similarities with the pre-
vious phase. The Class objects that do not have the Entity
annotation in the annotation list are analyzed to check if the
type of their instance variables are in their dependency list
and, if they are, the same procedure used in the previous
phase with addition of, in identification of the methods, veri-
fication of the return type and the type of the parameters. If
these types are in the object’s dependency list, a DTO pattern
[5] is applied as in the previous phase.
Finally, the information contained in each object Class

is used to write Java files. The Class class has a method
called create, which generates a Java file with the class
information. To do this, Python’s built-in open function is
used to create a file object and a iteration over all the fields
in the Class is performed to write them to the file using
the write method of file object. A folder is created for each
microservice where the files are written.

4 Evaluation

To quantitatively assess the applicability of our methodology,
we collected 10 Java Spring applications from GitHub on
which we runMicroRefact. Our main objective is, from a
quantitative point of view, to understand the percentage of
projects thatMicroRefact can automatically refactor.

4.1 Project Collection

We used the GitHub search API for code to find repositories
that contained the terms org.springframework.data.jpa
and org.springframework.data.jpa.repository.JpaRe-
pository, since these are very common terms in applica-
tions that use JPA annotations to do object-relational map-
ping and are terms exclusive to applications built with the
Spring framework. The query used is as follows:

https://api.github.com/search/code?q=org.
springframework.data.jpa+org.springframework.data.jpa.

repository.JpaRepository+language:java

Since the GitHub search API limits each request to 1000
results and the query is to identify repositories through code
there are repeated results. Executing this query and after re-
moving duplicate repositories, we identified 686 repositories.
We also use filters to exclude demo and test projects using the
following stop words {‘release’, ‘framework’, ‘learn’, ‘source’,
‘spring’, ‘study’, ‘demonstration’, ‘test’, ‘practice’, ‘practice’}.
That reduced the 686 projects to 353. To ensure that only
monolithic applications are used, we only consider projects
with one ‘src’ folder. Within the identified projects, we se-
lected 10 applications with different sizes at random.

4.2 Setup

The microservices proposal is done by the tool available at
https://github.com/miguelfbrito/microservice-identification.
Although the tool allows the customization of the input,
we use the default parameters. For each project the tool
generates several proposals for decomposition of the mono-
lith and we always choose the one that reveals the great-
est value in the metrics that the tool uses to evaluate the
proposed decomposition. Table 2 shows the projects with
their number of classes in monolithic version, the number
of microservices proposed, and the results after refactoring
the projects . The composition of the proposed microser-
vices and the refactored applications are publicly available
at https://microrefact.github.io/.

4.3 Results

MicroRefact was able to refactor 8 out of 10 of the applica-
tions. In restaurantServer one more microservice was created
than the number of microservices that the microservices pro-
posal indicated because it has a many-to-many relationship
between entities. Five of the eight refactored projects do not
have classes generated by the database refactoring because
they do not have relationships between entities expressed in
the code.

4.4 Discussion

Regarding the results obtained, the two applications that
are not refactored present cases that we will take into con-
sideration in the future. The refactoring of the segue-me
application fails because there are Entity classes that do not
have a DAO, ending up being an entity that cannot retrieve
information from the database or is dead code. In the case of
oa-system, the refactoring fails because we identify the DAO
with the annotation Repositorywhich indicates that a class
behaves as a repository of the database and this project does
not use this annotation. We identified these classes because
of the application of the Move Foreign-Key Relationship to
Code pattern [17], which implies adding new methods on

https://api.github.com/search/code?q=org.springframework.data.jpa+org.springframework.data.jpa.repository.JpaRepository+language:java
https://api.github.com/search/code?q=org.springframework.data.jpa+org.springframework.data.jpa.repository.JpaRepository+language:java
https://api.github.com/search/code?q=org.springframework.data.jpa+org.springframework.data.jpa.repository.JpaRepository+language:java
https://github.com/miguelfbrito/microservice-identification
https://microrefact.github.io/

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Francisco Freitas, André Ferreira, and Jácome Cunha

Projects #Classes #Proposed Refactored #Classes Database #Classes Code #Total #Total
Monolith Microservices Refactoring Refactoring Classes Microservices

restaurantServer 38 7 Yes 20 38 96 8
ProyectoUNAM4 110 9 Yes 75 128 313 9
Hospital_Manage-
ment_System 5

127 8 Yes 57 71 255 8

segue_me 6 133 11 No - - 133 11
oa_system 7 175 15 No - - 175 15
SDRC-Collect-Web8 192 22 Yes 0 64 195 22
Athena9 195 16 Yes 0 132 327 16
HotelManageSystem10 219 17 Yes 0 131 350 17
coolweather(server)11 401 28 Yes 0 129 530 28
HrEsayWebApiPune12 603 28 Yes 0 372 975 28

Table 2. Results of refactoring the 10 applications

these classes for the join to be possible. The addition of only
two classes in SDRC-Collect Web is explained with the fact
that the tool that generated the microservices proposal did
not consider all the classes of the project to generate the
microservices proposal. In fact, only 131 of the 192 classes
of the project were considered.

The presented results also show a large addition of classes
in the projects. This happens because for each dependency
between microservices we create a request and a response
class, i.e, we can have several request and several response
classes for the communication between two microservices.
One possible optimization is to create only one response
class for all the request classes of a given microservice.

5 Related Work

Several authors studied the migration process from differ-
ent perspectives. Balalaie et al. [3], in order to improve the
migration planning process and combat the ad-hoc aspect,
carried out a survey of design patterns through the analysis
of migration processes of industrial-caliber applications. In
this work, the authors analyze the entire migration process,
from the identification of the architecture to the process of
deploy. In [13] the authors discuss the requirements for a
model-driven approach for the migration. They propose a
set of metrics that can be used to guide the process. In [2]
the authors propose a framework to support the decision of
migrating or not a monolithic application. The framework
is based on facts and metrics collected by the entity that
intends to do the migration. In our work we focus on the
refactoring step assuming the user has already handled the
remaining phases of the migration.
Fowler and Lewis [6] suggest an incremental migration,

which consists of the gradual construction of a new applica-
tion by extracting features from the monolith thus avoiding
a “big bang” rewrite. The generated application consists of
a set of microservices that interact with the monolithic ap-
plication. Over time, the number of features implemented

by the monolith tends to decrease, as these are migrated to
microservices, until the monolith disappears and becomes a
microservice-based application. Given we are proposing an
automatic approach, our migration is done all at the same
time. However, it could also be done partially too, if the set
of microservices given as input is also partial.

One of the the challenges in these migrations is the iden-
tification of the services existing in monolithic applications.
The techniques proposed can be divided into three categories:
static, dynamic, and model-based approaches. Static analysis
techniques are promising given the amount of information
that can be extracted from the source code [11, 14]. Dynamic
analysis techniques have emerged as an alternative to static
analysis using program execution analysis (e.g., logs) in or-
der to obtain extra information about the software in ques-
tion [9, 10]. Model-based solutions allow the use of models
to support migrations since models also represent a view
over the interactions between system’s components [4, 8].
Tyszberowicz et al. [18] propose a different approach based
on the specification of use cases for the software require-
ments and a functional decomposition of those requirements.
Using text analysis tools the nouns and verbs are extracted
from the specifications of the use cases in order to obtain
information about the operations of the system, as well as
state variables. Using this information they identify clus-
ters of components, and consequently the candidates for
microservices. Previous work is mostly focused on the iden-
tification of microservices and no tool has been proposed
that can identify and specially refactor a whole system into
a working version of a microservices application. Our work
receives as input the results of microservices identification
and proceeds with the refactoring of the code and database
in order to achieve a real microservice-based application.

The authors of [12] propose a set of automated refactoring
techniques, implemented in the IDE Eclipse, which facilitate
the application transformation process to support services in
the cloud. These techniques offer extraction of functionalities

Refactoring Java Monoliths into Executable Microservice-Based Applications SBLP’21, September 27-October 1, 2021, Joinville, Brazil

for services and remote access to them, treatment of failures
and replacement of services accessed by the customer with
services in the cloud equivalent. This work cannot refactor
classes that use parameter passing, serialization, and local
resources such as databases and disk files.

6 Conclusion

We present a methodology that, given the list and composi-
tion of target microservices as input, refactors the original
monolithic Java application, which use annotations to map
between entities and classes, into a microservices-based ap-
plication. We built a tool, as a proof of concept, that supports
Java Spring applications that use JPA annotations, and per-
formed a quantitative evaluation against a collection of 10
open source java Spring applications from github. The re-
sults show that 8 of the 10 applications were automatically
refactored and that the tool can be extended to support the
remaining 2 applications.

As future work, we plan to address the issue of inheritance
between classes that belong to different microservices and
expand the capabilities of the tool to allow refactoring of an
Java project into other languages.

Acknowledgments

This work is supported by the national funds through the
Portuguese Funding Agency (FCT - Fundação para a Ciência
e a Tecnologia, within project UIDB/50014/2020).

References

[1] Stephen J. Andriole. 2017. The Death of Big Software. Commun. ACM
60, 12 (Nov. 2017), 29–32. https://doi.org/10.1145/3152722

[2] Florian Auer, Valentina Lenarduzzi, Michael Felderer, and Davide Taibi.
2021. From monolithic systems to Microservices: An assessment
framework. Information and Software Technology 137 (2021), 106600.
https://doi.org/10.1016/j.infsof.2021.106600

[3] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian Tam-
burri, and Theodore Lynn. 2018. Microservices migration patterns.
Software: Practice and Experience 48 (07 2018). https://doi.org/10.1002/
spe.2608

[4] R. Chen, S. Li, and Z. Li. 2017. From Monolith to Microservices: A
Dataflow-Driven Approach. In 2017 24th Asia-Pacific Software Engi-
neering Conference (APSEC). 466–475. https://doi.org/10.1109/APSEC.
2017.53

[5] Martin Fowler. 2004. LocalDTO. https://martinfowler.com/bliki/
LocalDTO.html. (Accessed on 10/02/2021).

[6] Martin Fowler. 2004. StranglerFigApplication. https://martinfowler.
com/bliki/StranglerFigApplication.html. (Accessed on 11/20/2020).

[7] Jonas Fritzsch, Justus Bogner, StefanWagner, and Alfred Zimmermann.
2019. Microservices Migration in Industry: Intentions, Strategies,
and Challenges. In 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). https://doi.org/10.1109/ICSME.
2019.00081

[8] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmer-
mann. 2016. Service Cutter: A Systematic Approach to Service De-
composition. In Service-Oriented and Cloud Computing, Marco Aiello,
Einar Broch Johnsen, Schahram Dustdar, and Ilche Georgievski (Eds.).
Springer International Publishing, Cham, 185–200.

[9] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng. 2021. Service
Candidate Identification from Monolithic Systems based on Execution
Traces. IEEE Transactions on Software Engineering 47, 5 (2021), 1–1.
https://doi.org/10.1109/TSE.2019.2910531

[10] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai. 2018. Functionality-Oriented
Microservice Extraction Based on Execution Trace Clustering. In 2018
IEEE International Conference on Web Services (ICWS). 211–218.

[11] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo. 2018. Extracting
Candidates of Microservices from Monolithic Application Code. In
2018 25th Asia-Pacific Software Engineering Conference (APSEC). 571–
580.

[12] Young-Woo Kwon and Eli Tilevich. 2013. Cloud Refactoring: Auto-
mated Transitioning to Cloud-Based Services. Automated Software
Engineering 21 (09 2013). https://doi.org/10.1007/s10515-013-0136-9

[13] Robin Lichtenthäler, Mike Prechtl, Christoph Schwille, Tobias
Schwartz, Pascal Cezanne, and Guido Wirtz. 2020. Requirements
for a model-driven cloud-native migration of monolithic web-based
applications. SICS Software-Intensive Cyber-Physical Systems 35, 1
(2020), 89–100. https://doi.org/10.1007/s00450-019-00414-9

[14] G. Mazlami, J. Cito, and P. Leitner. 2017. Extraction of Microservices
from Monolithic Software Architectures. In 2017 IEEE International
Conference on Web Services (ICWS). 524–531. https://doi.org/10.1109/
ICWS.2017.61

[15] Manuel Mazzara, Nicola Dragoni, Antonio Bucchiarone, Alberto Gia-
retta, Stephan T. Larsen, and Schahram Dustdar. 2018. Microservices:
Migration of a Mission Critical System. IEEE Transactions on Services
Computing (2018), 1–1. https://doi.org/10.1109/TSC.2018.2889087

[16] S. Newman. 2015. Building Microservices: Designing Fine-Grained
Systems. O’Reilly Media. https://books.google.pt/books?id=
jjl4BgAAQBAJ

[17] S. Newman. 2019. Monolith to Microservices: Evolutionary Patterns
to Transform Your Monolith. O’Reilly Media, Incorporated. https:
//books.google.pt/books?id=iul3wQEACAAJ

[18] Shmuel Tyszberowicz, Robert Heinrich, Bo Liu, and Zhiming Liu. 2018.
Identifying Microservices Using Functional Decomposition. InDepend-
able Software Engineering. Theories, Tools, and Applications, Xinyu Feng,
Markus Müller-Olm, and Zijiang Yang (Eds.). Springer International
Publishing, Cham, 50–65.

https://doi.org/10.1145/3152722
https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1002/spe.2608
https://doi.org/10.1002/spe.2608
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1109/APSEC.2017.53
https://martinfowler.com/bliki/LocalDTO.html
https://martinfowler.com/bliki/LocalDTO.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.1109/TSE.2019.2910531
https://doi.org/10.1007/s10515-013-0136-9
https://doi.org/10.1007/s00450-019-00414-9
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/TSC.2018.2889087
https://books.google.pt/books?id=jjl4BgAAQBAJ
https://books.google.pt/books?id=jjl4BgAAQBAJ
https://books.google.pt/books?id=iul3wQEACAAJ
https://books.google.pt/books?id=iul3wQEACAAJ

	Abstract
	1 Introduction
	2 Refactoring Java Monoliths
	2.1 Information Extraction
	2.2 Database Refactoring
	2.3 Code Refactoring

	3 MicroRefact
	3.1 Information Extraction
	3.2 Database Refactoring
	3.3 Code Refactoring

	4 Evaluation
	4.1 Project Collection
	4.2 Setup
	4.3 Results
	4.4 Discussion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

