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ABSTRACT
Ensuring the reproducibility of computational scientific experi-
ments is crucial for advancing research and fostering scientific
integrity. However, achieving reproducibility poses significant chal-
lenges, particularly in the absence of appropriate software tools to
help. This paper addresses this issue by comparing existing tools
designed to assist researchers across various fields in achieving
reproducibility in their work.

We were able to successfully run eight tools and execute them to
reproduce three existing experiments from different domains. Our
findings show the critical role of technical choices in shaping the
capabilities of these tools for reproducibility efforts.

By evaluating these tools for replicating experiments, we con-
tribute insights into the current landscape of reproducibility support
in scientific research. Our analysis offers guidance for researchers
seeking appropriate tools to enhance the reproducibility of their
experiments, highlighting the importance of informed technical
decisions in facilitating reproducibility across diverse domains.
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1 INTRODUCTION
The pursuit of scientific knowledge hinges upon the ability to repli-
cate and reproduce experimental results reliably [5]. Following the
definition of the National Academies Report [39], “reproducibility
refers to the computational ability to duplicate results using the
same materials, data, methods, and/or analytical conditions” [8].
Reproducibility serves as a cornerstone of scientific inquiry, provid-
ing a means to validate findings, verify hypotheses, and build upon
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existing knowledge. In the realm of computational science, where
data analysis [31] and modeling [3] play pivotal roles, ensuring
the reproducibility of experiments is paramount [22]. However, the
complexity of computational workflows, coupled with the rapid evo-
lution of software technologies, has made achieving reproducibility
a daunting task [14].Without robust tools andmethodologies to sup-
port reproducibility efforts, researchers face significant barriers in
accurately documenting, sharing, and replicating computational ex-
periments. Thus, the credibility and reliability of scientific research
may be compromised, hindering the advancement of knowledge
and innovation in various domains [37]. Therefore, addressing the
challenges of reproducibility in computational science is not merely
a technical endeavor but a fundamental requirement for fostering
transparency and rigor in science [32].

In this paper, our focus lies on assessing existing tools designed
to aid researchers from diverse fields in overcoming the hurdles
associated with reproducibility. We were able to successfully run
eight tools and utilize them to reproduce three existing experiments
spanning different domains, thus providing empirical evidence of
the performance of these tools (more in Section 3). By comparing
and evaluating these tools, we seek to shed light on their technical
capabilities and ease of use, providing valuable insights into their
effectiveness in facilitating reproducibility [39].We compare several
features, such as the programming languages (PLs) supported or
the capability to (automatically) detect and install dependencies
(more in Section 3). Through our analysis, we conclude that the
technical choices underlying each tool influence their efficacy in
replicating experiments across various research areas (Section 4).

By conducting this comparative study, we endeavor to contribute
to the ongoing discourse on reproducibility in scientific research.
Our findings hold implications for researchers seeking suitable tools
to bolster the reproducibility of their computational experiments,
emphasizing the significance of informed technical decisions in
enhancing scientific integrity in diverse fields.

2 METHODOLOGY
In this section, we detail the methodology to collect tools (Section
2.1) and the experiments used to compare them (Section 2.2).

2.1 Collection of Tools
To collect the existing reproducibility tools, we searched the four
main scientific libraries: ACM DL [19], IEEE Xplore [25], Science
Direct [17] and SpringerLink [45]. We used the search query “com-
putational reproducibility” without any other limitation. Following
that, we examined the title and abstract of each article.

Our focus is exclusively on tools for reproducing computational
experiments. Thus, we exclude approaches with a broader scope,
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such as scientific workflows [33], and tools such as Kepler [34],
VisTrails [20], YesWorkflow [24], popper [29], and WaveLab [7].

Moreover, our primary emphasis is on tools that can be used in
any field. Thus, we exclude techniques tailored to specific fields such
asmachine learning (BEAT [2], DVC [15], Kaggle [30], OpenML [51],
PapersWithCode [52] and Collective Mind (CM) [10]), artificial in-
telligence (Hugging Face [18]), or life sciences (Galaxy [21]).

Based on this initial set of papers, we used the snowball search
technique to increase the number of works about reproducibility.

Based on the initial search and the snowballing, we found 18
tools: Binder [9], CARE [28], Code, Data, Environment (CDE) [23],
Code Ocean[46], Encapsulator [40], FLINC [1], PARROT [49], Prove-
nance-To-Use (PTU) [41], Prune [26], RenkuLab [42], Reprozip [47],
reprozip-jupyter [43], ResearchCompendia [48], SciInc [53], Sciu-
nit [50], SOLE [35], Umbrella [36], and WholeTale [6].

We analyzed all the tools we could find online. However, some
are not available for download, namely SOLE, SciInc, ResearchCom-
pendia, and CARE. We contacted the authors of the corresponding
papers, but we did not receive an answer, and thus those approaches
were removed from our analysis.

Furthermore, some available approaches were impossible to in-
stall or use: CDE, Umbrella, PARROT, Prune, Encapsulator, and
reprozip-jupyter. We published a reproducible package of this work
at Zenodo [11], in which the “Failled” folder contains the dockerfile1
we used to try to execute these tools. In addition, we have provided
within each dockerfile the commands we used to run it. This allows
others to verify our work, which is especially important in these
failing cases. For CDE, the available repository link2 was not avail-
able. Nevertheless, the PTU tool is built on top of CDE, where the
authors extended the CDE tool for versioning and summarizing its
provenance, and we were able to use PTU. For Umbrella, PARROT,
and Prune approaches, we successfully installed the dependencies,
but when we tried to use both approaches, an error was launched
(command not found and package not found, respectively). In the
case of Encapsulator, it was installed successfully. However, we
could not use the approach, as an exception was launched during
the execution. Regarding reprozip-jupyter, we could successfully
install the Jupyter Notebook plugin, but when we tried to click
on the trace button, an exception was launched. We contacted the
authors of the papers on these tools, but we did not receive an
answer, and thus, these approaches were not further considered.

The tools available and that we could use are: Binder, Code
Ocean, FLINC, PTU, RenkuLab, Reprozip, Sciunit, and WholeTale.

2.2 Experiments
To compare the different tools, we decided to use a set of exist-
ing experiments and try to reproduce each one with all the tools.
For that, we collected all the published use case experiments in
those approaches. From the works SciInc [53] and Sciunit [50] we
collected three experiments: the Chicago Food Inspections Eval-
uation (FIE) [38], the Variable Infiltration Capacity (VIC) [4], and
the Incremental Query Execution (IQE) [13]. FIE is an experiment
written using the programming language R from the machine learn-
ing domain; IQE is written in Python from a domain we could not

1We used Docker (http://docker.com/), a virtualization environment to run each tool.
2https://web.stanford.edu/~pgbovine/cde.html

Table 1: Characterization of three experiments.

Experiment FIE IQE Lynne
Programming Language R Python Ipython
Project Size 141 MB 51.5 KB 7.64 MB
# Files 91 22 37
# Lines of Script Files 1975 188 3702

determine; and Lynne is a Jupyter Notebook that runs with Ipython
Kernel from Earth and Space Science.

Since some tools only work with Jupyter Notebooks it was nec-
essary to have an experiment of this type. We did not consider the
Sciunit [44] examples because those are produced using the Sciunit
tool, and the original experiment is unavailable. Thus, we collected
a Jupyter Notebook from Zenodo using the string query “Jupyter
Notebook”, only considering repositories from “Software”, choosing
the “best match”, and picking the first result.3 The experiment we
collected, which we term Lynne, is part of the work [16].

In the end, we had four experiments collected from the published
works of the considered reproducibility approaches and a Jupyter
Notebook example collected from Zenodo.

We downloaded the code and data of these experiments, however,
after analyzing them, we verified that some files were missing in
the VIC experiment. Thus, we did not consider this experiment.
FIE, IQE, and Lynne are the experiments that we used to evaluate
and characterize the selected approaches. In Table 1, we show the
characterization of these experiments: the PL of the experiments,
the size of the project, the number of files, and the number of lines
in the script files of the original experiment.

3 RESULTS
This section presents the results of using each tool to reproduce each
of the three experiments. Table 2 shows the reproduction of each
experiment using each tool, and the package size (in MB) generated
(Zip format) for each experiment. The labels are “Yes”, “No” and “-”,
meaning “we could reproduce”, “we could not reproduce” and “the
platform does not support this type of experiment”, respectively.

Reprozip, Sciunit, and PTU are approaches used through the
command-line interface (CLI), so they cannot reproduce figures
and tables of a Jupyter Notebook. FLINC is a Jupyter Notebook
plugin that can only reproduce the Jupyter Notebook experiment.

We proposed a set of characteristics to classify each reproducibil-
ity platform, andwe separated these characteristics into four groups:
i) orthogonal characteristics, ii) experimental configuration, iii) re-
producible procedure, and iv) interoperability/maintenance. These
groups reflect the different stages of most computational experi-
ments. The characteristics are based on the features described in
the works presenting these tools.

The group “orthogonal characteristics” (C1-C5) includes:
C1 The type of the user interface;
C2 The operating systems where the tool runs;
C3 The supported PLs;

3https://zenodo.org/search?q=Jupyternotebook&f=resource_type%3Asoftware&l=
list&p=1&s=10&sort=bestmatch
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Table 2: Reproduction of each experiment on each platform
and the package size in MB, when applicable.

Experiment FIE IQE Lynne
Binder No (NA) Yes (NA) Yes (NA)
Code Ocean Yes(144) Yes(0.04) Yes(8)
FLINC - - Yes(91)
PTU Yes(302) Yes(5) -
RenkuLab Yes(291) Yes(0.10) Yes(10)
Reprozip Yes(278) Yes(6) -
Sciunit Yes(269) Yes(17) -
WholeTale Yes(290) Yes(0.53) Yes(82)

C4 If the approach uses the provenance technique to track all input
files and code with its dependencies;

C5 The environment used to execute the experiment: Container-
ization (CI); Self-Contained Packages (SCP); Application Virtual-
ization (AV).
The “orthogonal characteristics” play a crucial role in broadly

classifying the reproducibility platforms.
The second group, “experimental configuration” (C6-C11), in-

cludes characteristics to classify and define the experimental con-
figuration procedure, such as:
C6 If it is possible to use a link to a remote repository to create
the project and upload all the data/code of the remote repository
to the reproducibility tool. Examples of data management repos-
itories are GitHub (GH), GitLab (GL), Zenodo (Z), Figshare (F),
HydroShare (HS), Dataverse (D), Gist (G), and DataONE (DO).

C7 If the tool integrates with a repository for data storage and
management to save the newly created reproducibility project.

C8 If the (hierarchical) structure of files follows rigid rules;
C9 If it automatically detects the required dependencies;
C10 If the tool automatically installs the required dependencies;
C11 If it is possible to configure and save a file and parameters
used in the experiment for future executions.
Emphasizing these criteria is crucial as they significantly impact

the efficiency and reliability of reproducibility tools, ensuring a
streamlined and standardized approach to handling experimental
configurations.

The group “reproducible procedure” (C12-C16) includes all the
characteristics of the procedure used to reproduce the experiment:
C12 If it supports the creation of a shareable and reproducible pack-
age with all the required information (code, data, dependencies)
to reproduce the experiment;

C13 If only the required dependencies are shared to reduce the Zip
package size;

C14 If it is possible to reproduce the experiment on an online
platform;

C15 If it enforces the execution with the same PL version. Since
RenkuLab, WholeTale, and Code Ocean are development tools,
to evaluate this functionality, we will consider developing the
entire experiment on the platform itself.

C16 If it enforces the reproducibility of results. One way of al-
lowing this, is by saving the result of the previous execution

and compare with the next one. Non-deterministic experiments
produce a different result with each run.
The “reproducible procedure” criteria is essential to characterize

the creation of the reproducibility package.
The fourth group, “interoperability/maintenance” (C17-C19), in-

cludes characteristics such as:
C17 If the approach is interoperable across operating systems;
C18 If the approach is interoperable across platforms. For example,
a reproducibility tool that builds a reproducible package that can
be executed in another reproducibility tool;

C19 If the approach is currently maintained.
The “interoperability/maintenance” criteria comprise key char-

acteristics vital for the approaches’ sustainability and compatibility.
In Table 3, we classify all the tools based on these criteria.

4 DISCUSSION
The reproducibility of experiments varied across different tools.
While some tools successfully reproduced all three experiments,
others encountered limitations in certain scenarios. Notably, Code
Ocean, RenkuLab, and WholeTable demonstrated high reproducibil-
ity across experiments, reproducing all three; all the others faced
constraints in reproducing the experiments, at least in one case.
Although Binder documents support R code, we were unable to
use it to execute this type of experiment. We tried to execute the
FIE experiment using different versions of R (4.0, 4.1, 4.3), but the
environment building failed. We also tried to execute examples in
R from the Binder website4, but they also failed.

The technical choices behind each tool significantly influenced
their reproducibility capabilities. Tools utilizing CLI (C1) such as
Reprozip, Sciunit, and PTU demonstrated versatility in reproduc-
ing experiments, although with limitations in replicating figures
and tables from Jupyter Notebooks. FLINC, as a Jupyter Notebook
plugin, excelled in reproducing Jupyter Notebook experiments but
encountered challenges in other scenarios.

Tools based on provenance, such as Reprozip, Sciunit, FLINC,
and PTU, automatically detect (C9) and install (C10) dependen-
cies. This facilitates the creation of a reproduction package and
also its re-execution. On the other hand, these tools are limited to
Linux OS (C2). Nevertheless, these kinds of tools tend to be useful,
independently of the PL used, as they can cope with all PLs (C3).

Online tools, such as RenkuLab, WholeTale, Code Ocean, and
Binder, can be used in any OS as they run on a browser. However,
they require more input from the researchers when preparing the
reproducibility package. Without exception, they are limited in the
number of supported PLs. Moreover, the user has little control over
the environment where the experiment is created and executed.
For instance, we were not able to execute experiments written in
R in the Binder platform as an error was raised when creating the
environment, a process that we could not control.

The interoperability across operating systems (C17) and plat-
forms (C18) varied among the approaches. While some platforms

4Example 1: https://mybinder.org/v2/gh/binder-examples/r/master?filepath=index.
ipynb
Example 2: https://mybinder.org/v2/gh/pablobernabeu/Modality-switch-
effects-emerge-early-and-increase-throughout-conceptual-processing/
cd4ea149820fd48c9247191a4d5670c5fa34961d?urlpath=shiny/Shiny-app/

https://mybinder.org/v2/gh/binder-examples/r/master?filepath=index.ipynb
https://mybinder.org/v2/gh/binder-examples/r/master?filepath=index.ipynb
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https://mybinder.org/v2/gh/pablobernabeu/Modality-switch-effects-emerge-early-and-increase-throughout-conceptual-processing/cd4ea149820fd48c9247191a4d5670c5fa34961d?urlpath=shiny/Shiny-app/
https://mybinder.org/v2/gh/pablobernabeu/Modality-switch-effects-emerge-early-and-increase-throughout-conceptual-processing/cd4ea149820fd48c9247191a4d5670c5fa34961d?urlpath=shiny/Shiny-app/
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Table 3: Characteristics of reproducibility tools.

Q
Q
Q
Q

Charact.

Tool
RenkuLab WholeTale Reprozip Sciunit Code Ocean Binder FLINC PTU

C1 CLI, web CLI, web CLI, app CLI CLI, web web Jupyter plugin CLI
C2 All All Linux Linux All All Linux Linux

C3
R, Python,

Julia,
MATLAB

R, IPython,
IRKernel, Julia,

MATLAB

Unlimited
PLs

Unlimited
PLs

Python, R, Java, C,
C++, Scala, Lua,

MATLAB

IPython,
IRKernel,
IJulia

IR, IPython, (C,
C++ and Fortran)
Jupyter Kernels

Unlimited
PLs

C4 No No Yes Yes No No Yes Yes
C5 CI CI SCP AV CI CI AV SCP

C6 GL, GH GH, GL, Z, D, DO No No GH GH, GL, Z,
F, HS, D, G No No

C7 Yes Yes No No Yes No No No
C8 Yes No No No Yes Yes No No
C9 No No Yes Yes No No Yes Yes
C10 No Yes Yes Yes No No Yes Yes
C11 No No Yes Yes Yes No No Yes
C12 No Yes Yes Yes Yes No Yes Yes
C13 No No Yes Yes No No Yes Yes
C14 Yes Yes No Yes Yes Yes No No
C15 Yes Yes Yes Yes Yes No Yes Yes
C16 No No No No No No Yes No
C17 Yes Yes Yes No Yes Yes No No
C18 No No Yes Yes Yes No No No
C19 Yes Yes Yes Yes Yes Yes Yes No

demonstrated versatility in reproducibility across different environ-
ments, others exhibited limitations in cross-platform compatibility.
Maintenance considerations (C19) emerged as a crucial factor influ-
encing the sustainability and usability of reproducibility platforms.

5 THREATS TO VALIDITY
A limitation of our study stems from the challenge of identifying all
relevant reproducibility tools. To mitigate this threat, we conducted
extensive searches in the largest libraries and utilized snowballing.

The scarcity of experiments available in the papers analyzed is
also a threat to the robustness and generalizability of our conclu-
sions. However, we used all existing experiments and added another
from Zenodo, a highly-used science repository.

6 RELATEDWORK
Despite the progress in existing tools for facilitating reproducibility,
numerous authors struggle to replicate their results even after a year.
Ivie et al. [27] address technical and social barriers in reproducibility,
considering the technical challenges of reproducing from single
commands to complex workflows. However, in their work, they do
not evaluate or compare existing approaches or tools.

Sciunit [50] used two experiments, VIC and FIE, to compare
the efficiency of their approach against PTU in terms of the time
needed to execute, the creation of the reproducibility package, and
its reproducibility. Their comparison is very specific and with just
a single tool, while in our work we evaluate all the existing tools.

Davis et al. [12] interviewed 26 researchers to understand the
challenges researchers face when conducting programmer user
studies. Executing user studies can pose challenges, and researchers
might encounter difficulties in devising effective strategies to over-
come these hurdles, leading to a tendency to avoid engaging in user
studies. While this is not a reproducibility problem, it is related as
the creation and (re-)execution of an experiment environment is
also one of the challenges raised by several researchers.

7 CONCLUSION
The comparative analysis of reproducibility tools underscores the
importance of informed technical choices and platform character-
istics in facilitating reproducibility efforts. These findings provide
valuable insights for researchers seeking suitable tools to enhance
the reproducibility of their computational experiments, guiding fu-
ture developments in reproducibility platforms and methodologies.

In future work, we intend to make the study broader by including
more experiments, considering domain-specific approaches, and
broader approaches such as scientific workflows.
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