
A Two-Level Model-Driven Approach for
Reengineering CI/CD Pipelines⋆

André Flores1, Hugo Gião1, Vasco Amaral2, and Jácome Cunha1

1 HASLab/ INESC TEC, Faculty of Engineering, University of Porto
up201907001@edu.fe.up.pt hugo.a.giao@inesctec.pt jacome@fe.up.pt

2 NOVA School of Science and Technology & NOVA LINCS
vma@fct.unl.pt

Abstract. In the realm of industrial software development, Continuous
Integration, Continuous Delivery, and Continuous Deployment (CI/CD)
has emerged as the preferred approach for handling the highly iterative
software production process. However, CI/CD pipelines must constantly
be migrated to new versions or new platforms. This manual, cumbersome,
and error-prone activity requires systematic and automated support.
To address this issue, we propose a novel approach that leverages
model-driven engineering (MDE) to support the reengineering of CI/CD
pipelines. The approach we propose is inspired by the traditional reengi-
neering horseshoe model. However, ours relies on two levels of inter-
mediate CI/CD pipeline meta-models. We support the abstraction of
existing pipelines into models conforming to our meta-models, from
which semantic-equivalent pipelines can be generated to (possibly) other
CI/CD platforms, thus providing a full engineering path.
Our contribution comprises a platform-independent meta-model designed
to represent the structure of existing CI/CD pipelines, three platform-
specific meta-models, a migration CLI to transform them into a new
target format, and a DSL for users to interact with the process.
We show that, after reengineering a pipeline, the execution of both is
equivalent. We also evaluate to which extent it would be possible to fully
automate CI/CD reengineering using our approach.

Keywords: Model-Driven Engineering · Reengineering · Reverse En-
gineering · Continuous Integration · Continuous Delivery · Continuous
Deployment · DevOps · CI/CD

1 Introduction

Continuous Integration, Delivery, and Deployment, known as CI/CD, means
that changes to a program’s code are consistently integrated into the current
system and deployed to a production environment with little delay. In recent
⋆ This work is financed by National Funds through the Portuguese funding agency,

FCT - Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020.
DOI 10.54499/UIDB/50014/2020 | https://doi.org/10.54499/uidb/50014/2020



2 A. Flores et al.

years, CI/CD has become crucial for organizations to meet market demands by
enabling rapid and frequent changes to their projects. CI/CD pipelines automate
the integration, testing, and deployment of code changes, ensuring frequent and
reliable software releases [26].

In implementing CI/CD, organizations can make use of several platforms like
GitHub Actions (GHA) [16], GitLab CI/CD [18], Travis CI [31], CircleCI [4] or
Jenkins [23], just to mention a few of the dozens that exist. Often, organizations
will use several platforms for the same project [20, 30].

Over time, the rate of changes to the CI/CD platforms used by projects has
been increasing [20]. This underscores the need for migration between different
CI/CD platforms, as efficiently migrating between these diverse platforms is
essential for maintaining the agility of software development.

However, there is almost no support for migrating CI/CD platforms. Some
platform providers have migration guides [6–8, 17, 19], but these are mostly basic
syntax comparisons. GitHub provides a tool that aims at migrating about 80%
of scripts from (only seven) other platforms [15], but it only migrates to theirs.

Overall, migration is a protracted process [6], with developers highlighting
the fundamental differences between platforms, the trial-and-error nature of con-
figuring CI/CD, and the unfamiliarity with the syntax of the target platform as
common hurdles [30].

Our objective is to streamline the migration and evolution process by develop-
ing a meta-model capable of representing diverse CI/CD pipelines in a platform-
independent manner. Unlike other CI/CD meta-models, ours draws inspiration
from several of the most widely used CI/CD platforms and is designed to ab-
stract concepts from these platforms with low-level detail. This is because the
meta-model lets us create an intermediate representation for a CI/CD pipeline
transpiler through a reengineering process.

With our work, we seek to answer the following research questions (RQs):
RQ1: What are the main core concepts shared by and unique to the
different CI/CD platforms?
Our goal for RQ1 is to examine various CI/CD platforms and develop a meta-
model capable of representing their core concepts, transcending the specifics of
individual languages. We answer this RQ in Section 3.

RQ2: Can a platform-independent meta-model (PIMM) be the basis
for accurate translation of CI/CD pipelines between platforms?
For RQ2, our goal is to evaluate the capability of our meta-model to repre-
sent real-world pipelines. Using model transformations, it should be possible to
parse a CI/CD pipeline in a given platform to a platform-independent model
(PIM). Afterward, we should be able to generate a CI/CD pipeline in a platform
possibly different from the original.Using the model transformations defined in
Section 4 and the tool introduced in Section 5, we answer RQ2 in Section 6.

RQ3: To which extent can CI/CD pipeline migration be fully auto-
mated?
For RQ3, we intend to ascertain if a fully developed transpiler based on our
approach could be used to completely automate CI/CD migrations. Section 6
provides an answer to this RQ.



A Two-Level Model-Driven Approach for Reengineering CI/CD Pipelines 3

In the following section, we present an overview of our approach.

2 An Overview of Reengineering CI/CD Pipelines

Our goal is to create a transpiler for CI/CD pipelines. For a pipeline written in
platform A’s domain-specific language (DSL), we seek to devise a program that
outputs a pipeline in the correct syntax for platform B’s DSL and semantically
equivalent to the original pipeline.

To this end, this work intends to leverage model-driven engineering by cre-
ating a platform-independent meta-model (PIMM) that defines a modeling lan-
guage for CI/CD pipelines. This process is detailed in Section 3. The PIMM
allows automatic CI/CD migration through a reengineering process, shown in
Figure 1 as a horseshoe model [25].

The tool is implemented using model transformations following the migra-
tion methods specified by Grieger et al. [22]. Text-to-model (T2M) transforma-
tions (I) convert an input pipeline file (1) to a platform-specific model (PSM)
(2) that conforms to one of the platform-specific meta-models we designed
(3), as explained in Section 4.1. That PSM is transformed into a platform-
independent model (PIM) (4) that conforms to the PIMM (5) through model-
to-model (M2M) transformations (II), detailed in Section 4.2. Then, the PIM
is transformed into a PSM for a different pipeline platform (6), again through
M2M transformations. The translated configuration file (7) is generated from the
new PSM through model-to-text (M2T) transformations (III). Due to the lack
of space and their simplicity, M2T transformations are not further described.
The user can interact with this process with a transformations DSL (TDSL)
to perform M2M transformations on the PIM and/or PSMs (IV). This DSL
allows the user to replace platform-specific plugins, which we do not migrate
automatically, among other particularities of CI/CD languages. Due to space
limitations, we do not further detail TDSL. A complete description of the M2T
transformations and TDSL can be found at [13]. ?? shows a concrete example
of the reengineering process being executed.

Using two modeling levels, platform-specific and platform-independent, mod-
ularizes the reengineering process. If we had used just one meta-model, T2M, and
M2T transformations would have two responsibilities: i) to convert a pipeline
from textual representation to a model and ii) to handle any differences be-
tween the pipeline’s platform and the PIMM. This would add complexity to the
transformations and make the transpiler harder to develop.

3 The Meta-Models

We started development by researching three CI/CD platforms that represented
the current CI/CD landscape [20, 21, 24]. These are GHA, CircleCI, and Jenkins.
We used these platforms’ configuration references as the basis for their PSMMs.
The references allowed us to determine the features of each technology, as well
as its valid configurations. With this, we could create a basic PSMM. Afterward,



4 A. Flores et al.

we searched for commonalities between PSMM classes to establish inheritance
relationships, thus reducing redundancy. The PSMMs can be seen in ??.

We then devised the PIMM. Designing the PIMM was mostly a matter of
finding common functionality between the PSMMs. Domain knowledge was also
important to determine the core functionalities of CI/CD pipelines.

For each PIMM class, we must determine intrinsic and extrinsic properties
and the arity of each property [3]. If this is done incorrectly, it could lead to a
meta-model that is hard to work on and evolve or one that is not an accurate
abstraction of the CI/CD platform’s pipeline.

Figure 2 shows a truncated version of the PIMM (without Expression and
VariableDeclaration classes and enumerations), which we now further detail.

The Pipeline is the main class of the model. It represents each CI/CD script
and refers to all other properties.

A Job is a set of instructions that are executed as a single block of the
pipeline. It can be composed of various steps, a ScriptJob, or be a call to a
separate pipeline script, a PipelineCallJob.

Jobs are run in parallel by default. The previous and next properties are
used to indicate dependencies between Jobs. CI/CD platforms differ in their
parallelization implementations, which are handled by M2M transformations.

Matrices are an extrinsic property of Jobs used to define combinations of
values the to run the Job with. For example, in a Matrix, a user can define
various values for an operating system (OS) and a program they would like to
run; the Job would then be run for every combination of OS and program.

An Agent specifies where a Pipeline or Job will be run through various
subclasses. A Job may also have Services that run in the background.

Trigger defines events that start the execution of a Pipeline. All plat-
forms have a Trigger, but they do not all handle all their configuration in the
Pipeline. Instead, they leave this to platform settings. Despite this, several
Trigger subclasses are still included in the PIMM due to their relevance.

Parameters are used to specify inputs and outputs for Pipelines and Jobs.

Platform-independent
meta-model

model-to-model
transformation Platform-independent

model

text-to-model
transformation

model-to-text
transformation

Platform A
configuration file

Platform B
configuration file

Platform A model Platform B model

model-to-model
transformation

conforms to

model-to-model
transformation

model-to-model
transformation

model-to-model
transformation

I

II

III

2

4

5

6

1 7

IV

Platform A meta-model Platform B meta-model

conforms toconforms to

3

Fig. 1. CI/CD pipeline reengineering process.



A Two-Level Model-Driven Approach for Reengineering CI/CD Pipelines 5

Fig. 2. The platform-independent meta-model.

Steps are atomic instructions that run as part of a Job. There are various
Step subclasses. They can be used for running a program in a shell or calling
a platform-specific plugin. There are also specific steps for common actions like
checking out a repository (Checkout), caching information (Cache), and stor-
ing artifacts (Artifact). Lastly, there are ConditionalSteps for flow control.

Expressions include logical operators, assignments, literals, variable refer-
ences, and formatted strings (that mix string literals and other expressions).
Expressions are used throughout the PIMM. VariableDeclarations are a
property of Assignments, Parameters and Matrices.

Addressing RQ1 The PIMM represents the core concepts of CI/CD pipelines.
This is because the platforms we based ourselves on make up the majority of
CI/CD usage [20, 21, 24]. These platforms’ PSMMs also have significant differ-
ences, yet the PIMM can merge all of their core functionality.

4 Implementing the Reengineering Process

In this section, we detail how we parse pipeline scripts into a model (Section 4.1)
and how we transform pipelines between platforms (Section 4.2).

4.1 Text-to-Model Transformations

After defining the PSMMs, to fully support a migration process, we need to be
able to parse CI/CD pipelines from their usual text form into models conforming
to their platform’s meta-model. We do this by defining T2M transformations.

The platforms’ DSLs have some complexity regarding variable declarations
and references. This requires the use of symbol tables to populate the PSM in



6 A. Flores et al.

such a manner that all the references are accurate. For these reasons, we use a
two-step output production strategy for the PSM. Firstly, we parse the YAML
pipeline and create an abstract syntax tree (AST). Then, we visit the tree nodes
and populate the model.

Instead of creating a model and parser for YAML ourselves, we elected to use
an existing Java package to parse scripts. Certain platforms, like GHA, extend
the YAML syntax with their proprietary expressions syntax. In this case, we
created a parser for these expressions based on an Xtext expressions grammar,
which we use in conjunction with the base YAML parser. Walking the AST is
then done programmatically using Java.

4.2 Model-to-Model Transformations

Model-to-model transformations presented the main challenge of our approach,
as they are the logic that allows translating pipelines between platforms by using
a PIM as an intermediate representation.

The PIMM was designed to ease translations to and from the PSMMs. Where
possible, we wanted one-to-one mappings between PIM and PSM, i.e., when a
concept or property in one meta-model has a direct correspondence to another
concept or property in the other meta-model.

However, this cannot be done for all cases due to significant differences be-
tween platforms. For instance, Jenkins’s way of executing Jobs in parallel by
nesting them means the PIM-to-Jenkins transformation has to group the job
dependency graph into levels. Most differences between models can be handled
entirely by PSM-to-PIM/PIM-to-PSM transformations. However, generating an
output model directly would often be overly complex.

To deal with this, we split the transformation from a PSM to a PIM and
vice-versa into multiple steps by using helpers. These helpers are PIM-to-PIM
transformations we define to make simple alterations to the models. For example,
in the PIMM, ConditionalSteps can have an arbitrary number of child-steps
to be executed when their condition is true; they also have an else block with
multiple child-steps. GHA only allows one child-step per condition, and has no
else functionality. To deal with this, we unwind ConditionalSteps on the PIM,
creating multiple ConditionalSteps, each with one child-step. Else blocks are
handled by negating the condition.

Besides these transformation helpers, we also use PIM-to-PIM and PSM-to-
PSM transformations to implement the TDSL.

5 ACICDTrip – A Tool for CI/CD Reengineering

We designed our tool as a CLI implemented in Java. We focused on creating
a CLI because our goal was to create a tool that could be used outside the
Eclipse IDE (unlike most MDE software). This was important so that it would
be accessible to all users, even if unfamiliar with MDE or MDE tools themselves.



A Two-Level Model-Driven Approach for Reengineering CI/CD Pipelines 7

Our transpiler has two modes it can operate on. Normal mode will attempt
to translate any input pipeline to the selected CI/CD platform even if it can
only be partially migrated. This mode does not attempt to guarantee semantic
equivalence between the input and output pipelines. It should be seen as a helper
to the migration process instead of an attempt to replace it wholly. The second
mode, strict mode, runs an OCL [12] validation on the input model to check
if it can be completely transformed to the output platform entirely automati-
cally while keeping pipeline semantics intact (we do not consider alterations to
platform-specific Plugins that must be made).

All of the transformations and OCL validations are run in standalone mode
(outside of Eclipse). Besides T2M transformations, the only logic implemented
in the CLI itself is integrating the various MDE technologies used.

The source code for ACICDTrip can be found at [14].

6 Evaluation

To help us answer RQ2 and RQ3, we prepared two evaluations.
In Section 6.1, we migrate pipelines using ACICDTrip and execute them in

their respective repositories. We then compare the execution logs of the original
and migrated pipelines to determine if they are equivalent. This provides us with
a perspective on the use of our tool in practice.

In Section 6.2, we execute a double round-trip, where we migrate GHA
pipelines to CircleCI and then back into GHA. We then compare the original and
migrated GHA pipelines to determine if they are semantically equivalent. This
gives us a perspective of our tool’s functionality for a large number of scripts.

6.1 Comparing the Execution of Original and Migrated Pipelines

The Process To compare the execution of pipelines, both original and migrated
ones, we needed not only example pipelines to migrate but also the underlying
codebase. CircleCI provides a set of five example repositories to introduce users
to their platform [5]. The scripts used for these repositories encompass most
features integral to a CI/CD pipeline.

ACICDTrip could migrate all of the example scripts to GHA with the help
of the TDSL. The TDSL needs to be used to change platform-specific Plugins
or delete certain steps that only make sense in the CircleCI context, like adding
SSH keys so the CircleCI Windows VM can access the repository. We also needed
to change some Docker images provided by CircleCI. One of the scripts uses a
CircleCI feature where multiple pipelines can be configured in one script. This
script can still be translated, but it needs to be done twice, selecting each pipeline
(?? shows a TDSL script used for this). It should also be noted that one of the
examples had a hardcoded URL that needed to be changed to work in GHA,
which was done manually.



8 A. Flores et al.

Results After running the CI/CD pipelines, we compared the logs they out-
putted. Our criteria to determine logs to be equivalent were if the key steps of
each pipeline were executed and if their output was the same (???? in ?? are
an example of a comparison). We determined the original and new platforms’
logs to be equivalent in all five examples. Three failed out-of-the-box, and three
succeeded; when migrated to GHA, they all failed and succeeded the same way
as the originals. The project for which we needed to alter the URL is only con-
sidered a partial success. Table 1 details these results.

Table 1. CircleCI projects’ migration results.

Project Result Notes

Java Partial Success Changed hardcoded URL
.NET Success
Monorepo Success CircleCI script had multiple pipelines
NodeJS Success
Python Success

6.2 Double Round-Trip

The Process Several challenges are involved in checking whether we can mi-
grate a migrated pipeline back into the original platform without changes. This
is because the platforms themselves have differences in features. Because of this,
we will only attempt to evaluate this for strict-mode-compatible scripts, as in it,
the program is meant to exit with an error if it finds a feature it cannot migrate.

We randomly selected 10,000 repositories that used GHA from Gião et al.’s
dataset of repositories using CI/CD [20]. In these repositories, we found 25,487
GHA scripts. We migrated the strict-mode-compatible subset of these scripts to
CircleCI and then back into GHA.

After migrating the scripts, we compared the original and the generated GHA
scripts using yamldiff [27]. We filtered out differences between the scripts that
had no semantic impact on the execution of the script in GHA, e.g., GHA lets
users forgo array syntax when there is only one element in an array (on: push
is the same as on: [push]) but in this case the code is always generated with
array syntax. ?? lists the differences we discarded.

There are some limitations to using CircleCI as an intermediary technology
in this evaluation. CircleCI does not define most Triggers in the pipeline script
(it does this in the platform settings), which means we lose Trigger information
when migrating the GHA pipeline. Display names of Steps are also altered in
certain situations. We ignore differences that stem from these limitations as a
fully-developed ACICDTrip would have tighter integration with the platforms
and migrate Triggers, and the Step display names do not alter execution.



A Two-Level Model-Driven Approach for Reengineering CI/CD Pipelines 9

The abstraction of GHA plugins like actions/checkout to PIMM Steps like
Checkout means we lose version information of these Plugins in the migration
(ACICDTrip generates pipelines with the latest version). These differences are
moot and only a result of this particular kind of evaluation. Some platforms use
native Steps for this functionality, while others use Plugins. If the platform we
are migrating to uses native Steps (e.g., CircleCI), the version is irrelevant; if it
uses Plugins (e.g., Jenkins), we do not want to use another platform’s Plugin’s
version. The abstraction allows migrating these steps automatically.

All of these differences were filtered out programmatically from the output of
yamldiff. If, at the end of this process, the original and generated pipelines had
no remaining differences, the pipelines were deemed semantically equivalent.

Results We could (partially) migrate 22,684 (89%) of the 25,487 GHA scripts to
CircleCI in normal mode, but only 4,091 (16.1%) were strict-mode-compatible.
The majority of the pipelines that failed strict-mode validation (82.3%) were
due to references to variables not yet supported by the PIMM because they are
defined outside of the pipeline script. Common examples of these variables are
user-defined secrets (e.g., API tokens) and commit information (e.g., SHA).

Of the 4,091 strict-mode-compatible scripts, 3,316 suffered no semantic change
in the process. This gives us an 81,1% successful migration rate in strict mode.
Table 2 details the differences found in the 775 altered pipelines (pipelines may
have multiple changes and differences are classified programmatically).

This evaluation reveals the main current limitation of ACICDTrip to be
variables declared outside the pipeline scripts. Addressing this is possible, but
to be able to migrate most of these variables, we would need to further integrate
ACICDTrip with the various CI/CD platforms (e.g., using their APIs).

Table 2. Classification of semantic differences.

Alteration Pipelines

A1. Plugins lose arguments when being migrated to Checkouts, Arti-
facts, or Caches. This is because they have extra functionality that is not
supported in the PIMM.

404

A2. Plugin environment variables. CircleCI does not natively support en-
vironment variables in Orb steps. We send these as arguments instead. A3.
This avoids loss of information as, when changing the GHA Plugin to a
CircleCI one, the CircleCI one may instead take these values as arguments.

31

A3. Strings are parsed as floating point numbers. This happens most in
Plugins as we have no information of the type of the argument we are
parsing. The string value “3.10” is parsed as a float 3.1. This causes changes
mostly when the Plugin argument indicates a version of some kind, as 3.10
should be read as a string in that context.

100

A4. Differences due to encoding. The transpiler only supports UTF-8. 16
A5. macOS version mismatch (CircleCI does not directly store this value). 54
A6. Others. These may be bugs in the current version of the transpiler. 252



10 A. Flores et al.

6.3 Discussion

Addressing RQ2 In Section 6.1, all pipelines could be migrated to GHA. The
PIMM supported the pipelines completely, and the transformations we defined
could accurately migrate from CircleCI to the PIMM and then to GHA. We
needed to use the TDSL for some transformations that could not be done au-
tomatically. Still, all of these transformations except selecting the pipeline to
migrate were done on the PIM. There was no need to substantially interact
with the platform-specific models in the migration process. We did not alter the
generated scripts.

In Section 6.2, many pipelines cannot yet be migrated in strict mode. Still,
the vast majority (81.1%) of pipelines supported by strict mode can be migrated
without semantic alteration.

Thus, the PIMM supports migration between different CI/CD platforms.

Addressing RQ3 The different CI/CD platforms have many common func-
tionalities. However, there are still significant differences. This means there will
always be pipelines that cannot be wholly migrated from one platform to an-
other. Section 6.2 shows a clear example of this. Even in the pipelines supported
by strict mode, 404 had Plugins lose arguments because of extra functionality.

Moreover, migrating CI/CD sometimes requires changes to the codebase and
changes that can only be done with context-specific knowledge. Section 6.1 has
an example of this. Migrating meant changing the address and ports of a Docker
container, which can only be done with the knowledge of the ports used by the
container. This address also needed to be changed in the codebase.

Finally, Plugins need to be changed between platforms. Theoretically, this
could be done automatically, but there is no guarantee that another platform
will always have a corresponding Plugin.

Thus, based on these facts, it seems that a fully automatic reengineering
process is not possible.

6.4 Threats to Validity

We now discuss some threats to the validity of our results.
The PIMM was based on several of the most popular CI/CD platforms [20]

and, as such, should be able to represent most pipelines. Still, some platforms
may not be representable.

We have used ACICDTrip to migrate several CircleCI scripts to GHA,
achieving good results. We have chosen CircleCI because they provide example
scripts and the corresponding code, and GHA as this is currently the most pop-
ular platform. Although nothing in these platforms would make the migration
work better with our approach, we cannot make any claims about the general-
ization of these results.

We show that our tool can impose consistency in the transformations it
makes from platform to platform. However, in several situations, some transfor-
mations are required (using the TDSL we provide). During our evaluation, we



A Two-Level Model-Driven Approach for Reengineering CI/CD Pipelines 11

have implemented these so it could be possible to achieve the migrations. The
transformations are as direct as possible and should not influence the results.

7 Related Work

Colantoni et al. [10] introduce an innovative approach for modeling DevOps
Processes and Platforms, presenting a platform meta-model and a linking meta-
model designed to connect various platforms and elucidate the DevOps process.
It is adept at DevOps while ensuring compatibility and fulfillment of require-
ments among different libraries and platforms. In contrast, we aim for a meta-
model that can act as the foundation for a reengineering process. Furthermore,
our proposal undergoes a comprehensive validation process incorporating real-
world configuration files to substantiate its correctness.

Colantoni et al. [9] present an ongoing project centered on the integrated
modeling and scenario simulation of continuous delivery pipelines. Users can
define CI/CD processes using a JSON-based domain-specific language (DSL),
enabling the semi-automated generation of fully functional executable DSLs and
tool support through JSON schema documents. The tool provides graphical and
textual ways of interacting with models. Our focus is not solely on generating
configuration pipelines, as we intend to fully support the reengineering process.
Colantoni et al.’s approach also does not allow for modeling CI/CD in a platform-
independent manner.

Rivera et al. [29] tackle the challenges associated with deployment in contin-
uous delivery and DevOps. They introduce a mechanism designed to automate
the deployment process by using UML to specify software architecture and de-
ployment. Executable deployment specifications are then generated from these
deployment diagrams. In contrast, our approach uses a meta-model compatible
with most existing CI/CD platforms and capable of representing a wide range
of existing pipelines, a goal not explicitly addressed by the authors. Addition-
ally, while the authors evaluated their approach regarding usability through case
studies, our approach was assessed using real-world pipelines.

Bordeleu et al.’s [2] primary objective is to contribute to developing a com-
prehensive DevOps engineering framework comprising processes, methods, and
tools. The authors delve into various aspects of the DevOps system at Kaloom,
an industry partner. They outline a set of requirements for establishing a DevOps
modeling framework. The aim is to be the foundation for analyzing, simulating,
and automating the DevOps process. Our objective extends beyond collecting
requirements for modeling CI/CD scripts; we aim to provide a concrete solution.
Our solution prioritizes representing a diverse range of pipelines from existing
tools, focusing on comprehensiveness rather than usability.

Düllmann et al. [11] propose a model-driven DSL-based CI/CD pipeline defi-
nition and analysis framework. Their work involves the creation of a meta-model
for the Jenkins pipeline language. The DSL is aimed at facilitating interoper-
ability and transformation between different formats. Through their approach,
the authors analyzed 1,000 publicly available Jenkins files and successfully rep-



12 A. Flores et al.

resented 70% of those files without any loss of information. In contrast, our
meta-model is not specific to a CI/CD language and was designed to abstract
away from the intricacies of individual platforms. Furthermore, we tested our
meta-model for its ability to represent CI/CD pipelines and for tasks extending
beyond mere representation, such as reengineering pipelines across platforms.

Pulgar et al. [28] introduce a meta-model heavily influenced by GHA. Their
goal is to ensure that each modification to a pipeline is valuable. To validate
their approach, the authors utilized three open-source projects. Additionally, the
authors created justification diagrams intended for sharing with the development
team. In contrast, our meta-model offers greater abstraction from specific CI/CD
tools and encompasses more features than those of the authors. Moreover, we
conduct different types of validations compared to Pulgar et al., as our primary
focus lies in utilizing our meta-model to reengineer and develop pipelines.

Babar et al. [1] develop a model for DevOps deployment choices, aiding en-
terprises in tailoring a suitable DevOps approach to meet their requirements. As
part of their study, the authors utilize business process analysis (BPA) to model
a standard DevOps process. On the other hand, our work diverges from that of
Babar et al. in several aspects. Firstly, we introduce a meta-model specifically
crafted to represent CI/CD pipelines. Additionally, we provide a more extensive
validation process for our meta-model. Furthermore, our objective is to leverage
the meta-model for the reengineering and development of CI/CD pipelines.

Wurster et al. [32] propose a meta-model to enable a common understanding
of declarative deployment models. Wurster et al.’s approach is a meta-model of
software deployment and it helps users select the best deployment technology
for their scenario. Our objective extends beyond tool selection, encompassing
practical applications such as facilitating development and migration processes.

8 Conclusions

With our work, we found there are enough core concepts common to diverse
CI/CD platforms to allow a definition of a common language, the meta-model
we propose, allowing, in many situations, the full migration of existing pipelines.
Nevertheless, a fully automated reengineering process does not seem feasible in
all cases. Often, changing technologies requires some manual work, as there are
some particularities to each platform that are too low-level to be considered
in the PIMM. For example, GHA scripts require at least one Trigger defini-
tion to be well-formed; however, when translating from CircleCI, there is often
missing information related to Triggers. To aid with these manual changes,
we designed an initial DSL. In fact, a fully-fledged TDSL could also be a lin-
gua franca for CI/CD pipelines, letting developers write pipelines without being
concerned about the syntax of the technology they will end up using.

There is room for further development of the PIMM. The next development
path should be adding support for user-defined secrets and other relevant pipeline
variables, as this revealed itself to be a major current limitation.



A Two-Level Model-Driven Approach for Reengineering CI/CD Pipelines 13

References

1. Babar, Z., Lapouchnian, A., Yu, E.: Modeling DevOps deployment choices using
process architecture design dimensions. In: Ralyté, J., España, S., Pastor, O. (eds.)
The Practice of Enterprise Modeling. pp. 322–337. Lecture Notes in Business Infor-
mation Processing, Springer International Publishing, New York, New York, USA
(2015). https://doi.org/10.1007/978-3-319-25897-3_21

2. Bordeleau, F., Cabot, J., Dingel, J., Rabil, B.S., Renaud, P.: Towards modeling
framework for devops: Requirements derived from industry use case. In: Bruel,
J.M., Mazzara, M., Meyer, B. (eds.) Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and Deployment. pp.
139–151. Springer International Publishing, Cham (2020)

3. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineer-
ing in Practice. Synthesis Lectures on Software Engineering, Springer In-
ternational Publishing (2017). https://doi.org/10.1007/978-3-031-02549-5,
https://link.springer.com/10.1007/978-3-031-02549-5

4. CircleCI: Circleci, https://circleci.com, accessed on 2024-06-21
5. CircleCI: Circleci examples, https://circleci.com/docs/examples-and-guides-

overview/, accessed on 2024-06-21
6. CircleCI: Introduction to CircleCI migration - CircleCI,

https://circleci.com/docs/migration-intro/, accessed on 2024-03-28
7. Codefresh: GitHub Actions pipeline integration,

https://codefresh.io/docs/docs/integrations/github-actions/, accessed on 2023-
12-06

8. Codefresh: Jenkins pipeline integration/migration,
https://codefresh.io/docs/docs/integrations/jenkins-integration/, accessed on
2023-12-06

9. Colantoni, A., Berardinelli, L., Garmendia, A., Bräuer, J.: Towards
blended modeling and simulation of devops processes: the keptn case
study. In: Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems: Companion Proceed-
ings. p. 784–792. MODELS ’22, Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3550356.3561597,
https://doi.org/10.1145/3550356.3561597

10. Colantoni, A., Berardinelli, L., Wimmer, M.: Devopsml: towards modeling de-
vops processes and platforms. In: Proceedings of the 23rd ACM/IEEE In-
ternational Conference on Model Driven Engineering Languages and Sys-
tems: Companion Proceedings. MODELS ’20, Association for Computing Ma-
chinery, New York, NY, USA (2020). https://doi.org/10.1145/3417990.3420203,
https://doi.org/10.1145/3417990.3420203

11. Düllmann, T.F., Kabierschke, O., Hoorn, A.v.: Stalkcd: A model-driven framework
for interoperability and analysis of ci/cd pipelines. In: 2021 47th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA). pp. 214–223
(2021). https://doi.org/10.1109/SEAA53835.2021.00035

12. Eclipse Foundation: Object Constraint Language,
https://projects.eclipse.org/projects/modeling.mdt.ocl, accessed on 2024-06-
21

13. Flores, A.: A Two-Level Model-Driven Engineering Approach for Reengineering
CI/CD Pipelines. Master’s thesis, Faculty of Engineering, University of Porto
(2024), https://dreflo.github.io/auto-cicd-migration/doc/thesis/thesis.pdf



14 A. Flores et al.

14. Flores, A., Gião, H.: ACICDTrip Repository (6 2024).
https://doi.org/10.5281/zenodo.11922315, https://github.com/DreFlo/auto-
cicd-migration/releases/tag/v0.1.1

15. Gebregziabher, D.: Github actions importer is now generally available (Mar
2023), https://github.blog/2023-03-01-github-actions-importer-is-now-generally-
available/

16. GitHub: GitHub Actions, https://github.com/features/actions, accessed on 2024-
06-21

17. GitHub: Manually migrating to GitHub Actions,
https://docs.github.com/en/actions/migrating-to-github-actions/automated-
migrations, accessed on 2023-12-06

18. GitLab: GitLab CI/CD, https://docs.gitlab.com/ee/ci, accessed on 2024-06-21
19. GitLab: Plan a migration from another tool to GitLab CI/CD | Git-

Lab, https://docs.gitlab.com/ee/ci/migration/plan_a_migration.html, accessed
on 2023-12-06

20. da Gião, H., Flores, A., Pereira, R., Cunha, J.: Chronicles of ci/cd: A deep dive
into its usage over time (2024)

21. Golzadeh, M., Decan, A., Mens, T.: On the rise and fall of CI services
in GitHub. In: 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). pp. 662–672. IEEE, New York, New
York, United States (2022). https://doi.org/10.1109/SANER53432.2022.00084,
https://ieeexplore.ieee.org/document/9825792/

22. Grieger, M., Fazal-Baqaie, M., Engels, G., Klenke, M.: Concept-based engineer-
ing of situation-specific migration methods. In: Kapitsaki, G.M., Santana de
Almeida, E. (eds.) Software Reuse: Bridging with Social-Awareness. pp. 199–214.
Lecture Notes in Computer Science, Springer International Publishing (2016).
https://doi.org/10.1007/978-3-319-35122-3_14

23. Jenkins: Jenkins, https://www.jenkins.io, accessed on 2024-06-21
24. JetBrains: The state of developer ecosystem in 2023,

https://www.jetbrains.com/lp/devecosystem-2023, accessed on 2024-02-01
25. Kazman, R., Woods, S., Carriere, S.: Requirements for integrating soft-

ware architecture and reengineering models: CORUM II. In: Proceedings
Fifth Working Conference on Reverse Engineering (Cat. No.98TB100261).
pp. 154–163 (1998). https://doi.org/10.1109/WCRE.1998.723185,
https://ieeexplore.ieee.org/abstract/document/723185

26. Kim, G., Humble, J., Debois, P., Willis, J.: The DevOps Handbook: How to Cre-
ate World-Class Agility, Reliability, and Security in Technology Organizations.
ITpro collection, IT Revolution Press, Portland, Oregon, United States (2016),
https://books.google.pt/books?id=ui8hDgAAQBAJ

27. Muthoo, S., D. Reeve II, W., Boyd, T., Banken, H.: Yamldiff,
https://github.com/sahilm/yamldiff, accessed on 2024-06-21

28. Pulgar, C.: Eat your own devops: a model driven approach to justify con-
tinuous integration pipelines. In: Proceedings of the 25th International Con-
ference on Model Driven Engineering Languages and Systems: Companion
Proceedings. p. 225–228. MODELS ’22, Association for Computing Machin-
ery, New York, NY, USA (2022). https://doi.org/10.1145/3550356.3552395,
https://doi.org/10.1145/3550356.3552395

29. Rivera, L.F., Villegas, N.M., Tamura, G., Jiménez, M., Müller, H.A.: Uml-driven
automated software deployment. In: Proceedings of the 28th Annual International
Conference on Computer Science and Software Engineering. p. 257–268. CASCON
’18, IBM Corp., USA (2018)



A Two-Level Model-Driven Approach for Reengineering CI/CD Pipelines 15

30. Rostami Mazrae, P., Mens, T., Golzadeh, M., Decan, A.: On the usage, co-
usage and migration of ci/cd tools: A qualitative analysis. Empirical Soft-
ware Engineering 28(2), 52 (2023). https://doi.org/10.1007/s10664-022-10285-5,
https://doi.org/10.1007/s10664-022-10285-5

31. Travis: Travis ci, https://www.travis-ci.com, accessed on 2024-06-21
32. Wurster, M., Breitenbücher, U., Falkenthal, M., Krieger, C., Leymann, F.,

Saatkamp, K., Soldani, J.: The essential deployment metamodel: a systematic
review of deployment automation technologies. SICS Software-Intensive Cyber-
Physical Systems 35(1), 63–75 (2020). https://doi.org/10.1007/s00450-019-00412-
x, http://link.springer.com/10.1007/s00450-019-00412-x


