
Towards a Block-based Language for Linear
Programming?

Hugo da Gião1,2[0000−0003−3798−0367], Rui Pereira2[0000−0002−5801−7345], and
Jácome Cunha1,2[0000−0002−4713−3834]

1 University of Minho
2 HASLab/INESC TEC

hugo.a.giao@inesctec.pt rui.a.pereira@inesctec.pt jacome@di.uminho.pt

Abstract. Linear programming is a mathematical optimization tech-
nique used in numerous fields including mathematics, economics, and
computer science, with numerous industrial contexts, including solving
optimization problems such as planning routes, allocating resources, and
creating schedules. As a result of its wide breadth of applications, a con-
siderable amount of its user base is lacking in terms of programming
knowledge and experience and thus often resorts to using graphical soft-
ware such as Microsoft Excel. However, despite its popularity amongst
less technical users, the methodologies used by these tools are often ad-
hoc and prone to errors.
Block-based languages have been successfully used to aid novice pro-
grammers and even children in programming. Thus, we propose creat-
ing a block-based programming language termed LPBlocks that allows
users to create linear programming models using data contained inside
spreadsheets. This language will guide the users to write syntactically
and semantically correct programs and thus aid them in a way that cur-
rent languages do not. As an initial evaluation we have used LPBlocks
to model 7 linear programming problems with success.

Keywords: linear programming, spreadsheets, block-based languages,
end-user programming

1 Introduction

The versatility of linear programming in specifying all sorts of problems lends
itself useful in many industrial contexts from schedule optimization to route
planning. Since many of its users have little to no programming or technical
knowledge, visual software such as Microsoft Excel is often the preferred tool
when it comes to specifying and solving this type of problem [7].

However, the typical methodologies used when solving those types of prob-
lems using spreadsheet software often come with underlying problems such as

? This work is supported by the national funds through the Portuguese Fund-
ing Agency (FCT - Fundação para a Ciência e a Tecnologia, within project
UIDB/50014/2020).

relying on an imprecise process to feed data from the spreadsheet to the solver,
as well as the difficulties visualizing the models. Many tools commonly used by
professionals working with linear programming such as MATLAB3 and GAMS4

either require considerable programming knowledge or use ad-hoc and error-
prone methodologies. Some projects related to the use of GUI’s for linear pro-
gramming in MATLAB are despite the use of graphical interface detached from
the business logic and more applied use cases [4].

Some projects have used visual languages to tackle aspects of linear program-
ming, however, the majority of them focus on the educational and teaching of
mathematical aspects of linear programming [16,9]. The few existing projects
focusing on the applied side of linear programming tend to be several decades
old and have dated and unappealing interfaces and do not make use of recent
advances in the field of visual languages and human-centered computing [10,17].

Numerous projects have applied visual languages to various areas of comput-
ing generally focused on increasing accessibility of novice and non-technical users
as well as teaching. A considerable amount of these languages use the Blockly
framework for their implementation [14]. These languages include BlockPy [1], a
web-based platform that lets the user write and run Python code using a block-
based language, and Scratch [11], a block-based visual programming language
and educational tool mostly targeted at children.

Taking into consideration the potential of Blockly to improve the usability
and practice of linear programming and the extensive study of block-based lan-
guages and their practices [14,5], we aim to build upon the work already done
in this field to the create a visual programming language and tool capable of ex-
pressing linear programming models in a high level, safe and intuitive manner.

In this work we extend our previous idea of bringing block-based languages
and linear programming [6] by presenting in detail LPBlocks, a block-based
language written using Blockly that is tailored for the construction of linear
programming models. To illustrate the language’s applicability we present its
use to model several linear programming problems demonstrating its use and
fallbacks.

2 Related work

Blockly is a framework that has been used over the last decade in many projects
aiming to improve programming accessibility, in diverse areas going from teach-
ing core concepts [11] to data science [1], robotics [8] and app development [15].

One such project, BlockPy, lets users access several data science libraries
and features, and generates the associated Python code. Additionally, it runs
inside a browser using a Javascript Python interpreter [1]. This project was
shown to be particularly useful in helping introductory level computer science
students transition into having full-fledged ideas, as well as offering the students
a compelling context for learning programming.

3 https://www.mathworks.com/products/matlab.html
4 https://www.gams.com/

https://www.mathworks.com/products/matlab.html
https://www.gams.com/

Another such project is the MitApp inventor, a platform that allows users
to create full-fledged mobile applications with various graphical interfaces [15].
When using this platform one is able to work on the design of the applications
using a graphical user interface, and on the program’s logic using a block-based
programming language.

Some works tackling various issues associated with the teaching and prac-
tice of linear programming using visual programming also exist. One such work
presents a tool named GLP-tool which allows users to define two variable linear
programming problems using an algebraic language and visualize the solving
process graphically [16]. Another relevant work introduces the LPFORM soft-
ware, which allows managers and operations researchers to formulate large linear
programming programs [10]. LPFORM empowers users during the more repet-
itive steps of building these models by allowing linear programming problems
to be represented using objects and relationships, and uses knowledge-based
techniques to generate the input given to the solver.

There are many solutions in the market catering to users with different needs
and levels of experience although we found that Excel was popular amongst less
technical users [7]. The majority of other tooling such as Matlab, GAMS and
SAS/OR5 cater primarily to users with some programming or mathematical
knowledge. Some of the problems associated with these more advanced tools
relate primarily to the technical complexity of modeling linear programming
knowledge, as well as the need to use textual programming languages. When us-
ing Excel for modeling users face problems associated with the use of spreadsheet
software.

3 A block-based language for linear programming

In this section, we introduce our proposed language, LPBlocks, using an example
featured in a Master of Business Administration (MBA) exam [2]. This exam-
ple problem aims to increase the profit of deliveries by airplanes. The problem
statement provides values for the weight and space capacity of three different
airplain’s compartments (front, rear and center) and maximum values for the
weight, volume and profit for four different cargoes (C1, C2, C3 and C4) as seen
in Figure 1.

Fig. 1. Input data for the running example problem

5 https://www.sas.com/en_us/software/or.html

https://www.sas.com/en_us/software/or.html

3.1 Input data specification

Our solution requires the input data to follow a specific structure. This structure
allows for the definition of index columns (as seen highlighted in blue in Figure
1), this are used to reference values and iterate over the data columns (in
white the same figure) this being always associated with one index column. To
distinguish between the two we assume that the data columns addressed by a
given index column appear in the spreadsheet immediately after the said index
column, and that different sets of index and data columns are separated by
an empty column as can be seen in the figure (fourth column). In this case there
are two sets, the first being for the three plane compartments and the second
for the four types of cargo.

3.2 LPBlocks constructs

The building blocks of the linear programming language we propose can be seen
in Figure 2. LPBlocks includes:

Fig. 2. Building blocks for LPBlocks

– Variable blocks (seen in Figure 2.A): Blocks for creating single, column
and matrix variables.

– Operation block (seen in Figure 2.B): A block to construct an individual
constraint.

– Building blocks (seen in Figure 2.C): These blocks include two nesting
blocks for the Variables and Constraints a nesting block to add an in-
dividual Constraint to a Constraints block and an Objective block to
define the objective function.

– Value blocks (seen in Figure 2.D): A set of blocks to access the variables
created before, that is, values blocks.

To further facilitate this process for novice and inexperienced users, when
building a new linear programming model, the variables, constraints and objec-
tive blocks already appear and are connected in the workplace when creating a
fresh solution. In the next sections we detail each of the blocks.

3.3 Defining variables

To define a mathematical linear programming model for our running example one
would start by creating a set of variables iterating over the the airplane sections
and the cargoes as shown in Figure 3.C (we refer to the problem’s original website
for a more common variable naming). Since this is a very common scenario
LPBlocks includes a construct that can be used to define all these variables
which we call a matrix. In Figure 3.B we use such a construct to create the
variables for the running example. In the example we use a the matrix variable
block to create a new N ×M matrix variable named CompartmentCargo, with
N being equal to the length of the column Compartment and M to the length
of the column Cargo with these columns serving as its indexes.

A

B

C

Fig. 3. Create variables

LPBlocks offers several options to define new variables, using the blocks seen
in Figure 2.A:

– single variables through its name;

– column variables defining its name and an index column for which the vari-
able will be iterated and accessed;

– matrix variables that take a name and two index columns for which they
can be iterated and those values accessed (used in Figure 3.B).

The process of generating the model variables is dependent on the variables
block used:

– For the single variable block a variable is generated with the chosen name.

– For column variable blocks an array of variables is created.

– For matrix variables blocks a matrix of variables is created(as shown in
Figure 3.B).

3.4 Defining constraints

The second step is to define the mathematical model would be to create a set
of constraints, using the variables created before, and encoding the restrictions
of the underlying problem. A constraint of the running example is that one
“cannot pack more of each of the four cargoes than their available quantity”.
The mathematical encoding would be as shown in Figure 4.B. There are four
constraints, one for each cargo. In each constraint, on the left-hand side of the
inequality one should sum the variables referring to the corresponding cargo (e.g.
C1 for the first constraint) and for the three different airplane sections. On the
right-hand side one would write the cargo weight limit.

A B

Fig. 4. Defining constraints for the cargoes weight

In LPBlocks, each constraint is defined by dragging a constraint block inside
the constraints block (second and third blocks from the top in Figure 2.C) and
then using the value blocks (blocks in Figure 2.D) and operation blocks (blocks
following the constraint block in Figure 2.B) to express the constraints. In our
language, operation blocks represent relations between blocks and are used to
express several operations including arithmetic operations and inequalities. The
value blocks can represent:

– Columns;

– Previously defined variables;

– Numbers.

A

B

Fig. 5. Defining constraints - second example

The variables can be accessed using different blocks and options. This as well
as the way the columns are used influence how the constraints will be generated.
As an example a user can access a matrix variable with a single slot variable
block in Figure 4.A to generate multiple constraints or use the three slot variable
blocks to access a particular value of the given variable.

Our solution possesses other features such as using the positioning and index
columns of the variables and columns used in the constraint construction auto-
matically deducing summations, sumproducts and sets of linear programming
constraints from the high level user defined visual constraints.

The first constraint in Figure 4.A is defined in our language by using: i) an
operation block with the inequality sign <=; ii) a variable block with the
option CompartmentCargo and; iii) a column block with the option Weight. Since
the constraints block only appears after the variables block the compiler
knows the index values for both the column and variable used and thus can
generate the correct constraints which in this case are expressed in Figure 4.B.

Another example constraint can be expressed in natural language as “the
volume (space) capacity of each compartment must be respected”. This con-
straint (in Figure 5.A) uses X (multiplication) and <= operation blocks and
value blocks to express the more complex constraints. This constraint differs
from the previous ones since the use of the X operation block leads to the
generation of sumproduct constraints instead of sum. For this constraint, our
compiler generates the linear programming constraints featured in Figure 5.B.

3.5 Defining the objective function

The final step in a linear programming model is the definition of an objective
function. For our running example, one intends to maximize the profit of the
airplane usage.

To define the objective function users must fit the objective block into the
constraints block and use several value and operation blocks to define the
function.

A

B

Fig. 6. Objective function for the running example

In the example seen in Figure 6.A the objective function is created by using
an operation block with value <=, a column block with option Profit, and
a variable block with the option CompartmentCargo. The objective function
generated by this statement is the one featured in 6.B which would be the one
written in a mathematical model.

3.6 Implementation

This language is included in a previously existing software prototype developed in
the context of a work exploring the creation of systematic spreadsheet processes
using a process-like notation [12,13]. This tool currently supports some of the
operations associated with creating and editing spreadsheets such as adding
columns, sorting, filtering or and creating charts. Our goal is to extend the
current software with functionalities that would allow users to build correct and
robust linear programming models.

We use the Blockly framework to define our language syntax. This is then
compiled into an OR-Tools valid linear programming model.

4 Language applicability

In this section we present a set of linear programming problems taken from an
MBA exam [2] and from a Operations Research textbook [3] and modeled using
LPBlocks. With this we intend to illustrate the applicability of our language to
a broad set of examples. In Appendix A we include the solution in LPBlocks of
other problems.

4.1 Vegetable mixture

This example shown in Figure 7 comes from the operations research textbook
[3]. In this example a manufacturer of freeze-dried vegetables aims at reducing
production costs while adhering to various nutrition criteria and guidelines. We
are given nutritional data for each of the vegetables as well as their cost per

LPBlocks

Constraints

Objective

Generates

Fig. 7. Definition of the vegetable mixture problem using LPBlocks

pound in the tabular data. We have a maximum percentage for certain vegetables
and the lower bounds for certain nutrients.

Since our goal is to find the ratio of each vegetable that goes into the mixture,
we created a column variable named Mixture that takes as its input the col-
umn Vegetable. For the constraints we start by creating constraints imposing
limits of 40% for Beans and 32% for Potatoes. The following three constraints
define the lower bounds for the given nutrients and the last adds non-negativity.
The objective is to minimize the cost per pound of the mixture. The verbosity of
this model could be improved if support for inputing data in the form of matrices
in the spreadsheet was added. This would decrease the necessity of using single
value blocks since iteration through both indexes would be possible.

When compared with implementing this model using mathematical notation
LPBlocks allows for the creation of a more concise and intuitive model. We
feel that our language lends itself to this sort of problem since it allows for the
generation of sizable mathematical constraints using more concise business logic.

4.2 Fruit canning plants

In this example taken from an MBA exam [2] and shown in Figure 8 we are
given information associated with different suppliers and fruit canning plants
with the goal of maximizing its profits. The information includes shipping, labor
and operating costs, buying prices and maximum production capacities. Despite
not being in the spreadsheet, the problem definition states that the selling price
for each tonne is of $50.

Fig. 8. Fruit canning plant example modeled using LPBlocks

To generate the formulation we create a matrix variable with indexes
Supplier and Plant. The constraints for this problem are straightforward and
can be generically specified, this consisting of the upper bounds for the supply
and capacity for each of the plants. The objective function is considerably more
complex since it needs to take into account the selling price and all the costs to
represent the profit. The objective verbosity could be mitigated by adding the
support for defining matrices inside the spreadsheet for the data. To improve the
reusability of the created models adding support to define data variables inside
the spreadsheet could also be done. To help users better visualize the model we

will add support for intermediate values to store portions of more verbose com-
ponents. More concretely in this model we could create blocks for the different
operating costs used in the objective and reference these blocks at the moment
of its definition.

When comparing with traditional mathematical notation or even other so-
lutions LPBlocks allowed for considerable savings in terms of syntax for the
expression of constraints however we found that due to its complexity the objec-
tive function specification in LPBlocks was similar to the mathematical form.

4.3 Machine allocation

In the problem shown in Figure 9 (taken from [2]) the goal is to maximize a fac-
tory’s profit by allocating the production of different goods among two machines.
In this problem we are given information about each product’s profitability, use
of floor space and manufacturing time in minutes taken by each machine. We are
also given other rolls related to the machines down time, the total floor space
of 50m2, the time of a work week of 35 hours, the ratios of which some prod-
ucts have to be produced relatively to others and that Product 1 can only be
manufactured in the second machine.

In this example we create column variables for each machine taking the
Proudct column as the index as opposed to previous examples where we created
matrix variables. In this we did not create a matrix variable as could be
assumed do to the fact that the values for the machines are not used as index
columns and using them for defining a matrix variable would mandate the
referencing of one of the values for every use of the variable and would offer
nothing in terms of iterability and generalization. In terms of constraints we use
the first constraint to express that the maximum floor space use is of 50m2.
If LPBlocks supported matrices as data input we possibly could express this
constraint in a less verbose manner. In the second constraint we express that
the production of product 2 is the same as 3. In constraints three and four we
take into account the downtime of 5% for machine 1 and 7% for 2 by modeling
that the total running time of each machine must be lower or equal to 95% and
93% of the total work week. The objective aims to maximize the profit and takes
into account that Product 1 can only be manufactured in the second machine.
This is the reason we were not able to use a more generic representation for this
constraint.

Similarly to the previous example we found some benefits in terms of smaller
footprint but since the creation of the model required the use of complex math-
ematical operations it couldn’t make use of most of LPBlocks features.

4.4 Improving LPBlocks

We have specified 7 linear programming models using LPBlocks. Most of these
examples were easily encoded using LPBlocks. However, we found that some im-
provements could be made in terms of usability, this center mainly on providing
support for receiving data in the form of matrices and variables. In testing the

Fig. 9. Machine allocation problem in LPBlocks

language applicability the value of these changes was evident. Despite posing
some challenges in terms of parsing and changes in the context of our applica-
tion, this addition would greatly benefit the writing of less verbose and more
concise programs in LPBlocks. Other features such as using intermediate blocks
could add some benefit to users but come with possible negative impacts when
it comes to ease of use and the creation of correct models.

5 Concluding remarks

In this work we present a language to aid end users defining linear programming
models. With our language, users are forced to create correct programs as the
constructs are based on the inputs of the problems and it possesses numerous
advantages associated with Block-based such as having and forcing strict in-
put, output , next and previous statement data types and having other features
such as imposing the selection of various inputs from lists extracted from input
spreadsheet. However, it is still possible to build models with problems and thus
we intend to include error-handling in the support tool. We will also design and
run empirical evaluations to assess the usability of the language.

References

1. Bart, A.C., Tibau, J., Tilevich, E., Shaffer, C.A., Kafura, D.: Blockpy: An open
access data-science environment for introductory programmers. Computer 50(5),
18–26 (2017). https://doi.org/10.1109/MC.2017.132

2. Beasley, J.E.: Or-notes, http://people.brunel.ac.uk/~mastjjb/jeb/or/

lpmore.html

3. Carter, M., Price, C.C.: Operations Research: A Practical Introduction. CRC Press
(2000)

4. Chong, L.S., Xin, C.J.: Creating a gui solver for linear programming models in
matlab. Journal of Science and Technology 10 (2018)

5. Fraser, N.: Ten things we’ve learned from blockly. In: 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond). pp. 49–50 (2015).
https://doi.org/10.1109/BLOCKS.2015.7369000

6. da Gião, H., Cunha, J., Pereira, R.: Linear programming meets block-based lan-
guages. In: 2021 IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC) (2021), to appear.

7. Guerrero, H.: Excel Data Analysis: Modeling and Simulation. Springer (2010),
https://www.springer.com/gp/book/9783642108341

8. Krishnamoorthy, S.P., Kapila, V.: Using a visual programming environment and
custom robots to learn c programming and k-12 stem concepts. In: Proceedings of
the 6th Annual Conference on Creativity and Fabrication in Education. p. 41–48.
FabLearn ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/3003397.3003403

9. Lazaridis, V., Paparrizos, K., Samaras, N., Sifaleras, A.: Visual linprog: A web-
based educational software for linear programming. Comput. Appl. Eng. Educ.
15(1), 1–14 (2007). https://doi.org/10.1002/cae.20084

10. Ma, P.C., Murphy, F.H., Stohr, E.A.: A graphics interface for linear programming.
Commun. ACM 32(8), 996–1012 (Aug 1989). https://doi.org/10.1145/65971.65978

11. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The scratch
programming language and environment. ACM Trans. Comput. Educ. 10(4) (Nov
2010). https://doi.org/10.1145/1868358.1868363

12. Mendes, J., Cunha, J., Duarte, F., Engels, G., Saraiva, J., Sauer, S.: Towards
systematic spreadsheet construction processes. In: 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering Companion (ICSE-C). pp. 356–358
(2017). https://doi.org/10.1109/ICSE-C.2017.141

13. Mendes, J., Cunha, J., Duarte, F., Engels, G., Saraiva, J., Sauer, S.: Sys-
tematic spreadsheet construction processes. In: 2017 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC). pp. 123–127 (2017).
https://doi.org/10.1109/VLHCC.2017.8103459

14. Pasternak, E., Fenichel, R., Marshall, A.N.: Tips for creating a block language with
blockly. In: 2017 IEEE Blocks and Beyond Workshop (B B). pp. 21–24 (2017).
https://doi.org/10.1109/BLOCKS.2017.8120404

15. Patton, E.W., Tissenbaum, M., Harunani, F.: MIT App Inventor: Objectives,
Design, and Development, pp. 31–49. Springer Singapore, Singapore (2019).
https://doi.org/10.1007/978-981-13-6528-7 3

16. Pereira, J., Fernandes, S.: Two-variable linear programming: A graphical tool with
mathematica. In: SYMCOMP 2013 - 1st International Conference on Algebraic
and Symbolic Computation. pp. 159–173 (09 2013)

https://doi.org/10.1109/MC.2017.132
http://people.brunel.ac.uk/~mastjjb/jeb/or/lpmore.html
http://people.brunel.ac.uk/~mastjjb/jeb/or/lpmore.html
https://doi.org/10.1109/BLOCKS.2015.7369000
https://www.springer.com/gp/book/9783642108341
https://doi.org/10.1145/3003397.3003403
https://doi.org/10.1002/cae.20084
https://doi.org/10.1145/65971.65978
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1109/ICSE-C.2017.141
https://doi.org/10.1109/VLHCC.2017.8103459
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1007/978-981-13-6528-7_3

17. Senne, E., Lucas, C., Taylor, S.: Towards an intelligent graphical interface for
linear programming modelling. Journal of Intelligent Systems 6(1), 63–94 (1996).
https://doi.org/doi:10.1515/JISYS.1996.6.1.63

https://doi.org/doi:10.1515/JISYS.1996.6.1.63

A Examples of the use of LPBlocks

A.1 Cargo allocation

Fig. 10. Cargo allocation

A.2 Shift allocation

Fig. 11. Shift allocation problem

A.3 Terminal manufacture

Fig. 12. Terminal manufacture

A.4 Satellite launching

Fig. 13. Satellite launching

	Towards a Block-based Language for Linear Programming

