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1. Introduction
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Spreadsheets	are	Easy	to	Use	
(kind	of)
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Spreadsheets	are	
Multi-Purpose
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Spreadsheets	are	Widely	Used
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They are the programming language of choice by 
non-professional programmers, aka end users

In the USA alone, the number of end-user 
programmers is conservatively estimated at 

11 million, compared to only 2.75 million other, 
professional programmers

Estimating the numbers of end users and end user programmers, 
Christopher Scaffidi, Mary Shaw, and Brad Myers, 2005

Very	Widely	Used!
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In 2004, RevenueRecognition.com (now 
Softtrax) had the International Data Corporation 

(IDC) interview 118 business leaders

IDC found that 85% were using spreadsheets in 
financial reporting and forecasting

Sarbanes-Oxley: What About all the Spreadsheets?, Raymond R. 
Panko and Nicholas Ordway, 2008

So	What?
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Economy losses of $10 billion/year!

http://www.eusprig.org/horror-stories.htm
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Why?	One	Reason	is...
85% of	the	participants	do	not	create	the	
spreadsheets	they	have	to	work	on	themselves	

Received	them	from	their	colleagues	

70% of	those	users	have	difficulties
understanding the	spreadsheets

Felienne Hermans,	Martin	Pinzger,	and Arie	van	Deursen. Supporting Professional	
Spreadsheet Users by Generating Leveled Data	FLow Diagrams.	ICSE’11
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Report of JPMorgan Chase &	Co.	Management	Task
Force	Regarding 2012	CIO	($6.2bn!)	Losses

...
Specifically,	after subtracting the old rate	from the new rate,	the
spreadsheet divided by their sum	instead of their average,	as	the
modeler had intended.	
...

Indeed…
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2. An Explanation Language for
Explaining Spreadsheets
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An	Explanation	Language	for	
Explaining	Spreadsheets

We	propose	to	augment	spreadsheets	with	
explanations written	using	an	explanation	
language

With	(spreadsheet)	constructs	to	abstract	
spreadsheets’	contents

But	still	within	spreadsheets	language
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An	Example

• What	is	being	calculated	in	cell	E5?
• How	is	it	being	calculated?
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An	Example

• What	is	being	calculated	in	cell	E5?
• How	is	it	being	calculated?
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Label	abstraction

• What	is	being	calculated	in	cell	F4?

• How	is	it	being	calculated?
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Loop	abstraction

Does	it	really	matter	the	number	of	
entries	(employees)	to	understand	the	
spreadsheet?
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Guiding	the	Design	of	
Explanation	Sheets

◦We	proposed	an	initial	set	of	constructs:
◦ Label	abstraction	
◦ Loop	abstraction
◦ Nested	loop	abstraction
◦ Case	operator	(nested	ifs)
◦ Group	by

◦We	then	manually	inspected	40	spreadsheet
◦ Randomly	selected	from	a	book	on	how	to	create	
spreadsheets

◦ And	from	the	repository	of	spreadsheets	from	Enron	(a	
bankrupted	company)
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Real	Spreadsheets,	
Real	Language	Constructs

◦We	noticed	nested	loop	occurs	rarely

◦ Nested	if	constructs	also	occur	rarely

◦ Group	by	also	occur	rarely

◦We	thus	decided	to	drop	them

◦ They	would	make	the	language	more	complex	with	
little	real	impact
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The	Spreadsheets	Language
◦Spreadsheets s	∈ S	are	partial	mappings	from	
addresses	A	=	N	× N	to	formulas	f∈Fml

◦ Formulas	f are	either	
◦ plain	values,	v∈ Val	(e.g.	1,	Month)
◦ application	of	operations,	ω (f,...,f),	to	other	formulas	(e.g.	
SUM(1,A1),	and

◦ references to	cells,	a	∈ A,	(e.g.	A1)

f∈Fml ::=	v	|	ω(f,...,f)	|	a
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The	Spreadsheets	Language
◦ ⊞α =	A	→	α	represents	sheets	indexed	by	addresses	and	
storing	values	of	type	α	

◦ A	spreadsheet	⊞Fml is	then	simply	a	sheet	of	formulas

◦ Formulas	evaluate to	values	Val

◦ The	evaluation	of	a	spreadsheet	is	a	value	sheet,	which	is	
a	sheet	of	values	⊞Val

◦ Semantics	of	a	spreadsheet	language	are	given	by	a	
function〚·〛:	⊞Fml →	⊞Val that	maps	spreadsheets	to	value	
sheets	(common	Excel	behaviour)
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Explanation	Sheets	Language
◦ Value	range:	v∈ Val =	Val	× Val

◦ Address	range:	a∈ A =	A	× A	(e.g.	[A1…	B5])

◦ Label:	l∈Lab =	Val∪Val × Val	(e.g.	Pay	Rate,	Adams.Pay Rate)

◦ Unexplained:⊥

◦ Explanation:	x∈Xpl ::=	v		|		v |		a		|		a |		l		|		ω(x,...,x)		|	⊥

◦ Explanation	sheet:	⊞Xpl
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Spreadsheet	Explanation
A	spreadsheet	explanation	is	captured	by	a	zoom

which	consists	of
◦ an	explanation	sheet	X	
◦ a	subject	spreadsheet	S	and
◦ a	total	function	η
◦ that	embeds	the	spreadsheet	into	the	explanation:	
dom(η) = dom(S) ^ rng(η) = dom(X)

◦ and	whose	explanation	formulas	explain	the	formulas	
of	the	spreadsheet	
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Figure 3. Formula Explanations

identi�es values as labels for cells.

L(a0) =
(
S (a) if L�1 (a0) = {a}
(S (a1), S (a2)) if L�1 (a0) = {a1,a2}

L(a0) is unde�ned whenever L�1 (a0) = ?.
We explain sets of formulas that share a common structure

and di�er only in their references by a formula with labels
abstracting the references. Finally, we represent unexplained
areas using the special value? (“unexplained”), which allows
us to reduce potentially large chunks of a spreadsheet by a
single row, column, or cell.
Thus we obtain the following de�nition of explanation

formulas and the derived notion of explanation sheets �Xpl .

x 2 Xpl ::= � | �̄ | a | ā | ` | � (x , . . . ,x ) | ?

The structure preservation embraced by�Xpl aligns the struc-
ture and composition of an explanation sheet with that of
the explained spreadsheet.

3.3 Explaining Spreadsheets with Explanation
Sheets

A spreadsheet explanation is captured by a so-called zoom
X

�2S , which consists of an explanation sheetX , a spreadsheet
S , a total function � that embeds the spreadsheet into the
explanation, that is, dom(�) = dom(S ) ^ rng(�) = dom(X ),
and whose explanation formulas explain the formulas of
the spreadsheet. The totality of � ensures that every cell in
S is covered by a cell in X . We don’t require zooms to be
surjective to allow for “�ller cells” in the explanation sheets
that serve no other purpose than to turn explanation sheets
into rectangular areas.
The purpose of zooms is to explain a number of similar

cells by one cell. Speci�cally, when ��1 (a) = {a1, . . . ,ak }, we
use cell a to summarize, or explain, all the cells a1, . . . ,ak .
We can formalize this idea through the notion of formula
explanation, which is de�ned as a binary relationship x 2 f

that says an explanation formula x explains a spreadsheet
formula f , see Figure 3.

J�KX = (�,� ) J�̄KX = �̄ JaKX = JX (a)KX
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Figure 4. Explanation Semantics

The cases for plain value, value range, and address range
should be obvious. Rule F������ requires that the explana-
tion and explained formulas have the same structure, and
the premise in the rule L���� ensures that a label exists. The
rules E���� V���� and E���� F������ allow empty values
to be explained by ranges and formulas, respectively, and the
rule U���������� allows any formula to be left unexplained.
For a zoom X

�2S we require that every formula in X ex-
plain all formulas in S that are mapped to it, that is:

8a0 2 dom(X ),8(a,a0) 2 � : X (a0) 2 S (a)

Based on the semantics of spreadsheets, we can de�ne the se-
mantics for explanation sheets as follows. Since explanation
formulas include ranges of values and addresses, they will
generally evaluate to ranges of values.1 To resolve references
the semantics needs access to the explanation sheet. Since
we also have to account for ? formulas, the semantics of ex-
planation formulas is of type J·K : Xpl ! �Xpl ! Val[{?}.
The de�nition is shown in Figure 4. We use the function
lV = (#V ,"V ) to compute the minimally enclosing range
for a set of values V . (We also use it for addresses.)
The semantics of explanation sheets is then given by the

following function J·K : �Xpl ! �Val[{?} .
JX K = {(a, �̄?) | (a,x ) 2 X ^ JxKX = �̄?}

Note that the semantics also depends on the underlying
subject sheet S and a labeling relationshipL to resolve labels
(`) in explanation formulas.

Next we introduce the notion of zoom soundness. This is
essentially the 2 relationship for value ranges and values
applied to whole sheets that are connected via a function �.
We say that an explanation X is sound for a spreadsheet S
under � if JX K �2JSK. This relationship captures the notion
that an explanation sheet X covers all cases of the explained
spreadsheet S and that the evaluation of S holds no surprises.
Now we can present our main result, which says that

zooms are sound.

Theorem 3.1 (Soundness). X �2S =) JX K �2JSK

Note that for any spreadsheet S we always can �nd a trivial
explanation through the zoom S

id2S ,2 which means that any
1A single value � can always be represented by a trivial range (�, � ).
2Here id denotes the identity function.
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Spreadsheet	Explanation
◦ A	zoom	explains	a	number	of	similar	cells	by	one	cell

◦When	η-1 (a) = {a1,...,ak},	cell	a
summarizes,	or	explains,	all	the	cells	a1,...,ak

◦We	formalize	this	idea	through	the	notion	of	
formula	explanation,	which	is	defined	as	a	binary	
relationship	x ⪦ f that	says	an	explanation	
formula	x explains	a	spreadsheet	formula	f (see	
next	slide)
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identi�es values as labels for cells.

L(a0) =
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S (a) if L�1 (a0) = {a}
(S (a1), S (a2)) if L�1 (a0) = {a1,a2}

L(a0) is unde�ned whenever L�1 (a0) = ?.
We explain sets of formulas that share a common structure

and di�er only in their references by a formula with labels
abstracting the references. Finally, we represent unexplained
areas using the special value? (“unexplained”), which allows
us to reduce potentially large chunks of a spreadsheet by a
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Thus we obtain the following de�nition of explanation

formulas and the derived notion of explanation sheets �Xpl .

x 2 Xpl ::= � | �̄ | a | ā | ` | � (x , . . . ,x ) | ?

The structure preservation embraced by�Xpl aligns the struc-
ture and composition of an explanation sheet with that of
the explained spreadsheet.

3.3 Explaining Spreadsheets with Explanation
Sheets

A spreadsheet explanation is captured by a so-called zoom
X

�2S , which consists of an explanation sheetX , a spreadsheet
S , a total function � that embeds the spreadsheet into the
explanation, that is, dom(�) = dom(S ) ^ rng(�) = dom(X ),
and whose explanation formulas explain the formulas of
the spreadsheet. The totality of � ensures that every cell in
S is covered by a cell in X . We don’t require zooms to be
surjective to allow for “�ller cells” in the explanation sheets
that serve no other purpose than to turn explanation sheets
into rectangular areas.
The purpose of zooms is to explain a number of similar

cells by one cell. Speci�cally, when ��1 (a) = {a1, . . . ,ak }, we
use cell a to summarize, or explain, all the cells a1, . . . ,ak .
We can formalize this idea through the notion of formula
explanation, which is de�ned as a binary relationship x 2 f

that says an explanation formula x explains a spreadsheet
formula f , see Figure 3.
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The cases for plain value, value range, and address range
should be obvious. Rule F������ requires that the explana-
tion and explained formulas have the same structure, and
the premise in the rule L���� ensures that a label exists. The
rules E���� V���� and E���� F������ allow empty values
to be explained by ranges and formulas, respectively, and the
rule U���������� allows any formula to be left unexplained.
For a zoom X

�2S we require that every formula in X ex-
plain all formulas in S that are mapped to it, that is:

8a0 2 dom(X ),8(a,a0) 2 � : X (a0) 2 S (a)

Based on the semantics of spreadsheets, we can de�ne the se-
mantics for explanation sheets as follows. Since explanation
formulas include ranges of values and addresses, they will
generally evaluate to ranges of values.1 To resolve references
the semantics needs access to the explanation sheet. Since
we also have to account for ? formulas, the semantics of ex-
planation formulas is of type J·K : Xpl ! �Xpl ! Val[{?}.
The de�nition is shown in Figure 4. We use the function
lV = (#V ,"V ) to compute the minimally enclosing range
for a set of values V . (We also use it for addresses.)
The semantics of explanation sheets is then given by the

following function J·K : �Xpl ! �Val[{?} .
JX K = {(a, �̄?) | (a,x ) 2 X ^ JxKX = �̄?}

Note that the semantics also depends on the underlying
subject sheet S and a labeling relationshipL to resolve labels
(`) in explanation formulas.

Next we introduce the notion of zoom soundness. This is
essentially the 2 relationship for value ranges and values
applied to whole sheets that are connected via a function �.
We say that an explanation X is sound for a spreadsheet S
under � if JX K �2JSK. This relationship captures the notion
that an explanation sheet X covers all cases of the explained
spreadsheet S and that the evaluation of S holds no surprises.
Now we can present our main result, which says that

zooms are sound.

Theorem 3.1 (Soundness). X �2S =) JX K �2JSK

Note that for any spreadsheet S we always can �nd a trivial
explanation through the zoom S

id2S ,2 which means that any
1A single value � can always be represented by a trivial range (�, � ).
2Here id denotes the identity function.
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identi�es values as labels for cells.

L(a0) =
(
S (a) if L�1 (a0) = {a}
(S (a1), S (a2)) if L�1 (a0) = {a1,a2}

L(a0) is unde�ned whenever L�1 (a0) = ?.
We explain sets of formulas that share a common structure

and di�er only in their references by a formula with labels
abstracting the references. Finally, we represent unexplained
areas using the special value? (“unexplained”), which allows
us to reduce potentially large chunks of a spreadsheet by a
single row, column, or cell.
Thus we obtain the following de�nition of explanation

formulas and the derived notion of explanation sheets �Xpl .

x 2 Xpl ::= � | �̄ | a | ā | ` | � (x , . . . ,x ) | ?

The structure preservation embraced by�Xpl aligns the struc-
ture and composition of an explanation sheet with that of
the explained spreadsheet.

3.3 Explaining Spreadsheets with Explanation
Sheets

A spreadsheet explanation is captured by a so-called zoom
X

�2S , which consists of an explanation sheetX , a spreadsheet
S , a total function � that embeds the spreadsheet into the
explanation, that is, dom(�) = dom(S ) ^ rng(�) = dom(X ),
and whose explanation formulas explain the formulas of
the spreadsheet. The totality of � ensures that every cell in
S is covered by a cell in X . We don’t require zooms to be
surjective to allow for “�ller cells” in the explanation sheets
that serve no other purpose than to turn explanation sheets
into rectangular areas.
The purpose of zooms is to explain a number of similar

cells by one cell. Speci�cally, when ��1 (a) = {a1, . . . ,ak }, we
use cell a to summarize, or explain, all the cells a1, . . . ,ak .
We can formalize this idea through the notion of formula
explanation, which is de�ned as a binary relationship x 2 f

that says an explanation formula x explains a spreadsheet
formula f , see Figure 3.
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Figure 4. Explanation Semantics

The cases for plain value, value range, and address range
should be obvious. Rule F������ requires that the explana-
tion and explained formulas have the same structure, and
the premise in the rule L���� ensures that a label exists. The
rules E���� V���� and E���� F������ allow empty values
to be explained by ranges and formulas, respectively, and the
rule U���������� allows any formula to be left unexplained.
For a zoom X

�2S we require that every formula in X ex-
plain all formulas in S that are mapped to it, that is:

8a0 2 dom(X ),8(a,a0) 2 � : X (a0) 2 S (a)

Based on the semantics of spreadsheets, we can de�ne the se-
mantics for explanation sheets as follows. Since explanation
formulas include ranges of values and addresses, they will
generally evaluate to ranges of values.1 To resolve references
the semantics needs access to the explanation sheet. Since
we also have to account for ? formulas, the semantics of ex-
planation formulas is of type J·K : Xpl ! �Xpl ! Val[{?}.
The de�nition is shown in Figure 4. We use the function
lV = (#V ,"V ) to compute the minimally enclosing range
for a set of values V . (We also use it for addresses.)
The semantics of explanation sheets is then given by the

following function J·K : �Xpl ! �Val[{?} .
JX K = {(a, �̄?) | (a,x ) 2 X ^ JxKX = �̄?}

Note that the semantics also depends on the underlying
subject sheet S and a labeling relationshipL to resolve labels
(`) in explanation formulas.

Next we introduce the notion of zoom soundness. This is
essentially the 2 relationship for value ranges and values
applied to whole sheets that are connected via a function �.
We say that an explanation X is sound for a spreadsheet S
under � if JX K �2JSK. This relationship captures the notion
that an explanation sheet X covers all cases of the explained
spreadsheet S and that the evaluation of S holds no surprises.
Now we can present our main result, which says that

zooms are sound.

Theorem 3.1 (Soundness). X �2S =) JX K �2JSK

Note that for any spreadsheet S we always can �nd a trivial
explanation through the zoom S

id2S ,2 which means that any
1A single value � can always be represented by a trivial range (�, � ).
2Here id denotes the identity function.
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use cell a to summarize, or explain, all the cells a1, . . . ,ak .
We can formalize this idea through the notion of formula
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The cases for plain value, value range, and address range
should be obvious. Rule F������ requires that the explana-
tion and explained formulas have the same structure, and
the premise in the rule L���� ensures that a label exists. The
rules E���� V���� and E���� F������ allow empty values
to be explained by ranges and formulas, respectively, and the
rule U���������� allows any formula to be left unexplained.
For a zoom X

�2S we require that every formula in X ex-
plain all formulas in S that are mapped to it, that is:

8a0 2 dom(X ),8(a,a0) 2 � : X (a0) 2 S (a)

Based on the semantics of spreadsheets, we can de�ne the se-
mantics for explanation sheets as follows. Since explanation
formulas include ranges of values and addresses, they will
generally evaluate to ranges of values.1 To resolve references
the semantics needs access to the explanation sheet. Since
we also have to account for ? formulas, the semantics of ex-
planation formulas is of type J·K : Xpl ! �Xpl ! Val[{?}.
The de�nition is shown in Figure 4. We use the function
lV = (#V ,"V ) to compute the minimally enclosing range
for a set of values V . (We also use it for addresses.)
The semantics of explanation sheets is then given by the

following function J·K : �Xpl ! �Val[{?} .
JX K = {(a, �̄?) | (a,x ) 2 X ^ JxKX = �̄?}

Note that the semantics also depends on the underlying
subject sheet S and a labeling relationshipL to resolve labels
(`) in explanation formulas.

Next we introduce the notion of zoom soundness. This is
essentially the 2 relationship for value ranges and values
applied to whole sheets that are connected via a function �.
We say that an explanation X is sound for a spreadsheet S
under � if JX K �2JSK. This relationship captures the notion
that an explanation sheet X covers all cases of the explained
spreadsheet S and that the evaluation of S holds no surprises.
Now we can present our main result, which says that

zooms are sound.

Theorem 3.1 (Soundness). X �2S =) JX K �2JSK

Note that for any spreadsheet S we always can �nd a trivial
explanation through the zoom S

id2S ,2 which means that any
1A single value � can always be represented by a trivial range (�, � ).
2Here id denotes the identity function.
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Figure 3. Formula Explanations

identi�es values as labels for cells.

L(a0) =
(
S (a) if L�1 (a0) = {a}
(S (a1), S (a2)) if L�1 (a0) = {a1,a2}

L(a0) is unde�ned whenever L�1 (a0) = ?.
We explain sets of formulas that share a common structure

and di�er only in their references by a formula with labels
abstracting the references. Finally, we represent unexplained
areas using the special value? (“unexplained”), which allows
us to reduce potentially large chunks of a spreadsheet by a
single row, column, or cell.
Thus we obtain the following de�nition of explanation

formulas and the derived notion of explanation sheets �Xpl .

x 2 Xpl ::= � | �̄ | a | ā | ` | � (x , . . . ,x ) | ?

The structure preservation embraced by�Xpl aligns the struc-
ture and composition of an explanation sheet with that of
the explained spreadsheet.

3.3 Explaining Spreadsheets with Explanation
Sheets

A spreadsheet explanation is captured by a so-called zoom
X

�2S , which consists of an explanation sheetX , a spreadsheet
S , a total function � that embeds the spreadsheet into the
explanation, that is, dom(�) = dom(S ) ^ rng(�) = dom(X ),
and whose explanation formulas explain the formulas of
the spreadsheet. The totality of � ensures that every cell in
S is covered by a cell in X . We don’t require zooms to be
surjective to allow for “�ller cells” in the explanation sheets
that serve no other purpose than to turn explanation sheets
into rectangular areas.
The purpose of zooms is to explain a number of similar

cells by one cell. Speci�cally, when ��1 (a) = {a1, . . . ,ak }, we
use cell a to summarize, or explain, all the cells a1, . . . ,ak .
We can formalize this idea through the notion of formula
explanation, which is de�ned as a binary relationship x 2 f

that says an explanation formula x explains a spreadsheet
formula f , see Figure 3.

J�KX = (�,� ) J�̄KX = �̄ JaKX = JX (a)KX

JāKX = l{JX (a)KX | a 2 � (ā)} J`KX = lL�1 (`)

JxiKX = (�1
i ,�

2
i ) �

1
i  �i  �

2
i

J� (x1, . . . ,xn )KX = l{J� (�1, . . . ,�n )KX }
J?KX = ?

Figure 4. Explanation Semantics

The cases for plain value, value range, and address range
should be obvious. Rule F������ requires that the explana-
tion and explained formulas have the same structure, and
the premise in the rule L���� ensures that a label exists. The
rules E���� V���� and E���� F������ allow empty values
to be explained by ranges and formulas, respectively, and the
rule U���������� allows any formula to be left unexplained.
For a zoom X

�2S we require that every formula in X ex-
plain all formulas in S that are mapped to it, that is:

8a0 2 dom(X ),8(a,a0) 2 � : X (a0) 2 S (a)

Based on the semantics of spreadsheets, we can de�ne the se-
mantics for explanation sheets as follows. Since explanation
formulas include ranges of values and addresses, they will
generally evaluate to ranges of values.1 To resolve references
the semantics needs access to the explanation sheet. Since
we also have to account for ? formulas, the semantics of ex-
planation formulas is of type J·K : Xpl ! �Xpl ! Val[{?}.
The de�nition is shown in Figure 4. We use the function
lV = (#V ,"V ) to compute the minimally enclosing range
for a set of values V . (We also use it for addresses.)
The semantics of explanation sheets is then given by the

following function J·K : �Xpl ! �Val[{?} .
JX K = {(a, �̄?) | (a,x ) 2 X ^ JxKX = �̄?}

Note that the semantics also depends on the underlying
subject sheet S and a labeling relationshipL to resolve labels
(`) in explanation formulas.

Next we introduce the notion of zoom soundness. This is
essentially the 2 relationship for value ranges and values
applied to whole sheets that are connected via a function �.
We say that an explanation X is sound for a spreadsheet S
under � if JX K �2JSK. This relationship captures the notion
that an explanation sheet X covers all cases of the explained
spreadsheet S and that the evaluation of S holds no surprises.
Now we can present our main result, which says that

zooms are sound.

Theorem 3.1 (Soundness). X �2S =) JX K �2JSK

Note that for any spreadsheet S we always can �nd a trivial
explanation through the zoom S

id2S ,2 which means that any
1A single value � can always be represented by a trivial range (�, � ).
2Here id denotes the identity function.

Semantics	of	explanation	sheets:〚·〛:	⊞Xpl →	⊞Val∪{⊥}

〚·〛=	{(a,v⊥)	|	(a,x)∈X∧〚x〛X =v⊥}	
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Zoom	Soudness?
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Initial	Empirical	Evaluation
◦Spreadsheets
◦ 4	spreadsheets	from	3	different	sources	(EUSES,	a	
book	and	Enron)

◦Participants
◦ 10	participants	from	UMinho and	UNL
◦ Computer	science	background
◦ Most	quite	experienced	spreadsheet	users
◦ 2	females	and	8	males	with	ages	ranging	from	23	to	45
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Execution
◦ Each	participant	received	2	spreadsheets	and	2	
explanation	sheets	(different	order)

◦Q1What	is	being	calculated	in	row/column/cell	
X?

◦Q2 How	are	the	values	in	row/column/cell	X	
calculated?	
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average time average score
subject explanation subject explanation

A Q1 1.3 2.1 2.2 2.4
Q2 1.1 2.2 3.0 2.8

B Q1 3.1 2.9 2.0 2.6
Q2 2.5 3.7 2.0 1.8

C Q1 2.1 1.8 3.0 1.0
Q2 1.0 2.9 2.4 1.4

D Q1 3.6 5.4 1.2 1.4
Q2 6.8 3.3 1.8 2.0

Table 1. Average times and scores in the empirical study

Q1 What is being calculated in row/column/cell X?
Q2 How are the values in row/column/cell X calculated?

Results. We present the results of the study in Table 1. For
each spreadsheet and its explanation we show the average
time (in minutes) participants took to answer each question
and the average score of the answers. We scored each answer
with a value from 0 (wrong answer) to 3 (entirely correct).

Discussion. The user evaluation produced mixed results.
Explanation sheets led to higher scores in 3 out of the 4 sce-
narios, with the exception of C, which produced signi�cantly
lower results. Here we note that the explanation sheet for
C employed a column header (S) as a label where none was
provided by the subject spreadsheet. As the participants had
no prior knowledge of explanations, this could have made
it hard to infer the meaning of the column reference, thus
impacting understandability.
There is no signi�cant di�erence between the average

times it took participants to answer the questions. With the
exception of D, participants were able to determine how a
computation was performed faster using the explanation.
However, explanations were only faster at explaining what
a computation calculated in cases B and C.

Interestingly, participants took longer to answer questions
for simple spreadsheets using explanations. This can possi-
bly be attributed to the fact that the participants have had
extensive experience with spreadsheets, while none with
explanations. This also seems to indicate that explanation
sheets are probably more useful for complex spreadsheets.

These results indicate the potential of explanation sheets
for providing a better understanding of spreadsheets. In their
answers to a post-study survey eight out of ten participants
said that they found explanation sheets somewhat or very
helpful. (For the two other participants they didn’t make a
di�erence.) Also, eight of the participants would want to use
explanation sheets in the future.

6 Related Work
Amal�tano et al. have developed a tool to help end users to
comprehend VBA-based Excel applications [6]. This tool is
designed to work with Excel programs that heavily depend

on VBA macros, explaining the relation between the macros
and the cells, and cannot be used to understand the data or
cell computations in a spreadsheet as we propose.

Kankuzi and Sajaniemi have investigated spreadsheet au-
thors’ mental models [27]. Based on that, they proposed a
tool that translates cell references into domain/real-world
terms using the labels in the spreadsheet. However, their
focus is on error detection, while ours in on understanding
the content of a spreadsheet.
Several authors have proposed techniques to identify

structural information in spreadsheets [2, 5, 7, 11–15, 23].
Although identi�ed structures may help understand spread-
sheets, there is no direct evidence for this, and none of the
mentioned approaches was meant to help understanding
spreadsheets, but instead to give some kind of support to
manipulate spreadsheet content.
The use of spreadsheets labels is not new [19]. In fact,

several approaches have been proposed for the inference of
cell labels [1], to reason about spreadsheets [10] using their
labels, and to use them for error checking [3]. And while
sometimes labels are used to explain spreadsheet errors [4],
none of this work was intended to explain spreadsheets
purpose. Some tools provide named ranges for de�ning a
name for a range of cells, which can then be used instead of
regular references. Although this feature has been shown to
make debugging less e�ective [28], there is no evidence of
its impact in understanding spreadsheets.
Hermans has proposed techniques to understand the de-

pendencies between di�erent worksheets [24, 25]. In con-
trast, our work improves the understandability of each work-
sheet. Thus, these two approaches are complementary.
Some researchers have proposed tools to support users

in documenting their spreadsheets [9]. However, such tools
require users to write documentation, which they usually do
not do. While our approach also relies on an additional arti-
fact, this has a familiar structure and can be added incremen-
tally. Most importantly, the formal structure of explanation
sheets and their relationship to spreadsheets o�ers oppor-
tunities for the automatic inference of explanation sheets,
which is something we plan to work on in the future.

7 Conclusions
We have presented the concept of explanation sheets to sup-
port the understanding of spreadsheets. The design of ex-
planation sheets has some appealing properties: First, they
facilitate the gradual and incremental construction of spread-
sheet explanations. Second, their formalization supports the
de�nition of tools for checking, for example, the correctness
of explanation, which we have already exploited. There are
many other support tools that can be envisioned and that we
will investigate in future work, such as checking the cover-
age of explanations, checking the compatibility of alternative
explanations, and the inference of explanation sheets.
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Few	Principles	for	other	
Explanation	Languages

1. Structure	Preservation
◦ An	explanation	language	should	retain	key	

subject	language	structures (e.g.	modules)

◦ Users	are	already	familiar with	these	
structures

◦ Reused	structures	facilitate	the	alignment of	
explanations	with	subject	programs
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2. Abstraction
◦ An explanation language should aim at

high-level descriptions

◦ It should abstract from details of the
subject language (e.g.	syntax)

◦ Abstraction makes explanations faster
to	read/absorb

◦ It also allows to	summarize subject
programs
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3. Partiality
◦ An	explanation	language	should	support	

partial explanations

◦ Should	not	be	required	to	cover	all	of	a	
subject	program

◦ Partiality	supports	a	gentle	slope	approach	
to	explanations

◦ Incremental	construction	of	more	complete	
explanations

◦ Partiality	allows	one	to	ignore	parts	that	
cannot	be	explained	(e.g.	they	are	not	
understood,	trivial	or	unimportant)

35



4. Compositionality	
◦ An	explanation	language	should	support	

constructing	bigger	explanations	from	
smaller	ones

◦ Requires	composition	operators

◦ Supports	the	systematic	construction	of	
explanations	and	the	reuse

◦ Together	with	partiality,	compositionality	
supports	the	distributed	creation	of	
explanations	by	different	people	who	
understand	different	parts	of	the	subject	
program
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Summary
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Future…
◦ Implement	automatic	inference	of	explanation	
sheets	from	existing	spreadsheets

◦ Further	empirical	evaluation	and	improvement	
of	language	and	explanation	sheets
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Thank you!

Questions?
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