Explaining Spreadsheets with Spreadsheets

§ Jácome Cunha jacome@di.uminho.pt ${ }^{\dagger}$ Mihai Dan danm@oregonstate.edu ${ }^{+}$Martin Erwig erwig@oregonstate.edu
${ }^{\dagger}$ Danila Fedorin fedorind@oregonstate.edu
${ }^{\dagger}$ Alex Grejuc grejuca@oregonstate.edu
${ }^{\S}$ University of Minho \& NOVA LINCS
${ }^{\dagger}$ Oregon State University
GPCE 2018, BOSTON, USA, 5-6 NOVEMBER

1. Introduction

Spreadsheets are Easy to Use (kind of)

Spreadsheets are Multi-Purpose

Spreadsheets are Widely Used

Very Widely Used!

They are the programming language of choice by non-professional programmers, aka end users

In the USA alone, the number of end-user programmers is conservatively estimated at 11 million, compared to only 2.75 million other, professional programmers

Estimating the numbers of end users and end user programmers,
Christopher Scaffidi, Mary Shaw, and Brad Myers, 2005

So What?

In 2004, RevenueRecognition.com (now Softtrax) had the International Data Corporation (IDC) interview 118 business leaders

IDC found that 85\% were using spreadsheets in financial reporting and forecasting

Sarbanes-Oxley: What About all the Spreadsheets?, Raymond R.
Panko and Nicholas Ordway, 2008

http://www.eusprig.org/horror-stories.htm

W. Baraboo to pay more for borrowed money than believed

Utah education officials make $\$ 25 M$ school funding mistake

Economy losses of $\$ 10$ billion/year!

Due to a calculating error by their financial advisors, West Baraboo officials learned Thursday they will be paying about $\$ 400,0000$ more over the lifetime of their most recent 10 -year borrowing plan than originally projected.

During its regular December meeting, the West Baraboo Village Board looked back over last month's decision to sell $\$ 1.1$ million in general obligation bonds to cover a variety of village projects, said Village Clerk Mary Klingenmeyer. The review was required after the board received a letter from its financial advisory firm, Ehelers of Brookfield.

Ehlers advisor James Mann said "operator error" resulted in a spreadsheet underestimating the total cost of the 10-year bond.

A miscalculation at the State Office of Education has led to a $\$ 25$ million mistake in Utah's education budget for next school year - and the resignation of two top finance officials.
Education leaders, however, say they don't expect the potential shortfall to hurt schools or districts. State leaders are considering solutions ranging from using education money expected to be left over at the end of this school year to calling a special legislative session.

Photos

- Join the Discussion
> Post a Comment

》 Posta Comment
million more than anticipated
"We committed to fund [enrollment] growth and this is an important part of growth," said Senate Budget Chairman Lyle Hillyard on Wednesday. "We would hope to get it fixed, and I think that's going to be our first priority."

The $\$ 25$ million represents less than 1 percent of the state's overall $\$ 3$ billion-plus education budget.

The problem was that the state office essentially underestimated the number of students expected in schools next school year. The correct number will cost the state $\$ 25$

State Superintendent Larry Shumway attributed the mistake to "a faulty reference" in a spreadsheet. He emphasized that no money was misappropriated. He called the mistake "significant" but "manageable."

Why? One Reason is...

85% of the participants do not create the spreadsheets they have to work on themselves

Received them from their colleagues

70\% of those users have difficulties understanding the spreadsheets

Indeed...

Report of JPMorgan Chase \& Co. Management Task Force Regarding 2012 CIO (\$6.2bn!) Losses

Specifically, after subtracting the old rate from the new rate, the spreadsheet divided by their sum instead of their average, as the modeler had intended.

2. An Explanation Language for Explaining Spreadsheets

An Explanation Language for Explaining Spreadsheets

We propose to augment spreadsheets with explanations written using an explanation language

With (spreadsheet) constructs to abstract spreadsheets' contents

But still within spreadsheets language

An Example

3	Adams	8.9	40	5	= B^{*} * C 3	=B3*1.5*D3	=E3+F3
4	Baker	12.55	35	0	=B4*C4	=B4*1.5*D4	=E4+F4
5	Carlton	9.6	40	2	=B5*C5	=B5*1.5*D5	=E5+F5
6	Daniels	10.2	35	0	=B6*C6	=B6*1.5*D6	=E6+F6
7							
8	Totals		=SUM(C3:C6)	=SUM(D3:D6)	=SUM(E3:E6)	=SUM(F3:F6)	=SUM(G3:G6)

- What is being calculated in cell E5?
- How is it being calculated?

An Example

,	A	B	C	D	E	F	G
1				Payroll Spreadsheet			
2	Name	Pay Rate	Regular Hours	Overtime Hours	Regular Pay	Overtime Pay	Total
3	Adams	8.9	40	5	=B3*C3	=B3*1.5*D3	=E3+F3
4	Baker	12.55	35	0	=B4*C4	=B4*1.5*D4	=E4+F4
5	Carlton	9.6	40	2	=B5*C5	=B5*1.5*D5	=E5+F5
6	Daniels	10.2	35	0	=B6*C6	=B6*1.5*D6	=E6+F6
7							
8	Totals		=SUM(C3:C6)	=SUM(D3:D6)	=SUM(E3:E6)	=SUM (F3:F6)	=SUM(G3:G6)

- What is being calculated in cell E5?
- How is it being calculated?

Label abstraction

,	A	B	C	D	E	F	G
1				Payroll Spreadsheet			
2	Name	Pay Rate	Regular Hours	Overtime Hours	Regular Pay	Overtime Pay	Total
3	Adams	8.9	40	5	=Pay Rate*Regular Hours	=Pav Rate*1.5*Overtime Hours	$=$ Regular Pay+Overtime Pay
4	Baker	12.55	35	0	=Pay Rate*Regular Hours	=Pay Rate*1.5*Overtime Hours	=Regular Pay+Overtime Pay
5	Carlton	9.6	40	2	=Pay Rate*Regular Hours	=Pay Rate*1.5*Overtime Hours	$=$ Regular Pay+Overtime Pay
6	Daniels	10.2	35	0	=Pay Rate*Regular Hours	=Pay Rate*1.5*Overtime Hours	=Regular Pay+Overtime Pay
7							
8	Totals		=SUM(Regular Hours)	=SUM(Overtime Hours)	=SUM(Regular Pay)	=SUM(Overtime Pay)	=SUM (Total)

- What is being calculated in cell F4?
- How is it being calculated?

Loop abstraction

1	
2	Name
3	[Adams
4	
5	Totals

Does it really matter the number of entries (employees) to understand the spreadsheet?

Guiding the Design of Explanation Sheets

- We proposed an initial set of constructs:
- Label abstraction
- Loop abstraction
- Nested loop abstraction
- Case operator (nested ifs)
- Group by
- We then manually inspected 40 spreadsheet
- Randomly selected from a book on how to create spreadsheets
- And from the repository of spreadsheets from Enron (a bankrupted company)

Real Spreadsheets, Real Language Constructs

- We noticed nested loop occurs rarely
- Nested if constructs also occur rarely
- Group by also occur rarely
- We thus decided to drop them
- They would make the language more complex with little real impact

The Spreadsheets Language

${ }^{-}$Spreadsheets $s \in S$ are partial mappings from addresses $A=N \times N$ to formulas $f \in F m l$

- Formulas fare either
${ }^{\circ}$ plain values, $\mathbf{v} \in \operatorname{Val}$ (e.g. 1, Month)
- application of operations, $\boldsymbol{\omega}(\mathrm{f}, \ldots, \mathrm{f})$, to other formulas (e.g. $\operatorname{SUM}(1, \mathrm{~A} 1)$, and
- references to cells, $a \in A$, (e.g. A1)

$$
f \in \mathrm{Fml}::=\mathrm{v}|\omega(\mathrm{f}, . ., \mathrm{f})| \mathrm{a}
$$

The Spreadsheets Language

${ }^{\circ} \boxplus_{\alpha}=A \rightarrow \alpha$ represents sheets indexed by addresses and storing values of type α

- A spreadsheet $\boxplus_{\text {Fml }}$ is then simply a sheet of formulas
- Formulas evaluate to values Val
- The evaluation of a spreadsheet is a value sheet, which is a sheet of values Tval
- Semantics of a spreadsheet language are given by a function $\llbracket \cdot \rrbracket: \boxplus_{\text {Fml }} \rightarrow \boxplus_{\text {val }}$ that maps spreadsheets to value sheets (common Excel behaviour)

Explanation Sheets Language

- Value range: $\underline{\mathrm{v}} \in \underline{\mathrm{Val}}=\mathrm{Val} \times \mathrm{Val}$
${ }^{\circ}$ Address range $\underline{a} \in \underline{A}=A \times A(e . g .[A 1 . . . B 5])$
\circ Label: $I \in$ Lab = Val \cup Val \times Val (e.g. Pay Rate, Adams.Pay Rate)
- Unexplained: \perp
-Explanation: $x \in X p l::=\mathrm{v}|\underline{\mathrm{v}}| \mathrm{a}|\underline{\mathrm{a}}| \mathrm{I}|\omega(\mathrm{x}, . ., \mathrm{x})| \perp$
${ }^{\circ}$ Explanation sheet: $\boxplus_{\text {xpl }}$

Pay Rate	Regular Hours
$[8.9 \ldots 12.55]$	$[35 \ldots 40]$
	$=$ SUM(Regular Hours)

Overtime Hours
[0...5]
=SUM(Overtime Hours)

Pacular Pav	Overtime Pay	Total
=Pay Rate*R	gelar Hours	=Pay Rate*1.5*Overtime Hours

Spreadsheet Explanation

A spreadsheet explanation is captured by a zoom

$$
X^{\eta} \triangleleft S
$$

which consists of

- an explanation sheet X
${ }^{\circ}$ a subject spreadsheet S and
- a total function η
- that embeds the spreadsheet into the explanation: $\operatorname{dom}(\eta)=\operatorname{dom}(S) \wedge \operatorname{rng}(\eta)=\operatorname{dom}(X)$
- and whose explanation formulas explain the formulas of the spreadsheet

Spreadsheet Explanation $X \geqslant S$

- A zoom explains a number of similar cells by one cell
- When $\eta^{-1}(\mathrm{a})=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right\}$, cell a summarizes, or explains, all the cells a_{1}, \ldots, a_{k}
- We formalize this idea through the notion of formula explanation, which is defined as a binary relationship $\mathrm{x} \triangleleft \mathrm{f}$ that says an explanation formula x explains a spreadsheet formula f (see next slide)

Formula Explanations $\quad X \leadsto$ n

> VALUE
> $v \curvearrowright v$
Value Range
$\frac{v_{1} \leq v \leq v_{2}}{\left(v_{1}, v_{2}\right) \diamond v}$

Address Range

$$
\frac{a_{1} \leq a \leq a_{2}}{\left(a_{1}, a_{2}\right) \triangleright a}
$$

Formula

$$
\frac{x_{1} \triangleleft f_{1} \quad \ldots \quad x_{n} \triangleleft f_{n}}{\omega\left(x_{1}, \ldots, x_{n}\right) \diamond \omega\left(f_{1}, \ldots, f_{n}\right)}
$$

Empty Value
$\left(v_{1}, v_{2}\right) \triangleleft \sqcup$

Empty Formula
$\omega\left(x_{1}, \ldots, x_{n}\right) \triangleleft \sqcup$

Label

$$
\frac{L(a)=\ell}{\ell \triangleright a}
$$

Unexplained
$\perp \triangleleft f$

Explanation Semantics

Semantics of explanation formulas: $\llbracket \cdot \rrbracket: \mathrm{Xpl} \rightarrow \boxplus_{\text {Xpl }} \rightarrow \underline{\text { Val }} \cup\{\perp\}$

$$
\begin{gathered}
\llbracket v \rrbracket_{X}=(v, v) \quad \llbracket \bar{v} \rrbracket_{X}=\bar{v} \quad \llbracket a \rrbracket_{X}=\llbracket X(a) \rrbracket_{X} \\
\llbracket \bar{a} \rrbracket_{X}=\llbracket\left\{\llbracket X(a) \rrbracket_{X} \mid a \in \rho(\bar{a})\right\} \quad \llbracket \ell \rrbracket_{X}=\uparrow L^{-1}(\ell) \\
\frac{\llbracket x_{i} \rrbracket_{X}=\left(v_{i}^{1}, v_{i}^{2}\right) \quad v_{i}^{1} \leq v_{i} \leq v_{i}^{2}}{\llbracket \omega\left(x_{1}, \ldots, x_{n}\right) \rrbracket_{X}=\uparrow\left\{\llbracket \omega\left(v_{1}, \ldots, v_{n}\right) \rrbracket_{X}\right\}} \quad \llbracket \perp \rrbracket_{X}=\perp
\end{gathered}
$$

Semantics of explanation sheets: $\llbracket \cdot \rrbracket: \boxplus_{\text {Xpl }} \rightarrow \boxplus_{\underline{\text { Val }} \cup\{\perp\}}$

$$
\llbracket \cdot \rrbracket=\left\{\left(a, \underline{v}_{\perp}\right) \mid(a, x) \in X \wedge \llbracket x \rrbracket{ }_{x}=\underline{v}_{\perp}\right\}
$$

Zoom Soudness?

Initial Empirical Evaluation

- Spreadsheets
- 4 spreadsheets from 3 different sources (EUSES, a book and Enron)
- Participants
- 10 participants from UMinho and UNL
- Computer science background
- Most quite experienced spreadsheet users
- 2 females and 8 males with ages ranging from 23 to 45

Execution

- Each participant received 2 spreadsheets and 2 explanation sheets (different order)
- Q1 What is being calculated in row/column/cell X?
- Q2 How are the values in row/column/cell X calculated?

Results

average time average score

subject explanation subject explanation

A	Q1	1.3	2.1	2.2	2.4
	Q2	1.1	2.2	3.0	2.8
	B1	3.1	2.9	2.0	2.6
	Q2	2.5	3.7	2.0	1.8
	C1	2.1	1.8	3.0	1.0
	Q2	1.0	2.9	2.4	1.4
	D1	3.6	5.4	1.2	1.4
	Q2	6.8	3.3	1.8	2.0

Few Principles for other Explanation Languages

1. Structure Preservation

- An explanation language should retain key subject language structures (e.g. modules)
- Users are already familiar with these structures
- Reused structures facilitate the alignment of explanations with subject programs

2. Abstraction

- An explanation language should aim at high-level descriptions
- It should abstract from details of the subject language (e.g. syntax)
- Abstraction makes explanations faster to read/absorb
- It also allows to summarize subject programs

3. Partiality

An explanation language should support partial explanations

Should not be required to cover all of a subject program

Partiality supports a gentle slope approach to explanations

- Incremental construction of more complete explanations

Partiality allows one to ignore parts that cannot be explained (e.g. they are not understood, trivial or unimportant)

4. Compositionality

An explanation language should support constructing bigger explanations from smaller ones

- Requires composition operators

Supports the systematic construction of explanations and the reuse

Together with partiality, compositionality supports the distributed creation of explanations by different people who understand different parts of the subject program

Spreadsheets are Widely Used

Summary

http://www.eusprig.org/horror-stories.htm

Future...

- Implement automatic inference of explanation sheets from existing spreadsheets
- Further empirical evaluation and improvement of language and explanation sheets

Thank you!

Questions?

Explaining Spreadsheets with Spreadsheets

§ Jácome Cunha jacome@di.uminho.pt ${ }^{\dagger}$ Mihai Dan danm@oregonstate.edu ${ }^{+}$Martin Erwig erwig@oregonstate.edu
${ }^{\dagger}$ Danila Fedorin fedorind@oregonstate.edu
${ }^{\dagger}$ Alex Grejuc grejuca@oregonstate.edu
§ University of Minho \& NOVA LINCS
${ }^{\dagger}$ Oregon State University

