Explaining Spreadsheets with Spreadsheets

[§] Jácome Cunha jacome@di.uminho.pt
[†] Mihai Dan danm@oregonstate.edu
[†] Martin Erwig erwig@oregonstate.edu
[†] Danila Fedorin fedorind@oregonstate.edu
[†] Alex Grejuc grejuca@oregonstate.edu

[§] University of Minho & NOVA LINCS

⁺Oregon State University

University of Minho School of Engineering

G

112	Englebert	9,6	40	5	=B112*C112	=B112*1,5*D112	=E112+F112
113	Franklin	11,55	40	3	=B113*C113	=B113*1,5*D113	=E113+F113
114	Griffin	10,8	40	2	=B114*C114	=B114*1,5*D114	=E114+F114
115	Hartford	9,9	40	10	=B115*C115	=B115*1,5*D115	=E115+F115
116	Indio	8,9	40	0	=B116*C116	=B116*1,5*D116	=E116+F116
117	Jackson	21,5	40	1	=B117*C117	=B117*1,5*D117	=E117+F117
118							
119	Totals		=SUM(C4:C117)	=SUM(D4:D117)	=SUM(E4:E117)	=SUM(F4:F117)	=SUM(G4:G117)

Now I understand what

— the references mean.

	Α	В	С	D	E	F	G
1							
2					Payroll Spreadsheet		
3		Pay Rate	Regular Hours	Overtime Hours	Regular Pay	Overtime Pay	Total
4	Adams	8,9	40	0	Pay Rate*Regular Hours	Pay Rate*1.5*Overtime Hours	Regular Pay+Overtime Pay
5	Baker	12,55	35	0	Pay Rate*Regular Hours	Pay Rate*1.5*Overtime Hours	Regular Pay+Overtime Pay

112	Englebert	9,6	40	5	Pay Rate*Regular Hours	Pay Rate*1.5*Overtime Hours	Regular Pay+Overtime Pay
113	Franklin	11,55	40	3	Pay Rate*Regular Hours	Pay Rate*1.5*Overtime Hours	Regular Pay+Overtime Pay
114	Griffin	10,8	40	2	Pay Rate*Regular Hours	Pay Rate*1.5*Overtime Hours	Regular Pay+Overtime Pay
115	Hartford	9,9	40	10	Pay Rate*Regular Hours	Pay Rate*1.5*Overtime Hours	Regular Pay+Overtime Pay
116	Indio	8,9	40	0	Pay Rate*Regular Hours	Pay Rate*1.5*Overtime Hours	Regular Pay+Overtime Pay
117	Jackson	21,5	40	1	Pay Rate*Regular Hours	Pay Rate*1.5*Overtime Hours	Regular Pay+Overtime Pay
118							
119	Totals		SUM(Regular Hours)	SUM(Overtime Hours)	SUM(Regular Pay)	SUM(Overtime Pay)	SUM(Total)

I don't need all entries to

understand a spreadsheet.

	Α	В	С	D	E	F	G
3					Payroll Spreadsheet		
4		Pay Rate	Regular Hours	Overtime Hours	Regular Pay	Overtime Pay	Total
5	[AdamsJackson]	[812.55]	[3540]	[010]	Pay Rate*Regular Hours	Pay Rate*1.5*Overtime Hours	Regular Pay+Overtime Pay
6							
7	Totals		SUM(Regular Hours)	SUM(Overtime Hours)	SUM(Regular Pay)	SUM(Overtime Pay)	SUM(Total)

ExplanationValue RangeAddress RangeLanguageValue $v_1 \le v \le v_2$ $a_1 \le a \le a_2$ $v \lhd v$ $v_1 < v \le v_2$ $a_1 \le a \le a_2$ $v \lhd v$ $v_1, v_2) \lhd v$ a_1, a_2, a_2

Semantics

$$\llbracket v \rrbracket_X = (v, v)$$
 $\llbracket v \rrbracket_X = v$ $\llbracket a \rrbracket_X = \llbracket X(a) \rrbracket_X$

Formula $x_1 \lhd f_1$	$\dots x_n \lhd f_n$	LABEL $L(a) = \ell$
$\omega(x_1,\ldots,x_n)$	$(f_n) \lhd \omega(f_1,\ldots,f_n)$	$\ell \lhd a$
Empty Value	Empty Formula	Unexplained
$(v_1,v_2) \lhd \sqcup$	$\omega(x_1,\ldots,x_n) \lhd \sqcup$	$\bot \lhd f$

$$\begin{split} & [\![\bar{a}]\!]_X = \Im\{[\![X(a)]\!]_X \mid a \in \rho(\bar{a})\} \\ & [\![\ell]\!]_X = \Im\{[\![x_i]\!]_X = (v_i^1, v_i^2) \quad v_i^1 \le v_i \le v_i^2 \\ & \frac{[\![x_i]\!]_X = (v_i^1, v_i^2) \quad v_i^1 \le v_i \le v_i^2}{[\![\omega(x_1, \dots, x_n)]\!]_X = \Im\{[\![\omega(v_1, \dots, v_n)]\!]_X\}} \quad [\![\bot]\!]_X = \bot \end{split}$$

This work is partially supported by the National Science Foundation under the grant CCF-1717300. Work financed by European Regional Development Fund through the Operational Programme for Competitiveness and Internationalization COMPETE 2020 Programme and by National Funds through the Portuguese funding agency FCT project POCI-01-0145-FEDER-016718 and NOVA LINCS UID/CEC/04516/2013, and by FLAD project 233/2014.

foundation

DEVELOPMENT

