Explaining Spreadsheets with Spreadsheets

§ Jácome Cunha ${ }^{+}$Mihai Dan
${ }^{+}$Martin Erwig
${ }^{+}$Danila Fedorin
${ }^{\dagger}$ Alex Grejuc

jacome@di.uminho.pt danm@oregonstate.edu erwig@oregonstate.edu fedorind@oregonstate.edu grejuca@oregonstate.edu

§ University of Minho \& NOVA LINCS

${ }^{\dagger}$ Oregon State University

NOVALINCS

What does this spreadsheet do?

What is it computing

 is column E ?How is this computed?

	A	B	C	D	E	F	G
112	Englebert	9,6	40	5	=B112*C112	=B112*1,5*D112	=E112+F112
113	Franklin	11,55	40	3	=B113*C113	=B113*1,5*D113	=E113+F113
114	Griffin	10,8	40	2	=B114*C114	=B114*1,5*D114	=E114+F114
115	Hartford	9,9	40	10	=B115*C115	=B115*1,5*D115	=E115+F115
116	Indio	8,9	40	0	=B116*C116	=B116*1,5*D116	=E116+F116
117	Jackson	21,5	40	1	=B117*C117	=B117*1,5*D117	=E117+F117
118							
119	Totals		=SUM (C4:C117)	=SUM (D4:D117)	=SUM(E4:E117)	=SUM(F4:F117)	=SUM(G4:G117)

	A	B	C	D	E	F	G
3					Payroll Spreadsheet		
4		Pay Rate	Regular Hours	Overtime Hours	Regular Pay	Overtime Pay	Total
5	[Adams...Jackson]	[8...12.55]	[35...40]	[0...10]	Pay Rate*Regular Hours	Pay Rate*1.5*Overtime Hours	Regular Pay+Overtime Pay
6							
7	Totals		SUM(Regular Hours)	SUM(Overtime Hours)	SUM(Regular Pay)	SUM(Overtime Pay)	SUM(Total)

Explanation
$\begin{aligned} \text { Language } & \begin{array}{l}\text { Value } \\ v \diamond v\end{array}\end{aligned}$
Formula

$x_{1} \triangleleft f_{1} \quad \ldots \quad x_{n} \triangleleft f_{n}$
$\omega\left(x_{1}, \ldots, x_{n}\right) \triangleleft \omega\left(f_{1}, \ldots, f_{n}\right)$

Empty Value Empty Formula
$\left(v_{1}, v_{2}\right) \triangleleft \sqcup$

Value Range $\frac{v_{1} \leq v \leq v_{2}}{\left(v_{1}, v_{2}\right) \triangleleft v}$

Address Range

$$
\frac{a_{1} \leq a \leq a_{2}}{\left(a_{1}, a_{2}\right) \triangleleft a}
$$

Label
$\frac{L(a)=\ell}{\ell \triangleleft a}$

Semantics

$$
\begin{gathered}
\llbracket v \rrbracket_{X}=(v, v) \quad \llbracket \bar{v} \rrbracket_{X}=\bar{v} \quad \llbracket a \rrbracket_{X}=\llbracket X(a) \rrbracket_{X} \\
\llbracket \bar{a} \rrbracket_{X}=\uparrow\left\{\llbracket X(a) \rrbracket_{X} \mid a \in \rho(\bar{a})\right\} \quad \llbracket \ell \rrbracket_{X}=\uparrow L^{-1}(\ell) \\
\frac{\llbracket x_{i} \rrbracket_{X}=\left(v_{i}^{1}, v_{i}^{2}\right) \quad v_{i}^{1} \leq v_{i} \leq v_{i}^{2}}{\llbracket \omega\left(x_{1}, \ldots, x_{n}\right) \rrbracket_{X}=\uparrow\left\{\llbracket \omega\left(v_{1}, \ldots, v_{n}\right) \rrbracket_{X}\right\}} \quad \llbracket \perp \rrbracket_{X}=\perp
\end{gathered}
$$

Unexplained
$\perp \triangleleft f$

FCT

