
A Methodology for Refactoring ORM-Based Monolithic
Web Applications into Microservices

Francisco Freitasa,d, André Ferreiraa,b, Jácome Cunhac,d

aUniversity of Minho
bBosch Car Multimedia S.A.

cFaculty of Engineering, University of Porto
dHASLab/INESC TEC

Abstract

In the last few years we have been seeing a drastic change in the way software is
developed. Large-scale software projects are being assembled by a flexible com-
position of many (small) components possibly written in different programming
languages and deployed anywhere in the cloud – the so-called microservices-
based applications.

The dramatic growth in popularity of microservices-based applications has
pushed several companies to apply major refactorings to their software systems.
However, this is a challenging task that may take several months or even years.

We propose a methodology to automatically evolve monolithic web appli-
cations that use object-relational mapping into microservices-based ones. Our
methodology receives the source code and a microservices proposal and refac-
tors the original code to create each microservice. Our methodology creates an
API for each method call to classes that are in other services. The database
entities are also refactored to be included in the corresponding service. The
evaluation performed in 120 applications shows that our tool can successfully
refactor about 72% of them. The execution of the unit tests in both versions of
the applications yield exactly the same results.

Keywords: microservices, monolithic decomposition, refactoring, Java,
software evolution, migration, ORM

1. Introduction

“The death of big software” has been announced in 2017 [1]. This has been
motivated by the challenges associated with the development, maintenance, and
evolution of large software systems, but also by the appearance of the cloud and
the ease it brought in terms of horizontal scaling, reusability and flexibility

Email addresses: a81580@alunos.uminho.pt (Francisco Freitas),
alferreira@di.uminho.pt (André Ferreira), jacome@fe.up.pt (Jácome Cunha)

Preprint submitted to Journal of Computer Languages May 23, 2023



in ownership and deployment. Indeed, many software systems are currently
being developed as a set of loosely-coupled components, possibly written in
different programming languages, eventually deployed anywhere in the cloud,
and communicating through the internet, creating an architectural style usually
termed microservices [2]. These pieces can be used to mix-and-match as to
create new or even to evolve existing software [1].

One of the main motivations of a microservices-based architecture is that it
has the potential to increase the flexibility and agility of software development
as each service can be developed individually using different technologies.

Although microservices are currently standard in industry, there are still
many applications that were (and still are) built as monoliths, that is, appli-
cations composed of all the core logic related to the domain of the problem
contained in a single process [2]. The manual process of migrating them to this
new paradigm is complex and, depending on the project’s complexity, may take
months or even years to complete [3, 4]. The decomposition of software systems
is one of the main struggles, and as shown in the work of Fritzsch et al. [3], none
of the participants in the study was aware of automated techniques that could
assist the migration of a monolithic application to a microservices-based one.
Thus, the research community has been working on techniques and methodolo-
gies to aid in this migration, i.e. in transforming a monolithic application into
a microservices-based one, while preserving the semantics of the original appli-
cation [5, 6, 7, 8, 9, 10]. Although some works already propose to refactor the
code [11], most are focused on improving the migration process (e. g. deciding
when to migrate) or in the identification of the microservices [12, 13]. Moreover,
several companies have also applied major refactorings of their backend systems
to transform their applications [4]. More about related work can be found in
Section 5.

In this work we present a methodology, supported by a tool termed Mi-
croRefact, that receives as input a microservices proposal for extracting mi-
croservices from a monolithic application, and refactors that original application
into a microservices-based one. The microservices proposal is a set of sets where
each of these sets contains components of the original application (e. g. a Java
class) to be extracted into a microservices. For instance, if a monolithic Java
application is composed of classes A, B, and C a possible microservices pro-
posal could be {{A, B}, {C}}. Our methodology analyzes the source code and
the microservices proposed and refactors the classes that have method calls to
other classes that are part of other services. Each of these calls is replaced by
a call to a new method MicroRefact automatically generate, implementing
a REST1 call to the original method which now is in a different service. We
also refactor the database classes as they need to be spread by the different
services. In Section 2 we present our methodology in detail and in Section 3 its
implementation.

We performed a quantitative study to evaluate the applicability of our method-

1https://www.redhat.com/en/topics/api/what-is-a-rest-api

2

https://www.redhat.com/en/topics/api/what-is-a-rest-api


ology. From the 120 applications randomly selected from GitHub our tool was
able to refactor 86, almost 72%. We also performed a qualitative study by run-
ning unit tests available in some of the applications showing the results in both
the original and in the refactored applications are exactly the same. Section 4
presents in detail our evaluation. In Section 6 we draw our conclusions and
describe some possible future work.

2. Refactoring ORM-Based Monoliths

In this section we present our methodology for refactoring monoliths based
on object-relational mapping (ORM). To demonstrate what transformations our
methodology makes to monolithic projects, we use as an example of an ORM
framework Java Spring2, which makes the mapping between classes and entities
through annotations in the source code.

Our methodology receives the source code of the application under analysis
and a microservices proposal. A microservices proposal is a set of sets where
each of these sets contains components (e. g. Java classes) of the monolith that
are to be extracted into a microservice. Each component must belong to just
one microservice. Our methodology outputs a microservices-based application
where the microservices descriptions are realized and the classes moved to the
corresponding microservice. To have a running application after the refactoring,
all the initial components (classes/interfaces) must exist in some microservice.
If the user wants to refactor just part of the application, a possibility would
be to have a single microservice description with the entities that one does not
want to migrate. In this case, the dependencies within this microservice would
not be part of the refactoring process, but the dependencies from and to this
microservice would still be tackled by our approach.

Figure 1 depicts the steps of the refactoring process. In the Information Ex-
traction phase (Section 2.2), we extract the structural information from the
source code and combine it with the microservices proposal to identify the
dependencies between microservices. In the next step, Database Refactoring
(Section 2.3), we use the structural information and the dependencies between
microservices to identify entities, the relationships between entities, and to iden-
tify which relationships need refactoring. After this initial identification, our
approach proceeds to the refactoring of those relationships. Note that our ap-
proach assumes all the information about the database is contained in the classes
(through annotations) and thus does not cope with other database information
that may exist. Finally, in Code Refactoring (Section 2.4), we use the struc-
tural information and the dependencies between microservices to analyze the
class variables and the dependencies between classes, in order to identify and
refactor the classes that have dependencies with classes that belong to different
microservices.

2https://spring.io

3

https://spring.io


Figure 1: Overview of the proposed methodology

To demonstrate what transformations our methodology makes to mono-
lithic projects, we use as an example a Java Spring application called restau-
rantServer3.

In the following sections we present the restaurantServer application and
explain in detail each of the phases of our methodology accompanied with ex-
amples of the transformations.

2.1. The Application restaurantServer

In this section we present the restaurantServer, a backend application for
restaurant management. Although it is a small project, we chose to use this
application as an example because it covers a large portion of the cases we
consider. Our goal is to present extracted examples from this application to
demonstrate what happens in each phase of our methodology, and to demon-
strate the concrete modifications that each phase of our methodology makes
to monolithic applications. To achieve this we present examples of interactions
between classes in the original application and the same interactions in the
generated microservices-based application.

To generate a microservices proposal for restaurantServer, to be used as
input for our methodology, we used the tool developed by Brito et al. [14].
Although the tool allows the customization of the input, we use the default
parameters. The microservices proposal generated by the tool is present in
Table 1. The generated proposal consists of 7 microservices. Note that all
classes in this project have the prefix pl.edu.wat.wcy.pz.restaurantServer. in their
qualified name, which we remove for simplicity. The examples presented in this
section are based on this microservices proposal.

2.2. Information Extraction

In the Information Extraction phase we extract structural information from
the source code and we identify the dependencies between microservices. We
next describe how to obtain this information.

2.2.1. Extraction of Structural Information

To identify the dependencies between microservices, it is necessary to iden-
tify the dependencies between classes and relate the dependencies with the mi-
croservices proposal. Through the structural information of the source code

3https://github.com/asledziewski/restaurantServer

4

https://github.com/asledziewski/restaurantServer


Table 1: Microservices proposal for restaurantServer.

#Microservice Classes

1

security.WebSecurityConfiguration
security.jwt.JwtAuthEntryPoint
security.jwt.JwtAuthTokenFilter
security.jwt.JwtProvider

2

security.service.UserDetailsServiceImpl
repository.UserRepository
entity.User
security.service.UserPrinciple
service.UserService
controller.UserController

3

entity.Bill
entity.BillPosition
service.BillService
controller.BillController
service.BillPositionService
controller.BillPositionController
repository.BillPositionRepository
repository.BillRepository

4

service.RTableService
entity.RTable
controller.RTableController
repository.RTableRepository

5

entity.Dish
RestaurantServerApplication
repository.DishRepository
service.DishService
controller.DishController

6

repository.ReservationRepository
entity.Reservation
service.ReservationService
controller.ReservationController

7

form.response.JwtResponse
email.MailService
controller.AuthController
entity.Role
repository.RoleRepository
form.LoginForm
form.SignUpForm

5



we identify the dependencies between the classes. We perform extraction of
structural information in a structured version of the source code, in this case,
the abstract syntax tree (AST). For each class in the project we extract the
following information from the AST:

• the list of imports,

• the list of implemented interfaces,

• its super class (if applicable),

• the list of annotations,

• the list of variables,

• the list of methods, and

• the list of methods invoked from other classes.

To identify the classes a class depends on and to create the dependency list for
each class, we combine the list of invoked methods, the list of implemented in-
terfaces, and information about the super class (if applicable). The dependency
list contains the name of the classes from which the class invokes methods, the
name of the interfaces it implements, and the name of the super class, if it exists.

Algorithm 1 presents how the identification of classes which a class interacts
with is performed. It receives as input a class (C) and returns the same class
together with the list of its dependencies. The algorithm then iterates through
the lists mentioned before (methods, interfaces, etc.) to extract the names of
the classes that class C interacts with. Throughout the iteration, the classes’
names are stored in DepC and finally the information contained in DepC is
stored in C which results in the list of dependencies of C with other classes.

For example, from the AST of restaurantServer the information extracted
for the ReservationController class is presented in Listing 1 in a JSON format4.

1 {"name":"restaurantServer.controller.ReservationController",
2 "imports":["lombok.AllArgsConstructor", "org.

springframework.http.HttpStatus", "org.springframework.

web.bind.annotation", "org.springframework.web.server.

ResponseStatusException", "restaurantServer.entity.

Reservation", "restaurantServer.service.

ReservationService", "java.text.SimpleDateFormat", "

java.util.Collection", "java.util.Date", "java.util.

Optional"],

3 "extendedTypes":[],

4 "implementedTypes":[],

5 "annotations":["@AllArgsConstructor", "@RestController", "

@CrossOrigin"],

4More about JSON can be found at https://www.iso.org/standard/71616.html.

6

https://www.iso.org/standard/71616.html.


Algorithm 1 Identification of classes which a class interacts with.

Input: C
Output: C

DepC = [];
methods = C.getInvoked methods();
interfaces = C.getInterfaces();
extends = C.getExtends();
for m in methods do

if (m.targetClass not in DepC) then
DepC .add(m.targetClass);

end if
end for
for i in interfaces do

if (i.name not in DepC) then
DepC .add(i.name);

end if
end for
for e in extends do

if (e.name not in DepC) then
DepC .add(e.name);

end if
end for
C.setDependencies(DepC);

6 "instance_variables":[{"annotations":[], "modifier":"

private", "identifier":[], "type":"ReservationService"

, "variable":"reservationService", "lineBegin":20, "

lineEnd":20}],
7 "myMethods":{"getReservationById":{...}, "addReservation":

{...}, "updateReservation":{...}, "getReservations":{
...}, "deleteReservation":{...}, "

getCurrentReservations":{...}},
8 "methodInvocations":[{"methodName":"getReservations", "

targetClassName":"restaurantServer.service.

ReservationService"}, {"methodName":"
getCurrentReservations", "targetClassName":"

restaurantServer.service.ReservationService", {"
methodName":"getReservationById", "targetClassName":"

restaurantServer.service.ResrvationService"}, {"
methodName":"getDate", "targetClassName":"

restaurantServer.entity.Reservation"}, {"methodName": "

setDateDays", "targetClassName":"restaurantServer.

entity.Reservation"}, { "methodName":"setDateTime", "

targetClassName":"restaurantServer.entity.Reservation"},
{"methodName":"addReservaion", "targetClassName":"

restaurantServer.service.ReservationService"}, {"

7



methodName":"updateReservation", "targetClassName":"

restaurantServer.service.ReservationService"}, {"
methodName":"deleteReservationById", "targetClassName":"

restaurantServer.service.ReservationService"}]
9 }

Listing 1: Information extracted from the AST about ReservationController class.

After the identification of the classes which the class ReservationController
interacts with, the list presented in Listing 2 is added to the ReservationCon-
troller.

1 {"dependencies": [

2 "restaurantServer.service.ReservationService", "

restaurantServer.entity.Reservation"]}

Listing 2: List of classes that interact with ReservationController class

This process is repeated for all classes of the monolith under analysis, and at
the end of this process all interactions between classes are known, which is fun-
damental to identify the interactions between classes of different microservices,
which is done in the next step.

2.2.2. Identify Microservice Dependencies

Our algorithm needs to identify possible dependencies between microservices
since they will impact the refactoring process as we will see. We define depen-
dencies between microservices as a reference to a certain non-primitive type that
does not belong to the microservice.

The process of identification of dependencies between microservices and the
identification of dependencies between classes from different microservices is
presented in Algorithm 2. To obtain the dependencies between microservices
and the dependencies between classes of different microservices, we use the mi-
croservices proposal, microservices proposal, iterating over each microservice
ms to check if the classes that belong to the dependency list of the classes that
belong to ms exist in the classes that belong to ms. Through this compari-
son, we observe that the classes that are in the list of dependencies of a class
that belongs to ms and that do not belong to ms are classes that belong to
another microservice resulting in a dependency between those microservices.
When a dependency between microservices is detected, the algorithm adds a
pair to dep microservice to indicate which microservices are involved in the
dependency and the class name that class c depends on is added to update the
dependency list. At the end of the process, the dependency list of each class
only stores the dependencies with classes of other microservices.

Using as an example the information obtained for the class Reservation-
Controller in the previous section, we can observe that the classes which the
ReservationController class depends on belong to the same microservice as
the ReservationController (microservice #6), so there is no dependency be-
tween microservices detected by this class. Thus, the ReservationController’

8



Algorithm 2 Identification of dependencies between microservices

Input: microservices proposal = [ms1,ms2, ...,msn],Classes = [c1, c2, ..., cm]
Output: dep microservice

dep microservice = set();
for (i = 0; i < size(microservices proposal); i++) do

for class name in microservices proposal[i] do
c = Classes.getClass(class name);
dep class microservices = [];
dependencies list = c.getDependencies();
for dep name in dependencies list do

if (dep name not in microservices proposal[i] && dep name not
in dep class microservices) then

dep class microservices.add(dep name);
for (k = 0; k < size(microservices proposal); k ++) do

if dep name in microservices proposal[k] then
dep microservice.add((i, k));

end if
end for

end if
end for
c.setDependencies(dep class microservices);

end for
end for

dependencies list is empty. For the entire restaurantServer applications we
found 16 dependencies between microservices, presented in Table 2.

Table 2: Dependencies between microservices.

Microservice Depends on

1 2
2 6;7
3 4;5
4 3;6
5 2;4;7
6 2;4;7
7 1;2;6

With the list of dependencies between microservices generated for each class,
in some cases we need to make adjustments to the microservice proposal given
as input. If the microservices proposal indicates that an interface implemented
by a class is in a different microservice than the class, we replicate the interface
and place the copy in the microservice where the implementing class belongs.
Regarding inheritance, our methodology also makes some adjustments to the

9



microservices proposal. If the proposal indicates that the super class that a
class extends belongs to a different microservice, we replicate the super class
and place the copy in the microservice where the sub class belongs. This process
is recursive, and thus, if the super class is a sub class of another super class,
this super class is also replicated to the microservice which is the sub class that
triggered the replication process. In this way we ensure that the inheritance
relationship between the classes in the microservices-based application is the
same as the relationship that exists in the monolith.

2.3. Database Refactoring

One of the big challenges of migrating a monolithic system to microservices is
database refactoring. It is necessary to consider issues of transactional integrity,
referential integrity, joins, latency, and more [15]. The database refactoring
phase aims to identify entities, relationships between entities, and to refactor
the relationships between entities that belong to different microservices.

Using the structural information extracted in the previous phase we identify
the classes that are mapped as entities and the relationships between the entities.
We use the annotation list of each class to identify the classes that are mapped
as entities and through the annotations of the instance variables we identify the
relationships.

Table 3 shows the entities and relationships present in restaurantServer. The
logical schema of the database is defined by 7 classes and 6 relationships.

Table 3: Relationship between entities.

Entity Relationship Entity

User Many-to-Many Role
User One-to-Many Reservation
Bill One-to-Many BillPosition

BillPosition Many-to-One Dish
RTable One-to-Many Reservation
RTable One-to-Many Bill

2.3.1. Relationships Refactoring

With the breakdown of the monolith into microservices, we need to verify
the integrity of the relationships between entities. As we are in the scope of
applications that use annotations for mapping between classes and entities, when
relationships between entities are identified, in terms of code, this translates
into a dependency between classes that needs to be handled. By refactoring the
classes involved in the relationship we refactor the relationship of the database
entities. Our methodology maintains the relationships between entities that
belong to different microservices, using foreign keys to secure these relationships.
To do so, we use several patterns from the literature:

• Data Transfer Object (DTO)

10



• Move Foreign-Key Relationship to Code

• Database Wrapping Service

Note that the distribution of the monolith among microservices requires the
creation of mechanisms to allow data to flow between the microservices when
dependencies exist, which may impact the application’s performance. Microser-
vices are not suitable for all kinds of applications and thus, this needs to be
considered when applying this kind of migration.

In the next paragraphs, we present each pattern and in which scenarios they
are applied.

Data Transfer Object

The data transfer object pattern (DTO) is a distribution pattern used to
reduce the number of calls when working with remote interfaces [16]. When
working with remote interfaces (e. g. web services), each service call is an ex-
pensive operation. Indeed the majority of the cost of each call is associated with
the round-trip time between the client and the server. Therefore, the solution
is to transfer more data within each call. This can be achieved by creating a
data transfer object that can hold all the data for the call.

How do we use it in the refactoring process. When a relationship between enti-
ties that belong to different microservices is identified, it means that at least one
of the classes that are mapped as entities has an instance variable with the same
data type as the other entity/class involved in the relationship. As the entities/-
classes involved in the relationship come to exist in different environments (since
they are in different microservices) one of the classes has an instance variable
with a data type unknown to its domain (recall that the entities are in different
microservices). We apply the DTO pattern to create this unknown data type.
In this way, the unknown data type comes to exist, avoiding changes in the
classes that have references to this data type.

To demonstrate the transformations made by this pattern we use the re-
lationship between the classes User and Reservation. Figure 2 shows the
One-to-Many relationship between User and Reservation in the original appli-
cation. We omit some attributes from Reservation because it has no impact
on the refactoring of the relationship. Both classes have the Entity annota-
tion that indicates that they are mapped as database entities and their instance
variables are mapped as attributes. The Reservation table has a foreign key
that corresponds to the User’s primary key. Moreover, both classes have their
respective Repository class that allows the manipulation of the data present
in the database.

In terms of code the One-to-Many relationship is represented by the User

class having an instance variable of type list of Reservation with One-to-Many

annotation and the Reservation class having an instance variable to store a
primary key of User.

By the microservice proposal in Table 1 and the class dependencies we ex-
tracted we verify that the User class depends on the Reservation class and

11



Figure 2: One-to-Many relationship between User and Reservation in monolithic application.

the classes are in different microservices. To create the Reservation data type
in the microservice that the User class belongs to, our approach uses the DTO
pattern. In this way, the User class remains unchanged and does not depend
directly on the Reservation class that resides in another microservice. In the
following pattern, we expand this example.

Move Foreign-Key Relationship to Code

This database decomposition pattern is used to move the foreign key from
the database into the source code of the application. The relationships between
entities are denoted by foreign-key relationships. Defining this relationship in
the underlying database engine ensures data consistency and lets the database
engine execute performance optimizations to ensure that the join operation is
efficient. However, when one wants to split the database and the entities in-
volved in the relationship in different schemas two problems emerge: i) the join
of information cannot be performed via database join and ii) data inconsistency
is now a possibility. The move foreign-key relationship to code pattern solves
the first problem by moving the join of information to the code. By moving
the join operation to the code, the database calls are replaced by service calls,
and the primary key is used to filter the information that is retrieved. Note
this pattern incurs some performance costs since we replace a local select in
the database with a select in one database, plus a service call, plus a select in
another database.

How do we use it in the refactoring process. We apply this pattern when we find
relationships of the types One-to-One, Many-to-One, and One-to-Many between
entities that will belong to different microservices. To do that the first step is to
remove the annotation from the source code which creates the relationship. This
annotation is typically present in one of the classes involved in the relationship.

12



With the removal of the annotation that created the relationship, the table that
stored the foreign key loses the column for that purpose.

Next, we add an instance variable to the class that represents the other
entity involved in the relationship. We add this new variable to create a column
in the table that is responsible for storing the foreign key. In this way, the table
has the same attributes that it had before the database was split. Furthermore,
this new variable will be used as a filter to retrieve data from the database.

As we already have the tables involved in the relationship with the right
attributes and each one in its schema, the next step is to identify the methods
that manipulate the data that belongs to the other microservice. The algorithm
then searches for methods that have a reference to that data. These methods
will then have an internal service call to manipulate this data using the primary
key as a parameter.

To create the service calls and to make the generated code loosely coupled
we perform the following steps:

1. We create an interface where the signature of the identified methods is
declared.

2. We create a class to implement the interface created that is responsible
for making the service calls.

3. We create a variable of the type of the interface created and add it to the
class that is mapped as an entity.

Finally, to respond to the service calls it is necessary to create an API in the
other microservice involved in the relationship. Thus, we create two classes, one
with the resource paths for the requests, and another to process the request.

1 @Entity

2 class User

3 {

4 @OneToMany

5 Reservation reservations;

6 int userId;

7
8 Reservation

getReservations () {

9 return reservations;

10 }

11 }

Listing 3: Part of the original code related
to the entity User.

1 @Entity

2 class Reservation { }

3
4 class ReservationRepository {

}

Listing 4: Part of the original code related to
the entity Reservation.

To demonstrate how this pattern is used in our example we again use the
relationship between the classes User and Reservation. Listings 3 and 4 present
a very minimalist version of the original code of these classes (note this code

13



does not compile, but the purpose is to have a minimal example that illustrates
the transformations we designed).

Figure 3 gives an overview of the relationship between the User and Reser-

vation after the refactoring while listing 5 presents a minimal example for part
of the code for the User’s microservice and Listing 6 for the Reservations’.

Figure 3: One-to-Many relationship between User and Reservation in microservice-based
application.

1 @Entity

2 class User {

3 @Transient

4 Reservation reservations;

5 ReservationRequest rreq;

6 int userId;

7
8 Reservation getReservations () {

14



9 reservations = rreq.getReservations(userId);

10 return reservations;

11 }

12 }

13
14 class Reservation { // same attributes as in the original

Reservation class }

15
16 class ReservationRequest {

17 Reservation getReservations(int userId); }

18
19 class ReservationRequestImpl implements ReservationRequest {

20 Reservation getReservations(int userId) {

21 get("Reservation/getReservations", userId);

22 }

23 }

Listing 5: Part pf the code for the User microservice.

1 @Entity

2 class Reservation { }

3
4 class ReservationRepository {

5 Reservation getReservations(int userId); }

6
7 class ReservationUserController {

8 ReservationUserService service;

9
10 "Reservation/getReservations"

11 Reservation getReservations(int userId) {

12 service.getReservations(userId); }

13 }

14
15 class ReservationUserService {

16 ReservationRepository rep;

17
18 Reservation getReservations(int userId) {

19 rep.getReservations(userId); }

20 }

Listing 6: Part of the code for the Reservation microservice.

Our approach generates one interface and one class, ReservationRequest
and ReservationRequestImpl, respectively, in the User’s microservice, which
are responsible for making requests to the microservice where the Reservation
information is. By applying the DTO pattern, our approach also creates a class
called Reservation that has the same attributes as the original Reservation
class.

The class User now has an instance variable of type ReservationRequest.
The instance variable of Reservation that had the annotation OneToMany now

15



has the annotation Transient, which indicates that this information is not to be
stored in the database. The ReservationRequest interface has the signature
of the method getReservations that has as a parameter the user id. The
ReservationRequestImpl class implements the ReservationRequest interface
and is responsible for calling the reservation microservice.

In Reservation microservice, the classes ReservationUserController and
ReservationUserService are also created to receive the requests and to process
the requests, respectively. Also, we add in the ReservationRepository class
the method getReservations.

In the Reservation microservice the ReservationUserController class is
also generated which is responsible for receiving the requests and sending them
to the corresponding service (in this case ReservationUserService).

Finally, we create the class ReservationUserService in which the request
is directed to the Repository class where the getReservations method is
declared using the User id as a filter.

In Figure 4, we present the pseudo-code of two classes where the transfor-
mations just described can be applied. In this representation, @entity means
the underlying class is an entity and thus its attributes are stored in a database;
@relationship represents a relationship between the classes C1 and C2 (e. g. a
one-to-many relationship); finally, @transient means the underlying attribute
should not be stored in the database (as it is in the database of the other
microservice.

@entity

class C1

{

@relationship

C2 v;

int c1Id;

C2 get() {

...

}

set(C2 p) {

...

}

}

@entity

class C2 { }

class C2Repository { }

Figure 4: Generic representation of classes that are refactored if each one is in a different
microservice.

The refactoring process we just described will produce the pseudo-code pre-
sented in Figure 5.

16



@entity

class C1 {

@transient

C2 v;

C2Request rreq;

int c1Id;

C2 get() { ... }

set(C2 m) { ... }

}

class C2 {

// same attributes as in the

// original C2 class

}

class C2Request {

C2 get(int c1Id);

set(C2 p, int c1Id);

}

class C2RequestImpl implements

C2Request {

C2 get(int c1Id) {

HTTPget("MS/get", c1Id);

}

setReservations(C2 v,

int c1Id) {

HTTPset("MS/set", c1Id);

}

}

@entity

class C2 { }

class C2Repository {

C2 get(int c1id);

set(C2 p, int c1id);

}

class C2C1Controller {

C2C1Service service;

"MS/get"

C2 get(int c1id) {

service.get(c1id);

}

"MS/set"

C2 set(C2 p, int c1id) {

service.set(C2 p, c1id);

}

}

class C2C1Service {

C2Repository rep;

C2 get(int c1id) {

rep.get(c1id);

}

set(C2 p, int c1id) {

rep.set(p, c1id);

}

}

Figure 5: Pseudo-code after the refactoring of the pseudo-classes in Figure 4.

Database Wrapping Service

To break the original database into smaller databases for each microservice
is a delicate process. The possible solution of having a shared database goes
against the principles of microservices – each microservice has its own data and
is loosely coupled. Thus, the database wrapping service pattern appears as
a better solution and it is also seen as a stepping stone to more fundamental
changes, giving developers time to break apart the schema underneath the API
layer [15]. This pattern creates a new service to “hide” the database, providing

17



an API to access the data. In this way, the services replace access to the database
with requests to the service that owns the database. This ensures the database
schema is unchanged and the services exhibit low coupling.

How do we use it in the refactoring process. We apply this pattern when we
find a Many-to-Many relationship between entities that will belong to different
microservices. In many-to-many relationships, a “join table” is created, being
formed by the two foreign keys (i. e. copies of the primary keys of the entities
involved). If we apply the move foreign key relationship to code pattern we
would lose this table. Instead, we apply this pattern and the relationship is
kept intact.

We apply this pattern by extracting the classes involved in the relationship
that are mapped to the entities, and their respective DAO classes for a new
service. This new service provides an API to access the data stored in the
database and, therefore, the services that need to access that data, replace
direct database calls with calls to the new service.

To demonstrate how this pattern is applied in our example we use the re-
lationship between User and Role. By the microservices proposal of Table 1
we verify that the classes Role and User belong to different microservices and
by Table 3 we verify that these classes have a Many-to-Many relationship. Our
process creates an extra microservice to store the User and Role classes and
their respective Repository classes to access the database. In this way the rela-
tionship between the entities is maintained and the refactoring process continues
with this new microservice being added to the microservices proposal and the
classes dependency lists are recalculated taking into account this new scenario.

2.4. Code Refactoring

Having already refactored the classes that create the database logical schema,
our approach moves to analyze the other classes. The code refactoring phase
aims to refactor the classes that have method calls to instances of other classes
that are part of other services (e. g. the method addBill from class BillService,
which is in microservice #3, calls method findId from class RTableRepository,
which is in microservices #4). The regular method call will not work after the
refactoring since the classes are now in different microservices. Thus, it is nec-
essary to create a new mechanism for these calls to continue to work.

Figure 6 illustrates the steps that compose the code refactoring phase.
The code refactoring process starts with the analysis of the variables of the

classes. The information about the variables is obtained from the structural
information of the class. We analyze the data type of each instance variable
and we check if the data type is in the list of dependencies that the class has
with other microservices. If the data type of the instance variable under analysis
is not in the list of dependencies, it is not necessary to continue the refactoring
process for this variable, because it corresponds to a data type that exists in
the microservice to which the class belongs or it is a primitive data type of
the language. However, if the data type is among the dependencies with other
microservices it is necessary to search for method invocations of the class that

18



Figure 6: Overview of code refactoring.

correspond to the data type. This happens because these methods, after the
refactoring, will no longer be invoked locally, but will be replaced by calls to
the service that owns the data type and consequently the methods.

The identification of the invoked methods is also simple to obtain through the
structural information. Since the identified methods may have as a parameter
or return a data type that is present in the class’s list of dependencies with other
microservices, it is necessary to verify the data type of the parameters and the
return. If in the parameters or in the return of the method we found data types
that are in the list of dependencies of the class with other microservices we apply
the DTO pattern to create these data types in the microservice. The reason
for doing this is that the parameters and the method return will be sent in the
service call so they are data transfer objects.

After having the invoked methods identified and their parameters and return
types checked, we can create the service calls. We create the data type of the
instance variable by creating an interface with the same name as the data type.
In this way, the modifications made to the code will be transparent to the class
under analysis. The interface created contains the signature of all the invoked
methods identified that will become service calls. To define the service calls we
create a class, termed Request, that implements the interface created. This new
class is responsible for making the remote service calls and therefore we define
the REST calls for each method in this class.

Finally, in the microservice that owns the class that corresponds to the data
type that triggered the refactoring process, a REST API is created that allows

19



the invocation of the original methods.
In order to complete the code refactoring process our approach needs to

verify the data types of the local variables (that is, the variables created within
each method). We analyze if the data types of the local variables are in the
list of dependencies with other microservices of the class under analysis. If the
data type of the local variables is in the list of dependencies we create the data
type by applying the DTO pattern and a search for invoked methods of the
class that correspond to the data type. We apply the DTO pattern because
these variables are typically the result of invoking a method of a class that has
defined an instance variable. In fact, the refactoring of the instance variables
already applies the DTO pattern to create the return data type of the invoked
methods which corresponds, for the most part, to the local variables. To avoid
creating classes that already exist when a data type is created by applying the
DTO pattern, this data type is removed from the list of dependencies with
other microservices of the class under analysis. The identified invoked methods
of the local variables are defined as service calls in the class generated by the
DTO pattern application. As in the analysis of the instance variables we create
a REST API, in the microservice that owns the data type, that allows the
invocation of the original method.

To show the changes made by the code refactoring phase we use the de-
pendency between the BillService class and the RtableRepository class,
as an example. Figure 7 gives an overview of the interaction of the class
BillService with the class RTableRepository in the monolithic application.
The BillService class has two instance variables, one of type BillRepository
and another of type RTableRepository, and six methods.

Figure 7: Interaction between Billservice and RTableRepository in monolithic application.

In the monolithic version, the relationship between the BillService class
and the RTableRepository class is characterized by the BillService class
having an instance variable of type RTableRepository and by invoking the
findbyId method, which returns a RTable, from the RtableRepository class
within the addBill method.

The relationship between the two classes and the invocation of the findById

20



method after the code refactoring phase is presented in Figure 8. In the code
refactoring phase an interface called RTableRepository is created in the Bill-
Service’s microservice to represent this type in the microservice where the
findById method signature was declared since it is only this method that is in-
voked from the original RTableRepository class. Besides that, we create a class
called RtableRepositoryImpl that is responsible for making the REST call to
invoke the original method and a class called RTable to represent the finById re-
turn type. In RTable’s microservice a class called RtableRepositoryController
is created where the REST API is defined and that invokes the findByIdmethod
in the original RTableRepository class.

Figure 8: Interaction between Billservice and RTableRepository in microserices-based ap-
plication.

All the transformations made by the code refactoring phase can be seen
in https://github.com/MicroRefact/restaurantServerMs where we provide
the source code of the refactored application.

2.5. On the Migration of Monoliths to Microservices

The refactoring of an application from a monolith to a microservices archi-
tecture has several issues to be considered.

Performance. As we have discussed before, when splitting the database between
microservices, if one microservice needs to access data from another, that data
must now be transferred using HTTP requests. This obviously causes some

21

https://github.com/MicroRefact/restaurantServerMs


degradation in the performance that should be considered when performing
such a migration.

New Errors. The fact that the application needs to communicate with some
of its parts using HTTP requests implies new types of errors need to be taken
under consideration. If a request fails (e. g. because of a failure in the network),
the requester service will block waiting for the result or eventually timeout. Our
refactoring does not introduce any type of mechanism to handle such situations
which means the application we produce does not handle errors that may oc-
cur from the communication. Thus, one may argue that the transformations
introduced by our approach do not preserve behavior because an operation that
was previously error-free in the original system may now produce errors. Nev-
ertheless, apart from the kind of errors related to communication, our approach
maintains the original behavior. Moreover, there are several ways of making mi-
croservices applications resilient [17], but in this work, we have not considered
any of them.

3. MicroRefact

In this section we present the implementation of our tool, MicroRefact,
which serves as a proof of concept to validate the methodology. MicroRefact
is designed for Java applications, in particular for the Spring framework. Mi-
croRefact supports the refactoring of applications that use the Java Persis-
tence API5 (JPA) to do the object-relational mapping. We decided to sup-
port JPA since it describes a common interface to data persistence frameworks.
The implementation of MicroRefact is available at https://github.com/

FranciscoFreitas45/MicroRefact. Figure 9 represents the overall flow of Mi-
croRefact, which we describe in the following paragraphs.

3.1. Information Extraction

Our tool receives as input a JSON file with the microservices proposal to
be extracted and the path to the source code of the monolith. The information
extraction phase is responsible for processing the input provided by the user in
order to identify the proposed microservices and extract information from the
source code of the monolith.

The information extraction phase starts by parsing the source code into an
AST. We use the Java Parser6 library to do the parsing. The AST contains the
following information for each Java file: name, list of imports, list of extends,
list with the name of the interfaces it implements, list with the name of classes
it depends on, list of annotations, list of instance variables, list of methods, and
list of invoked methods.

5https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
6https://javaparser.org/

22

https://github.com/FranciscoFreitas45/MicroRefact
https://github.com/FranciscoFreitas45/MicroRefact
https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://javaparser.org/


Figure 9: Overall flow of MicroRefact.

Our code includes a data structure to store the information extracted from
the AST and to represent the microservices in the program. We create a class
called Cluster (as in a group classes) to represent a microservice and a class
called Class to represent a class. The Cluster class is composed by:

• a dictionary, where the key is the name of a class and the value is an
object of type Class,

• a list for adding new classes to the microservice, and

• the path to the folder where the microservice Java files are created.

The structure created is composed of a list of Cluster. One object of type

23



Class is created for each Java file. These objects contain the information ex-
tracted from the AST and are added to the dictionary of the Cluster that
represents a microservice.

In the next step, to identify the dependencies between microservices, for each
Class object, MicroRefact analyzes if the name of the classes that the class
depends on are keys in the dictionary that the Class object belongs to. If so,
the name of these classes is removed from the list of dependencies of the Class
object. Thus, the dependency list of a Class object represents dependencies
with classes that belong to other microservices.

3.2. Database Refactoring

During the database refactoring phase, entities are identified by searching for
the word Entity among the annotation list of each Class object. Also, the tool
identifies the relationships between entities by searching for one of the following
words in the annotation list of each instance variable and in the annotation
list of each method of the Class object under analysis: OneToMany, ManyToOne,
ManyToMany, and OneToOne. These are the annotations used in JPA for denoting
database relationships among Java classes.

If relationships are found, our tool verifies whether the type of the instance
variable that has the annotation is in the object’s dependency list. If it is, a
search is performed on all methods in the method list of the Class object under
analysis to check whether the type of the instance variable is used in the return,
or in the parameters, or in the declaration of variables. If this is the case, the
tool creates a list with the methods that use the type of the instance variable.

If the annotation is found in methods, typically in getters, the tool identifies
to which instance variable the method corresponds and the process described in
the previous paragraph is performed for the instance variable.

For the application of the DTO pattern, the type of the instance variable is
used to identify the position (index) in the Cluster list, of the Cluster object
that has in its dictionary a key with the same name as the type of the variable.
Then, the index and the type of the variable are used to find the corresponding
Class object to make a clone of it and add it to the Cluster dictionary of the
class under analysis.

Next, we create an interface with the signature of the methods that are in
the identified list and a new Class object is instantiated which represents the
class that implements the interface and is responsible for making the service
calls. This object is added to the list of new classes of Cluster.

Finally, for the communication between microservices to be possible, two
objects of type Class are instantiated and added to the list of new classes of
Cluster. The first one uses the methods declared in the interface to define the
routes and the second one processes the requests. For the retrieved data, the
signatures of the methods declared in the interface are added to the DAO class.
The type of instance variable has come to exist in the microservice through the
DTO, so it is removed from all dependency lists of Class objects which belong
to Cluster.

24



3.3. Code Refactoring

The code refactoring phase has some similarities with the previous phase.
The Class objects that do not have the Entity annotation in the annotation
list are analyzed to check if the type of their instance variables are in their
dependency list. If the type of their instance variables are in their dependency
list, the same procedure used in the previous phase is applied with addition of,
in identification of the methods, verification of the return type and the type
of the parameters. If these types are in the object’s dependency list, a DTO
pattern is applied as in the previous phase.

Finally, the information contained in each object Class is used to write Java
files. A new file is created for each class and the tool iterates over all the fields in
the Class objects to populate the files. A folder is created for each microservice
where the files are written.

4. Evaluation

The evaluation of our work has two different purposes: i) to assess the appli-
cability of the approach, that is, to understand how many software projects it
can refactor, and ii) to assess if the changes to the code impact the functionality
of the original software. For the first purpose, we have randomly collected 120
projects from GitHub (more details in Section 4.1) and run MicroRefact on
them. The results can be found in Section 4.3. For the second purpose, we
have used the unit tests available in the original projects and have used them to
compare the results obtained by running some of the units of the original and
refactored software (more in Section 4.3). Different kinds of evaluations could
be done, from system test to performance to security since all are impacted
by the paradigm change (from monolith to microservices). However, with the
performed evaluation we try to show that the available tests proposed by the
developers/testers in the original software did not have a different outcome after
the refactoring.

4.1. Project Collection

To evaluate the proposed methodology we test it in several projects of dif-
ferent sizes and complexity. To do this, we extracted projects from GitHub
since it is the most popular platform for hosting open-source software. We used
the GitHub search API to find repositories that contained the three terms,
namely: org.springframework.data.jpa, org.springframework.data, and
jpa.repository.JpaRepository since these are very common terms in appli-
cations that use JPA annotations to do object-relational mapping and are terms
exclusive to applications built with the Spring framework. The query used was:
https://api.github.com/search/code?q=org.springframework.data.jpa+

org.springframework.data.jpa.repository.JpaRepository+language:java

Since the GitHub search API limits each request to 1000 results and the
query aims to identify repositories through code there are repeated results.
After executing this query and removing duplicate repositories, we identified

25

https://api.github.com/search/code?q=org.springframework.data.jpa+org.springframework.data.jpa.repository.JpaRepository+language:java
https://api.github.com/search/code?q=org.springframework.data.jpa+org.springframework.data.jpa.repository.JpaRepository+language:java


686 repositories. To ensure that only monolithic applications are used, we only
consider projects with one ‘src’ folder. We also discard projects with less than 25
classes because they may represent “toy” projects and we use filters to exclude
demo and test projects using the following stop words: “release”, “framework”,
“learn”, “source”,“spring”, “study”, “demonstration”, “test”, “practice”. That
reduced the 686 projects to 353. From the identified projects we randomly
selected 120 projects which is a considerable amount of applications. The list
of all projects can be found in [18]. The histogram of the projects collected by
the number of classes is presented in Figure 10. The biggest project has 1339
classes and the smallest 27 classes. We use the number of classes as an indicative
metric of the projects’ dimension as our approach needs to analyze classes and
their dependencies.

Figure 10: Histogram of collected projects by class count.

4.2. Setup

The setup of the evaluation was divided in two parts: in the first part it was
necessary to obtain a microservices proposal for each of the collected projects
and in the second part it was necessary to adapt the unit tests to run on the
microservices-based version, since they were designed for the monolithic appli-
cation.

To obtain a microservices proposal for each collected project, we used the
tool developed by Brito et al. [14] with its default parameters. For each project

26



the tool generates several proposals for decomposition of the monolith and we
always choose the one that reveals the greatest value in the metrics that the
tool uses to evaluate the proposed decomposition, as suggested by the authors
[14].

After running MicroRefact on each project, the result is analyzed. If
successful, and if the project has unit tests, these are run on the generated
microservices-based application. However, the testing process has not been
automated because, although the code generation is automated, it is necessary
to define SQL queries for the methods that were added to the Repository

classes and because the unit tests need some adjustments that depend on the
context (which we describe next).

4.2.1. Adaptation of Unit Tests

As the tests are not part of the refactoring process, it was necessary to
identify to which microservices the test classes should be transferred. This
process was manual and had a detailed analysis of the test classes as well as
the domain of the generated microservices. In projects with a good design and
developed with good practices the test class name served to identify to which
microservice it should be transferred to. In more disorganized projects we did
an analysis of the imports of the test class as well as the declared variables to
identify to which microservice it should belong.

In addition, and given that the tests were designed for the monolith, it was
necessary to adapt the tests for microservices. Among the modifications made
to the test classes are imports because the test classes contained references to
classes that do not belong to the microservice. These imports were replaced
with imports that refer to the types created to replace the reference to classes
that do not belong to the microservice, i. e. the DTO and interfaces created.

The other change made was in tests that manipulate the database. As unit
tests are designed for the monolithic application, there are unit tests that test the
interactions between classes that are mapped as database entities (we present
examples of this in Section 4.2.2). In the unit tests where new records are
inserted in the database tables, and as we are in the scope of applications that
use annotations to define the database logical schema, these create objects and
use the Repository classes to insert them. However, the objects created have as
attributes objects that refer to other entities, so the objects that refer to other
entities also have to be instantiated. In the monolithic version, when the test is
run, insertions are made in all tables referring to the classes involved in the test.
However, in microservices and with the database refactoring, the references to
classes that are mapped as entities that do not belong to the microservice have
been replaced by DTOs with the same name and therefore the unit tests create
the objects through the instantiation of a DTO class, except for the entities that
belong to the microservice that are created in the database. The objects created
through the instantiation of a DTO class exist in memory in the microservice
where the unit test is executed, but the record corresponding to the object does
not exist in the microservice database where the entity that is represented by
the DTO belongs, which causes methods like setters to fail. In addition there

27



are also unit tests where the creation of a record in the database is tested by
instantiating an object and using setters to set the values of other entities to
null. In this way the test is focused only on the entity that belongs to the
microservice.

In these situations, since a test may depend on objects from other microser-
vices, when necessary, we manually created them in the database so they would
exist when the test would run.

4.2.2. On the Usage of Unit Tests

Unit tests may not be sufficient to fully guarantee the preservation of the
behavior of the system after the refactoring. For instance, many unit tests do
not exercise the interaction between the different components. This is particular
relevant in our case where components may be in different services after the
refactoring.

To illustrate that some of the applications we refactored have tests that
actually force the interaction between different services after the refactoring
we present an example from the projects of our evaluation: Online-medicine-
shopping-ecommerce7. Listing 7 shows (part of) a unit test for creating a User

in this application. The attribute userAddress is of type Address, which is a
class that is mapped as an entity with a one-to-one relationship with User. The
microservices proposal indicates that the classes User and Address belong to
different microservices.

In this test a User object is instantiated through setters. In particular, the
setter setUserAdress receives null as input instead of an object. In fact, as it
is, this test fails in the microservices-based application because the relationship
between User and Address has been refactored. In the refactored application
the setter setUserAddress now calls the respective service to update the data.
This call receives as parameter the primary key of the address, so when making
a service call with null it results in a not found error because the passage of
the primary key in the request is made through the URL.

1 @Test

2 void testAddUser () {

3 User user = new User();

4 user.setEmailId("vino@gmail.com");

5 user.setFirstName("vino");

6 user.setUserAddress(null):

7 ResponseEntity <User > postResponse = restTemplate.

postForEntity(getRootUrl () + "/User/newUser", user ,

User.class);

8 }

Listing 7: Original unit test for creating a user in Online-medicine-shopping-ecommerce.

A possible solution is to instantiate an object of type Address and set it in
the User as shown in Listing 8. However, this would be instantiated through a

7https://github.com/ariv98/Online-medicine-shopping-ecommerce

28

https://github.com/ariv98/Online-medicine-shopping-ecommerce


DTO class which would cause the information stored in the object not to exist
in the Address’s microservices database, causing the setUserAddress method
to try to update records that do not exist. Thus, to avoid having an object
instantiated in a microservice and no corresponding record in the database of
the microservice that owns the entity, before running the unit test we manually
inserted a record in the database that corresponds to the object instantiated
during the test run.

1 @Test

2 void testAddUser () {

3 User user = new User();

4 Address address = new Address ();

5 address.setAddressId (1);

6 user.setEmailId("vino@gmail.com");

7 user.setFirstName("vino");

8 user.setUserAddress(address):

9 ResponseEntity <User > postResponse = restTemplate.

postForEntity(getRootUrl () + "/User/newUser", user ,

User.class);

10 }

Listing 8: Refactored unit test for creating a user in the microservices-based version of Online-
medicine-shopping-ecommerce.

This example illustrates a possible yet small interaction between different
microservices through unit tests.

We now present (part of) a second example taken from another project,
inTeams8, in Listing 9.

1 public class ProjectServiceTests {

2 private final ProjectService projectService;

3 private final TeamRepository teamRepository;

4
5 @Test

6 void canGetAllProjectsOfTeam () throws InvalidOperation {

7 Team mainTeam = teamRepository.findByName("Test␣Team

␣001").orElseThrow ();

8 Assertions.assertEquals (1L, projectService.

getAllProjectsOfTeam(mainTeam.getId ()).size());

9 Team subTeam = teamRepository.findByName("Test␣Team␣

007").orElseThrow ();

10 Assertions.assertEquals (0L, projectService.

getAllProjectsOfTeam(subTeam.getId ()).size());

11 }

12 }

Listing 9: Original unit test of inTeams project.

8https://github.com/BarCzerw/inTeams

29

https://github.com/BarCzerw/inTeams


As we can see , the test uses objects from classes ProjectService and
TeamRepository which are in difference microservices. In this case the inter-
action between the different objects/services is more evident as in line 8 the
test uses the result of the method getId of the class TeamRepository as input
(through the variable mainTeam) to the method getAllProjectsOfTeam from
the ProjectService class. Since ProjectService and TeamRepository are in
different microservices after the refactoring, this test in another example of how
unit test can in fact exercise the communication between microservices.

Although these two examples do not demonstrate the preservation of the
behavior after the refactoring, they show that there are indeed unit tests that
go beyond the basic and test the integration between different components/mi-
croservices.

4.3. Results and Analysis

From the 120 applications MicroRefact was able to refactor 86, approx-
imately 71.7%. Within the universe of the refactored projects 33% have unit
tests. All the unit tests executed had the same output in both versions of the
application, which shows the refactoring was successful, at least in terms of the
unit tests’ results.

4.3.1. Degree of Complexity and Size of the Applications

Since the dataset used for the study consists of projects with a wide range
of classes and different domains, we try to understand the impact of the ap-
plication size and complexity on the percentage of refactored applications. A
large percentage of the projects used in the evaluation, approximately 41%, are
projects where the range of classes is between 25 and 100. One might think
that these projects are small and or have a low degree of complexity. As the
class range in which the most projects were refactored was this range, one could
think that the tool is not prepared for projects of great magnitude and high
complexity. However, we must understand the context of the study. Since we
are using applications that use annotations to apply the ORM technique, the
number of classes in these projects tends to be smaller than projects that do not
use this technique because they do not need to declare classes to define DAOs,
being these projects complex, but with a low number of classes. Furthermore,
as shown in Figure 11, the tool was able to refactor projects in all ranges of
class numbers, which shows that the tool is prepared to support all degrees of
complexity present in these projects. Although for the range of projects over
175 classes there seems to be a decrease in the number of refactored projects,
there is no particular reason for this to happen. All the cases where our ap-
proach and tool do not work are discussed in Section 4.3.2 and the size is not
one of the reasons.

4.3.2. Unrefactored Projects

Regarding the unrefactored projects, there are different reasons why refactor-
ing did not happen. Table 4 shows the reasons why projects were not refactored
(first column) and the number of projects that fit into it (second column).

30



Figure 11: Histogram of number of refactored projects by class count.

Table 4: Reasons for unrefactored.

Reason #Projects

Missing a repository class 17
Use DAOs 8
Missing @id annotation 6
Use other ORM frameworks 2
@Id annotation in method instead of variable 1

About 50% of the projects that were not refactored are projects where the
class Repository is missing (17 projects). We can divide the reason why refac-
toring fails due to the lack of the Repository class into two types: i) the
Repository class exists but in the microservices proposal it is in a different
microservice than the Entity class that the Repository class refers to; ii) an
Entity class exists that does not have a corresponding Repository class. For
the first case a different microservice proposal where the Entity class and the
corresponding Repository class are in the same microservice would solve the
problem. In the second case refactoring is not possible since there is an Entity

class, but not a corresponding Repository class that allows the retrieval of data

31



from the database, which may be an error in the code or dead code. We iden-
tify the Repository classes to apply the move foreign-key relationship to code
pattern, because it implies adding methods to these classes so that the join is
possible.

Another reason why refactoring was not possible is the lack of the Id anno-
tation in classes that are mapped to database entities (6 cases). In the database
refactoring phase it is necessary to identify the primary key of the entities in-
volved in the relationship that is under analysis because in the application of
the move foreign-key relationship to code pattern the primary key of one of the
entities is used as a parameter in the invocation of the REST API generated to
filter the information retrieved during the join. The identification of the primary
key is accomplished through the Id annotation in the class instance variables.
We also cover the cases in which the class Entity under analysis is a sub class
and in which the Id annotation is in the super class, which means, if the Id

annotation in the class Entity under analysis is not found in one of the instance
variables our approach analyzes if the super class contains the Id annotation in
one of the instance variables. Without the identification of the primary key, the
refactoring is not possible, because the calls to the service to make the join of
the data would not have a filter.

The use of DAOs by some projects together with Repository classes led
to the refactoring in these projects to fail, since some Entity classes have a
corresponding Repository class and others have a DAO class (8 projects).
MicroRefact can only refactor Entity classes that have a corresponding
Repository class.

The other reasons why refactoring is not possible are also implementation
reasons. MicroRefact only supports JPA annotations (2 cases) and only
searches for the primary key in instance variable annotations (1 case).

Overall, MicroRefact can be extended to support some of the cases where
it failed, namely the use of DAOs, other ORM frameworks and annotations on
methods. The remaining cases cannot be included in MicroRefact because
they go against the proposed methodology because the lack of Id annotation
on the classes mapped as entities and the lack of Repository classes for some
entities may compromise the refactoring of the application.

4.4. Threats to Validity

In this section we discuss some of the threats to the validity of the evaluation
presented.

A possible threat is related to the use of only open source applications in
the evaluation. However, it is common to find companies that make their code
available in GitHub. Nevertheless, it is possible that the results may vary for
proprietary software.

Another threat is the quality of the microservice proposals generated for the
projects. The tool used to generate microservice proposals does not guaran-
tee that the decomposition it proposes is the best possible. Furthermore, its
authors did not perform an extensive study of how the number of topics and

32



the resolution directly affect the microservice proposal. Instead, they defined
arbitrary ranges for each parameter. Nevertheless, they evaluated the quality of
the proposed solution by using the microservice architecture metrics proposed
by [8] and the results were positive.

Another threat is the unit tests available by the projects. Some projects
present no tests and others present just a few tests. For the projects that do
not present tests it was not possible to evaluate if from the functional point of
view the generated application is equal to the original. For the applications that
present few tests, these can be class-focused, not testing the interactions between
classes, leaving several interactions between classes of different microservices to
be tested. Nevertheless, for the 28 projects which had tests, the results were
exactly the same in the original and refactored application.

5. Related Work

Several authors studied the migration process from different perspectives.
In previous work [19] we have proposed an initial version of this work. In

this current work we have extended our work by including the algorithms used
in the migration methodology, we have added support for inheritance to the
methodology, which was not possible before, and we have detailed the different
refactoring patterns used and how they are applied (Section 2). We have also
added an extensive quantitative and qualitative evaluation using 120 software
projects (Section 4).

Balalaie et al. [20], in order to improve the migration planning process and
combat the ad-hoc aspect, carried out a survey of design patterns through the
analysis of migration processes of industrial-caliber applications. In [21] the
authors discuss the requirements for a model-driven approach for the migration.
They propose a set of metrics that can be used to guide the process. In [12]
the authors propose a framework to support the decision of migrating or not a
monolithic application. The framework is based on facts and metrics collected
by the entity that intends to do the migration. In our work we focus on the
refactoring step assuming the user has already handled the remaining phases.

Fowler and Lewis [13] suggest an incremental migration, which consists of
the gradual construction of a new application by extracting features from the
monolith thus avoiding a “big bang” rewrite. The generated application con-
sists of a set of microservices that interact with the monolithic application. Over
time, the number of features implemented by the monolith tends to decrease,
as these are migrated to microservices, until the monolith disappears and be-
comes a microservice-based application. Given we are proposing an automatic
approach, our migration is done all at the same time. However, it could also be
done partially too, if the set of microservices given as input is also partial.

One of the the challenges in these migrations is the identification of the
services existing in monolithic applications. The techniques proposed can be
divided into three categories: static, dynamic, and model-based approaches.
Static analysis techniques are promising given the amount of information that

33



can be extracted from the source code [5, 6]. Dynamic analysis techniques have
emerged as an alternative to static analysis using program execution analysis
(e.g., logs) in order to obtain extra information about the software in question
[7, 8]. Model-based solutions allow the use of models to support migrations
since models also represent a view over the interactions between system’s com-
ponents [9, 10]. Tyszberowicz et al. [22] propose a different approach based
on the specification of use cases for the software requirements and a functional
decomposition of those requirements. Using text analysis tools the nouns and
verbs are extracted from the specifications of the use cases in order to obtain
information about the operations of the system, as well as state variables. Using
this information they identify clusters of components, and consequently the can-
didates for microservices. Previous work is mostly focused on the identification
of microservices and no tool has been proposed that can identify and specially
refactor a whole system into a working version of a microservices application.
Our work receives as input the results of microservices identification and pro-
ceeds with the refactoring of the code and database in order to achieve a real
microservice-based application.

The authors of [11] propose a set of automated refactoring techniques, im-
plemented in the IDE Eclipse, which facilitate the application transformation
process to support services in the cloud. These techniques offer extraction of
functionalities for services and remote access to them, treatment of failures and
replacement of services accessed by the customer with services in the cloud
equivalent. This work cannot refactor classes that use parameter passing, seri-
alization, and local resources such as databases and disk files.

6. Conclusion

We present a methodology that given a microservices proposal as input refac-
tors the original monolithic application. We built a tool termed MicroRefact,
as a proof of concept, that supports Java Spring applications that use JPA an-
notations. Using this tool we performed a quantitative evaluation against a
collection of 120 open-source Java Spring applications from GitHub. The re-
sults show that more than 70% of the applications were automatically refactored
and that part of the remaining projects could not be refactored because of po-
tential flaws or dead code contained in them. Moreover, we executed all the
unit tests contained in the projects achieving the same results in the original
and refactored application. This shows the refactoring did not change the func-
tional behavior of the applications (evaluated in the unit tests).

As future work, we envision the design and implementation of capabilities
to migrate the code into other programming languages.

Acknowledgments

This work is supported by the national funds through the Portuguese Fund-
ing Agency (FCT - Fundação para a Ciência e a Tecnologia, within project
UIDB/50014/2020).

34



References

[1] S. J. Andriole, The death of big software, Commun. ACM 60 (12) (2017)
29–32. doi:10.1145/3152722.
URL https://doi.org/10.1145/3152722

[2] S. Newman, Building Microservices: Designing Fine-Grained Systems,
O’Reilly Media, 2015.
URL https://books.google.pt/books?id=jjl4BgAAQBAJ

[3] J. Fritzsch, J. Bogner, S. Wagner, A. Zimmermann, Microservices migration
in industry: Intentions, strategies, and challenges, in: 2019 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), 2019,
pp. 481–490. doi:10.1109/ICSME.2019.00081.

[4] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen,
S. Dustdar, Microservices: Migration of a mission critical system, IEEE
Transactions on Services Computing (2018) 1–1doi:10.1109/TSC.2018.
2889087.

[5] G. Mazlami, J. Cito, P. Leitner, Extraction of microservices from mono-
lithic software architectures, in: 2017 IEEE International Conference on
Web Services (ICWS), 2017, pp. 524–531. doi:10.1109/ICWS.2017.61.

[6] M. Kamimura, K. Yano, T. Hatano, A. Matsuo, Extracting candidates of
microservices from monolithic application code, in: 2018 25th Asia-Pacific
Software Engineering Conference (APSEC), 2018, pp. 571–580.

[7] W. Jin, T. Liu, Q. Zheng, D. Cui, Y. Cai, Functionality-oriented microser-
vice extraction based on execution trace clustering, in: 2018 IEEE Inter-
national Conference on Web Services (ICWS), 2018, pp. 211–218.

[8] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, Q. Zheng, Service candidate
identification from monolithic systems based on execution traces, IEEE
Transactions on Software Engineering 47 (5) (2021) 1–1. doi:10.1109/

TSE.2019.2910531.

[9] R. Chen, S. Li, Z. Li, From monolith to microservices: A dataflow-driven
approach, in: 2017 24th Asia-Pacific Software Engineering Conference
(APSEC), 2017, pp. 466–475. doi:10.1109/APSEC.2017.53.

[10] M. Gysel, L. Kölbener, W. Giersche, O. Zimmermann, Service cutter: A
systematic approach to service decomposition, in: M. Aiello, E. B. Johnsen,
S. Dustdar, I. Georgievski (Eds.), Service-Oriented and Cloud Computing,
Springer International Publishing, Cham, 2016, pp. 185–200.

[11] Y.-W. Kwon, E. Tilevich, Cloud refactoring: Automated transitioning to
cloud-based services, Automated Software Engineering 21. doi:10.1007/

s10515-013-0136-9.

35

https://doi.org/10.1145/3152722
http://dx.doi.org/10.1145/3152722
https://doi.org/10.1145/3152722
https://books.google.pt/books?id=jjl4BgAAQBAJ
https://books.google.pt/books?id=jjl4BgAAQBAJ
http://dx.doi.org/10.1109/ICSME.2019.00081
http://dx.doi.org/10.1109/TSC.2018.2889087
http://dx.doi.org/10.1109/TSC.2018.2889087
http://dx.doi.org/10.1109/ICWS.2017.61
http://dx.doi.org/10.1109/TSE.2019.2910531
http://dx.doi.org/10.1109/TSE.2019.2910531
http://dx.doi.org/10.1109/APSEC.2017.53
http://dx.doi.org/10.1007/s10515-013-0136-9
http://dx.doi.org/10.1007/s10515-013-0136-9


[12] F. Auer, V. Lenarduzzi, M. Felderer, D. Taibi, From monolithic
systems to microservices: An assessment framework, Informa-
tion and Software Technology 137 (2021) 106600. doi:https:

//doi.org/10.1016/j.infsof.2021.106600.
URL https://www.sciencedirect.com/science/article/pii/

S0950584921000793

[13] M. Fowler, Stranglerfigapplication, https://martinfowler.com/bliki/

StranglerFigApplication.html, (Accessed on 11/20/2020) (June 2004).

[14] M. Brito, J. Cunha, J. Saraiva, Identification of microservices from mono-
lithic applications through topic modelling, in: Proceedings of the 36th
Annual ACM Symposium on Applied Computing, Association for Com-
puting Machinery, New York, NY, USA, 2021, p. 1409–1418.
URL https://doi.org/10.1145/3412841.3442016

[15] S. Newman, Monolith to Microservices: Evolutionary Patterns to Trans-
form Your Monolith, O’Reilly Media, Incorporated, 2019.
URL https://books.google.pt/books?id=iul3wQEACAAJ

[16] M. Fowler, LocalDTO, https://martinfowler.com/bliki/LocalDTO.

html, (Accessed on 10/02/2021) (10 2004).

[17] M. Silva, Improving the resilience of microservices-based applications, Mas-
ter’s thesis, University of Minho (2021).
URL https://hdl.handle.net/1822/81099

[18] F. Freitas, Refactoring Java monoliths into executable microservice-based
applications, Master’s thesis, University of Minho (2022).
URL https://hdl.handle.net/1822/79920

[19] F. Freitas, A. Ferreira, J. Cunha, Refactoring java monoliths into ex-
ecutable microservice-based applications, in: 25th Brazilian Symposium
on Programming Languages, Association for Computing Machinery, New
York, NY, USA, 2021, p. 100–107.
URL https://doi.org/10.1145/3475061.3475086

[20] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. Tamburri, T. Lynn, Mi-
croservices migration patterns, Software: Practice and Experience 48.
doi:10.1002/spe.2608.

[21] R. Lichtenthäler, M. Prechtl, C. Schwille, T. Schwartz, P. Cezanne,
G. Wirtz, Requirements for a model-driven cloud-native migration of mono-
lithic web-based applications, SICS Software-Intensive Cyber-Physical Sys-
tems 35 (1) (2020) 89–100. doi:10.1007/s00450-019-00414-9.
URL https://doi.org/10.1007/s00450-019-00414-9

[22] S. Tyszberowicz, R. Heinrich, B. Liu, Z. Liu, Identifying microservices using
functional decomposition, in: X. Feng, M. Müller-Olm, Z. Yang (Eds.), De-
pendable Software Engineering. Theories, Tools, and Applications, Springer
International Publishing, Cham, 2018, pp. 50–65.

36

https://www.sciencedirect.com/science/article/pii/S0950584921000793
https://www.sciencedirect.com/science/article/pii/S0950584921000793
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2021.106600
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2021.106600
https://www.sciencedirect.com/science/article/pii/S0950584921000793
https://www.sciencedirect.com/science/article/pii/S0950584921000793
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://doi.org/10.1145/3412841.3442016
https://doi.org/10.1145/3412841.3442016
https://doi.org/10.1145/3412841.3442016
https://books.google.pt/books?id=iul3wQEACAAJ
https://books.google.pt/books?id=iul3wQEACAAJ
https://books.google.pt/books?id=iul3wQEACAAJ
https://martinfowler.com/bliki/LocalDTO.html
https://martinfowler.com/bliki/LocalDTO.html
https://hdl.handle.net/1822/81099
https://hdl.handle.net/1822/81099
https://hdl.handle.net/1822/79920
https://hdl.handle.net/1822/79920
https://hdl.handle.net/1822/79920
https://doi.org/10.1145/3475061.3475086
https://doi.org/10.1145/3475061.3475086
https://doi.org/10.1145/3475061.3475086
http://dx.doi.org/10.1002/spe.2608
https://doi.org/10.1007/s00450-019-00414-9
https://doi.org/10.1007/s00450-019-00414-9
http://dx.doi.org/10.1007/s00450-019-00414-9
https://doi.org/10.1007/s00450-019-00414-9


Appendix A. Expanded code for the example show in Section 2

1 class ReservationRequestImpl implements ReservationRequest{

2
3 private RestTemplate restTemplate;

4
5 public void setReservations(List <Reservation > reservations

, Long userId){

6 restTemplate.put("http ://6/ User/{id}/ Reservation/

setReservations", reservations , userId);

7 }

8
9 public List <Reservation > getReservations(Long userId){

10 List <Reservation > aux = restTemplate.getForObject("http

://6/ User/{id}/ Reservation/getReservations", List <

Reservation >.class , userId);

11 return aux;

12 }

13 }

Listing 10: Generated class that is responsible for the calls to the Reservation microservice.

1 @RestController

2 @CrossOrigin

3 class ReservationUserController {

4
5 private ReservationUserService reservationuserservice;

6
7 @PutMapping

8 ("/User/{id}/ Reservation/setReservations")

9 public void setReservations(@PathVariable(name="id") Long

userId , @RequestBody List <Reservation > reservations){

10 reservationuserservice.setReservations(userId ,

reservations);

11 }

12
13 @GetMapping

14 ("/User/{id}/ Reservation/getReservations")

15 public List <Reservation > getReservations(@PathVariable(

name="id") Long userId){

16 return reservationuserservice.getReservations(userId);

17 }

18 }

Listing 11: Generated class that exposes the API to handle Reservations.

1 @Service

2 class ReservationUserService {

3
4 private ReservationRepository reservationrepository;

37



5
6 public void setReservations(Long userId , List <Reservation >

reservations){

7 reservationrepository.setReservations(userId ,

reservations);

8 }

9
10 public List <Reservation > getReservations(Long userId){

11 return reservationrepository.getReservations(userId);

12 }

13 }

Listing 12: Generated class that processes and directs the request to the repository class.

38


	Introduction
	Refactoring ORM-Based Monoliths
	The Application restaurantServer
	Information Extraction
	Extraction of Structural Information
	Identify Microservice Dependencies

	Database Refactoring
	Relationships Refactoring

	Code Refactoring
	On the Migration of Monoliths to Microservices

	MicroRefact
	Information Extraction
	Database Refactoring
	Code Refactoring

	Evaluation
	Project Collection
	Setup
	Adaptation of Unit Tests
	On the Usage of Unit Tests

	Results and Analysis
	Degree of Complexity and Size of the Applications 
	Unrefactored Projects

	Threats to Validity

	Related Work
	Conclusion
	Expanded code for the example show in sec:methodology

